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The cage problem asks for the smallest number c(k, g) of 
vertices in a k-regular graph of girth g and graphs meeting 
this bound are known as cages. While cages are known to 
exist for all integers k � 2 and g � 3, the exact value of c(k, g)
is known only for some small values of k, g and three infinite 
families where g ∈ {6, 8, 12} and k−1 is a prime power. These 
infinite families come from the incidence graphs of generalized 
polygons. Some of the best known upper bounds on c(k, g)
for g ∈ {6, 8, 12} have been obtained by constructing small 
regular induced subgraphs of these cages.
In this paper, we first use the Expander Mixing Lemma 
to give a general lower bound on the size of an induced 
k-regular subgraph of a regular bipartite graph in terms of 
the second largest eigenvalue of the host graph. We use this 
bound to show that the known construction of (k, 6)-graphs 
using Baer subplanes of the Desarguesian projective plane is 
the best possible. For generalized quadrangles and hexagons, 
our bounds are new. In particular, we improve the known 
lower bound on the size of an induced q-regular subgraph of 
the classical generalized quadrangle Q(4, q) and show that the 
known constructions are asymptotically sharp, which answers 
a question of Metsch [21, Section 6].
For prime powers q, we also improve the known upper bounds 
on c(q, 8) and c(q, 12) by giving new geometric constructions 
of q-regular induced subgraphs in the symplectic generalized 
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quadrangle W(3, q) and the split Cayley hexagon H(q), 
respectively. Our constructions show that

c(q, 8) � 2(q3 − q
√
q − q)

for q an even power of a prime, and

c(q, 12) � 2(q5 − 3q3)

for all prime powers q. For q ∈ {3, 4, 5} we also give a 
computer classification of all q-regular induced subgraphs of 
the classical generalized quadrangles of order q. For W(3, 7)
we classify all 7-regular induced subgraphs which have a non-
trivial automorphism.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A (k, g)-graph is a simple undirected graph which is k-regular and has girth g (length 
of the shortest cycle). The study of the cage problem begins with the observation that a 
(k, g)-graph has at least 1 + k+ k(k− 1) + · · ·+ k(k− 1)(g−3)/2 vertices for g odd and at 
least 2(1 + (k− 1) + (k− 1)2 + · · ·+ (k− 1)(g−2)/2) vertices for g even. The (k, g)-graphs 
which meet these bounds are known as Moore graphs. Interestingly, there are very few 
Moore graphs. It has been proved using linear algebraic methods that a Moore graph 
can only exist in the following cases: (a) k = 2 and g � 3 (cycles), (b) g = 3 and k � 2
(complete graphs), (c) g = 4 and k � 2 (complete bipartite graphs), (d) g = 5 and 
k ∈ {2, 3, 7, 57}, (e) g ∈ {6, 8, 12} and there exists a generalized (g/2)-gon of order k− 1
[17,10,4,7]. The existence of a Moore graph with k = 57 and g = 5 is a famous open 
problem in graph theory. Generalized n-gons are certain point-line geometries introduced 
by Tits [24], and those with order k − 1 are known to exist only when k − 1 is a prime 
power and n ∈ {3, 4, 6} (see Section 2 for their definition and properties).

In view of this scarcity of Moore graphs, a natural problem is to find the minimum 
number of vertices in a k-regular graph of girth g for arbitrary integers k � 3 and g � 5. 
This minimum number is denoted by c(k, g) and the graphs with c(k, g) vertices are 
known as cages. The problem of determining c(k, g) is then called the cage problem. It 
was shown by Erdős and Sachs that c(k, g) is finite, that is, cages exist for every possible 
value of k and g [8]. Beyond the Moore graphs, c(k, g) is known exactly for only a few 
small cases and we refer to the survey [9, Section 2] for a description of these graphs. The 
general problem of determining c(k, g) appears to be extremely hard. Therefore, much 
research has been devoted to obtaining good upper bounds on c(k, g) by constructing 
small graphs of given girth and regularity (see [9, Section 4] for the state of the art). In 
this paper, we will be focussing on the case g ∈ {6, 8, 12} when k − 1 is not necessarily 
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a prime power. For general values of k and g, the best known upper bounds are due to 
Lazebnik, Ustimenko and Woldar [20].

In [6], Brown initiated the idea of constructing regular induced subgraphs of known 
cages (or Moore graphs) to obtain upper bounds on the number c(k, g). It was shown that 
c(k, 6) < 4k2 for all k by taking a prime p satisfying k < p < 2k and then constructing a 
k-regular subgraph of the incidence graph of the projective plane PG(2, p) by removing 
some well chosen points and lines of the projective plane. More constructions for the 
projective plane were then given in [1] and some of the bounds were improved. In [2], 
further new constructions were given which in particular improved the bounds for g = 12.

To give a common treatment of these constructions, Gács and Héger [12] introduced 
the notion of a t-good structure in a generalized n-gon, which is a collection P of points 
and a collection L of lines with the property that every point outside P is incident 
with exactly t lines of L and every line outside L is incident with exactly t points 
of P. Or equivalently, a t-good structure in a generalized polygon Γ of order q is the 
point-line substructure obtained by removing the vertices of a (q+1 − t)-regular induced 
subgraph of the incidence graph of Γ. Therefore, large t-good structures correspond to 
small (q + 1 − t)-regular subgraphs. Gács and Héger constructed t-good structures with 
t(q + √

q + 1) points (and necessarily equally many lines) in PG(2, q), for q an even 
power of a prime, by taking t disjoint Baer subplanes [12]. They also showed that for 
all t � 2√q the size of any t-good structure in PG(2, q) is at most t(q + √

q + 1), thus 
proving that their construction is the best possible for small enough t [12, Theorem 3.9]. 
In Section 3, we will prove that this holds true for all feasible values of t. We also obtain 
upper bounds for the sizes of t-good structures in generalized quadrangles and hexagons 
by proving a general lower bound on the number of vertices in a regular induced subgraph 
of a regular graph, which follows from the Expander Mixing Lemma (see Theorem 3.3). 
These bounds give us a limit on the best upper bounds on c(k, g) that can be obtained, 
for g ∈ {6, 8, 12}, by this construction method. Our bound on generalized quadrangles 
in particular answers a question of Metsch [21, Section 6].

For constructions of small (k, g)-graphs, we focus on 1-good structures in generalized 
quadrangles and hexagons which will allow us to obtain new upper bounds on c(q, 8) and 
c(q, 12) for prime powers q. We remark that in all of our constructions it is straightforward 
to prove using the Moore bound that the q-regular induced subgraph that we construct 
also has the girth of the original graph. In fact, even if the girth were bigger, we would 
get an upper bound on c(q, 8) and c(q, 12) because of the inequality c(k, g1) < c(k, g2)
for g1 < g2 [11, Theorem 1].

