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1. Introduction

A (simple undirected) graph Γ is homogeneous if any isomorphism between finite in-
duced subgraphs extends to an automorphism of Γ. An analogous definition can be made 
for any relational structure, and the study of these highly symmetric objects dates back 
to Fraïssé [16]. The finite and countably infinite homogeneous graphs have been classi-
fied [17,30,20], and very few families of graphs arise (see Theorem 2.8). Consequently, 
various relaxations of homogeneity have been considered. For example, a graph Γ is k-
homogeneous if k is a positive integer and any isomorphism between induced subgraphs 
of order at most k extends to an automorphism of Γ. Every locally finite 5-homogeneous 
graph is homogeneous [9]—remarkably, this result does not rely upon the classification of 
the finite simple groups (CFSG)—but for each k, there are uncountably many countable 
k-homogeneous graphs that are not (k + 1)-homogeneous [14]. Further, for 2 � k � 4, 
the locally finite k-homogeneous graphs have been classified using the CFSG [5,11,32]
(see §2.4).

We require the following definition: for a graph (or graph property) X, we say that 
a graph Γ is locally X if the neighbourhood of any vertex in Γ is non-empty and in-
duces a graph that is isomorphic to (or has property) X; see §2.1 for other unexplained 
terms.

Here is another way to relax the concept of homogeneity: a graph is k-connected-
homogeneous, or k-CH, if k is a positive integer and any isomorphism between connected 
induced subgraphs of order at most k extends to an automorphism of the graph, and 
connected-homogeneous, or CH, if it is k-CH for all k. The locally finite CH graphs have 
been classified [18,15] (see Theorem 2.10), as have the countably infinite CH graphs [22], 
and Gray [21] proved that any infinite locally finite 3-CH graph with more than one end 
is CH. The 1-CH and 2-CH graphs are precisely the vertex-transitive and regular arc-
transitive graphs, respectively. The 3-CH graphs with girth at least 4 are 2-arc-transitive, 
and it is infeasible to classify such graphs in general, even in the finite case. Indeed, for 
a classification of the finite 2-arc-transitive graphs, dealing with just one of the cases 
arising from the reduction of the third author in [33, Theorem 2 and Corollary 4.2]
would require a classification of all transitive actions of all finite simple groups for which 
a point stabiliser acts 2-transitively on one of its orbits. Finite 3-CH graphs with girth 3
are studied using different terminology in [2]; see also [31]. In this paper, we investigate 
locally finite k-CH graphs for k � 4.

Remark 1.1. A graph is k-CH if and only if it is a disjoint union of connected k-CH 
graphs, all of which are isomorphic. Thus we will often restrict our attention to connected 
graphs.

The study of k-CH graphs (with non-zero valency) naturally divides into the locally 
connected case and the locally disconnected case. First we consider the locally connected 
case. (Definitions of the graphs that arise below may be found in §2.2.)
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Theorem 1.2. Let Γ be a locally finite, connected, locally connected graph. If Γ is 4-CH, 
then one of the following holds.

(i) Γ is Kn where n � 2 or Km[r] where m � 3 and r � 2. Here Γ is homogeneous.
(ii) Γ is the Schläfli graph. Here Γ is 4-homogeneous but not 5-CH.
(iii) Γ is the McLaughlin graph. Here Γ is 4-CH but not 5-CH.

Corollary 1.3. Any locally finite, connected, locally connected 5-CH graph is homoge-
neous.

Any disconnected 2-homogeneous graph must be a disjoint union of complete graphs 
with the same order (see Lemma 2.1). Since a 3-CH graph is locally 2-homogeneous (see 
Lemma 3.1), it follows that a locally finite 3-CH graph is locally disconnected if and 
only if it is locally (t + 1) ·Ks for some positive integers t and s. For such graphs, one 
important parameter is the number of common neighbours of two vertices at distance 
two; this number is constant for a 3-CH graph Γ, and we denote it by c2(Γ), or c2
when context permits. Note that a locally (t + 1) ·Ks graph has girth 3 precisely when 
s > 1, and girth at least 5 precisely when s = c2 = 1. Further, it has no induced 
4-cycles precisely when c2 = 1 (see Lemma 2.5). We divide the locally disconnected 
case into four cases: girth 3 with c2 > 1, girth 4, girth at least 5, and girth 3 with 
c2 = 1. In our next result, we classify the locally finite 4-CH graphs in the first of these 
cases.

Theorem 1.4. Let Γ be a locally finite, connected, locally disconnected graph with girth 3
for which c2 > 1. If Γ is 4-CH, then one of the following holds.

(i) Γ is Kn�Kn where n � 3. Here Γ is CH.
(ii) Γ is the point graph of the generalised quadrangle Q4(3), Q−

5 (3) or Q−
5 (4). Here Γ

is 4-CH but not 5-CH.
(iii) Γ is the point graph of the generalised quadrangle Q−

5 (2). Here Γ is 5-CH but not 
6-CH.

Note that the point graph of Q−
5 (2) and its complement the Schläfli graph, which arose 

in the locally connected case, are the only two locally finite 4-homogeneous graphs that 
are not homogeneous [5]. The following is an immediate consequence of Corollary 1.3
and Theorem 1.4.

Corollary 1.5. Any locally finite 6-CH graph with girth 3 and c2 > 1 is CH.

For the three remaining cases, we do not have classifications of the locally finite 4-CH 
graphs. Instead, we consider finite k-CH graphs for slightly larger k. For the girth 4
case, we use the classification of the finite 4-transitive permutation groups (a well-known 
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consequence of the CFSG) together with some results from [8] to prove the follow-
ing; note that families of finite CH graphs with girth 4 do exist (see Theorems 2.10
or 7.2).

Theorem 1.6.

(i) Any finite 5-CH graph with girth 4 is CH.
(ii) There are infinitely many finite connected 4-CH graphs with girth 4 that are not 

5-CH.

For k � 4, finite k-CH graphs with girth at least 5 are s-arc-transitive for some s � 3, 
and such graphs have been studied extensively. In particular, Weiss [37] proved that if 
Γ is a finite s-arc-transitive graph with valency at least 3, then s � 7, and if s = 7, 
then Γ has valency 3e + 1 for some positive integer e. Further, Conder and Walker [12]
have constructed infinitely many finite connected quartic 7-arc-transitive graphs. Using 
these results, as well as the classification of the finite 4-transitive permutation groups, 
we obtain our next theorem; see Theorems 8.3 and 8.4 for more details. Note that finite 
CH graphs with girth at least 5 do exist: these include the Petersen graph and any cycle 
with at least 5 vertices.

Theorem 1.7.

(i) Any finite 7-CH graph with girth at least 5 is CH.
(ii) There are infinitely many finite connected quartic 6-CH graphs with girth at least 

12 that are not 7-CH.
(iii) A finite quartic graph with girth at least 7 is 6-CH if and only if it is 7-arc-transitive.

The case where Γ is locally disconnected with girth 3 but c2 = 1 seems to be more 
difficult. Here Γ is locally (t + 1) · Ks where t � 1 and s � 2. When t = 1, we can 
make some progress, for Γ is the line graph of a graph Σ with valency s + 1 and girth 
at least 5, and it turns out that Γ is k-CH precisely when Σ is (k + 1)-CH with girth at 
least k+2 (see Lemma 9.2). Thus results about k-CH graphs with girth at least 5 can be 
interpreted for locally 2 ·Ks graphs with c2 = 1. In particular, we obtain the following; 
see Theorem 9.4 for more details. Note that the line graph of the regular tree of valency 
s + 1 is an infinite CH locally 2 ·Ks graph with c2 = 1.

Theorem 1.8.

(i) For s � 2, there are no finite 6-CH locally 2 ·Ks graphs with c2 = 1.
(ii) There are infinitely many finite connected 5-CH locally 2 ·K3 graphs with c2 = 1.
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Thus, with the possible exception of locally (t +1) ·Ks graphs where t � 2, s � 2 and 
c2 = 1, there exists an absolute constant A such that every finite A-CH graph is CH, 
and A = 7 is the best possible constant. We summarise this result here.

Corollary 1.9. For a finite 7-CH graph Γ, one of the following holds.

(i) Γ is locally m ·Kn for some m � 3 and n � 2, and c2 = 1.
(ii) Γ is CH.

Further, there are infinitely many finite connected 6-CH graphs that are not 7-CH.

For k-CH graphs (k � 4) that satisfy the condition of Corollary 1.9(i), we only have 
partial results; see Proposition 9.6 and Lemmas 3.12 and 3.14. In particular, there are 
examples of 4-CH graphs in this case: the point graph of the dual of the split Cayley 
hexagon of order (2, 2) is 4-CH but not 5-CH, as is the point graph of the Hall-Janko 
near octagon. This leads us to the following open problem; note that there are infinite 
locally finite CH graphs that satisfy the condition of Corollary 1.9(i), but there are no 
such finite graphs (see Theorem 2.10).

Problem 1.10. Determine whether there exists an absolute constant A for which there 
are no finite A-CH graphs satisfying the condition of Corollary 1.9(i).

Our approach for the locally connected case is to use the classification of the finite 
3-homogeneous graphs (see Theorem 2.9) together with the observation that any 4-
CH graph is locally a 3-homogeneous graph (see Lemma 3.1). Further, we will show 
that there is a combinatorial property of graphs—the unique x property—that acts as 
an obstruction for 4-connected-homogeneity (see Definition 3.5 and Lemma 3.6); we 
will prove that this property holds for locally strongly regular graphs under various 
combinatorial assumptions (see §4).

This paper is organised as follows. In §2, we provide some notation and definitions 
(§2.1-2.2), state some basic results (§2.3), and state some classification theorems (§2.4). 
In §3, we establish some properties of k-CH graphs, and in §4, we consider graphs with 
the unique x property. In §5, we consider locally connected graphs and prove Theo-
rem 1.2; in §6, we consider locally disconnected graphs with girth 3 and c2 > 1 and 
prove Theorem 1.4; in §7, we consider graphs with girth 4 and prove Theorem 1.6; in §8, 
we consider graphs with girth at least 5 and prove Theorem 1.7; and in §9, we consider 
locally disconnected graphs with girth 3 and c2 = 1 and prove Theorem 1.8. Note that 
the proofs of our main results depend upon the CFSG.

Remark 1.11. We sometimes use Magma [3] to determine whether a graph is k-CH. 
These computations are routine: we construct a G-arc-transitive graph Γ using a rep-
resentation of a group G provided by [39] or standard techniques, and we analyse Γ
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using Lemma 3.3. This analysis could be performed using various software packages; we 
find Magma the most convenient, and there is extensive online documentation for the 
commands we use to implement Lemma 3.3.

2. Preliminaries

All graphs in this paper are undirected, simple (no multiple edges or loops) and have 
non-empty vertex sets, but they need not be finite or even locally finite. Basic graph 
theoretical terminology not given here may be found in the appendix of [4]. All group 
actions and graph isomorphisms are written on the right, and basic group theoretic 
terminology may be found in [10]. The notation used to denote the finite simple groups 
(and their automorphism groups) is consistent with [29].

2.1. Notation and definitions

A graph Γ consists of a non-empty vertex set V Γ and an edge set EΓ, which is a set 
of 2-subsets of V Γ. The order of Γ is |V Γ|. For a non-empty subset X of V Γ, we often 
abuse notation and write X for the subgraph of Γ induced by X. The girth of a graph 
Γ is the length of a shortest cycle in Γ (or infinity when Γ has no cycles). We write Γ
for the complement of Γ. When EΓ is non-empty, the line graph of Γ, denoted by L(Γ), 
has vertex set EΓ, and two vertices of L(Γ) are adjacent whenever the corresponding 
edges of Γ have a common vertex in Γ. We denote the distance between u, v ∈ V Γ by 
dΓ(u, v), and the diameter of Γ by diam(Γ). When Γ is connected and bipartite, a halved 
graph of Γ is one of the two connected components of Γ2, where Γ2 is the graph with 
vertex set V Γ in which u and v are adjacent whenever dΓ(u, v) = 2. For u ∈ V Γ and any 
integer i � 0, let Γi(u) := {v ∈ V Γ : dΓ(u, v) = i}. We write Γ(u) for the neighbourhood
Γ1(u). The cardinality of Γ(u) is the valency of u, and the graph induced by Γ(u) (when 
non-empty) is a local graph of Γ. When every vertex of Γ has the same valency, we say 
that Γ is regular and refer to the valency of Γ. A graph is locally finite if every vertex 
has finite valency; this extends the definition given in the introduction to include graphs 
with valency 0 (such as K1). Note that, by definition, a graph with valency 0 is neither 
locally connected nor locally disconnected.

For a positive integer s, a path of length s in Γ is a sequence of vertices (u0, . . . , us)
such that ui is adjacent to ui+1 for 0 � i < s, an s-arc is a path (u0, . . . , us) where 
ui−1 �= ui+1 for 0 < i < s, and an arc is a 1-arc. An (s-)geodesic is a path (u0, . . . , us)
where dΓ(u0, us) = s. A path graph is a tree T with |T (u)| � 2 for all u ∈ V T . A μ-graph
of Γ is a graph that is induced by Γ(u) ∩ Γ(w) for some u, w ∈ V Γ with dΓ(u, w) = 2.

