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a matrix associated to a Conway–Coxeter frieze pattern. We
generalise their result to the corresponding frieze pattern of cluster
variables arising from the Fomin–Zelevinsky cluster algebra of
type A. We give a representation-theoretic interpretation of this
result in terms of certain configurations of indecomposable objects
in the root category of type A.
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1. Introduction

Consider a generic 2 × n matrix, i.e. a matrix

X =
(

x1 x2 · · · xn

y1 y2 · · · yn

)

whose entries are indeterminates. For a choice of two columns of X , 1 � i, j � n, let

�i j =
∣∣∣∣ xi x j

yi y j
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Fig. 1. Rule for writing out a frieze pattern.

be the corresponding minor of X (so �ii = 0). Let A be the symmetric matrix with entries Aij given
by:

Aij =
{

�i j if i � j;
� ji if i > j.

Our main result is the following.

Theorem 1.1.

det(A) = (−2)n−2�12�23 · · ·�n−1,n�n1.

Our motivation comes from a result of Broline, Crowe and Isaacs [6] concerning frieze patterns of
integers. Theorem 1.1 can be regarded as a generalisation of this result, which we now describe.

Frieze patterns of integers in the plane were considered in [10–12] by Conway and Coxeter. Such
a frieze pattern consists of a finite number of infinite rows of integers, with each row interlacing
its neighbouring rows, and satisfies the unimodular rule, which states that for every four adjacent
numbers forming a square:

b
a d

c

the relation ad − bc = 1 is satisfied. The entries in the first and last rows are zero; the entries in the
second and penultimate rows are 1, and all other entries should be positive.

Fix an integer n � 3. A frieze pattern is said to be of order n if it has n + 1 rows. We fix a regular
n-sided polygon Pn , with vertices 1,2, . . . ,n numbered in cyclic order, arranged clockwise around the
boundary (we work with the vertices modulo n, with representatives in {1,2, . . . ,n}). In [11,12] it is
shown that a frieze pattern can be obtained from a triangulation π of Pn in the following way. For
each pair of integers i, j ∈ {1,2, . . . ,n}, define an integer mij as follows. Set mii = 0 and mi,i+1 = 1 for
all i. Then let mi−1,i+1 be the number of triangles in π incident with vertex i. Define mij for all i < j
inductively using the formula

mi−1, j+1 = mi−1, jmi, j+1 − 1

mij
. (1)

Then set m ji = mij for all i < j. The numbers mij are all positive integers and, when arranged as in
Fig. 1, form a frieze pattern. Furthermore, every frieze pattern of order n arises from a triangulation
of Pn in this way.

Note that the entries lying in a triangle below m1,n form a fundamental domain for a glide reflec-
tion preserving the pattern. This fundamental domain is indicated by a dashed line triangle (together
with its shift to the right).
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Fig. 2. A triangulation of P7.

Fig. 3. The frieze pattern corresponding to the triangulation in Fig. 2.

For example, the frieze pattern corresponding to the triangulation in Fig. 2 is shown in Fig. 3.
The middle triangle indicates the fundamental domain mentioned above; its images under the glide
reflection and its inverse are also displayed.

The result of Broline, Crowe and Isaacs can be stated as follows.

Theorem 1.2. (See [6].) Let n � 3, let π be a triangulation of Pn and let M(π) = (mij) be the symmetric
matrix defined above. Then det(M) = −(−2)n−2 .

For the example in Fig. 2, we have

M(π) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 1 2 1
1 0 1 1 2 5 3
2 1 0 1 3 8 5
1 1 1 0 1 3 2
1 2 3 1 0 1 1
2 5 8 3 1 0 1
1 3 5 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

which has determinant −(−2)5 = 32. In addition, a geometric interpretation of all the entries in the
frieze pattern in terms of π is given in [6].

We note that frieze patterns of integers of various kinds have been studied recently; see, for ex-
ample [1,3,4,16,20–22,24].

A connection between cluster algebras and frieze patterns was established in the article [8], which
showed that the frieze patterns above can be obtained from cluster algebras of type A.