For generalized quadrangles, 1-good structures were studied extensively by Beuke-
mann and Metsch in [5], where they gave several constructions of 1-good structures in 
the classical generalized quadrangle related to the quadric Q(4, q) in PG(4, q) and showed 
that classifying such structures appears to be a difficult problem. Their best construc-
tions have q2 + 3q + 1 points for odd q and q2 + 4q + 3 points for even q, which imply 
the bounds
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c(q, 8) �
{

2(q3 − 2q), if q is odd
2(q3 − 3q − 2), if q is even.

In Section 4, we improve the bounds on c(q, 8) obtained by Beukemann and Metsch to

c(q, 8) � 2(q3 − q
√
q − q)

whenever q is a square, by constructing 1-good structures in the generalized quadrangle 
W(3, q) corresponding to a symplectic form in PG(3, q) of size q2 + q

√
q + 2q + 1.

For generalized hexagons of order q, the best known 1-good structures have q4 +2q3 +
q2 + q + 1 points in them [12, Construction 2.3]. In Section 5, we will give a general 
construction that will give us 1-good structures in H(q) of sizes q4 + q3 + q2 + q + 1 + k

for

k ∈ {0, q3−q, q3, q3 +q2−q, 2q3−q2−q, 2q3−q2, 2q3−q, 2q3, 3q3−q2−q, 3q3−q2, 3q3}.

While two of our examples, of sizes q4 + q3 + q2 + q + 1 and q4 + 2q3 + q2 + q + 1, 
are known, all the other examples are new. We note that unlike all the constructions of 
t-good structures in generalized hexagons so far, our construction relies on the geometry 
of the split Cayley generalized hexagon H(q) represented inside the quadric Q(6, q) in 
PG(6, q), and not just on its “combinatorial properties”. With the best new geometric 
construction, we obtain the bound

c(q, 12) � 2(q5 − 3q3)

for every prime power q, which improves the current best upper bound of c(q, 12) �
2(q5 − q3) for all prime powers q.

Remark 1. For a prime power q, if q−1 is also a prime power then we clearly have c(k, g)
equal to the Moore bound. Therefore, the upper bounds on c(q, g) for g ∈ {6, 8, 12} are 
interesting only when q − 1 is not a prime power.

Finding 1-good structures in generalized quadrangles and hexagons of small order 
with the help of a computer played a big role in obtaining these new constructions. In 
Section 6 we describe our computational method and give a full computer-classification 
of 1-good structures in the known generalized quadrangles of orders 4 and 5, and a 
classification of 1-good structures that have a non-trivial automorphism group in the 
known generalized quadrangle of order 7.

2. Preliminaries

A generalized n-gon, for n ∈ N \ {0, 1, 2}, of order (s, t) is a point-line geometry 
S = (P, L, I) satisfying the following properties:
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(1) every point of S is incident with exactly t + 1 lines;
(2) every line of S is incident with exactly s + 1 points;
(3) the incidence graph of S has diameter n and girth 2n.

These objects were introduced by Tits [24] and a standard reference for them is [25].
For a generalized polygon (P, L, I) we will measure the distance d(x, y) between x, y ∈

P ∪ L by the distance between the vertices corresponding to x and y in the incidence 
graph. Two elements of the generalized n-gon that have the same type are called opposite
if they are at distance n from each other.

It was proved by Feit and Higman [10] that finite generalized n-gons of order (s, t)
with s, t � 2 can only exist for n ∈ {3, 4, 6}. These generalized n-gons are known as 
generalized triangles, quadrangles and hexagons, respectively. When s = t � 2, the 
incidence graphs of these generalized polygons give us Moore graphs, and such generalized 
polygons are only known to exist when s = t = q for a prime power q. As mentioned 
in the introduction, we will be looking at regular induced subgraphs of the incidence 
graphs of these generalized polygons.

Definition. A t-good structure in a generalized polygon (P, L, I) is a pair of subsets 
P ⊆ P, L ⊆ L with the property that there are exactly t lines of L through each point 
not in P, and there are exactly t points of P on each line not in L.

Note that if the generalized polygon has order q and t ≤ q, then (P, L) is a t-good 
structure if and only if the subgraph of the incidence graph induced by the points and 
lines not contained in P ∪L is (q + 1 − t)-regular. From the definition it follows that we 
must have |P| = |L| = |P ∪ L|/2. We call this quantity the size of the t-good structure.

In this paper, we will be constructing new 1-good structures in known generalized 
quadrangles and hexagons of order q, for a prime power q, to improve the known upper 
bounds on c(q, 8) and c(q, 12). For these constructions, we will be using the symplectic 
generalized quadrangle W(3, q) and the split Cayley generalized hexagon H(q), which we 
describe below.

Let β be a symplectic form defined on the three dimensional projective space PG(3, q), 
over the finite field Fq. Since all symplectic forms on PG(3, q) are pairwise isometric, we 
can take β to be the form defined by β((x0, x1, x2, x3), (y0, y1, y2, y3)) = x0y1 − x1y0 +
x2y3−x3y1. Then the points and lines of PG(3, q) which are totally isotropic with respect 
to β, that is, points X which satisfy β(X, X) = 0 and lines � for which all points X, Y
incident with � satisfy β(X, Y ) = 0, form a generalized quadrangle of order q. This 
generalized quadrangle is denoted by W(3, q) and it is known as the finite symplectic 
generalized quadrangle. We note that the form β defines a polarity ⊥ of PG(3, q) which 
maps a subspace S to S⊥ = {Y : β(X, Y ) = 0, for all X ∈ S}, and in fact the elements 
of W(3, q) are those elements S of PG(3, q) which satisfy S ⊆ S⊥.

Now let Q be a non-singular quadric in PG(n, q), that is, the set of points satisfying 
an irreducible quadratic form which cannot be described in fewer variables. From the 
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standard classification of such quadrics, it follows that Q can be one of the following 
three types.

(1) n = 2m, Q is parabolic with its quadratic form equivalent to

Q(x0, . . . , x2m) = x2
0 + x1x2 + · · · + x2m−1x2m.

(2) n = 2m − 1, Q is hyperbolic with its quadratic form equivalent to

Q(x0, . . . , x2m−1) = x0x1 + x2x3 + · · · + x2m−2x2m−1.

(3) n = 2m − 1, Q is elliptic with its quadratic form equivalent to

Q(x0, . . . , x2m−1) = f(x0, x1) + x2x3 + · · · + x2m−2x2m−1,

with f(x0, x1) an irreducible degree 2 polynomial over Fq.

The parabolic quadrics are denoted by Q(2m, q), the hyperbolic by Q+(2m − 1, q) and 
the elliptic by Q−(2m − 1, q). Let Q be a non-singular quadric. A cone with vertex a 
point X over Q, denoted by X ·Q, is the set of all points lying on the lines joining X to 
a point of a quadric isomorphic to Q lying in a hyperplane which does not contain X. 
Similarly, a cone with vertex a line � over Q, denoted by � ·Q, is the set of all points lying 
on the lines joining the points of � to the points of a quadric Q in an (n −2)-dimensional 
subspace disjoint from �.