For this paragraph, assume that Γ is locally finite, and let i be a non-negative integer. 
We write ki(Γ) or ki for |Γi(u)| whenever |Γi(u)| does not depend on the choice of u, 
or to indicate that we are assuming this. For u, v ∈ V Γ such that dΓ(u, v) = i, let 
ci(u, v) := |Γi−1(u) ∩ Γ(v)| (when i � 1), ai(u, v) := |Γi(u) ∩ Γ(v)| and bi(u, v) :=
|Γi+1(u) ∩ Γ(v)|. Whenever ci(u, v) does not depend on the choice of u and v, or to 
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indicate that we are assuming this, we write ci(Γ) or ci, and similarly for ai(u, v) and 
bi(u, v). A graph Γ is strongly regular with parameters (v, k, λ, μ) if it is finite with order 
v and regular with valency k where 0 < k < v− 1, and if any two adjacent vertices have 
λ = λ(Γ) common neighbours and any two non-adjacent vertices have μ = μ(Γ) common 
neighbours. Note that complete graphs and edgeless graphs are not strongly regular. 
The complement of a strongly regular graph is again strongly regular with parameters 
(v, v − k − 1, v − 2k + μ − 2, v − 2k + λ).

Let G be a group acting on a set Ω. We denote the permutation group induced by 
this action by GΩ, and the pointwise stabiliser in G of u1, . . . , un ∈ Ω by Gu1,...,un

. 
When G is transitive on Ω, any orbit of G on Ω × Ω is an orbital; the trivial orbital is 
{(u, u) : u ∈ Ω}, and the other orbitals are non-trivial. The rank of G is the number of 
orbitals. Equivalently, for any u ∈ Ω, the rank of G is the number of orbits of Gu on 
Ω. The group G is primitive if it is transitive and there are no non-trivial G-invariant 
equivalence relations on Ω (the trivial ones are {(u, u) : u ∈ Ω} and Ω × Ω). The group 
G is k-transitive if 1 � k � |Ω| and G acts transitively on the set of k-tuples of pairwise 
distinct elements of Ω.

A graph Γ is G-vertex-transitive (or G-arc-transitive) if G is a subgroup of the auto-
morphism group Aut(Γ) and G acts transitively on V Γ (or the arcs of Γ); we omit the 
prefix G when G = Aut(Γ). We say that Γ is s-arc-transitive if Aut(Γ) acts transitively 
on the set of s-arcs, and s-transitive if Γ is s-arc-transitive but not (s +1)-arc-transitive. 
(Note that we have defined two different concepts of n-transitivity: one for groups above, 
and one for graphs here.) When Aut(Γ) acts transitively on ordered pairs of vertices at 
distance i for each integer i � 0, we say that Γ is distance-transitive, and when Γ is also 
finite with diameter d, it has intersection array {b0, b1, . . . , bd−1; c1, c2, . . . , cd}. We say 
that Γ is (G, k)-homogeneous (or (G, k)-CH ) when k is a positive integer, G � Aut(Γ), 
and any isomorphism between (connected) induced subgraphs of Γ with order at most 
k extends to an element of G. Note that a (G, 2)-CH graph is G-vertex-transitive and 
G-arc-transitive.

A partial linear space is a pair (P, L) where P is a non-empty set of points and L is a 
collection of subsets of P called lines such that two distinct points are in at most one line, 
and every line contains at least two points. The incidence graph of a partial linear space 
is the bipartite graph whose vertices are the points and lines, where a point p is adjacent 
to a line � whenever p ∈ �. The point graph of a partial linear space is the graph whose 
vertices are the points, where two points are adjacent whenever they are collinear. For 
a positive integer n, a generalised n-gon is a partial linear space whose incidence graph 
Γ has diameter n with ci = 1 (i.e., ci(u, v) = 1 for all u, v ∈ V Γ such that dΓ(u, v) = i) 
for i < n. A generalised n-gon is thick when every line has size at least three and every 
point is contained in at least three lines, and it has order (s, t) when there exist positive 
integers s and t such that every line has size s + 1 and every point is contained in t + 1
lines. It is routine to prove that any thick generalised n-gon has order (s, t) for some s
and t. A generalised n-gon is distance-transitive if its point graph is distance-transitive. 
When n = 4, 6 or 8, a generalised n-gon is a generalised quadrangle, generalised hexagon
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or generalised octagon respectively. A generalised quadrangle satisfies the GQ Axiom: 
for each point p and line � such that p /∈ �, there is a unique q ∈ � such that p is collinear 
with q. Conversely, any partial linear space with at least two lines that satisfies the GQ 
Axiom is a generalised quadrangle. See [4, §6.5] for more details.

We denote a finite field of order q by Fq and a d-dimensional vector space over Fq by 
Vd(q). We will use the following terminology concerning forms. See [29, §2.1,2.3-2.5] for 
more information. A symplectic, unitary or quadratic space is a pair (Vd(q), κ) where κ
is, respectively, a non-degenerate symplectic, unitary or quadratic form on Vd(q). In a 
symplectic or unitary space (V, f), a vector v ∈ V is singular if f(v, v) = 0, and in a 
quadratic space (V, Q), a vector v ∈ V is singular if Q(v) = 0. In a symplectic, unitary 
or quadratic space (V, κ), a subspace W of V is totally singular if every vector in W is 
singular. For a positive integer m, a quadratic space (V2m(q), Q) has plus type when the 
maximal totally singular subspaces of V2m(q) have dimension m, and minus type when 
the maximal totally singular subspaces of V2m(q) have dimension m −1; we also say that 
the quadratic space has type ε where ε ∈ {+, −}.

2.2. Families of graphs

Let m and n be positive integers. We denote the complete graph with n vertices by 
Kn, the cycle with n vertices by Cn, the complete multipartite graph with n parts of 
size m by Kn[m], and its complement (the disjoint union of n copies of Km) by n ·Km. 
We also write Kn,n for the complete bipartite graph K2[n]. The grid graph Kn�Km

has vertex set V Kn × V Km, where distinct vertices (u1, u2) and (v1, v2) are adjacent 
whenever u1 = v1 or u2 = v2. We denote the complement of this graph by Kn ×Km. In 
the literature, the graph K2 ×Kn is often described as the graph Kn,n with the edges 
of a perfect matching removed. The n-cube Qn has vertex set Fn

2 , where two vertices 
are adjacent whenever they differ in exactly one coordinate. The folded n-cube �n is 
obtained from Qn by identifying those vertices u and v for which u + v = (1, . . . , 1). 
The affine polar graph V Oε

2m(q) has vertex set V2m(q), and vectors u and v are adjacent 
whenever Q(u − v) = 0, where (V2m(q), Q) is a quadratic space with type ε.

We will be interested in the point or incidence graphs of the following classical gener-
alised quadrangles where q is a power of a prime: W3(q), H3(q2), H4(q2), Q4(q) for q odd, 
and Q−

5 (q). These are defined as follows. In each case, we have a symplectic, unitary or 
quadratic space (Vd(s), κ), the points are the one-dimensional totally singular subspaces 
of Vd(s) with respect to κ, and the lines are the two-dimensional totally singular sub-
spaces (which we may of course view as sets of points). For W3(q), we take a symplectic 
space with (d, s) = (4, q); for H3(q2) or H4(q2), a unitary space with (d, s) = (4, q2) or 
(5, q2) respectively; for Q4(q), a quadratic space with (d, s) = (5, q) and q odd; and for 
Q−

5 (q), a quadratic space of minus type with (d, s) = (6, q).
We will also be interested in certain other generalised n-gons. The split Cayley hexagon

is a generalised hexagon of order (q, q) whose automorphism group contains the excep-
tional group of Lie type G2(q). The Ree-Tits octagon is a generalised octagon of order 
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(q, q2) whose automorphism group contains the exceptional group of Lie type 2F4(q). 
See [36] for more details.

The Clebsch graph is the halved 5-cube (see §2.1 for the definition of a halved graph). 
We caution the reader that some authors define the Clebsch graph to be the complement 
of the halved 5-cube, which is isomorphic to �5 and V O−

4 (2); our definition is consistent 
with [4] and Seidel [34]. The Petersen graph is the complement of the local graph of 
the halved 5-cube. The Higman-Sims graph is a strongly regular graph with parameters 
(100, 22, 0, 6) whose automorphism group is HS :2, where HS denotes the Higman-Sims 
group, a sporadic simple group (see [4, §13.1B]). Similarly, the McLaughlin graph is a 
strongly regular graph with parameters (275, 112, 30, 56) whose automorphism group is 
McL :2, where McL denotes the McLaughlin group, another sporadic simple group (see 
[4, §11.4H]). The Schläfli graph is the complement of the point graph of the generalised 
quadrangle Q−

5 (2).
For positive integers t and s, the biregular tree Tt+1,s+1 is an (infinite) tree with 

bipartition (Vt, Vs) such that the vertices in Vt have valency t + 1, and the vertices in Vs

have valency s +1. The halved graph of Tt+1,s+1 with vertex set Vt is locally (t +1) ·Ks, 
while the halved graph with vertex set Vs is locally (s + 1) · Kt. We will see in §2.4
that the halved graphs of Tt+1,s+1 for t, s � 1 are precisely the infinite locally finite 
connected CH graphs. To obtain the complete list of such graphs, it suffices to either 
consider only those halved graphs with vertex set Vt, or assume that t � s, but we allow 
this redundancy in the notation for simplicity.

2.3. Basic results

Almost by definition, we obtain the following useful observation concerning 2-
homogeneous graphs; see [17, Lemma 1].

Lemma 2.1 ([17]). A 2-homogeneous graph is either a disjoint union of complete graphs 
with the same order, or connected with diameter 2.

Note that we permit the disjoint union to contain only one complete graph. The 
following is immediate from Lemma 2.1.

Lemma 2.2. If Γ is a locally finite 2-homogeneous graph, then either Γ is a (possibly 
infinite) disjoint union of finite complete graphs with the same order, or Γ is finite with 
diameter 2.

Note that Lemma 2.2 is often used to derive a result about locally finite 2-homogeneous 
graphs from the analogous result for the finite case.

We will sometimes use a stronger form of Lemma 2.1. Recall the definition of a (G, k)-
homogeneous graph from §2.1. If Γ is a non-complete (G, 2)-homogeneous graph that 
contains an edge, then the non-trivial orbitals of G on V Γ are the sets of adjacent pairs 
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and distinct non-adjacent pairs, so G is transitive of rank 3 on V Γ. If G also preserves 
a non-trivial equivalence relation ≡ on V Γ, then the set of pairs of distinct vertices u
and v such that u ≡ v must be either the set of adjacent pairs, or the set of distinct 
non-adjacent pairs, so Γ is either a disjoint union of complete graphs, or a complete 
multipartite graph. Thus we have the following result.

Lemma 2.3. Let Γ be a (G, 2)-homogeneous graph. Then exactly one of the following 
holds.

(i) Γ or Γ is a disjoint union of complete graphs with the same order.
(ii) diam(Γ) = 2 and G is primitive of rank 3 on V Γ.

Next we give a sufficient condition for the local action of an arc-transitive graph to 
be faithful; this will be useful in the locally connected case.

Lemma 2.4. Let Γ be a connected G-arc-transitive graph. If there exists x ∈ V Γ and 
y ∈ Γ(x) such that the pointwise stabiliser of Γ(x) ∩Γ(y) in Gx,y also fixes Γ(x) pointwise, 
then the action of Gu on Γ(u) is faithful for all u ∈ V Γ.

Proof. Suppose that there exists x ∈ V Γ and y ∈ Γ(x) such that the pointwise stabiliser 
of Γ(x) ∩Γ(y) in Gx,y also fixes Γ(x) pointwise. Since G acts transitively on the arcs of Γ, 
it follows that for any u ∈ V Γ and v ∈ Γ(u), if h ∈ Gu,v fixes Γ(u) ∩Γ(v) pointwise, then 
h fixes Γ(u) pointwise. Suppose that g ∈ Gu fixes Γ(u) pointwise. Let w ∈ V Γ. There 
is a path (u0, . . . , u�) in Γ with u0 = u and u� = w. If g fixes {ui} ∪ Γ(ui) pointwise 
for some integer i � 0, then g fixes ui+1, ui and Γ(ui+1) ∩ Γ(ui) pointwise, so, by the 
above observation, g fixes {ui+1} ∪Γ(ui+1) pointwise. By induction, g fixes u� = w. Thus 
g = 1. �

The proof of the following is routine.

Lemma 2.5. Let Γ be a locally (t + 1) ·Ks graph for positive integers t and s. Then no 
induced subgraph of Γ is isomorphic to the complete graph K4 with one edge removed.

The next result is a well-known property of quadratic spaces; see the proof of [29, 
Proposition 2.5.3], for example.

Lemma 2.6. Let (V, Q) be a quadratic space, and let f be the bilinear form associated 
with Q. For any non-zero singular vector v, there exists w ∈ V such that Q(w) = 0 and 
f(v, w) = 1.

We finish this section with a result of Tutte; see [19, Lemma 4.1.3] for a proof.

Lemma 2.7. An s-arc-transitive graph with valency at least 3 has girth at least 2s − 2.