The homogeneous coordinate ring of the Grassmannian of 2-planes in an n-dimensional vector
space is a cluster algebra of type An−3 [14, 12.6] (see also [13, §1]). The cluster variables are in
bijection with the diagonals of Pn . If i, j are the end-points of such a diagonal, we write uij for the
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corresponding cluster variable (so uij = u ji ). It has stable variables uij where i, j are the end-points
of a boundary edge. We set uii = 0 for all i and uij = u ji for i > j.

Via the above bijection, the clusters are in bijection with the triangulations of Pn . We fix such a
triangulation π and corresponding cluster. By the Laurent phenomenon [13, 3.1], each cluster variable
can be written as a Laurent polynomial in the elements of the cluster with the coefficients of the
polynomial given by polynomials in the stable variables.

When the variables in the cluster and the stable variables are specialised to 1, the resulting inte-
gers, when arranged correctly, produce the corresponding frieze pattern.

Theorem 1.1 can be reinterpreted in terms of this cluster algebra as follows. In this way we see
that it is in fact a generalisation of Theorem 1.2.

Theorem 1.3. Let π be a triangulation of Pn. Let U (π) = (uij). Then

det
(
U (π)

) = −(−2)n−2u12u23 · · · un−1,nun1.

We go on to show that this result can be given a categorical interpretation in terms of the root
category of type An−1. By interpreting this category as a category of oriented edges between vertices
of Pn (using methods similar to those in [9]) we show that the above determinant can be reinter-
preted as a sum over configurations of indecomposable objects in the root category. Each configuration
is a maximal collection of indecomposable objects such that no object lies in the frame of any of the
others (see Section 7 for the definition of frame) which is also of maximal cardinality.

2. A determinantal result

In this section, we prove our main result:

Theorem 2.1. Let A = (Aij) be the matrix of minors of X defined above. Then

det(A) = (−2)n−2�12�23 · · ·�n−1,n�n1.

Proof. The key point is that the minors �i j satisfy the Plücker relations, i.e., whenever 1 � p < q <

r < s � n are vertices of Pn , we have:

�pq�rs + �qr�ps = �pr�qs. (2)

Noting that A is symmetric, it follows that, whenever i, j,k, l are arranged clockwise around the
boundary of Pn , we have:

Aij Akl + A jk Ail = Aik A jl. (3)

We use induction on n, showing that the Plücker relations are sufficient to imply the result. For
n = 3 we have:

A =
( 0 �12 �13

�12 0 �23
�13 �23 0

)

which has determinant −2�12�23�31 as required. Now suppose that n � 4 and that the result is true
for n − 1. Fix vertices a,b of Pn such that b is distinct from a − 1,a,a + 1. From the quadrilateral in
Fig. 4 we have the Plücker relation:

Aa−1,a Aa+1,b + Aa,a+1 Aa−1,b = Aa−1,a+1 Aab.

We note that Aa−1,a+1 �= 0. Thus it follows from the above that:

Aa−1,a

A
Aa+1,b + Aa,a+1

A
Aa−1,b = Aab.
a−1,a+1 a−1,a+1
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Fig. 4. A quadrilateral in Pn .

Let Ra denote the ath row of A. From the above, it follows that if we replace Ra with the row:

Ra − Aa−1,a

Aa−1,a+1
Ra+1 − Aa,a+1

Aa−1,a+1
Ra−1,

then the a,b entry A′
ab in the new matrix A′ will be 0 for any b �= a − 1,a or a + 1. Noting that

Aa−1,a−1 = 0, we also have:

A′
a,a−1 = Aa,a−1 − Aa−1,a

Aa−1,a+1
Aa+1,a−1 − Aa,a+1

Aa−1,a+1
Aa−1,a−1 = 0,

and, similarly, A′
a,a+1 = 0, while

A′
aa = Aaa − Aa−1,a

Aa−1,a+1
Aa+1,a − Aa,a+1

Aa−1,a+1
Aa−1,a = −2Aa−1,a Aa,a+1

Aa−1,a+1
.