A subspace S of PG(n, q) is called totally singular with respect to a quadric Q if 
all of its points are contained in Q. The maximum vector space dimension of a totally 
singular subspace of Q is called the Witt index of Q, and the Witt indices of Q(2m, q), 
Q+(2m − 1, q) and Q−(2m − 1, q) are m, m and m − 1, respectively. If the Witt index of 
a quadric Q is 2, then its totally singular points and lines form a generalized quadrangle. 
The quadric Q(4, q) gives rise the to the generalized quadrangle which is the point-line 
dual of W(3, q), and therefore it has the same incidence graph as W(3, q).

A standard way of constructing the split Cayley generalized hexagon of order q, de-
noted by H(q), is by using the parabolic quadric Q(6, q) in the following way. The points 
of H(q) are all the points of Q(6, q) while the lines of H(q) are only those lines of Q(6, q)
whose Grassmann coordinates satisfy a certain condition. Since we will not be using this 
condition on lines directly, we refer the interested reader to [25, Section 2.4.13]. What 
we will need is some of the well known geometric properties of H(q) which follow from 
its definition. We summarise these properties and introduce some terminology.

P1. The set of points of H(q) is identical to the set of points of Q(6, q).
P2. The set of q + 1 H(q)-lines incident with a point P span a totally singular plane of 

Q(6, q), called an H(q)-plane with centre P .
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P3. Every plane of Q(6, q) is either an H(q)-plane or contains no H(q)-lines. In the latter 
case the plane is called an ideal plane of Q(6, q).

P4. For a point P , the set of points at distance at most 4 from P in H(q) is equal to the 
set of points collinear with P in the quadric Q(6, q). This set is denoted by P⊥.

P5. Every line of Q(6, q) is incident with exactly q + 1 planes of Q(6, q), and if the line 
is an H(q)-line, then each of these planes is an H(q)-plane.

P6. Every ideal line, that is, a line of Q(6, q) not in H(q), is incident with a unique 
H(q)-plane.

Proofs of these properties can be found in [22, Section 1.4.2]. Finally, we refer the 
reader to [3] for a quick introduction to the basic notions from finite geometry and to 
[16] for a standard reference on the subject.

3. Bounds on regular induced subgraphs

Recall that a t-good structure in a generalized polygon is equivalent to the collection 
of points and lines not contained in an induced (q + 1 − t)-regular subgraph of the 
incidence graph. Therefore, to study how big a t-good structure can be, we will give 
lower bounds on the size of a regular induced subgraph. First we recall the Expander 
Mixing Lemma for bipartite graphs [18, Section 2.4] (one of the oldest references for this 
lemma is Theorem 3.1.1 in [14], which is also Theorem 5.1 in [15]). A direct proof of this 
lemma is given in [26, Section 3.2].

Lemma 3.1. Let G = (L, R, E) be a biregular bipartite graph and let λ1 � λ2 � · · · �
λ|L|+|R| be the eigenvalues of its adjacency matrix. Let S ⊆ L and T ⊆ R be such that 
|S| = α|L| and |T | = β|R| for some real numbers α, β ∈ [0, 1]. Denote by e(S, T ) the 
number of edges which have vertices in the sets S and T . Then we have

∣∣∣∣e(S, T )
|E| − αβ

∣∣∣∣ � λ2

λ1

√
αβ(1 − α)(1 − β).

Theorem 3.2. Let G = (L, R, E) be a d-regular bipartite graph and let λ be its second 
largest eigenvalue. Let H be a k-regular induced subgraph of G, with k ≥ 1. Then we 
have

k − λ

d− λ
� |V (H)|

|V (G)| � k + λ

d + λ
.

Proof. The subgraph H must have equally many vertices in both L and R since it is 
k-regular. Let x = |L ∩ V (H)| = |R ∩ V (H)| = |V (H)|/2. We must also have |L| = |R|
since G is d-regular. Let n = |L| = |R| = |V (G)|/2. Then by applying Lemma 3.1 to the 
sets L ∩ V (H) and R∩ V (H), both of size x, which have kx edges between them we get 
the following:
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∣∣∣∣kxdn − x2

n2

∣∣∣∣ � λ

d

√
x2

(
1 − x

n

)2
.

Simplifying this we get the inequality

k − λ

d− λ
� x

n
� k + λ

d + λ
. �

Remark 2. In our paper we will only be interested in the lower bound in Theorem 3.2. 
Note that this lower bound is well defined only for d > λ and positive only for k > λ.

Remark 3. The upper bound in Theorem 3.2 can be improved to (k+|λn|)/(d +|λn|) when 
G is a non-bipartite graph and k is allowed to be 0, in which case we get a generalization of 
the well known Hoffman–Delsarte bound on independent sets in a regular subgraph since 
an independent set is equivalent to a 0-regular induced subgraph. This generalization, 
along with Theorem 3.2, was already proved by Haemers in [14, Theorem 2.1.4].

We are now ready to prove our main result regarding the size of t-good structures in 
generalized polygons.

Theorem 3.3. Let (P, L) be a t-good structure in a generalized n-gon of order q for 
integers q � 2 and q ≥ t ≥ 1. Then

|P| = |L| �

⎧⎪⎪⎨
⎪⎪⎩
t(q + √

q + 1), if n = 3;
t(q + 1)(q +

√
2q + 1), if n = 4;

t(q + 1)(q2 + 1)(q +
√

3q + 1), if n = 6.

Proof. Let H be the (q + 1 − t)-regular induced subgraph of the incidence graph G of 
the generalized n-gon whose vertices are the points and lines not in P ∪ L. The lower 
bound in Theorem 3.2 can be rephrased as

1 − |V (H)|
|V (G)| � q + 1 − (q + 1 − t)

q + 1 − λ
= t

q + 1 − λ
. (1)

If θn is the total number of points in the generalized n-gon, then the left hand side in (1)
is equal to |P|/θn. It is well known, and easy to prove, that the second largest eigenvalue 
of a generalized n-gon of order q is √q, 

√
2q, 

√
3q for n = 3, 4 and 6, respectively.1 The 

number of points θn in a generalized n-gon of order q is equal to q2 +q+1, (q+1)(q2 +1)
and (q + 1)(q4 + q2 + 1), for n = 3, 4 and 6, respectively. We now substitute these 
values in (1) for each n ∈ {3, 4, 6} and simplify the expression by noting that q2 + 1 =
(q −√

2q + 1)(q +
√

2q + 1) and q4 + q2 + 1 = (q2 + 1)(q −√
3q + 1)(q +

√
3q + 1). �

1 See for example the proof of Proposition 7.2.7 in [25]. For our purposes, we only need these values as 
upper bounds to the second largest eigenvalues, which is proved in Section 3.4 of [26].
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Note that for t = 1 and n = 4, our bound improves the Beukemann–Metsch bound of 
2q2 + 2q − 1 on the number of points of a 1-good structure in a generalized quadrangle 
of order q [5, Theorem 1.1]. In fact, Beukemann and Metsch proved the bound only for 
the quadrangle Q(4, q) while our bound holds for arbitrary generalized quadrangles of 
order q, where q can be any integer. Our bound also answers the question of Metsch [21, 
Section 6] by proving that there cannot exist any constant c > 1 for which the parabolic 
quadric Q(4, q) has a 1-good structure of size greater than cq2.