A. Devillers et al. / Journal of Combinatorial Theory, Series A 173 (2020) 105234 11
2.4. Classification theorems

To begin, we state the classification of the finite homogeneous graphs; this was ob-
tained independently by Gardiner [17] (using the work of Sheehan [35]) and Gol’Fand 
and Klin [20]. In fact, this classification immediately implies that the locally finite ho-
mogeneous graphs are known (as Gardiner notes in [18]) since such graphs are either 
disjoint unions of complete graphs with the same order, or finite with diameter 2 (see 
Lemma 2.2). However, we will only state the classification in the finite case for simplicity.

Theorem 2.8 ([17,20]). A finite graph Γ is homogeneous if and only if Γ is listed below.

(i) (t + 1) ·Ks where t � 0 and s � 1.
(ii) Km[r] where m � 2 and r � 2.
(iii) C5 or K3�K3.

In the introduction, we stated two important results concerning k-homogeneous 
graphs: first, every locally finite 5-homogeneous graph is homogeneous [9], and second, 
the only locally finite 4-homogeneous graphs that are not 5-homogeneous are the point 
graph of Q−

5 (2) and its complement the Schläfli graph [5]. We also alluded to the fact 
that the locally finite 2- and 3-homogeneous graphs are known. We now give some more 
details about these classifications.

By Lemmas 2.2 and 2.3, in order to classify the locally finite 2-homogeneous graphs, it 
suffices to consider those finite graphs Γ for which diam(Γ) = 2 and Aut(Γ) is primitive 
of rank 3. Using the CFSG, the finite primitive permutation groups of rank 3 were 
classified in a series of papers (see [32]). A non-trivial orbital X of such a group G is 
the adjacency relation of a graph Γ with G � Aut(Γ) precisely when X is self-paired 
(i.e., symmetric), and this occurs precisely when |G| is even. Thus the locally finite 
2-homogeneous graphs are known as an immediate consequence of the classification of 
the finite primitive rank 3 groups. Note that any locally finite connected non-complete 
2-homogeneous graph is finite of diameter 2 and is therefore distance-transitive and 
strongly regular.

The locally finite k-homogeneous graphs for k � 3 are therefore also known, but these 
graphs were in fact enumerated (using the CFSG for k � 4) before the classification of the 
finite primitive rank 3 groups was available. We now state Cameron and Macpherson’s 
classification [11] of the finite 3-homogeneous graphs; the locally finite classification then 
follows from Lemma 2.2.

Theorem 2.9 ([11]). A finite graph Γ is 3-homogeneous if and only if Γ or Γ is listed 
below.

(i) (t + 1) ·Ks where t � 0 and s � 1.
(ii) Kn�Kn where n � 3.
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(iii) V Oε
2m(2) where m � 3 and ε ∈ {+, −}.

(iv) The point graph of Q−
5 (q) where q is a power of a prime.

(v) C5, the Clebsch graph, the Higman-Sims graph, or the McLaughlin graph.

Our statement of Theorem 2.9 may appear to differ from [11, Corollary 1.2], but it 
does describe the same set of graphs, and it is routine to verify that these graphs are 
indeed 3-homogeneous. In (iii), we impose the restriction m � 3 since V O+

2 (2) � K2,2, 
V O−

2 (2) � K4 and V O+
4 (2) � K4 × K4, all of which arise in (i) or (ii), and V O−

4 (2)
is isomorphic to the complement of the Clebsch graph. The graphs we list in (iv) are 
isomorphic to those of [11, Corollary 1.2](iv) since Q−

5 (q) is isomorphic to the point-line 
dual of H3(q2).

Next we state the classification of the locally finite CH graphs. This classification 
implies, in particular, that the only infinite, locally finite, connected CH graphs are the 
halved graphs of the biregular tree Tt+1,s+1 for positive integers t and s. Note that the 
halved graphs of Tt+1,2 are the regular tree Tt+1 and its line graph L(Tt+1). Gardiner 
mistakenly claimed in [18] that these are the only infinite, locally finite, connected CH 
graphs, but this was later corrected by Enomoto [15, Remark 3] to include the halved 
graphs of Tt+1,s+1 for s � 2.

Theorem 2.10 ([18,15]). A locally finite connected graph Γ is CH if and only if Γ is listed 
below.

(i) Kn where n � 1 or Km[r] where m � 2 and r � 2.
(ii) Cn where n � 5.
(iii) Kn�Kn where n � 3.
(iv) K2 ×Kn where n � 4.
(v) A halved graph of the biregular tree Tt+1,s+1 where t � 1 and s � 1.
(vi) The Petersen graph, or the folded 5-cube �5.

The finite distance-transitive generalised quadrangles were classified by Buekenhout 
and Van Maldeghem [7] using the CFSG. In §6, we will use the following consequence of 
their work.

Theorem 2.11 ([7]). Let Q be a finite thick distance-transitive generalised quadrangle of 
order (s, t) where s divides t. Let G := Aut(Q). Then one of the following holds.

(i) Q is W3(q) for a prime power q. Here (s, t) = (q, q) and G = PΓSp4(q).
(ii) Q is Q4(q) for an odd prime power q. Here (s, t) = (q, q) and G = PΓO5(q).
(iii) Q is Q−

5 (q) for a prime power q. Here (s, t) = (q, q2) and G = PΓO−
6 (q).

(iv) Q is H4(q2) for a prime power q. Here (s, t) = (q2, q3) and G = PΓU5(q).
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Proof. By [7], Q is one of W3(q), Q4(q) for q odd, Q−
5 (q), H3(q2), H4(q2), the dual of 

H4(q2), or a generalised quadrangle with order (3, 5). Note that H3(q2) has order (q2, q), 
and the dual of H4(q2) has order (q3, q2). Since Q has order (s, t) where s divides t, one 
of (i)-(iv) holds. �

The following is a well-known consequence of the CFSG (see [9, Theorem 4.11]).

Theorem 2.12 (CFSG). The only finite 4-transitive permutation groups of degree n are 
Sn for n � 4, An for n � 6, and the Mathieu groups Mn for n ∈ {11, 12, 23, 24}.

3. Properties of k-CH graphs

We begin with a result that provides the basic approach for studying k-CH graphs 
in the locally connected case. Note that many of the arguments in this section apply 
to infinite graphs, including those that are not locally finite. Recall the definition of a 
(G, k)-CH graph from §2.1.

Lemma 3.1. If Γ is a (G, k)-CH graph with non-zero valency for some k � 2, then for 
each u ∈ V Γ, the graph induced by Γ(u) is (GΓ(u)

u , k − 1)-homogeneous.

Proof. Let u ∈ V Γ. Let Δ1 and Δ2 be induced subgraphs of Γ(u) of order at most k−1, 
and suppose that ϕ : Δ1 → Δ2 is a graph isomorphism. For each i, let Σi denote the 
subgraph of Γ induced by V Δi ∪ {u}. Define ϕ∗ : Σ1 → Σ2 by u 	→ u and v 	→ vϕ for all 
v ∈ V Δ1. Now ϕ∗ is an isomorphism between connected graphs of order at most k, so 
there exists g ∈ G such that vg = vϕ∗ for all v ∈ V Σ1. Since g ∈ Gu, it preserves Γ(u)
and therefore induces an automorphism of Γ(u) that extends ϕ, as desired. �
Lemma 3.2. If Γ is a locally finite 3-CH graph with non-zero valency, then Γ is either 
locally (t + 1) ·Ks for some t � 0 and s � 1, or locally a graph with diameter 2.

Proof. Apply Lemmas 2.1 and 3.1. �
Our next result provides a method for determining whether a (k − 1)-CH graph is 

k-CH. This requires some additional terminology: a graph Γ is (G, Δ)-homogeneous if 
G � Aut(Γ) and Δ is a finite graph such that any isomorphism between induced sub-
graphs of Γ that are isomorphic to Δ extends to an automorphism of Γ. Note that Γ is 
(G, k)-CH if and only if Γ is (G, Δ)-homogeneous for all connected graphs Δ of order at 
most k.

Lemma 3.3. Let Γ be a graph, let Δ be an induced subgraph of Γ of order k � 2, and let 
Σ be an induced subgraph of Δ of order k − 1. Let u0 be the unique vertex in V Δ \ V Σ, 
and let X := {u ∈ V Γ \ V Σ : Γ(u) ∩ V Σ = Γ(u0) ∩ V Σ}. If Γ is (G, Σ)-homogeneous, 
then the following are equivalent.
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(i) Γ is (G, Δ)-homogeneous.
(ii) The pointwise stabiliser in G of V Σ is transitive on X.

Proof. Let P be the pointwise stabiliser in G of V Σ. First suppose that (ii) does not 
hold. Let u1 and u2 be elements of X in different orbits of P . Let Δi be the graph 
induced by V Σ ∪ {ui} for each i. Then Δ1 � Δ2 � Δ, and there is an isomorphism 
ϕ : Δ1 → Δ2 that fixes V Σ pointwise and maps u1 to u2. Since ϕ cannot be extended 
to G, (i) does not hold.

Conversely, suppose that (ii) holds. Let ϕ : Δ1 → Δ2 be an isomorphism between 
induced subgraphs Δ1 and Δ2 of Γ such that Δ1 is isomorphic to Δ. There exists an 
isomorphism ϕ1 : Δ1 → Δ. Hence ϕ2 := ϕ−1ϕ1 : Δ2 → Δ is also an isomorphism. 
Fix i ∈ {1, 2}. Let Σi := Σϕ−1

i and wi := u0ϕ
−1
i , so that V Δi = V Σi ∪ {wi}, and 

let ϕ′
i := ϕi|V Σi

. Now ϕ′
i : Σi → Σ is an isomorphism of induced subgraphs of Γ of 

order k − 1, so there exists gi ∈ G that extends ϕ′
i. Let ui := wgi

i . Now ui ∈ X since 
Γ(u0) ∩ V Σ = (Γ(wi) ∩ V Σi)ϕ′

i = (Γ(wi) ∩ V Σi)gi = Γ(ui) ∩ V Σ. By assumption, there 
exists g ∈ P such that ug

1 = u2. Further, g extends the isomorphism g−1
1 ϕg2 : Δg1

1 → Δg2
2

since (V Δi)gi = V Σ ∪ {ui}. Thus g1gg
−1
2 extends ϕ, and (i) holds. �

Note that for any connected graph Δ of order k � 2, we can always find a connected 
induced subgraph Σ of Δ of order k−1: choose u, v ∈ V Δ such that dΔ(u, v) = diam(Δ)
and take Σ to be the graph induced by V Δ \ {u}.

The next two results will be instrumental in our proof of Theorem 1.2.

Lemma 3.4. Let Γ be a (G, 4)-CH graph. If there exists u ∈ V Γ, v ∈ Γ(u) and w ∈
Γ2(u) ∩ Γ(v) such that Gu,v,w fixes some x ∈ Γ(u) ∩ Γ2(v), then the following hold.

(i) The graph induced by Γ(u) ∩ Γ2(v) is either edgeless or complete.
(ii) Γ(u) ∩ Γ2(v) ∩ Γ(w) is either {x} or (Γ(u) ∩ Γ2(v)) \ {x}.

Proof. Let X := Γ(u) ∩Γ2(v). If y, z ∈ X ∩Γ(w), then there is an isomorphism between 
the connected graphs induced by {u, v, w, y} and {u, v, w, z} that maps y to z and fixes 
u, v and w, so Gu,v,w acts transitively on X ∩ Γ(w). Similarly, Gu,v,w acts transitively 
on X \Γ(w). Thus Gu,v,w has at most two orbits on X. By assumption, Gu,v,w � Gu,v,x, 
so Gu,v,x has at most two orbits on X. If Gu,v,x is transitive on X, then X = {x}, so 
(i) and (ii) hold. Otherwise, Gu,v,x and Gu,v,w have the same orbits on X, namely {x}
and X \ {x}, so (ii) holds. Further, since Gu,v,x is transitive on X \ {x}, either x has 
no neighbours in X \ {x}, or x is adjacent to every vertex in X \ {x}. Since Gu,v acts 
transitively on X, it follows that (i) holds. �

The following property will enable us to state a useful consequence of Lemma 3.4.
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Definition 3.5. A non-complete graph Γ has the unique x property if for some u ∈ V Γ, 
v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v), there exists a unique x ∈ Γ(u) ∩ Γ2(v) such that 
Γ(u) ∩ Γ(v) ∩ Γ(w) = Γ(u) ∩ Γ(v) ∩ Γ(x).

Lemma 3.6. Let Γ be a graph in which Γ(u′) ∩Γ2(v′) is neither edgeless nor complete for 
some u′ ∈ V Γ and v′ ∈ Γ(u′). If Γ has the unique x property, then Γ is not 4-CH.