Expanding along the ath row, we obtain that the determinant of A is

det(A) = (−1)2a (−2)�a−1,a�a,a+1

�a−1,a+1
det

(
A(a)

)
, (4)

where A(a) denotes the matrix obtained by removing the ath row and the ath column from A. Note
that the entries of A(a) satisfy the relations (3) for the polygon Pn−1 with vertices parametrised
clockwise using the numbers {1,2, . . . ,n} \ {a}. By the induction hypothesis,

det
(

A(a)
) = (−2)n−3�a−1,a+1�12�23 · · · �̂a−1,a�̂a,a+1 · · ·�n−1,n�n1,

where the hats indicate omission. Combining this with Eq. (4) we obtain that

det(A) = (−2)n−2�12�23 · · ·�n−1,n�n1,

as required. �
Note that the identity in Theorem 2.1 can be restated as:

det(A) = −(−2)n−2 A12 A23 · · · An−1,n An1 (5)

since An1 = �1n = −�n1.

3. Frieze patterns and cluster algebras

We consider a cluster algebra A of type An−3 associated to Pn , defined over the complex numbers.
This cluster algebra appears in [13, §1] and is described in detail in [15, 12.2]; see alternatively
[24, 3.2] (using a perfect matching model for frieze patterns due to Gabriel Carroll and Gregory Price;
see [24] for details).
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Let π be a triangulation of Pn and let F be the field of rational functions in the variables uij
where i, j are the end-points of a diagonal in π or a boundary edge of Pn (regarding uij and u ji as
equal). Define elements uij ∈ F, for i, j the end-points of an arbitrary diagonal of Pn , inductively as
follows (again with uij = u ji ). If i, j,k, l are vertices of Pn , arranged clockwise around the boundary,
and uij, u jk, ukl, uli and uik are defined but u jl is not, define u jl by the following exchange relation:

uijukl + u jkuil = uiku jl. (6)

It turns out that the elements uij are well defined. The cluster algebra A is the C-subalgebra of F

generated by the uij for i, j the end-points of any diagonal or boundary edge of Pn . The genera-
tors corresponding to diagonals are known as cluster variables and those corresponding to boundary
edges are known as stable variables. For n = 3 there are no cluster variables, only stable variables. The
exchange relation (6) holds for any choice of i, j,k, l arranged clockwise around the boundary of Pn .

The diagonals in a triangulation of Pn determine a corresponding set of cluster variables of A
known as a cluster. The cluster corresponding to π is the initial cluster. By [13, 3.1], the cluster
variables can be written as Laurent polynomials in any fixed cluster, with coefficients given by poly-
nomials in the stable variables.

The cluster algebra A is independent (up to isomorphism) of the choice of π . In fact, it is isomor-
phic to the homogeneous coordinate ring C[Gr2(n)] of the Grassmannian of 2-dimensional subspaces
of an n-dimensional vector space; see [14, 12.6]. Such a subspace can be described by a 2 × n matrix,
with rows given by a choice of spanning vectors, and the 2 × 2 minors of the matrix give homoge-
neous coordinates on the Grassmannian.

The homogeneous coordinate ring is generated by these minors, subject to the Plücker relations,
and under the isomorphism, uij , for i < j, maps to the minor associated to columns i and j of the
matrix. The exchange relations above map to the Plücker relations.

Fix a triangulation π of Pn . Setting uii = 0 for all i, we consider the symmetric matrix U (π) =
(uij), where the uij are regarded as Laurent polynomials in the uij for i, j the end-points of an edge
in π with coefficients given by polynomials in the stable variables.

We note the following:

Proposition 3.1. (See [8, 5.2] and [24, §2, §3].) If the uij , for i, j the end-points of a diagonal in π , and the
stable variables are all specialised to 1, then U (π) becomes the matrix M(π) defined above.