4. Constructions in generalized quadrangles

In this section we give a construction that “lifts” a 1-good structure in PG(2, q) to a 
1-good structure in the symplectic generalized quadrangle W(3, q) (see [23, Chapter 3]
for a description of this object). By [12, Theorem 3.10], there are only three kinds of 
1-good structures in PG(2, q) and they are of sizes q+1, q+2 and q+√

q+1, respectively; 
the last possibility corresponds to a Baer subplane in PG(2, q) which only exists when 
q is a square. If we start with a Baer subplane of PG(2, q) in our construction, then we 
obtain a 1-good structure which is larger than those constructed by Beukemann and 
Metsch [5].

Theorem 4.1. Let W(3, q) be the generalized quadrangle obtained by taking a symplectic 
form on PG(3, q) and let ⊥ be the polarity defined by this form. Denote the set of points 
and lines of W(3, q) by P and L, respectively. Fix a point P of W(3, q) and let π = P⊥ be 
the plane in PG(3, q) which contains all points of W(3, q) collinear with P . Let (P ′

, L′)
be a 1-good structure in π ∼= PG(2, q). Define the following sets in W(3, q).

• P = {P} ∪ P ′ ∪ {X ∈ P | X⊥ ∩ π ∈ L′},
• L = {� ∈ L | P I �} ∪ {� ∈ L \ π | � ∩ π ∈ P ′}.

Then (P, L) is a 1-good structure in W(3, q). Moreover, if P ∈ P ′ then |P| = q|P ′| + 1
and if P /∈ P ′, then |P| = q|P ′| + q + 1.

Proof. Let � be a line in L \ L. Then � is not contained in π (because it is not incident 
with P ) and the point Q = � ∩ π is not contained in P ′. Therefore there exists a unique 
line m of the plane π (which may or may not be in the set L) through Q that lies in L′

since (P ′
, L′) is a 1-good structure in π. There is a bijective correspondence between the 

q + 1 points Y on � and the q + 1 lines through Q in π via the map Y �→ Y ⊥ ∩ π. Then 
the unique point on � corresponding to m is the unique point of P incident with �.

Now let X be a point in P \ P. If X ∈ π, then the line PX lies in L while every 
other line of W(3, q) through X, which must lie outside the plane π, is in L \L. Now say 
X /∈ π. Then the line X⊥ ∩ π is a line of π not contained in L′, and hence it contains a 
unique point Y of P. The line XY is the unique line of L through X. Therefore, (P, L)
is a 1-good structure in W(3, q).
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Note that |L| = |P| and |L′| = |P ′|, and thus it suffices to calculate |L|. There are 
q + 1 lines of L in π. And for every point X ∈ P ′ \ {P}, every line of W(3, q) through X
is in L. Therefore,

|P| = |L| =
{
q + 1 + q(|P ′| − 1), if P ∈ P ′

q + 1 + q|P ′|, if P /∈ P ′
.

�

From Theorem 4.1 and [12, Theorem 3.10], we can construct 1-good structures of sizes 
q2 + q+1, q2 +2q+1, q2 +3q+1, q2 + q

√
q+ q+1 and q2 + q

√
q+2q+1 in a generalized 

quadrangle of order q by starting with a 1-good structure of size q+1, q+2 or q+√
q+1

in the plane π. Previously, the best known construction was of size q2 + 3q + 1 for q odd 
and q2 +4q+3 for q even [5]. Therefore, for q square, we have constructed larger 1-good 
structures and proved the following.

Theorem 4.2. For q an even power of a prime, we have

c(q, 8) � 2(q3 − q
√
q − q).

Remark 4. Unlike the Desarguesian projective planes, the problem of classifying 1-good 
structures in the classical generalized quadrangles appears to be extremely hard.

5. Constructions in split Cayley hexagons

In this section we construct a large family of 1-good structures in H(q), which includes 
the two known constructions in generalized hexagons [12, Section 2]. The largest 1-good 
structure that we attain from our construction is of size q4 + 4q3 + q2 + q + 1, which 
implies the bound c(q, 12) � 2(q5 − 3q3) for all prime powers q.

Theorem 5.1. Let q be a prime power and let H(q) = (P, L, I) be the split Cayley hexagon 
in its standard representation inside the quadric Q(6, q) in PG(6, q). Let S be a 4-space in 
PG(6, q) and let A be a point in S∩Q(6, q). Let πA denote the H(q)-plane on A consisting 
of the q+1 lines of L containing A. Define the following sets of points and lines in H(q):

P1 = {X ∈ P : d(X,A) � 4} L1 = {n ∈ L : n ∩ S 
= ∅}

P2 = {X ∈ P : X I S} L2 = {n ∈ L : n ∩ πA 
= ∅}

P3 = {X ∈ P : X/IS, |Γ2(X) ∩ S| 
= 1}.

Then P = P1 ∪ P2 ∪ P3 and L = L1 ∪ L2 form a 1-good structure.
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Proof. We split the proof into various cases.

Elements of P\P are incident with 0 elements of L2: Let X be a point incident with a 
line n of L2. Now n ∩ πA 
= ∅, which is equivalent to d(n, A) � 3. Moreover, since 
X is a point of n, we have d(X, A) � 4. Therefore, every point not lying in P1 is 
incident with 0 elements of L2.

Elements of P\P are incident with 1 element of L1: Let X be a point not in P. Then 
X must be a point outside S which is collinear with a unique point in S, since it 
does not lie in P2 ∪ P3. Therefore, there is a unique line n through X containing a 
point of S. This line n must lie in L1.

Elements of L\L are incident with 1 element of P1: Every line not lying in the tangent 
hyperplane TA through A meets TA in precisely one point. Also, a line of H(q) lying 
in TA must necessarily meet the H(q)-plane πA. So every line not lying in L1 ∪ L2
meets P1 in precisely one point.

Elements of L\L are incident with 0 elements of P2: Every line which is incident with 
more than 0 elements of P2 = S is already contained in L1, therefore lines not 
contained in L1 ∪ L2 are incident with 0 elements of S.