Proof. Suppose that Γ is 4-CH and has the unique x property. There exist u ∈ V Γ, 
v ∈ Γ(u), w ∈ Γ2(u) ∩Γ(v) and a unique x ∈ Γ(u) ∩Γ2(v) such that Γ(u) ∩Γ(v) ∩Γ(w) =
Γ(u) ∩ Γ(v) ∩ Γ(x). By assumption, Γ(u′) ∩ Γ2(v′) is neither edgeless nor complete for 
some u′ ∈ V Γ and v′ ∈ Γ(u′), and since Γ is 2-CH, it follows that Γ(u) ∩Γ2(v) is neither 
edgeless nor complete. If g ∈ Aut(Γ)u,v,w, then xg ∈ Γ(u) ∩Γ2(v) and Γ(u) ∩Γ(v) ∩Γ(w) =
Γ(u) ∩ Γ(v) ∩ Γ(xg), so xg = x, but this is impossible by Lemma 3.4. �

When the local graph of Γ has diameter 2, Lemma 3.6 says the following: if the μ-
graph in Γ(v) of some u, w ∈ Γ(v) is also the μ-graph in Γ(u) of v and exactly one other 
vertex x ∈ Γ(u), then either Γ(u) ∩ Γ2(v) is edgeless or complete, or Γ is not 4-CH.

One of the immediate consequences of the definition of 2-homogeneity is that every 
connected non-complete 2-homogeneous graph has diameter 2 (see Lemma 2.1). However, 
this need not be the case for 4-CH graphs: using Lemma 3.3, it is routine to verify that 
the n-cube is a 4-CH graph with diameter n. We now establish some sufficient conditions 
for a connected 4-CH graph to have diameter 2.

Lemma 3.7. Let Γ be a connected 4-CH graph. If there exists u ∈ V Γ, v ∈ Γ(u) and 
w ∈ Γ2(u) ∩Γ(v) such that Γ(u) ∩Γ2(v) ∩Γ(w) �= ∅ and the graph induced by Γ(u) ∩Γ2(v)
is connected, then diam(Γ) = 2.

Proof. Let G := Aut(Γ). Suppose for a contradiction that Γ contains a 3-geodesic. By 
assumption, there exists x ∈ Γ(u) ∩ Γ2(v) ∩ Γ(w). Now G acts transitively on the set of 
2-geodesics in Γ, and (v, w, x) is a 2-geodesic, so there exists y ∈ V Γ such that (v, w, x, y)
is a 3-geodesic. Suppose that z is a neighbour of x in Γ(u) ∩Γ2(v). If z is not adjacent to 
w, then the subgraphs induced by {v, w, x, y} and {v, w, x, z} are isomorphic, so there 
exists g ∈ Gv,w,x such that yg = z, but dΓ(v, y) = 3 while dΓ(v, z) = 2, a contradiction. 
Since the graph induced by Γ(u) ∩ Γ2(v) is connected, it follows that w is adjacent to 
every vertex in Γ(u) ∩ Γ2(v). Thus Γ(u) ∩ Γ2(v) ⊆ Γ(w) ∩ Γ2(v). Since (u, v, w) is a 
2-geodesic, there exists g ∈ Gv such that ug = w and wg = u, and it follows that 
Γ(u) ∩ Γ2(v) = Γ(w) ∩ Γ2(v). Further, there exists y′ ∈ V Γ such that (u, v, w, y′) is a 
3-geodesic, but then y′ ∈ (Γ(w) ∩ Γ2(v)) \ Γ(u), a contradiction. �

Note that a graph Γ has an induced 4-cycle if and only if there exists u ∈ V Γ, 
v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v) such that Γ(u) ∩ Γ2(v) ∩ Γ(w) �= ∅ (as in the statement 
of Lemma 3.7), and this occurs precisely when some μ-graph of Γ is not complete.
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Lemma 3.8. Let Γ be a 3-CH graph where Γ(u) ∩ Γ2(v) ∩ Γ(w) = ∅ for some u ∈ V Γ, 
v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). Then every μ-graph of Γ(u) is complete.

Proof. By assumption, v is adjacent to every vertex in Γ(u) ∩Γ(w) \{v}, but Aut(Γ)u,w is 
transitive on Γ(u) ∩Γ(w), so the graph induced by Γ(u) ∩Γ(w) is complete. It follows that 
every μ-graph of Γ is complete. Let Σ be the graph induced by Γ(u), and let x ∈ V Σ and 
y ∈ Σ2(x). Now Γ(x) ∩ Γ(y) induces a complete graph, so Σ(x) ∩ Σ(y) does as well. �
Lemma 3.9. Let Γ be a connected 4-CH locally Σ graph, where Σ is a connected graph 
for which there exists v ∈ V Σ and x ∈ Σ2(v) such that the graph induced by Σ2(v) is 
connected and the graph induced by Σ(v) ∩ Σ(x) is not complete. Then diam(Γ) = 2.

Proof. Let u ∈ V Γ, and view v as a vertex in Γ(u). There exists w ∈ Γ2(u) ∩ Γ(v). 
Some μ-graph of Σ is not complete by assumption, so Lemma 3.8 implies that Γ(u) ∩
Γ2(v) ∩Γ(w) �= ∅. Since Σ has diameter 2 by Lemma 3.2, the graphs induced by Σ2(v) and 
Γ(u) ∩Γ2(v) are isomorphic, so Γ(u) ∩Γ2(v) induces a connected graph. Thus diam(Γ) = 2
by Lemma 3.7. �
Remark 3.10. Lemma 3.9 does not hold for 3-CH graphs: using Lemma 3.3, it is routine 
to verify that the halved n-cube is a 3-CH graph with diameter �n/2� whose local graph 
satisfies the conditions of Lemma 3.9 for n � 4.

If Γ is a locally finite connected 4-CH graph whose local graph Σ satisfies the conditions 
of Lemma 3.9, then Γ is a finite 2-homogeneous graph and therefore known (see §2.4). 
In fact, it turns out that most finite 3-homogeneous graphs satisfy the conditions on Σ
in Lemma 3.9, so we could prove Theorem 1.2 using a case-by-case analysis of the finite 
2-homogeneous graphs. However, there are many more families of finite 2-homogeneous 
graphs than finite 3-homogeneous graphs (see [32]), and we prefer the more direct and 
elementary approach provided by Lemma 3.4.

Next we have some results that will be useful in the locally disconnected case when 
c2 = 1. Note that in both of these results, we are not necessarily assuming that diam(Γ)
is finite, but since k is an integer, the parameter m is also an integer.

Lemma 3.11. Let Γ be a connected k-CH graph that is locally (t + 1) · Ks for positive 
integers t and s. Let m := min(diam(Γ), k − 1) and suppose that ci(Γ) = 1 for some 
1 < i < m (so k � 4). Let u ∈ V Γ, v ∈ Γi(u) and y ∈ Γi−1(u) ∩Γ(v). Then Γi(u) ∩Γ(v) =
Γ(v) ∩ Γ(y).

Proof. There exists a unique clique C of size s +1 containing v and y, and Γi−1(u) ∩Γ(v) =
{y} since ci = 1, so Γ(v) ∩Γ(y) = C\{y, v} ⊆ Γi(u) ∩Γ(v). There exists a path (u0, . . . , ui)
where u0 = u, ui−1 = y and ui = v, and since diam(Γ) > i and Γ is (i + 1)-CH, there 
exists w ∈ Γi+1(u) ∩ Γ(v). If there exists x ∈ Γi(u) ∩ Γ(v) \ Γ(y), then {u0, . . . , ui, x}
and {u0, . . . , ui, w} induce isomorphic subgraphs of Γ with order i + 2, and i + 2 � k, so 
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there exists g ∈ Aut(Γ)u0,...,ui
such that xg = w, but dΓ(u, x) = i while dΓ(u, w) = i +1, 

a contradiction. Thus Γi(u) ∩ Γ(v) = Γ(v) ∩ Γ(y). �
Lemma 3.12. Let Γ be a connected k-CH graph that is locally (t + 1) · Ks for positive 
integers t and s where k � 3 and c2(Γ) = 1. Let m := min(diam(Γ), k − 1). Then the 
following hold.

(i) ci(Γ) = 1 and ai(Γ) = s − 1 for 1 � i < m.
(ii) For u, v ∈ V Γ such that dΓ(u, v) = m, the set Γm−1(u) ∩ Γ(v) induces cm(Γ) ·K1.
(iii) If diam(Γ) � k − 1, then Γ is distance-transitive.
(iv) If diam(Γ) < k − 1, then either cm(Γ) = 1, or s = 1 and cm(Γ) = t + 1.
(v) If 3 � diam(Γ) < k − 2, then s = 1, and either Γ � C2m+1 or cm(Γ) = t + 1.

Proof. Let G := Aut(Γ). Since Γ is (m + 1)-CH, the parameters ai and ci are defined 
for 1 � i � m, and (iii) holds. By assumption, a1 = s − 1 and c1 = c2 = 1.

First we prove that (i) holds. Suppose for a contradiction that ci−1 = 1 for some 
2 < i < m (so k � 5) but ci �= 1. Then there exists u ∈ V Γ, v ∈ Γi(u), w ∈ Γi+1(u) ∩Γ(v), 
distinct x, y ∈ Γi−1(u) ∩ Γ(v), and a path (u0, . . . , ui) where u0 = u, ui−1 = y and 
ui = v. Since c2 = 1, x is not adjacent to ui−2. Further, x is not adjacent to y since 
Γi−1(u) ∩Γ(y) = Γ(y) ∩Γ(ui−2) by Lemma 3.11. Hence {u0, . . . , ui, x} and {u0, . . . , ui, w}
induce path graphs with order i + 2, and i + 2 � k, so there exists g ∈ Gu0,...,ui

such 
that xg = w, a contradiction. Thus ci = 1 for 1 � i < m. In particular, ai = s − 1 for 
1 < i < m by Lemma 3.11. Since a1 = s − 1, (i) holds.

For the remainder of the proof, let (u0, u1, . . . , um) be a geodesic in Γ. Let u := u0, 
v := um and y := um−1. Note that y ∈ Γm−1(u) ∩ Γ(v).

First we claim that y has no neighbours in Γm−1(u) ∩Γ(v), in which case (ii) holds since 
|Γm−1(u) ∩ Γ(v)| = cm. If m = 2, then the claim is trivial since c2 = 1. Suppose instead 
that m � 3. By (i), cm−1 = 1, so Γm−1(u) ∩ Γ(y) = Γ(y) ∩ Γ(um−2) by Lemma 3.11. 
Suppose for a contradiction that x is a neighbour of y in Γm−1(u) ∩ Γ(v). Now x is 
adjacent to um−2, but then um−2 and v are vertices at distance 2 in Γ with common 
neighbours y and x, contradicting our assumption that c2 = 1. Thus the claim holds.

Next we prove that (iv) holds. Suppose that diam(Γ) < k − 1 and cm > 1. Now 
there exists x ∈ Γm−1(u) ∩ Γ(v) such that x �= y. Observe that {u0, . . . , um, x} induces 
a path graph by (ii) and the fact that c2 = 1. If there exists w ∈ (Γm(u) ∩ Γ(v)) \ Γ(y), 
then {u0, . . . , um, w} also induces a path graph, so there exists g ∈ Gu0,...,um

such that 
xg = w, a contradiction. Thus Γm(u) ∩Γ(v) ⊆ Γ(y). Similarly, Γm(u) ∩Γ(v) ⊆ Γ(x), but 
Γ(y) ∩Γ(x) = {v} since dΓ(x, y) = 2, so Γm(u) ∩Γ(v) = ∅. It then follows from (ii) that 
s = 1 and cm = t + 1, so (iv) holds.

Finally, we prove that (v) holds. Suppose that 3 � diam(Γ) < k − 2. If s = 1 and 
cm = t + 1, then (v) holds, so we may assume otherwise. Then cm = 1 by (iv). Now 
there exists x ∈ (Γ(v) ∩ Γm(u)) \ Γ(y). Let z be the unique vertex in Γm−1(u) ∩ Γ(x). 
Since cm = 1 and c2 = 1, the set {y, v, x, z} induces a path graph. By Lemma 3.11, 
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Γ2(v) ∩Γ(um−2) = Γ(um−2) ∩Γ(y), so z is not adjacent to um−2. Thus {u0, . . . , um, x, z}
induces a path graph. If s � 2, then there exists w ∈ Γ(x) ∩Γ(z), and w ∈ Γm(u), but w
is not adjacent to v or y since c2 = 1, so {u0, . . . , um, x, w} also induces a path graph, in 
which case there exists g ∈ Gu0,...,um,x such that zg = w, a contradiction. Thus s = 1. If 
t � 2, then there exists w ∈ Γ(x) \ {v, z}. Again w ∈ Γm(u) and w is not adjacent to v
or y, so {u0, . . . , um, x, w} induces a path graph, a contradiction as above. Hence t = 1, 
so Γ � Cn for some n. Since Γ has diameter m and ci = 1 for 1 � i � m, it follows that 
n = 2m + 1. �
Remark 3.13. One consequence of the classification of the locally finite CH graphs [18,15]
(see Theorem 2.10) is that the only locally finite, connected, locally disconnected CH 
graphs with girth 3 and c2 = 1 are halved graphs of the biregular tree Tt+1,s+1. In 
particular, no such graph is finite. For graphs with diameter at least 3, these facts can 
be deduced directly from Lemma 3.12.

Lemma 3.14. Let Γ be a connected k-CH graph that is locally (t + 1) ·Ks where t � 1, 
s � 2, c2(Γ) = 1 and diam(Γ) � 3. If some induced subgraph of Γ is isomorphic to Cr

for some r > 3, then r � k + 2.