Caldero and Chapoton prove this by first showing that, for each i, ui−1,i+1 specialises to the num-
ber of triangles in π incident with vertex i, which coincides with mi−1,i+1 in the above definition.
The result then follows from a comparison of formulas (1) and (6).

We can now restate Theorem 2.1 in this context. The proof of this version is the same, using the
exchange relations (6) (and noting Eq. (5)).

Theorem 3.2. Let π be a triangulation of Pn. Let U (π) = (uij) be the matrix defined above. Then

det
(
U (π)

) = −(−2)n−2u12u23 · · · un−1,nun1.

We have thus interpreted Theorem 2.1 as a generalisation of Theorem 1.2.

4. An example

Here we give an example of the result in the previous section. Let π be the triangulation of a
pentagon shown in Fig. 5. Then the corresponding matrix is given by:

U (π) =

⎛
⎜⎜⎜⎜⎝

0 u12 u13 u14 u15
u12 0 u23

u12u34+u23u14
u13

v

u13 u23 0 u34
u13u45+u15u34

u14

u14
u12u34+u23u14

u13
u34 0 u45

u13u45+u15u34

⎞
⎟⎟⎟⎟⎠
u15 v u14
u45 0
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Fig. 5. A triangulation of P5.

where

v = u12u13u45 + u12u15u34 + u14u15u23

u13u14
.

By Theorem 3.2, we have that

det(u) = 8u12u23u34u45u51.

5. A geometric model of the root category

Let n � 3 be an integer and let Q be a quiver of type An−1. Let k be an algebraically closed field.
Let Db(kQ ) denote the bounded derived category of modules over kQ , with shift functor [1]. Let
Rn = Db(kQ )/[2] denote the quotient of Db(kQ ) by the square [2] of the shift. In this section we
shall exhibit a geometric construction of this category (along the lines of [9]). We remark that this
category is sometimes referred to as the root category (of type A) since its objects can be put into
one-to-one correspondence with the roots in the corresponding root system (by Gabriel’s theorem). It
was considered in [17].

We now consider oriented edges between vertices of Pn , denoting the edge oriented from i to j
by [i, j], for any 1 � i, j � n with i �= j (thus boundary edges are included).

Recall that a stable translation quiver is a pair (Γ, τ ) where Γ is a locally finite quiver and τ : Γ0 →
Γ0 is a bijection such that for any X, Y ∈ Γ0, the number of arrows from X to Y is the same as the
number of arrows from τ (Y ) to X .

Let Γ = Γ (n) be the quiver defined as follows. The set of vertices, Γ0, is the set of all possible
oriented edges between distinct vertices of Pn as above. The arrows, Γ1, are of the form [i, j] →
[i, j + 1] and [i, j] → [i + 1, j] (where j + 1 is interpreted as 1 if j = n + 1 and similarly for i + 1),
whenever [i, j] and [i, j + 1] (respectively, [i, j] and [i + 1, j]) are vertices of Γ . Thus an arrow comes
from rotating an oriented edge clockwise about one of its end-points so that the other end-point
moves to an adjacent vertex on the boundary of Pn .

Let τ be the automorphism of Γ obtained by rotating Pn through 2π/n anticlockwise; thus
τ ([i, j]) = [i − 1, j − 1].

Lemma 5.1. The pair (Γ, τ ) is a stable translation quiver.

The proof is as in [2, 2.2]: note that this proof also works in the oriented case we have here.

Example 5.2. We consider the case when n = 5, so Pn is a pentagon. The translation quiver (Γ (5), τ )

is given in Fig. 6.

By [23, 2.3] (see also [19, 9.9]), Rn is a triangulated category, and, by [7, 1.3], it has Auslander–
Reiten triangles and its Auslander–Reiten quiver, Γ (Rn) is the quotient of the Auslander–Reiten quiver
of Db(kQ ) by the automorphism induced by [2]. We have the following:
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Fig. 6. The translation quiver Γ (5).

Proposition 5.3. The translation quiver Γ (n) is isomorphic to Γ (Rn).