Elements of L\L are incident with 0 elements of P3: Let � be a line not contained in 
L1. For the sake of contradiction, assume that � contains a point X of P3. Note that 
the H(q)-plane πX must meet S, and so |Γ2(X) ∩S| 
= 0. Since there are at least two 
points collinear with X in H(q) which are contained in S, the H(q)-plane πX must 
intersect S in a line m. The lines m and � lie in πX and so must intersect in a point 
of S incident with �, a contradiction. �

For the rest of this section, we assume that P = P1 ∪P2 ∪P3, L = L1 ∪L2 is a 1-good 
structure in H(q) as defined in Theorem 5.1, and we use all the notation defined there. To 
find out the size of this 1-good structure we will be determining |L1|, |L2| and |L1 ∩L2|
for different cases that we describe below. While an easy count will show that |L2| is 
always equal to q3 + q2 + q + 1, the other two quantities depend on how the 4-space 
S intersects Q(6, q) and H(q), and where the point A is located with respect to this 
intersection. These intersections have been studied before (see for example [19, Lemma 
4.1]), and the following result is probably known but we prove it here for completeness.

Lemma 5.2. Any 4-space S in PG(6, q) intersects H(q) inside Q(6, q) in exactly one of 
the following ways.

(a) S ∩Q(6, q) ∼= Q(4, q): there are q+1 H(q)-lines contained in S and they are pairwise 
opposite to each other.

(b) S ∩ Q(6, q) ∼= P · Q−(3, q): there is a unique H(q)-line � through P in S.
(c) S ∩ Q(6, q) ∼= P · Q+(3, q):

(i) πP IS: S meets H(q) in q+1 H(q)-planes, one through each H(q)-line containing 
P , and hence a total of (q + 1)2 lines of H(q) are contained in S.
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(ii) πP/IS: S meets H(q) in two collinear H(q)-planes, and hence 2q+1 lines of H(q)
are contained in S.

(d) S ∩ Q(6, q) ∼= m · Q(2, q):
(i) m does not lie in H(q) and the lines of H(q) contained in S are precisely the 

q + 1 lines on a point P , and m I πP (but m/IP ).
(ii) m lies in H(q) and the lines of H(q) contained in S are precisely the q2 + q + 1

lines concurrent with or equal to m.

Proof. (a) Suppose S is non-degenerate. If q is odd, then the perp of S with respect to 
the polarity for Q(6, q) is a line m of plus type. So the set of H(q)-lines within S
form what is often called the distance-3 trace of the two points of m ∩ Q(6, q), and 
so by [22, Lemma 1.17], the H(q)-lines within S form a regulus of a Q+(3, q)-section 
of Q(6, q). For q even, the pole of S with respect to the quadric Q(6, q) is a plane of 
PG(6, q) incident with the nucleus η of Q(6, q), meeting Q(6, q) in a conic C. Any two 
points of C are opposite (in H(q)) and so the distance-3-trace of two points of C yield 
a regulus of a Q+(3, q)-section of Q(6, q) (see [22, Lemma 1.17]). Moreover, any point 
of S is incident with at most one line of H(q), since two concurrent H(q)-lines span 
a totally singular plane; but Q(4, q) does not contain any totally singular planes. 
Therefore, any two points of C will yield the same regulus of q + 1 H(q)-lines of S.

(b) Suppose S∩Q(6, q) = P ·Q−(3, q). Therefore, every H(q)-line contained in S must be 
a generator of the cone C = P ·Q−(3, q). However, each such H(q)-line is incident with 
P , and the quotient polar space Q−(3, q) does not contain any totally isotropic lines. 
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Therefore, there can be at most one H(q)-line of S incident with P since two such 
lines would span a totally isotropic plane. Now the unique H(q)-plane πP incident 
with P is not contained in S (by the above argument) and so meets S in a line �, and 
� is an H(q)-line. Therefore, there is a unique H(q)-line within S, and it is incident 
with P .

(c) Suppose S ∩ Q(6, q) = P · Q+(3, q). We have two subcases:
(i) πP I S: In this case, each H(q)-line incident with P is contained in S. Now S/P

is isometric to Q+(3, q) and so for each H(q)-line z incident with P , there are 
two totally isotropic planes incident with z and contained in S; one of which is 
the H(q)-plane πP with centre P . Since z lies in H(q), it follows that the two 
totally isotropic planes on z are H(q)-planes.

(ii) πP/IS: So πP meets S in an H(q)-line � on P , since both S and πP lie in the 
tangent hyperplane TP to P . Now � is incident with S and contains the radical 
P of S. So the quotient space S/P is non-degenerate and isomorphic to Q+(3, q)
and the image �/P of � is a point of Q+(3, q). There are precisely two totally 
singular lines of S/P (∼= Q+(3, q)) incident with �/P , which implies that there 
are precisely two totally isotropic planes incident with both � and S. Since 
� ∈ H(q), we have shown that there are precisely two H(q)-planes incident with 
� and contained in S. The result then follows.

(d) Suppose S ∩ Q(6, q) ∼= m · Q(2, q). We have two subcases:
(i) m does not lie in H(q): Suppose X is a point of m. Then there cannot be two 

H(q)-lines incident with X in S since otherwise, X would be the centre of an 
H(q)-plane πX , and πX would have to contain m since it would be incident 
with S. However, this would imply that m is a line of H(q); a contradiction. On 
the other hand, the H(q)-plane πX incident with X meets S in a line, which is 
necessarily in H(q). So there is a unique H(q)-line on each point of m. Moreover, 
since S meets Q(6, q) in a cone of type m · Q(2, q), it is clear that we have 
accounted for all of the H(q)-lines of S, and there are q + 1 of them. Let π be 
the span of these lines. Then m and S are both incident with π, and hence π
is totally isotropic. Therefore, π is a plane and so must be an H(q)-plane (as it 
contains H(q)-lines).

(ii) m lies in H(q): This part follows from the basic properties of H(q); every line of 
H(q) concurrent with or equal to m lies in S and vice-versa. �

Since there are q + 1 lines of H(q) incident with the H(q)-plane πA incident with A, 
and each point of πA, apart from A, is incident with q lines of H(q) not incident with 
πA, it follows that

|L2| = q + 1 + (q2 + q)q = q3 + q2 + q + 1.

We now calculate the cardinality of L1.
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Lemma 5.3.

|L1| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q4 + 2q3 + q2 + q + 1 S ∩ Q(6, q) ∼= Q(4, q),
q4 + q3 + q2 + q + 1 S ∩ Q(6, q) ∼= P · Q−(3, q),
q4 + 2q3 + q2 + q + 1 S ∩ Q(6, q) ∼= P · Q+(3, q) and πP I S,
q4 + 3q3 + q2 + q + 1 S ∩ Q(6, q) ∼= P · Q+(3, q) and πP/IS,
q4 + 2q3 + q2 + q + 1 S ∩ Q(6, q) ∼= m · Q(2, q) and m /∈ H(q),
q4 + q3 + q2 + q + 1 S ∩ Q(6, q) ∼= m · Q(2, q) and m ∈ H(q).