Proof. Let Δ be an induced subgraph of Γ that is isomorphic to Cr where r > 3. Since 
c2(Γ) = 1, r � 5. If k � 3, then r � k + 2, as desired, so we assume that k � 4.

Write r = 2n + 1 or 2n + 2 where n � 2. Label the vertices of V Δ as follows: choose 
u ∈ V Δ, and write Δi(u) = {xi, yi} for 1 � i � n, where xi is adjacent to xi+1 for 
1 � i � n − 1, and therefore yi is adjacent to yi+1 for 1 � i � n − 1. If r = 2n + 1, then 
xn is adjacent to yn, while if r = 2n + 2, then Δn+1(u) = {z} where z is adjacent to xn

and yn.
Let m := min(diam(Γ), k − 1), and recall that m � 3. Since s � 2 and diam(Γ) � 3, 

Lemma 3.12(iv) and (v) imply that either m � k − 1, or m = k − 2 and cm(Γ) = 1 (in 
which case k � 5). In particular, 2m +1 � k+2. Hence if n � m, then r � 2m +1 � k+2, 
as desired, so we assume instead that n < m.

Observe that x2, y2 ∈ Γ2(u) since V Δ induces Cr where r > 3. Suppose that xi ∈ Γi(u)
for some 2 � i < n. Now xi−1 ∈ Γi−1(u) ∩ Γ(xi). Further, ci(Γ) = 1 by Lemma 3.12(i), 
so xi+1 /∈ Γi−1(u), and if xi+1 ∈ Γi(u), then xi+1 ∈ Γi(u) ∩ Γ(xi) = Γ(xi) ∩ Γ(xi−1)
by Lemma 3.11, a contradiction since V Δ induces Cr. Thus xi+1 ∈ Γi+1(u). It follows 
that xj , yj ∈ Γj(u) for 1 � j � n. By Lemma 3.12(i), cn(Γ) = 1. If r = 2n + 1, then 
yn is adjacent to xn, but then yn is adjacent to xn−1 by Lemma 3.11, a contradiction. 
Thus r = 2n + 2, and by a similar argument, z /∈ Γn(u). Since cn(Γ) = 1, it follows 
that z ∈ Γn+1(u). In particular, cn+1(Γ) � 2. If n + 1 < m, then cn+1(Γ) = 1 by 
Lemma 3.12(i), a contradiction. Thus m = n + 1. We saw above that either m � k − 1, 
or m = k − 2 and cm(Γ) = 1. Since cm(Γ) �= 1, we conclude that m � k − 1. Thus 
r = 2n + 2 = 2m � 2(k − 1) � k + 2, as desired. �
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4. Families of graphs with the unique x property

In this section, we give five different sets of combinatorial conditions on the local struc-
ture of a graph Γ which guarantee that Γ has the unique x property (see Definition 3.5). 
These will be used to prove Theorem 1.2 in conjunction with Lemma 3.6. Recall that, by 
our definition, all strongly regular graphs are finite non-complete graphs. In particular, 
a strongly regular graph with μ > 0 is connected with diameter 2.

Lemma 4.1. Let Γ be a locally Σ graph where Σ is a strongly regular graph with μ(Σ) > 0
in which every μ-graph is 2 ·K1. Then Γ has the unique x property.

Proof. Let u ∈ V Γ, v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). Since the graph induced by Γ(v)
has diameter 2, it follows that the graph Δ induced by Γ(u) ∩ Γ(v) ∩ Γ(w) is a μ-graph 
of Γ(v) and is therefore isomorphic to 2 ·K1. Let Σ denote the graph induced by Γ(u).

Let V Δ = {y, z}, and note that dΣ(y, z) = 2. Now v ∈ Σ(y) ∩ Σ(z) and Σ(y) ∩
Σ(z) � 2 · K1, so Σ(y) ∩ Σ(z) = {v, x} for some x ∈ Σ2(v). Further, Σ(v) ∩ Σ(x)
is also isomorphic to 2 · K1, so Σ(v) ∩ Σ(x) = {y, z}. Thus x ∈ Γ(u) ∩ Γ2(v) and 
V Δ = {y, z} = Γ(u) ∩ Γ(v) ∩ Γ(x), and x is the unique such vertex. �
Lemma 4.2. Let Γ, Σ and Δ be graphs with the following properties.

(i) Γ is locally Σ, and every μ-graph of Σ is isomorphic to Δ.
(ii) Σ is strongly regular with μ(Σ) > 0.
(iii) Δ is regular with diameter 2 and k2(Δ) = 1.

Then Γ has the unique x property.

Proof. Let u ∈ V Γ, v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). The graph Γ(v) has diameter 2, 
so Γ(u) ∩ Γ(v) ∩ Γ(w) is a μ-graph of Γ(v) and is therefore isomorphic to Δ. For the 
remainder of the proof, we write Σ for the graph induced by Γ(u) and Δ for the graph 
induced by Γ(u) ∩ Γ(v) ∩ Γ(w).

Let y ∈ V Δ. Since k2(Δ) = 1, there exists a unique z ∈ Δ2(y). Now Σ(y) ∩Σ(z) � Δ
and v ∈ Σ(y) ∩ Σ(z), so there is a unique x at distance 2 from v in Σ(y) ∩ Σ(z). Then 
Σ(v) ∩ Σ(x) � Δ, and y and z are at distance 2 in Σ(v) ∩ Σ(x). Note that Δ is finite 
since Σ is finite by definition. Since Δ is regular,

|Σ(v) ∩ Σ(y) ∩ Σ(x)| = |Δ(y)| = |Σ(v) ∩ Σ(y) ∩ Σ(z)|.

Further, since k2(Δ) = 1, both Σ(v) ∩Σ(y) ∩Σ(x) and Δ(y) are subsets of Σ(v) ∩Σ(y) ∩
Σ(z). Thus Δ(y) = Σ(v) ∩ Σ(y) ∩ Σ(x). It follows that

V Δ = {y, z} ∪ Δ(y) = Σ(v) ∩ Σ(x) = Γ(u) ∩ Γ(v) ∩ Γ(x).
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It remains to show that x is the unique vertex in Γ(u) ∩ Γ2(v) such that V Δ = Γ(u) ∩
Γ(v) ∩ Γ(x). If x′ is such a vertex, then x′ ∈ Σ2(v) ∩ Σ(y) ∩ Σ(z) = {x}. �
Lemma 4.3. Let Γ, Σ and Δ be graphs with the following properties.

(i) Γ is locally Σ, and every μ-graph of Σ is isomorphic to Δ.
(ii) Σ is strongly regular with λ(Σ) = μ(Σ) − 2.
(iii) Δ has diameter 3 with k1(Δ) = k2(Δ) and k3(Δ) = 1.
(iv) For any distinct non-adjacent y, z ∈ V Σ, if v and x are vertices at distance 3 in the 

graph induced by Σ(y) ∩ Σ(z), then y and z are at distance 3 in the graph induced 
by Σ(v) ∩ Σ(x).

Then Γ has the unique x property.

Proof. Let u ∈ V Γ, v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). The graph Γ(v) has diameter 2, 
so Γ(u) ∩ Γ(v) ∩ Γ(w) is a μ-graph of Γ(v) and is therefore isomorphic to Δ. For the 
remainder of the proof, we write Σ for the graph induced by Γ(u) and Δ for the graph 
induced by Γ(u) ∩ Γ(v) ∩ Γ(w).

Let y ∈ V Δ. Since k3(Δ) = 1, there exists a unique z ∈ Δ3(y). Now Σ(y) ∩Σ(z) � Δ
and v ∈ Σ(y) ∩Σ(z), so there is a unique x at distance 3 from v in the graph induced by 
Σ(y) ∩Σ(z). Then Σ(v) ∩Σ(x) � Δ, and y and z are at distance 3 in the graph induced 
by Σ(v) ∩ Σ(x) by assumption.

We claim that Δ(y) = Σ(v) ∩Σ(y) ∩Σ(x). Since v and y are adjacent, |Σ(v) ∩Σ(y)| =
λ(Σ). Now 2 + 2|Δ(y)| = |V Δ| = μ(Σ) and λ(Σ) = μ(Σ) − 2, so |Δ(y)| = λ(Σ)/2. Since 
Δ is regular,

|Σ(v) ∩ Σ(y) ∩ Σ(x)| = λ(Σ)/2 = |Σ(v) ∩ Σ(y) ∩ Σ(z)|.

Since Σ has diameter 2, any vertex in Σ(v) ∩ Σ(y) lies in Σ(z) or Σ2(z). Thus

|Σ(v) ∩ Σ(y) ∩ Σ2(z)| = λ(Σ)/2.

Now Σ(v) ∩Σ(y) ∩Σ(x) and Δ(y) are both subsets of Σ(v) ∩Σ(y) ∩Σ2(z), so the claim 
follows.

By exchanging the roles of y and z in the above proof, we also obtain Δ(z) = Σ(v) ∩
Σ(z) ∩ Σ(x). Thus

V Δ = {y, z} ∪ Δ(y) ∪ Δ(z) = Σ(v) ∩ Σ(x) = Γ(u) ∩ Γ(v) ∩ Γ(x).

It remains to show that x is the unique vertex in Γ(u) ∩Γ2(v) such that V Δ = Γ(u) ∩Γ(v) ∩
Γ(x). If x′ is another such vertex, then V Δ ⊆ Σ(x′), so x′ ∈ Σ(y) ∩Σ(z) \ ({x, v} ∪Σ(v)), 
in which case x′ ∈ Σ(x), but then |Σ(x) ∩ Σ(x′)| = λ(Σ) < μ(Σ) = |V Δ|, contradicting 
V Δ ⊆ Σ(x) ∩ Σ(x′). �



A. Devillers et al. / Journal of Combinatorial Theory, Series A 173 (2020) 105234 21
Lemma 4.4. Let Γ, Σ and Δ be graphs with the following properties.

(i) Γ is locally Σ, and every μ-graph of Σ is isomorphic to Δ.
(ii) Σ is strongly regular with μ(Σ) > 0.
(iii) Δ is regular and for any y ∈ V Δ, there exists a unique z ∈ Δ2(y) such that 

Δ(y) = Δ(z).
(iv) Σ has valency μ(Σ) + 2λ(Σ) − 2k1(Δ).

Then Γ has the unique x property.

Proof. Let u ∈ V Γ, v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). The graph Γ(v) has diameter 2, 
so Γ(u) ∩ Γ(v) ∩ Γ(w) is a μ-graph of Γ(v) and is therefore isomorphic to Δ. For the 
remainder of the proof, we write Σ for the graph induced by Γ(u); Δ for the graph 
induced by Γ(u) ∩ Γ(v) ∩ Γ(w); and Π for the graph induced by Σ(v).

Let y ∈ V Δ. By assumption there exists a unique z ∈ Δ2(y) such that Δ(y) = Δ(z). 
Now the graph Λ induced by Σ(y) ∩ Σ(z) is isomorphic to Δ, and v ∈ Σ(y) ∩ Σ(z), so 
there exists a unique x ∈ Λ2(v) such that Λ(v) = Λ(x). Then the graph Θ induced by 
Σ(v) ∩ Σ(x) is isomorphic to Δ, and Δ(y) ⊆ Λ(v) ⊆ Θ(y) ∩ Θ(z), so Δ(y) = Λ(v) =
Θ(y) = Θ(z). In particular, Π(y) ∩Π(z) = Σ(v) ∩Σ(y) ∩Σ(z) = Λ(v) = Δ(y). Let X :=
V Θ \({y, z} ∪Θ(y)), Y := V Δ \({y, z} ∪Δ(y)) and Z := V Π \({y, z} ∪Π(y) ∪Π(z)). Note 
that X, Y ⊆ Z. Now |X| = μ(Σ) −(k1(Δ) +2) = |Y | and |Z| = |V Π| −(2λ(Σ) −k1(Δ) +2), 
but |V Π| = μ(Σ) +2λ(Σ) −2k1(Δ) by assumption, so |X| = |Y | = |Z|. Thus X = Z = Y , 
so V Δ = V Θ = Γ(u) ∩ Γ(v) ∩ Γ(x). It remains to show that x is the unique vertex in 
Γ(u) ∩Γ2(v) such that V Δ = Γ(u) ∩Γ(v) ∩Γ(x). If x′ is such a vertex, then V Δ ⊆ Σ(x′), 
so x′ ∈ Λ2(v) and Λ(v) = Δ(y) ⊆ Λ(x′). Since Λ is regular, Λ(v) = Λ(x′), but x is the 
unique such vertex by assumption. Thus x = x′. �

We now wish to show that the unique x property holds in graphs that are locally Σ, 
where the complement graph Σ is the point graph of a thick generalised quadrangle (see 
§2.1). To simplify the proof, we first establish some elementary properties of Σ.

Lemma 4.5. Let Σ be the complement of the point graph of a thick generalised quadrangle 
of order (s, t). Then Σ is strongly regular with parameters

((st + 1)(s + 1), s2t, s2t− st− s + t, (s− 1)st)

and Σ2(v) induces K(t+1)[s] for all v ∈ V Σ. Further, the following hold.