Proof. Suppose that Q is a linearly oriented quiver of type An−1, with arrows i ← i + 1, 1 � i � n − 2.
Then, up to isomorphism, the indecomposable modules for kQ are of the form Mij , 1 � i < j � n,
where Mij has socle Si (the simple module corresponding to vertex i) and length j − i. So Mi,i+1 = Si .
For i < j, we also set M ji = Mij[1]. Then the map [i, j] �→ Mij , for 1 � i, j � n, i �= j, gives a bijection
between oriented edges between vertices of Pn and isomorphism classes of indecomposable objects
of Rn . The fact that this is an isomorphism of translation quivers follows from the description of
the Auslander–Reiten quiver of Db(kQ ) in [18]. We just need to check that the mesh beginning at
corresponding vertices is the same in each quiver. The only non-trivial cases are the meshes beginning
with Mij where j = n or i = n. In the first case, the mesh in Γ (Rn) is:

Mi,1 = Pi−1[1]

Mi,n = Ii Mi+1,1[1] = Pi[1]

Mi+1,n = Ii+1

and in the second case, the mesh in Γ (Rn) is:

Mn,i+1 = Ii+1[1]

Mn,i = Ii[1] M1,i+1 = Pi

M1,i = Pi−1

noting that in Rn , X ∼= X[2] for any object X . These meshes are the images of the corresponding
meshes in Γ (n), so we are done. �
Remark 5.4. We note that the induced subquiver of Γ (n) on vertices of form [i, j] with i < j (with
τ ([i, j]) undefined if i = 1) is isomorphic to the Auslander–Reiten quiver of kQ − mod.

We note that, as for the cluster category (see [7, §1]), the category Rn is standard. We thus have
the following corollary of Proposition 5.3, giving a geometric realisation of Rn .

Corollary 5.5. The root category Rn is equivalent to the additive hull of the mesh category of Γ (n).

We shall identify indecomposable objects in Rn , up to isomorphism, with the corresponding ori-
ented edges between vertices of Pn , in the sequel, and we shall freely switch between objects and
oriented edges between vertices in Pn .
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Fig. 7. The two types of crossing between X and Y .

6. Dimensions of extension groups

In this section we indicate how the dimensions of Ext1-groups between indecomposable objects
of Rn can be read off from the geometric model. We fix i, j with 1 � i, j � n, i �= j, and consider the
corresponding indecomposable object [i, j].

Consider the two rectangles R B = R B(i, j), with corners [ j, i], [ j, j − 1], [i − 1, j − 1] and [i − 1, i],
and R F = R F (i, j), with corners [i + 1, j + 1], [i + 1, i], [ j, i] and [ j, j + 1], in Rn .

Note that the Auslander–Reiten formula holds in Db(kQ ). This states that, for two indecomposable
objects X, Y in Db(kQ ),

Ext1
Db(kQ )

(X, Y ) ∼= D HomDb(kQ )(Y , τ X),

where D = Homk(−,k). This passes down to the root category Rn and it follows that the dimensions
of Ext1

Rn
(X, Y ) and HomRn (Y , τ X) coincide for any two indecomposable objects X, Y in Rn .

Using [5] or the mesh relations and the Auslander–Reiten formula in Rn directly, we see that:

Lemma 6.1. Let X and Y be indecomposable objects in Rn. Then:

(a) The space Ext1
Rn

([i, j], Y ) is non-zero if and only if Y lies in R B . If it is non-zero then it is one-dimensional.

(b) The space Ext1
Rn

(X, [i, j]) is non-zero if and only if X lies in R F . If it is non-zero then it is one-dimensional.

As an example, we show in Fig. 8 (by underlining) those indecomposable objects Y such that
Ext1

R5
([3,1], Y ) �= 0 for the case n = 5, and (by overlining) those indecomposable objects X such that

Ext1
R5

(X, [3,1]) �= 0. Note that [1,3] is the only object satisfying both conditions.
Let X, Y be two indecomposable objects of Rn , regarded as oriented edges between vertices of Pn .