Proof. Let x denote the number of points of Q(6, q) contained in S, and let y denote the 
number of H(q)-lines contained in S. Then through each of the x points of S ∩ Q(6, q)
there are q + 1 elements of L1 and this way we have counted each of the y lines exactly 
q + 1 times. Therefore, |L1| = x(q + 1) − yq. We can now go through each case and plug 
in the values of x, y to get the result.

(1) S ∩ Q(6, q) ∼= Q(4, q): x = q3 + q2 + q + 1 and y = q + 1.
(2) S ∩ Q(6, q) ∼= P · Q−(3, q): x = q3 + q + 1 and y = 1.
(3) S ∩ Q(6, q) ∼= P · Q+(3, q) and πP I S: x = q3 + 2q2 + q + 1 and y = (q + 1)2.
(4) S ∩ Q(6, q) ∼= P · Q+(3, q) and πP/IS: x = q3 + 2q2 + q + 1 and y = 2q + 1.
(5) S ∩ Q(6, q) ∼= m · Q(2, q) and m /∈ H(q): x = q3 + q2 + q + 1 and y = q + 1.
(6) S ∩ Q(6, q) ∼= m · Q(2, q) and m ∈ H(q): x = q3 + q2 + q + 1 and y = q2 + q + 1. �

We now determine |L1 ∩ L2|, which will finally allow us to compute the sizes of the 
1-good structures obtained by our construction. In the following lemmas we will refer to 
the different cases by how they appear in Lemma 5.2. For example, (c)(i) will refer to 
the case when S ∩Q(6, q) ∼= P ·Q+(3, q) and πP I S. To reduce the number of cases that 
we have to study, we first give a sufficient condition for L1 ∩ L2 = L2.

Lemma 5.4. If πA is contained in S or S is contained in the tangent space TA at A, then 
L2 ⊆ L1.

Proof. Suppose S lies in the tangent hyperplane TA at A, and suppose n meets πA in 
at least a point X. Then AX is a line of H(q) (since πA is an H(q)-plane) and hence 
d(n, A) � 3. This means that n is contained in TA and so n meets S nontrivially as S
is a hyperplane of TA. Suppose πA is contained in S. Then any line n which meets πA

nontrivially must meet S nontrivially. �
It turns out that the converse of Lemma 5.4 holds, which will be a consequence of the 

next result.
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Lemma 5.5. Either L2 ⊆ L1 or

|L1 ∩ L2| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2q2 + q + 1 (a) and dim(πA ∩ S) = 1,
q2 + 2q + 1 (a) and dim(πA ∩ S) = 0,
q2 + q + 1 (b) and dim(πA ∩ S) = 1,
2q + 1 (b) and dim(πA ∩ S) = 0,
2q2 + 2q + 1 (c) and dim(πA ∩ S) = 0,
2q2 + q + 1 (c), dim(πA ∩ S) = 1 and A /∈ πP ,

q2 + q + 1 (c), dim(πA ∩ S) = 1 and A ∈ πP ,

q2 + 2q + 1 (d) and dim(πA ∩ S) = 0,
q2 + q + 1 (d) and dim(πA ∩ S) = 1.

Proof. There are three types of lines in L1 ∩ L2:

(1) H(q)-lines through A,
(2) H(q)-lines that intersect all those H(q)-lines through A which are contained in S, 

and
(3) for each point X ∈ S ∩ Q(6, q) with d(X, A) = 4, the unique H(q)-line �X through 

X which is at distance 3 from A.

Therefore, for each case we just need to count the lines of type (2) which are not in (1) 
and the lines of type (3) which are not in (2) (no line of type (3) can be of type (1)). We 
will denote these numbers by α and β respectively, so that |L1 ∩ L2| = q + 1 + α + β.

By Lemma 5.4, we can assume that πA is not contained in S and S is not contained 
in the tangent space TA at A. Since πA is not contained in S, it must intersect S in the 
point A or a line � through A. Therefore α = 0 or q2 depending on whether πA ∩ S is a 
point or a line.

To determine β we will first compute the parameter γ which is the total number of 
ideal lines through A contained in S. This is because every point X with d(X, A) = 4 is 
collinear with A in Q(6, q) with AX being an ideal line. Therefore, qγ is the total number 
of points at distance 4 from A which are contained in S∩Q(6, q). For two distinct points 
X, Y ∈ S ∩ Q(6, q) with d(X, A) = d(Y, A) = 4, we have �X = �Y if and only if X and 
Y are collinear in H(q) and there is an H(q)-line � through A contained in S which is 
concurrent with the H(q)-line XY (= �X = �Y ). Therefore, if πA∩S = {A}, then no line 
of type (3) is of type (2) and we have β = qγ. In contrast, if πA∩S is a line � through A, 
then β is equal to the total number of points at distance 4 from A in S ∩ Q(6, q) which 
are not incident with any of the H(q)-line inside S that is concurrent with �. We now 
look at the different cases.

(a) S ∩ Q(6, q) ∼= Q(4, q).
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If A lies on one of the q+1 H(q)-lines in S∩Q(6, q), then πA∩S is that line through 
A, and otherwise πA ∩ S = {A}. Therefore, in the first case we have α = q2 and in 
the second α = 0. There are q + 1 totally singular lines in Q(4, q) through any point 
and no two H(q)-lines in S are concurrent. Therefore, in the first case, we have γ = q

and β = qγ = q2, while in the second case we have γ = q + 1 and β = qγ = q2 + q. 
To summarise,

Case α γ β |L1 ∩ L2|
dim(πA ∩ S) = 1 q2 q q2 2q2 + q + 1
dim(πA ∩ S) = 0 0 q + 1 q2 + q q2 + 2q + 1

(b) S ∩ Q(6, q) ∼= P · Q−(3, q).
Let � be the unique H(q)-line contained in S. The cases dim(πA ∩ S) = 1 and 
dim(πA ∩ S) = 0 correspond to A ∈ � \ {P} and A /∈ �, respectively. In the former 
case, α = q2 and in the latter we have α = 0. In both cases, A lies on a generator of 
the cone P ·Q−(3, q) but is not the vertex of the cone. So A lies on a unique totally 
singular line contained in S. In the first case this means that γ = 0 as � ∈ H(q) and 
in the latter case it means γ = 1. Since there is only one H(q)-line in S, we must 
have β = qγ in both cases.

Case α γ β |L1 ∩ L2|
dim(πA ∩ S) = 1 q2 0 0 q2 + q + 1
dim(πA ∩ S) = 0 0 1 q 2q + 1

(c) S ∩ Q(6, q) ∼= P · Q+(3, q).
We let πP be the unique H(q)-plane incident with P . Note that the number of totally 
singular lines in S incident with A is 2q + 1 for every A 
= P in S ∩ Q(6, q).
πA meets S in a point (namely A): So α = 0 here. We must be in case (c)(ii) of 

Lemma 5.2 and in fact A is a point of S ∩ Q(6, q) not lying on any of the two 
H(q)-planes contained in S. Since none of the totally singular lines through A in 
S are H(q)-lines, we have γ = 2q + 1. Moreover, we have β = qγ = 2q2 + q since 
πA ∩ S is a point here.