(i) Any distinct non-adjacent v, x ∈ V Σ lie in a unique independent set I(v, x) of 
Σ with size s + 1, and if I is an independent set of Σ containing v and x, then 
I ⊆ I(v, x).
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(ii) Let I and J be independent sets of Σ with size s. Let c(I) :=
⋂

a∈I Σ(a), and 
let xI denote the unique vertex in V Σ for which I ∪ {xI} is independent. Then 
Σ2(xI) = c(I) ∪I. If I∩J �= ∅, then either I∪{xI} = J ∪{xJ}, or c(I) ∩c(J) �= ∅.

(iii) Let Δ be a μ-graph of Σ. There exists a partition P of V Δ into s − 1 parts such 
that each P ∈ P induces Kt[s]. If I is a maximal independent set of P ∈ P, then 
⋂

a∈I Δ(a) ⊆ P .

Proof. The point graph of a thick generalised quadrangle of order (s, t) is a strongly 
regular graph with parameters ((st + 1)(s + 1), s(t + 1), s − 1, t + 1), so Σ is strongly 
regular with parameters ((st + 1)(s + 1), s2t, s2t − st − s + t, (s − 1)st). In particular, Σ
has diameter 2 since s � 2. Let L be the set of maximal cliques of Σ. Now L is also the 
set of maximal independent sets of Σ. By the GQ Axiom, we may view L as the line set 
of the generalised quadrangle, and Σ2(v) induces K(t+1)[s] for all v ∈ V Σ. It follows that 
(i) holds.

Let I and J be independent sets of Σ with size s, and let c(I) and xI be as defined 
in (ii). Now I ⊆ Σ2(xI) and Σ2(xI) \ I ⊆ c(I). If there exists y ∈ c(I) \ Σ2(xI), then 
y is adjacent in Σ to every vertex in I ∪ {xI}, contradicting the GQ Axiom. Thus 
Σ2(xI) = c(I) ∪I. Suppose that v ∈ I∩J and I∪{xI} �= J∪{xJ}. Then �I := I∪{xI} and 
�J := J ∪{xJ} are distinct lines that contain v and therefore intersect in v. There exists 
� ∈ L such that xJ ∈ � and � �= �J . By the GQ Axiom, xI /∈ �, and there exists m ∈ L
such that xI ∈ m and m intersects � at a vertex y, and y ∈ (Σ2(xI) ∩Σ2(xJ)) \ (I ∪J) =
c(I) ∩ c(J). Thus (ii) holds.

Let Δ be a μ-graph of Σ. Then Δ is the graph induced by Σ(v) ∩ Σ(x) for some 
v ∈ V Σ and x ∈ Σ2(v). Now there exists � ∈ L such that v, x ∈ �. Let Y := � \ {v, x}, 
and for y ∈ Y , let Py be the set of u ∈ V Σ \ � such that u is collinear with y. By the GQ 
Axiom, each Py induces (in Σ) the graph Kt[s], and the set {Py : y ∈ Y } is a partition 
of V Δ with s − 1 parts. Let I be a maximal independent set of Py for some y ∈ Y . 
Now I ∪ {y} ∈ L, so by the GQ Axiom, each u ∈ V Δ \ Py is not collinear with y and 
is therefore collinear with some vertex in I. It follows that 

⋂
a∈I Δ(a) ⊆ Py, and (iii) 

holds. �
Lemma 4.6. Let Γ, Σ and Δ be graphs with the following properties.

(i) Γ is locally Σ, and every μ-graph of Σ is isomorphic to Δ.
(ii) Σ is the complement of the point graph of a thick generalised quadrangle.

Then Γ has the unique x property.

Proof. Let u ∈ V Γ, v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). The graph Γ(v) has diameter 2
since the generalised quadrangle is thick, so Γ(u) ∩Γ(v) ∩Γ(w) is a μ-graph of Γ(v) and 
is therefore isomorphic to Δ. For the remainder of the proof, we write Σ for the graph 
induced by Γ(u) and Δ for the graph induced by Γ(u) ∩ Γ(v) ∩ Γ(w).
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Since the generalised quadrangle is thick, it has order (s, t) for some s � 2 and t � 2. 
By Lemma 4.5, the graph Σ2(y) induces K(t+1)[s] for all y ∈ V Σ, and any distinct 
non-adjacent y, z ∈ V Σ lie in a unique independent set of Σ with size s + 1; this we 
denote by I(y, z). For an independent set I of Σ with size s, let c(I) :=

⋂
a∈I Σ(a), let 

xI denote the unique element of V Σ for which I ∪ {xI} is independent, and recall that 
Σ2(xI) = c(I) ∪ I by Lemma 4.5(ii). In particular, c(I) induces Kt[s]. By Lemma 4.5(iii), 
there exists a partition P of V Δ into s −1 parts such that each P ∈ P induces the graph 
Kt[s].

Let P ∈ P. We claim that there exists an independent set I(P ) with size s such that 
v ∈ I(P ) and P = c(I(P )). Choose a maximal independent set J of P and distinct 
y, z ∈ J , which exist since s � 2. Let Λ be the graph induced by Σ(y) ∩ Σ(z), which 
is isomorphic to Δ. Now v ∈ V Λ, so v lies in an independent set I(P ) of Λ with size 
s for which X := c(I(P )) ∩ V Λ induces K(t−1)[s] by Lemma 4.5(iii). Further, c(I(P ))
induces Kt[s], so I := c(I(P )) \ V Λ is an independent set with size s. Since y, z ∈ I, 
we conclude that I ⊆ I(y, z). Similarly, J ⊆ I(y, z). If I �= J , then I(y, z) = J ∪ I, but 
xJ ∈ I(y, z) and J ∪ I ⊆ Σ(v), so v ∈ Σ(xJ) ∩ c(J), contradicting Σ2(xJ) = c(J) ∪ J . 
Thus I = J . Now J ∪X ∪ I(P ) = c((I(P )) ∪ I(P ) = Σ2(xI(P )). Since Σ2(xI(P )) induces 
K(t+1)[s], it follows that X ⊆ c(J). Now X and c(J) ∩ P are subsets of c(J) ∩Σ(v) with 
size (t − 1)s. Since v ∈ c(J) and c(J) induces Kt[s], it follows that X = c(J) ∩ P . Thus 
c(I(P )) = I ∪X = J ∪ (c(J) ∩ P ) = P , as desired.

If I(P ) ∪ {xI(P )} �= I(Q) ∪ {xI(Q)} for some P, Q ∈ P, then since v ∈ I(P ) ∩ I(Q), 
Lemma 4.5(ii) implies that c(I(P )) ∩ c(I(Q)) �= ∅, but then P ∩ Q �= ∅, so P = Q, a 
contradiction. Thus I(P ) ∪ {xI(P )} = I(Q) ∪ {xI(Q)} for all P, Q ∈ P. In particular, if 
xI(P ) = xI(Q) for some P, Q ∈ P, then I(P ) = I(Q), so P = c(I(P )) = c(I(Q)) = Q. 
Hence {xI(P ) : P ∈ P} is an independent set with size s − 1, and 

⋂
P∈P I(P ) = {v, x}

for some x ∈ Σ2(v). Now V Δ =
⋃

P∈P P ⊆ Σ(v) ∩ Σ(x), so V Δ = Γ(u) ∩ Γ(v) ∩ Γ(x). 
Suppose that V Δ = Γ(u) ∩ Γ(v) ∩ Γ(x′) for some x′ ∈ Σ2(v) where x �= x′. If x is not 
adjacent to x′, then {v, x, x′} is an independent set, so x′ = xI(P ) for some P ∈ P, but 
then Σ2(x′) = P ∪ I(P ), contradicting P ⊆ V Δ ⊆ Σ(x′). Otherwise, x is adjacent to x′, 
so x and x′ have at least |V Δ| +(t −1)s common neighbours in Σ, so s(st −1) � λ(Σ) =
s2t − st − s + t, a contradiction since s � 2. �

We have seen that the complement Σ of the point graph of a thick generalised quad-
rangle of order (s, t) satisfies the following property:

(†) Σ is a strongly regular graph with μ(Σ) = (s − 1)st for some s � 2 and t � 2 such 
that Σ2(v) induces K(t+1)[s] for all v ∈ V Σ.

Now suppose that Σ is any graph that satisfies (†). Then Σ is locally (t + 1) · Ks, so 
λ(Σ) = s − 1 and b1(Σ) = st, and since μ(Σ) = (s − 1)st, we conclude that k2(Σ) = s2t. 
Since Σ is strongly regular, μ(Σ)k2(Σ) = b1(Σ)k1(Σ), so Σ has parameters ((st +1)(s +1),
s(t + 1), s − 1, t + 1), in which case Σ is the point graph of a generalised quadrangle of 
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order (s, t) by [4, Lemma 1.15.1]. Thus we could replace assumption (ii) of Lemma 4.6
with (†), which is more in the spirit of this section, but we choose instead to give the 
more direct statement.

5. Locally connected graphs

In this section, we prove Theorem 1.2 as follows. By Lemma 3.1, a locally connected 
4-CH graph is locally a connected 3-homogeneous graph. For each of the 3-homogeneous 
graphs Σ described in Theorem 2.9(ii)-(v), employing a case-by-case analysis, we deter-
mine whether there are any 4-CH graphs that are locally Σ. In most cases, we show that 
there are no such graphs using either Lemma 3.6 and the results of §4, or Lemmas 3.4
and 3.9 together with other methods. Then, in §5.8, we combine all of these results to 
obtain the desired proof.

5.1. Locally the grid graph or its complement

Recall that the grid graph Kn�Kn is a strongly regular graph with vertex set VKn×
V Kn, where distinct vertices (u1, u2) and (v1, v2) are adjacent whenever u1 = v1 or 
u2 = v2. Its complement is Kn ×Kn.

Lemma 5.1. Let Γ be a locally Kn�Kn graph where n � 3. Then Γ is not 4-CH.

Proof. Every μ-graph of Kn�Kn is isomorphic to 2 ·K1, so Γ has the unique x property 
by Lemma 4.1. For u ∈ V Γ and v ∈ Γ(u), the graph Γ(u) ∩ Γ2(v) � Kn−1�Kn−1, and 
this graph is neither edgeless nor complete, so Γ is not 4-CH by Lemma 3.6. �
Lemma 5.2. Let Γ be a locally Kn × Kn graph where n � 3. Let u, v, w ∈ V Γ be such 
that v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). Then there exists x ∈ Γ(u) ∩ Γ2(v) such that 
Aut(Γ)u,v,w � Aut(Γ)x.

Proof. By assumption, Γ(v) � Kn × Kn, so Γ(u) ∩ Γ(v) � Kn−1 × Kn−1. Let Δ be 
the graph induced by Γ(u) ∩ Γ(v) ∩ Γ(w). Since u and w are non-adjacent vertices in 
Γ(v), it follows that Δ � Kn−1 × Kn−2. In particular, there is a unique partition P
of the vertices of Δ into n − 2 independent sets of size n − 1. Moreover, there is a 
unique way to extend P to a partition of Γ(u) ∩ Γ(v) into n − 1 independent sets of 
size n − 1. Thus X := Γ(u) ∩ Γ(v) ∩ Γ2(w) is an independent set of size n − 1. Since 
Γ(u) � Kn ×Kn and v ∈ Γ(u), there exists a unique vertex x ∈ Γ(u) ∩ Γ2(v) such that 
{x} ∪X is an independent set (of size n). If g ∈ Aut(Γ)u,v,w, then xg ∈ Γ(u) ∩Γ2(v) and 
{xg} ∪X = ({x} ∪X)g is an independent set, so xg = x, as desired. �
Lemma 5.3. Let Γ be a locally Kn ×Kn graph where n � 3. Then Γ is not 4-CH.
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Proof. For u ∈ V Γ and v ∈ Γ(u), the graph Γ(u) ∩ Γ2(v) � Kn−1,n−1, and this graph is 
neither edgeless nor complete, so Γ is not 4-CH by Lemmas 5.2 and 3.4. �

Note that for n � 3, the graph Kn+1 ×Kn+1 is locally Kn ×Kn and 3-homogeneous 
by Theorem 2.9, but it is not 4-CH by Lemma 5.3.

5.2. Locally the affine polar graph or its complement

Recall that the affine polar graph V Oε
2m(2) has vertex set V2m(2), and vectors u and v

are adjacent whenever Q(u + v) = 0, where (V2m(2), Q) is a quadratic space with type ε
(see §2.1 for the definition of a quadratic space). The graph V O+

2m(2) is strongly regular 
with parameters

(22m, (2m − 1)(2m−1 + 1), 2(2m−1 − 1)(2m−2 + 1), 2m−1(2m−1 + 1)),

and the graph V O−
2m(2) is strongly regular with parameters

(22m, (2m + 1)(2m−1 − 1), 2(2m−1 + 1)(2m−2 − 1), 2m−1(2m−1 − 1))

(see [26, §8 and Appendix C.12±]). In order to simplify the proofs in this section, we 
define a standard basis for a quadratic space. Let f be the bilinear form associated with Q, 
and note that f is alternating. By [29, Proposition 2.5.3], if ε = +, then V2m(2) has a basis 
{e1, . . . , em, f1, . . . , fm} where Q(ei) = Q(fi) = f(ei, ej) = f(fi, fj) = 0 and f(ei, fj) =
δi,j for all i, j. Further, if ε = −, then V2m(2) has a basis {e1, . . . , em−1, f1, . . . , fm−1, x, y}
where Q(ei) = Q(fi) = f(ei, ej) = f(fi, fj) = f(ei, x) = f(fi, x) = f(ei, y) = f(fi, y) =
0 and f(ei, fj) = δi,j for all i, j, and Q(x) = 1, f(x, y) = 1 and Q(y) = 1; we then define 
em := x and fm := y. In either case, we refer to {e1, . . . , em, f1, . . . , fm} as a standard 
basis of V .