Then X and Y may cross each other in two different ways. If the tangents to X, Y (in that order) form
a pair of axes corresponding to the usual orientation on R

2 we say that the crossing of X and Y is
positive, otherwise negative. See Fig. 7.

Lemma 6.1 can be reinterpreted geometrically as follows.

Proposition 6.2. Let X, X ′ be indecomposable objects in Rn. Then dim Ext1
Rn

(X, X ′) is equal to 1 if and only
if one of the following conditions holds, and is zero otherwise:

(a) The crossing of X, X ′ is positive;
(b) The terminal vertex of X coincides with the initial vertex of X ′ and X ′ lies to the left of X in Pn;
(c) The initial vertex of X coincides with the terminal vertex of X ′ and X ′ lies to the right of X in Pn;
(d) X ′ is the reverse of X .

As an example, consider the objects Y such that Ext1
R5

([3,1], Y ) �= 0, displayed in Fig. 8 (by un-
derlining). Note that the crossing of [3,1] with [2,5] or with [2,4] is positive; both [1,4] and [1,5]
start at the terminal vertex of [3,1] and lie to its left; [2,3] has terminal vertex coinciding with the
initial vertex of [3,1] and lies to its right, and [1,3] is the reverse of [3,1].
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Fig. 8. Objects with non-trivial extensions with [3,1] in either direction, in R5.

7. Starting and ending frames

In this section we consider starting and ending frames of indecomposable objects in Rn (follow-
ing [7, 8.4]). Let ind(Rn) denote the set of (isomorphism classes of) indecomposable objects of Rn .
Let X be an indecomposable object in Rn . Then the starting frame S(X) of X is the set

S(X) = {
Y ∈ ind(Rn): HomRn (X, Y ) �= 0, Ext1

Rn
(Y , X) = 0

}
.

The ending frame E(X) of X is the set

E(X) = {
Y ∈ ind(Rn): HomRn (Y , X) �= 0, Ext1

Rn
(X, Y ) = 0

}
.

We define the frame F (X) of X to be the union:

F (X) = S(X) ∪ E(X).

The following can be checked by a direct calculation or using Proposition 6.2 and the Auslander–
Reiten formula.

We also note that, if X denotes the reverse of X , then

HomRn (X, Y ) ∼= HomRn

(
X[1], Y

) ∼= HomRn

(
X, Y [1]) ∼= ExtRn (X, Y )

and

ExtRn (X, Y ) ∼= ExtRn

(
X[1], Y

) ∼= ExtRn

(
X, Y [−1]) ∼= HomRn (X, Y ).

Proposition 7.1.

(a) Y ∈ S(X) if and only if Y and X share a common terminal vertex and Y lies to the left of X , or Y and X
share a common initial vertex and Y lies to the right of X , or Y = X.

(b) Y ∈ E(X) if and only if Y and X share a common initial vertex and Y lies to the left of X , or Y and X share
a common terminal vertex and Y lies to the right of X , or Y = X.

(c) Y ∈ F (X) if and only if X and Y share a common initial vertex or share a common terminal vertex (or
both).

8. Categorification of the determinantal result

Fix again a triangulation π of Pn . For 1 � i, j � n with i �= j, we associate the indecomposable
object [i, j] (or oriented edge) with the i, j position in the n ×n matrix U (π) considered in Section 1.
The indecomposable kQ -modules (with i < j) correspond to the part of U (π) above the leading
diagonal and their shifts (with i > j) correspond to the part of U (π) below the leading diagonal.
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Reinterpreting Proposition 7.1 in these terms, we obtain:

Lemma 8.1. The frame of an indecomposable object X corresponds to the union of the row and column of U (π)

containing X (apart from the diagonal entries).

Define a frame-free configuration of Rn to be a maximal collection C of (isomorphism classes of)
indecomposable objects of indRn such that Y /∈ F (X) for all X, Y in C . Thus frame-free configurations
of Rn correspond to maximal collections of positions in U (π) which do not lie in the same row or
column as each other and contain no diagonal entries.