πA meets S in a line and A /∈ πP : Let � = πA ∩ S. Then � is not incident with P
because P /∈ πA. The parameter α is equal to q2. Since the line � is the unique 
totally singular line through A in S which is contained in H(q), and there are 
in total 2q + 1 totally singular lines through A in S, we have γ = 2q. This 
gives us 2q2 points of S at distance 4 from A. The plane π1 = 〈P, �〉 must be 
an H(q)-plane contained in S. Denote the second plane through the line PA

contained in S ∩ Q(6, q) by π2. Then for each of the q2 points X ∈ π1 \ �, the 
unique H(q)-line �X with d(A, �X) = 3 is already counted in the parameter α. 
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The remaining q2 points in π2 \ PA which are at distance 4 from A give rise to 
precisely q2 elements of L1 ∩ L2. Therefore, we have β = q2.

πA meets S in a line and A ∈ πP : Let � = πA ∩ S and note that P is incident with 
�. We again have α = q2. The 2q + 1 totally singular lines through A that are 
contained in S all lie in the two totally singular planes π1 and π2 through the 
line �. Since these planes contain the H(q)-line �, they must be H(q)-planes with 
centres on the line �. This shows that γ = 0 since for any X ∈ (π1 ∪ π2) \ � the 
unique H(q)-line �X at distance 3 from A is contained in S. Therefore, β = 0.

Case α γ β |L1 ∩ L2|
dim(πA ∩ S) = 0 0 2q + 1 2q2 + q 2q2 + 2q + 1
dim(πA ∩ S) = 1 and A /∈ πP q2 2q q2 2q2 + q + 1
dim(πA ∩ S) = 1 and A ∈ πP q2 0 0 q2 + q + 1

(d) S ∩ Q(6, q) = m · Q(2, q).
Say dim(πA∩S) = 0. Then α = 0. Moreover, β = qγ, where γ is the total number of 
ideal lines through A contained in S. There are q+1 totally singular lines through A
contained in S (all lines joining A to a point of m) and none of these are H(q)-lines. 
Therefore, γ = q + 1 and β = q2 + q.
Say dim(πA ∩ S) = 1 and let � = πA ∩ S. Here we have α = q2. Since all the q + 1
totally singular lines through A contained in S lie in the H(q)-plane 〈�, m〉, we must 
have γ = 0, which gives us β = 0.

Case α γ β |L1 ∩ L2|
dim(πA ∩ S) = 0 0 q + 1 q2 + q q2 + 2q + 1
dim(πA ∩ S) = 1 q2 0 0 q2 + q + 1

�
Corollary 5.6. The possible sizes of the 1-good structures that can be obtained via this 
construction are q4 + q3 + q2 + q + 1 + k for k ∈ {0, q3 − q, q3, q3 + q2 − q, 2q3 − q2 −
q, 2q3 − q2, 2q3 − q, 2q3, 3q3 − q2 − q, 3q3 − q2, 3q3}.

Proof. Starting with one of the cases of Lemma 5.3 and then using the appropriate case 
of Lemma 5.5, we can calculate the different possibles values of |L1 ∪L2| = |L1| + |L2| −
|L1 ∩ L2|, noting that |L2| = q3 + q2 + q + 1 in all cases. �
6. Computer classifications

In this section we describe an exhaustive search for 1-good structures of the generalized 
quadrangles W(3, 3), W(3, 4) and W(3, 5) and for the 1-good structures in W(3, 7) that 
have a non-trivial automorphism group.
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For many combinatorial problems in finite geometry there is a natural hierarchical 
property (that is, closed under taking subsets) for which the desired objects are just 
the extremal objects with that property. For example, in searching for hyperovals in a 
projective plane of order q, the property “no 3 points collinear” is hierarchical. Therefore 
a backtrack search can proceed simply by adding points to the “partial ovals” until the 
desired size (q+ 2) is reached. This general situation has been heavily studied and there 
is a wide range of techniques for improving the efficiency of such a search, and exploiting 
symmetry to reduce the generation of isomorphic objects.

The situation for 1-good structures is somewhat different in that there is no obvious 
property that can play a similar role — it is not clear what the defining property of a 
“partial 1-good structure” should be. The naive choice of constructing sets of points and 
lines that induce a subgraph of maximum degree at most q makes so little use of the 
constrained structure of a q-regular subgraph that it is essentially useless.

However it is clear that when the search process branches by making a decision on a 
particular element (i.e., the first branch assumes the element is in, while the second as-
sumes it is out), then there is a cascade of consequences affecting the other elements. This 
feature of the problem led us to consider the constraint satisfaction programming (CSP) 
paradigm. In a CSP problem, the user creates a declarative model of a problem where 
the desired configurations are defined by a collection of constraints that all solutions 
must satisfy. This is declarative (rather than imperative) because the user just states the 
desired outcome but leaves the details of the search procedure to the CSP solver. The 
CSP solver is optimised precisely for the task of constraint propagation thereby chasing 
down the effect of the entire cascade of consequences arising from the decision at each 
branch. Experience in related combinatorial searches has shown that in certain situa-
tions a general-purpose CSP solver can outperform even very heavily optimised bespoke 
programs.

In practice, for our computations we used the CSP solver Minion [13] (mostly for 
familiarity, we have no reason to believe that it is either better or worse than other 
CSP solvers for this problem). The model contains two boolean arrays (one for points, 
one for lines) so that the variable corresponding to a point is true if the point is in the 
1-good structure and false otherwise. The constraints all have the form “If P is not in the 
1-good structure then exactly one line through P is in the 1-good structure” (and the 
duals involving lines). This of course relies on the ability of one constraint to involve the 
“status” of another constraint. This ability is called reification which, loosely speaking, 
allows a constraint to have the form “If A is satisfied, then B must be satisfied” where A
and B are themselves constraints. A solution to the entire CSP may leave A unsatisfied, 
in which case B may or may not be satisfied without violating the reifyimply constraint 
(reifyimply is a Minion construct).

One advantage of using CSP is that the model itself is almost trivial to write, while 
the complicated part (chasing consequences) is handed over to a program that has many 
users and has been maintained for many years, dramatically reducing the chances that it 
harbours a bug sufficiently serious to compromise our results. Of course, as described, this 
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CSP program will find numerous unnecessary isomorphs of every 1-good structure and 
so we also used a number of standard symmetry-breaking techniques such as specifying 
that particular small subsets of elements are in (or not in) the 1-good structure. As these 
are entirely routine, we do not describe them further here.

When searching for 1-good structures with specified automorphism group, say H, the 
model is very similar, except that there is one boolean variable for each orbit of H. The 
constraints then must accommodate the possibility that each point in a point-orbit may 
be incident with more than one line in a line-orbit, and dually, but again this is a simple 
modification of the basic program.