Lemma 5.4. For m � 3 and ε ∈ {+, −}, the graph Σ := V Oε
2m(2) is strongly regular with 

λ(Σ) = μ(Σ) − 2, and every μ-graph of Σ is isomorphic to a graph Δ with diameter 3
such that k1(Δ) = k2(Δ) and k3(Δ) = 1.

Proof. Let (V, Q) be the quadratic space associated with Σ and {e1, . . . , em, f1, . . . , fm} a 
standard basis of V . As noted above, the graph Σ is strongly regular with λ(Σ) = μ(Σ) −2, 
and since Σ is 3-CH by Theorem 2.9, every μ-graph of Σ is isomorphic to the graph Δ
induced by Σ(0) ∩Σ(e1 + f1), and Δ is vertex-transitive. Thus ki(Δ) is defined for all i. 
Let W be the span of {e2, . . . , em, f2, . . . , fm}, and let I := {w ∈ W : Q(w) = 0}. Note 
that I contains non-zero vectors since m � 3. Define

X := {e1 + w : w ∈ I},
Y := {f1 + w : w ∈ I}.
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Now V Δ = X ∪Y . Further, Δ(e1) = X \{e1} and Δ(f1) = Y \{f1}. If w ∈ I \{0}, then 
there exists w′ ∈ I \ {0} such that f(w, w′) = 1 by Lemma 2.6, in which case f1 +w and 
e1 + w′ are adjacent. It follows that Δ2(e1) = Y \ {f1} and Δ3(e1) = {f1}. Thus Δ has 
diameter 3, k1(Δ) = k2(Δ) and k3(Δ) = 1. �
Lemma 5.5. Let Σ be V Oε

2m(2) where m � 3 and ε ∈ {+, −}. If y and z are distinct 
non-adjacent neighbours of v ∈ V Σ, then Σ(v) ∩ Σ(y) ∩ Σ(z) ∩ Σ(v + y + z) = ∅.

Proof. Let (V, Q) be the quadratic space associated with Σ, and let f be the bilinear 
form that is associated with Q. If u ∈ Σ(v) ∩ Σ(y) ∩ Σ(z), then

Q(u + v + y + z) = 1 + f(u + v, y + z)

= 1 + f(u, y) + f(u, z) + f(v, y) + f(v, z)

= 1 + Q(u) + Q(y) + Q(u) + Q(z) + Q(v) + Q(y) + Q(v) + Q(z)

= 1.

Thus Σ(v) ∩ Σ(y) ∩ Σ(z) ∩ Σ(v + y + z) = ∅. �
Lemma 5.6. Let Σ be V Oε

2m(2) where m � 3 and ε ∈ {+, −}. For any distinct non-
adjacent y, z ∈ V Σ, if v and x are vertices at distance 3 in the graph induced by 
Σ(y) ∩ Σ(z), then y and z are at distance 3 in the graph induced by Σ(v) ∩ Σ(x).

Proof. Let Δ be the graph induced by Σ(y) ∩Σ(z). Suppose that v and x are vertices at 
distance 3 in Δ. Now Q(v+y+z+y) = Q(v+z) = 0 since v ∈ Σ(z), so v+y+z ∈ Σ(y). 
Similarly, v + y + z ∈ Σ(z) and v + y + z /∈ Σ(v). Thus v + y + z ∈ V Δ \ Δ(v). By 
Lemma 5.4, diam(Δ) = 3 and k3(Δ) = 1, so Δ3(v) = {x}. Since v + y + z does not lie 
in Δ2(v) by Lemma 5.5, it follows that x = v + y + z. Let Λ be the graph induced by 
Σ(v) ∩Σ(x). Now y, z ∈ V Λ and v+x + z = y. By Lemma 5.5, z and y have no common 
neighbours in V Λ, so z ∈ Λ3(y). �
Lemma 5.7. Let Γ be a locally V Oε

2m(2) graph where m � 3 and ε ∈ {+, −}. Then Γ is 
not 4-CH.

Proof. By Lemmas 5.4 and 5.6, the conditions of Lemma 4.3 are satisfied, so Γ has the 
unique x property. For u ∈ V Γ and v ∈ Γ(u), the graph induced by Γ(u) ∩ Γ2(v) is 
neither edgeless nor complete, so Γ is not 4-CH by Lemma 3.6. �
Lemma 5.8. Let Σ be V Oε

2m(2) where m � 3 and ε ∈ {+, −}. Then Σ is a strongly 
regular graph with μ(Σ) > 0, and every μ-graph of Σ is isomorphic to a regular graph Δ, 
where for each y ∈ V Δ, there exists a unique z ∈ Δ2(y) such that Δ(y) = Δ(z). Further, 
Σ has valency μ(Σ) + 2λ(Σ) − 2k1(Δ).
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Proof. Let (V, Q) be the quadratic space associated with Σ and {e1, . . . , em, f1, . . . , fm}
a standard basis of V . Let f be the bilinear form that is associated with Q. The graph 
Σ is strongly regular with μ(Σ) > 0, and since Σ is 3-CH by Theorem 2.9, every μ-graph 
of Σ is isomorphic to the graph Δ induced by Σ(0) ∩ Σ(e1), and Δ is vertex-transitive 
and therefore regular. Note that V Δ = {x ∈ V : Q(x) = 1, f(x, e1) = 0}.

First we claim that for each y ∈ V Δ, there exists a unique z ∈ Δ2(y) such that 
Δ(y) = Δ(z). Since Δ is vertex-transitive, we may assume that y = e2 + f2. Let z :=
e1 +e2 +f2. Now Δ(y) = Δ(z), so z ∈ Δ2(y), and it remains to show that z is the unique 
such vertex. Let w ∈ V Δ \ ({y, z} ∪ Δ(y)). We wish to prove that Δ(y) �= Δ(w). Let 
U := 〈e3, . . . , em, f3, . . . , fm〉. Now Q(w) = 1, f(w, e1) = 0 and δ2 := f(w, e2) = f(w, f2), 
so w = δ1e1+δ2y+u for some u ∈ U \{0} where δ1 := f(w, f1). If δ2 = 0, then Q(u) = 1, 
so e2 + u ∈ Δ(y) \ Δ(w). Otherwise, δ2 = 1 and Q(u) = 0. By Lemma 2.6, there exists 
v ∈ U such that Q(v) = 1 and Q(u + v) = 0, so e2 + v ∈ Δ(y) \ Δ(w), as desired.

It remains to show that |Σ(0)| = |V Δ| + 2λ(Σ) − 2k1(Δ). Let y := e2 + f2 and 
z := e1 + e2 + f2. Now Σ(0) ∩ Σ(y) ∩ Σ(z) = Δ(y) = Δ(z), so it suffices to prove that 
every vertex in Σ(0) \ Σ(e1) is adjacent to exactly one of y or z, for then Σ(0) is the 
disjoint union of V Δ and the symmetric difference of Σ(0) ∩ Σ(y) and Σ(0) ∩ Σ(z). If 
x ∈ Σ(0) \ Σ(e1), then Q(x) = 1 and f(x, e1) = 1, so Q(x + y) = 1 + Q(x + z). Thus x
is adjacent to exactly one of y or z. �
Lemma 5.9. Let Γ be a locally V Oε

2m(2) graph where m � 3 and ε ∈ {+, −}. Then Γ is 
not 4-CH.

Proof. By Lemma 5.8, the conditions of Lemma 4.4 are satisfied, so Γ has the unique x
property. For u ∈ V Γ and v ∈ Γ(u), the graph induced by Γ(u) ∩Γ2(v) is neither edgeless 
nor complete, so Γ is not 4-CH by Lemma 3.6. �
5.3. Locally the point graph of Q−

5 (q) or its complement

The point graph of the generalised quadrangle Q−
5 (q) for q a prime power is a strongly 

regular graph with parameters (q4+q3+q+1, q3+q, q−1, q2+1) and automorphism group 
PΓO−

6 (q). Its complement has parameters (q4 + q3 + q+1, q4, q(q2 +1)(q− 1), q3(q− 1)).

Lemma 5.10. Let Σ be the point graph of Q−
5 (q) for q a prime power. Let v ∈ V Σ. Then 

Σ2(v) induces the affine polar graph V O−
4 (q). In particular, Σ2(v) is connected.

Proof. Let (V, Q) be the quadratic space associated with Σ, and let f be the bilinear 
form that is associated with Q. Now v = 〈e1〉 where e1 is a non-zero singular vector 
in V . By [29, Proposition 2.5.3], there exists a non-zero singular vector f1 in V such 
that f(e1, f1) = 1 and V = 〈e1, f1〉 ⊕W , where W := 〈e1, f1〉⊥ � V4(q) and (W, Q|W )
is a quadratic space with the same type as (V, Q), namely minus type. Observe that 
Σ2(v) = {〈−Q(w)e1 + f1 + w〉 : w ∈ W}. Further, if x1 := −Q(w1)e1 + f1 + w1 and 
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x2 := −Q(w2)e1 + f1 + w2 where w1, w2 ∈ W , then Q(x1 − x2) = Q(w1 − w2), so 〈x1〉
and 〈x2〉 are adjacent vertices of Σ2(v) if and only if w1 and w2 are adjacent vertices 
in the affine polar graph corresponding to the quadratic space (W, Q|W ). Thus Σ2(v) �
V O−

4 (q). Now V O−
4 (q) is strongly regular with μ �= 0 (see [26, §8 and Appendix C.12±]), 

so Σ2(v) is connected. �
Recall that the McLaughlin graph is a strongly regular graph with parameters 

(275, 112, 30, 56) and automorphism group McL :2; it is also locally the point graph of 
Q−

5 (3).

Lemma 5.11. Let Γ be a connected graph that is locally the point graph of Q−
5 (q) for q a 

prime power. Then Γ is (G, 4)-CH if and only if q = 3, Γ is the McLaughlin graph and 
G = Aut(Γ).

Proof. Suppose that Γ is (G, 4)-CH. Let Σ be the point graph of Q−
5 (q). For v ∈ V Σ

and x ∈ Σ2(v), the set Σ(v) ∩ Σ(x) induces the graph (q2 + 1) · K1 since Q−
5 (q) is a 

generalised quadrangle, and Σ2(v) induces the connected graph V O−
4 (q) by Lemma 5.10. 

Thus diam(Γ) = 2 by Lemma 3.9. It follows that Γ is (G, 2)-homogeneous, so G is 
primitive of rank 3 on V Γ by Lemma 2.3.

First suppose that q = 2. Since G is primitive of rank 3 and Γ is locally Q−
5 (2), it 

follows from [6, Proposition 1 and Theorem 2] that Γ is isomorphic to the affine polar 
graph V O−

6 (2). Let (V6(2), Q) be the quadratic space associated with Γ. Let u denote the 
vertex 0, and note that Gu � Aut(Γ)u = SO−

6 (2). Choose v ∈ Γ(u) and w ∈ Γ2(u) ∩Γ(v). 
Now Q(v) = 0, Q(w) �= 0 and Q(v + w) = 0. Thus x := v + w ∈ Γ(u) ∩ Γ2(v), and any 
element of Gu,v,w must also fix x, but then the graph induced by Γ(u) ∩ Γ2(v) is either 
edgeless or complete by Lemma 3.4, a contradiction.

Thus q � 3. Let u ∈ V Γ and H := G
Γ(u)
u . Since Γ is (G, 4)-CH, the graph induced by 

Γ(u) is (H, 3)-homogeneous by Lemma 3.1. In particular, H is transitive of rank 3, so 
PΩ−

6 (q) �H � PΓO−
6 (q) by [28, Theorem 1.3]. Since Γ is locally Q−

5 (q), it follows from [6, 
Proposition 1 and Theorem 4] that q = 3 and Γ is isomorphic to the McLaughlin graph 
with McL � G � McL :2. Let v ∈ Γ(u) and x ∈ Γ(u) ∩ Γ2(v). Now Gu,v is transitive 
of rank 3 on Γ(u) ∩ Γ2(v) since Γ is (G, 4)-CH, but if G = McL, then Gu � PΩ−

6 (3)
and Gu,v � q4:A6, in which case Gu,v is transitive of rank 4, a contradiction. Thus 
G = McL :2 = Aut(Γ).

Conversely, it is routine to verify that the McLaughlin graph is 4-CH using Magma [3]
and [39] (see Remark 1.11). �
Lemma 5.12. Let Γ be locally the complement of the point graph of Q−

5 (q) for q a prime 
power. Then Γ is not 4-CH.

Proof. By Lemma 4.6, Γ has the unique x property. For u ∈ V Γ and v ∈ Γ(u), the 
graph induced by Γ(u) ∩ Γ2(v) is neither edgeless nor complete, so Γ is not 4-CH by 
Lemma 3.6. �
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5.4. Locally the pentagon

The icosahedron is locally C5, and it is straightforward to prove that it is the unique 
such connected graph (see [18, Lemma 9]). Note that the graph C5 is self-complementary.