Lemma 8.2. Let C be a frame-free configuration of Rn. Then the cardinality of C is either n − 1 or n.

Proof. Since frame-free configurations cannot have objects in the same row or column, the maximum
cardinality is n. If the cardinality of a configuration is n − k where k � 2, there are at least two rows
and two columns of U (π) containing no elements of the configuration, a contradiction to its maximal-
ity (as at least two elements could be added to the configuration, at the non-diagonal intersections of
the empty rows and columns). The result follows. �

Given a fixed-point free permutation, σ (sometimes known as a derangement), let C(σ ) be the set
of objects [i, σ (i)] for 1 � i � n. Since σ is fixed-point free, it follows from Proposition 7.1(c) that
C(σ ) is a frame-free configuration; it has cardinality n. It is clear that this gives a bijection between
fixed-point free permutations and frame-free configurations of cardinality n.

Thus, as a collection of oriented edges between vertices of Pn , a frame-free configuration in Rn of
cardinality n is a union of oriented cycles (with no cycles of cardinality 1).

Similarly, a permutation σ with one fixed point, p, say, corresponds to a configuration of cardinal-
ity n − 1 consisting of the objects [i, σ (i)] for i �= p. This gives a bijection between the permutations
with a single fixed point and the frame-free configurations of cardinality n − 1.

The number of permutations with a given number of fixed points is well known (see e.g.
[25, A008290]). We thus have the following:

Lemma 8.3. The number of frame-free configurations of Rn of cardinality n is

!n := n!
n∑

k=0

(−1)k

k! ,

(known as the subfactorial of n) while the number of frame-free configurations of Rn of cardinality n − 1 is
!n + (−1)n−1 .

Thus the number of frame-free configurations in Rn of cardinality n for n = 2,3, . . . , is 1,2,9,44,

265,1854 (see [25, A000166]) and the number of frame-free configurations in Rn of cardinality n − 1
is 0,3,8,45,264,1855 (see [25, A000240]). The 9 frame-free configurations of R4 of cardinality 4 are
shown in Fig. 9 as collections of vertices in the AR-quiver (filled in vertices indicate those indecom-
posable objects in the collection) and as collections of oriented arcs between vertices of a square.

We see that the frame-free configurations of Rn of cardinality n correspond bijectively to the
non-zero terms in the expansion

det
(
U (π)

) =
∑

σ∈Σn

(−1)�(σ )u1,σ (1) · · · un,σ (n)

of the determinant of U (π) (since U (π) has zeros along its leading diagonal).
Given a frame-free configuration C of Rn of cardinality n, define its sign ε(C) to be

ε(C) =
∏
γ

(−1)�(γ )−1
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Fig. 9. The 9 frame-free configurations of cardinality 4 in the root category of type A3 and the corresponding terms in the
expansion of det(U (π)).

where the product is over the oriented cycles in the representation of C as a collection of oriented
edges between vertices of Pn , and �(γ ) is equal to the number of vertices in γ for a cycle γ . It is
easy to see that this is equal to the sign of the corresponding permutation. Set α(C) to be the product
of the entries of U (π) corresponding to the elements of C .

We therefore have:

det
(
U (π)

) =
∑

C

ε(C)α(C),

where the sum is over all frame-free configurations of Rn of cardinality n. The monomials in this
expansion are shown for each frame-free configuration in the example in Fig. 9.

We can reinterpret Theorem 3.2 representation-theoretically as follows. Recall that A is a cluster
algebra of type An−3 with coefficients corresponding to the boundary edges of Pn .

Theorem 8.4. Let n � 3, let π be a triangulation of Pn, and let U (π) = (uij) be the matrix of cluster variables
in A regarded as Laurent polynomials in the uij for i, j end-points of diagonals in π with coefficients given by
polynomials in the stable variables. Then we have:∑

C

ε(C)α(C) = −(−2)n−2u12u23 · · · un−1,nun,1,

where the sum is over all frame-free configurations of Rn = Db(kQ )/[2] of maximum cardinality.
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