We have provided the GAP code for this computation in the Appendix of this paper.

6.1. Tables

Tables 1–4 below include summary information about the q-regular induced sub-
graphs (and hence 1-good structures) found in the generalized quadrangles W(3, q) for 

Table 1
All induced 3-regular subgraphs in W(3, 3).

Size Stabiliser size Orbits (on subgraph) Orbits (on 1-good structure) From 4.1

36 24 {2, 4, 6, 122} {1, 23, 3, 4, 6, 122}
40 12 {22, 64, 12} {15, 2, 33, 64}
40 240 {202} {102, 20}
42 12 {1, 2, 3, 62, 122} {12, 34, 64}
42 36 {3, 9, 12, 18} {13, 2, 3, 62, 92} �
48 36 {62, 182} {14, 22, 32, 92} �
48 36 {62, 182} {1, 22, 63, 9}
48 144 {242} {1, 3, 42, 8, 12} �
54 36 {3, 6, 9, 182} {13, 2, 33, 62}
54 36 {3, 6, 9, 182} {13, 2, 3, 92}
54 324 {272} {12, 32, 92} �
56 48 {4, 12, 16, 24} {2, 42, 6, 8}
56 48 {4, 12, 16, 24} {1, 3, 4, 82}

Table 2
All induced 4-regular subgraphs in W(3, 4).

Size Stabiliser size Orbits (on subgraph) Orbits (on 1-good structure) From 4.1

100 240 {10, 20, 30, 40} {5, 10, 15, 202}
100 400 {502} {102, 252}
104 96 {4, 12, 16, 24, 48} {13, 3, 42, 12, 16, 24} �
108 144 {182, 362} {42, 62, 92, 122}
112 192 {8, 24, 32, 48} {1, 2, 3, 62, 16, 24} �
112 192 {8, 24, 32, 48} {12, 22, 4, 82, 162} �
120 96 {4, 8, 12, 16, 32, 48} {13, 3, 45, 8, 16}
120 120 {302, 60} {2, 3, 5, 10, 152}
120 288 {122, 482} {14, 32, 42, 162} �
120 1440 {602} {1, 4, 52, 15, 20} �
128 192 {16, 48, 64} {12, 42, 162}
128 288 {4, 12, 16, 482} {13, 3, 43, 122}
128 384 {16, 48, 64} {1, 2, 3, 8, 12, 16}
128 4608 {642} {12, 42, 162} �
136 136 {682} {172}
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Table 3
All induced 5-regular subgraphs in W(3, 5).

Size Stabiliser size Orbits (on subgraph) Orbits (on 1-good structure) From 4.1

230 200 {5, 10, 25, 40, 50, 100} {13, 22, 5, 102, 252} �
240 100 {54, 20, 254, 100} {13, 4, 58, 25}
240 200 {102, 20, 502, 100} {1, 2, 4, 104, 25}
240 400 {202, 1002} {1, 2, 4, 102, 20, 25}
240 400 {202, 1002} {14, 42, 52, 252} �
240 2400 {1202} {1, 5, 62, 24, 30} �
250 200 {5, 102, 25, 502, 100} {13, 22, 5, 252}
250 200 {5, 102, 25, 502, 100} {13, 4, 53, 102, 20}
250 400 {5, 20, 25, 1002} {13, 4, 53, 202}
250 10000 {1252} {12, 52, 252} �
252 96 {62, 242, 962} {12, 4, 6, 242}

Table 4
Induced 7-regular subgraphs in W(3, 7) with nontrivial stabiliser.

Size Stabiliser size Orbits (on subgraph) Orbits (on 1-good structure) From 4.1

658 588 {7, 142, 49, 84, 982, 294} {13, 23, 7, 142, 492} �
672 294 {76, 42, 496, 294} {13, 6, 710, 49}
672 294 {76, 42, 496, 294} {13, 6, 710, 49}
672 294 {76, 42, 496, 294} {13, 6, 710, 49}
672 294 {76, 42, 496, 294} {13, 6, 710, 49}
672 588 {143, 42, 983, 294} {1, 2, 6, 145, 49}
672 588 {143, 42, 983, 294} {13, 6, 74, 143, 49}
672 1764 {422, 2942} {14, 62, 72, 492} �
672 1764 {422, 2942} {1, 2, 6, 142, 42, 49}
672 14112 {3362} {1, 7, 82, 48, 56} �
686 588 {7, 143, 49, 983, 294} {13, 6, 73, 143, 42}
686 588 {7, 143, 49, 983, 294} {13, 6, 73, 143, 42}
686 588 {7, 143, 49, 983, 294} {13, 23, 7, 492}
686 882 {7, 212, 49, 1472, 294} {13, 6, 73, 212, 42}
686 1764 {7, 42, 49, 2942} {13, 6, 73, 422}
686 86436 {3432} {12, 72, 492} �
688 144 {82, 242, 48, 1444} {12, 32, 8, 482}

q ∈ {3, 4, 5, 7}. For q < 7, the tables provide a complete listing of every q-regular sub-
graph / 1-good structure in the generalized quadrangle. For q = 7 the computer searches 
assumed the existence of a non-trivial stabiliser group and so may miss those whose 
stabiliser group is trivial (although we do not believe there are any in W(3, 7)). Each line 
gives the size of a q-regular subgraph, the order of its stabiliser (in the collineation group 
of W(3, q)) and the orbits of this stabiliser on both the q-regular subgraph and its com-
plementary 1-good structure. The fifth column indicates when the example arises from 
Theorem 4.1. We note that some of the examples that do not arise from Theorem 4.1, 
are covered by the constructions given in [5].

7. Concluding remarks

We have improved the upper bounds on the cage number c(k, 8) when k is an even 
power of a prime, and on c(k, 12) when k is an arbitrary prime power. Of course, we also 
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need k−1 to not be a prime power, as otherwise c(k, g) is equal to the Moore bound. For 
g = 8, the smallest value of k for which we have an improvement in the upper bounds 
is k = 16, and for g = 12 the smallest value is k = 11. While the tables in Section 6
show that the known general constructions in W(3, q) (including Theorem 4.1) are best 
possible for q ∈ {3, 4, 5, 7}, we believe that in general this is not true. In both W(3, q)
and H(q), we found some computer examples that we are unable to explain via general 
constructions, which suggests that there is still room for improvement in these bounds, 
at least for some special value of q. It will also be interesting to explore 1-good structures 
in non-classical generalized quadrangles and find better constructions than those in the 
classical case.

We have not given any new constructions of t-good structures for t > 1 in this paper 
as we believe that it is much more difficult to give geometrical constructions of these 
objects that lead to improvements in the known bounds. Our constructions of Section 4
and 5 do not seem to generalise for t > 1. We conclude with the following:

Open problem. Find 1-good structures of size q4 + ω(q3) in H(q).
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