Lemma 5.13. Let Γ be a connected locally C5 graph. Then Γ is isomorphic to the icosa-
hedron, and Γ is not 4-CH.

Proof. The icosahedron Γ contains a 3-geodesic (u, v, w, x), and there exists y ∈ Γ2(u) ∩
Γ2(v) ∩ Γ(w), so if Γ is 4-CH, then there exists g ∈ Aut(Γ)u,v,w such that xg = y, a 
contradiction. �
5.5. Locally the Clebsch graph or the folded 5-cube

Recall that the Clebsch graph is the halved 5-cube, and its complement is isomorphic 
to the folded 5-cube �5. The Clebsch graph is a strongly regular graph with parameters 
(16, 10, 6, 6). Its complement has parameters (16, 5, 0, 2).

Lemma 5.14. Let Γ be a locally �5 graph. Then Γ is not 4-CH.

Proof. Any μ-graph of �5 is isomorphic to 2 · K1, so Γ has the unique x property by 
Lemma 4.1. For u ∈ V Γ and v ∈ Γ(u), the graph induced by Γ(u) ∩ Γ2(v) is neither 
edgeless nor complete, so Γ is not 4-CH by Lemma 3.6. �

The Schläfli graph is a locally Clebsch graph that is 4-homogeneous [5] and therefore 
4-CH. The Schläfli graph is isomorphic to the complement of the point graph of Q−

5 (2), 
and its automorphism group is PSO−

6 (2). It is a strongly regular graph with parameters 
(27, 16, 10, 8), and it is the unique such graph (see [19, Lemma 10.9.4]).

Lemma 5.15. Let Γ be a connected locally Clebsch graph. Then Γ is (G, 4)-CH if and only 
if Γ is the Schläfli graph and PΩ−

6 (2) � G � PSO−
6 (2).

Proof. Suppose that Γ is (G, 4)-CH. Any μ-graph of the Clebsch graph Σ is isomorphic 
to K3[2], and Σ2(v) induces K5 for all v ∈ V Σ, so diam(Γ) = 2 by Lemma 3.9. Let 
u ∈ V Γ, v ∈ Γ(u) and w ∈ Γ2(u) ∩ Γ(v). Since K3[2] is regular with diameter 2 and 
k2 = 1, Lemma 4.2 implies that there exists a unique x ∈ Γ(u) ∩ Γ2(v) such that 
Γ(u) ∩ Γ(v) ∩ Γ(w) = Γ(u) ∩ Γ(v) ∩ Γ(x). Now Γ(u) ∩ Γ2(v) ∩ Γ(w) is either {x} or 
Γ(u) ∩ Γ2(v) \ {x} by Lemma 3.4, so c2(Γ) is either 1 + 6 + 1 = 8 or 1 + 6 + 4 = 11. 
However, c2(Γ)k2(Γ) = b1(Γ)k1(Γ) = 5 · 16 = 80, so c2(Γ) = 8 and k2(Γ) = 10. Now Γ is 
a strongly regular graph with parameters (27, 16, 10, 8), so Γ is isomorphic to the Schläfli 
graph, and PΩ−

6 (2) � G � PSO−
6 (2) since G has rank 3 on V Γ.

Conversely, if Γ is the Schläfli graph and PΩ−
6 (2) � G � PSO−

6 (2), then it is routine 
to verify that Γ is (G, 4)-CH. �
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5.6. Locally the Higman-Sims graph or its complement

Recall that the Higman-Sims graph is a strongly regular graph with parameters 
(100, 22, 0, 6). Its automorphism group is HS :2, and the stabiliser of a vertex is M22 :2. 
The complement of the Higman-Sims graph has parameters (100, 77, 60, 56).

Lemma 5.16. Let Γ be a connected locally Σ graph where Σ is the Higman-Sims graph or 
its complement. Then Γ is not 4-CH.

Proof. Let G := Aut(Γ) and u ∈ V Γ, and let H := G
Γ(u)
u . Suppose for a contradiction 

that Γ is 4-CH. The graph Σ induced by Γ(u) is (H, 3)-homogeneous by Lemma 3.1. In 
particular, H is transitive of rank 3, so HS � H � HS :2. Let v ∈ Γ(u), and note that 
Σ(v) = Γ(u) ∩ Γ(v) and Σ2(v) = Γ(u) ∩ Γ2(v).

First we claim that Gu acts faithfully on V Σ. Suppose that g ∈ Gu,v fixes Σ(v)
pointwise. By Lemma 2.4, it suffices to show that g fixes Σ2(v) pointwise. Let x ∈
Σ2(v), and suppose for a contradiction that x �= xg. Note that xg ∈ Σ2(v). Now x
and xg have μ(Σ) common neighbours in Σ(v) since g fixes Σ(v) pointwise. If Σ is the 
Higman-Sims graph, then x and xg are not adjacent since λ(Σ) = 0, but Σ2(v) induces 
a strongly regular graph with parameters (77, 16, 0, 4) by [24], so x and xg have 6 + 4
common neighbours, contradicting μ(Σ) = 6. Hence Σ is the complement of the Higman-
Sims graph. Now Σ2(v) induces K22, so x and xg have 56 + 20 common neighbours, 
contradicting λ(Σ) = 60.

Thus Gu is isomorphic to HS or HS :2, and Gu,v is isomorphic to M22 or M22 :2
respectively. Note that b1(Γ) = |Σ2(v)|, so b1(Γ) = 77 when Σ is the Higman-Sims graph 
and 22 otherwise. Let w ∈ Γ2(u) ∩Γ(v) and y ∈ Γ(u) ∩Γ2(v). Since Gu,v acts transitively 
on Γ2(u) ∩ Γ(v) and Γ(u) ∩ Γ2(v), the stabilisers Gu,v,w and Gu,v,y have index b1(Γ) in 
Gu,v. By [13], Gu,v has unique classes of maximal subgroups of index 22 and 77, and if 
M is a maximal subgroup of Gu,v of index at most 77 not lying in either of these classes, 
then Gu,v = M22 :2 and M = M22. We conclude that Gu,v,w and Gu,v,y are maximal 
subgroups of Gu,v and therefore conjugate in Gu,v.

Thus there exists x ∈ Γ(u) ∩ Γ2(v) such that Gu,v,w = Gu,v,x. By Lemma 3.4, the 
graph induced by Γ(u) ∩ Γ2(v) is either edgeless or complete, so Σ is the complement 
of the Higman-Sims graph. Now |Γ(u) ∩ Γ2(v) ∩ Γ(w)| = 1 or 21 by Lemma 3.4, so 
c2(Γ) = 1 + 56 + 1 or 1 + 56 + 21. However, c2(Γ)k2(Γ) = b1(Γ)k1(Γ) = 22 · 100, a 
contradiction. �
5.7. Locally the McLaughlin graph or its complement

Recall that the McLaughlin graph is a strongly regular graph with parameters 
(275, 112, 30, 56). Its automorphism group is McL :2, and the stabiliser of a vertex is 
PSU4(3):2. The complement of the McLaughlin graph has parameters (275, 162, 105, 81).
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Lemma 5.17. Let Γ be a connected locally Σ graph where Σ is the McLaughlin graph or 
its complement. Then Γ is not 4-CH.

Proof. Let G := Aut(Γ) and u ∈ V Γ, and let H := G
Γ(u)
u . Suppose for a contradiction 

that Γ is 4-CH. The graph Σ induced by Γ(u) is (H, 3)-homogeneous by Lemma 3.1. In 
particular, H is transitive of rank 3, so McL � H � McL :2. Let v ∈ Γ(u), and note that 
Σ(v) = Γ(u) ∩ Γ(v) and Σ2(v) = Γ(u) ∩ Γ2(v).

First we claim that Gu acts faithfully on V Σ. Suppose that g ∈ Gu,v fixes Σ(v)
pointwise. By Lemma 2.4, it suffices to show that g fixes Σ2(v) pointwise. Let x ∈ Σ2(v), 
and suppose for a contradiction that x �= xg. Note that xg ∈ Σ2(v). Now x and xg

have μ(Σ) common neighbours in Σ(v). If Σ is the McLaughlin graph, then x and xg

are not adjacent since λ(Σ) < μ(Σ), but Σ2(v) induces a strongly regular graph with 
parameters (162, 56, 10, 24), so x and xg have 56 +24 common neighbours, contradicting 
μ(Σ) = 56. Hence Σ is the complement of the McLaughlin graph. Now Σ2(v) induces a 
strongly regular graph with parameters (112, 81, 60, 54), so either x and xg are adjacent 
with 81 + 60 common neighbours, or x and xg are not adjacent with 81 + 54 common 
neighbours, both of which are contradictions since λ(Σ) = 105 and μ(Σ) = 81.

Thus Gu is isomorphic to McL or McL :2, and Gu,v is isomorphic to PSU4(3) or 
PSU4(3):23 (in the notation of [13]) respectively. Note that b1(Γ) = |Σ2(v)|, so b1(Γ) =
162 when Σ is the McLaughlin graph and 112 otherwise. Let w ∈ Γ2(u) ∩ Γ(v) and 
y ∈ Γ(u) ∩ Γ2(v). Since Gu,v acts transitively on Γ2(u) ∩ Γ(v) and Γ(u) ∩ Γ2(v), the 
stabilisers Gu,v,w and Gu,v,y have index b1(Γ) in Gu,v.

Suppose that Σ is the complement of the McLaughlin graph. By [13], Gu,v has a unique 
class of maximal subgroups of index 112, and if M is a maximal subgroup of Gu,v of 
index at most 112 not lying in this class, then Gu,v = PSU4(3):23 and M = PSU4(3). We 
conclude that Gu,v,w and Gu,v,y are maximal subgroups of Gu,v and therefore conjugate 
in Gu,v. Thus there exists x ∈ Γ(u) ∩Γ2(v) such that Gu,v,w = Gu,v,x, but then the graph 
induced by Γ(u) ∩ Γ2(v) is either edgeless or complete by Lemma 3.4, a contradiction.

Hence Σ is the McLaughlin graph. By [13], Gu,v,w is a maximal subgroup of Gu,v of 
index 162, and either Gu,v = PSU4(3) and Gu,v,w � PSL3(4) (there are two classes), or 
Gu,v = PSU4(3):23 and Gu,v,w is isomorphic to PSL3(4):21 or PSL3(4):23. Let X1 :=
Γ(u) ∩Γ2(v) ∩Γ(w) and X2 := (Γ(u) ∩Γ2(v)) \Γ(w). Fix i ∈ {1, 2}. We claim that either 
|Xi| = 2, or |Xi| is divisible by one of 21, 56 or 120. Clearly the claim holds if |Xi| = 0, 
so we may choose x ∈ Xi. Now Gu,v,w,x is a proper subgroup of Gu,v,w by Lemma 3.4
since the graph induced by Γ(u) ∩ Γ2(v) is neither complete nor edgeless, so Gu,v,w,x

is contained in a maximal subgroup M of Gu,v,w. Further, Gu,v,w acts transitively on 
Xi since Γ is 4-CH, so [Gu,v,w : M ][M : Gu,v,w,x] = |Xi|. Recall that |Xi| � 162. 
If Gu,v,w = PSL3(4), then [Gu,v,w : M ] is 21, 56 or 120 by [13], so the claim holds. 
Otherwise, Gu,v,w is PSL3(4):21 or PSL3(4):23. Then [Gu,v,w : M ] is 2, 56, 105 or 120
by [13], so the claim holds unless [Gu,v,w : M ] = 2, in which case M = PSL3(4). 
If |Xi| = 2, then the claim holds; otherwise Gu,v,w,x is a proper subgroup of M , so 
[M : Gu,v,w,x] is divisible by 21, 56 or 120, proving the claim.
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Since |X1| +|X2| = 162, it follows from the claim that each of |X1| and |X2| is divisible 
by one of 21, 56 or 120. Observe that if 21a + 56b + 120c = 162 for some non-negative 
integers a, b, c, then a = 2, b = 0 and c = 1. Thus {|X1|, |X2|} = {42, 120}. Since 
c2(Γ) = 1 + 56 + |X1| and c2(Γ)k2(Γ) = b1(Γ)k1(Γ) = 162 · 275, it follows that |X1| = 42
and |X2| = 120. Hence c2(Γ) = 99 and k2(Γ) = 450. The graph Γ has diameter 2 by 
Lemma 3.9, so it is strongly regular with parameters (726, 275, 112, 99). But then the 
polynomial X2 − 13X− 176 has integer roots by [4, Theorem 1.3.1], a contradiction. �
5.8. Proof of Theorem 1.2

Let Γ be a locally finite, connected, locally connected 4-CH graph. In particular, Γ
has non-zero valency, so by Lemma 3.1, Γ is locally a finite connected 3-homogeneous 
graph Σ, and Σ is described in Theorem 2.9. If Theorem 2.9(i) holds, then Σ is either 
Ks for some s � 1, or K(t+1)[s] for some t � 1 and s � 2. In the former case, Γ � Ks+1, 
and in the latter, Γ � K(t+2)[s] (see, for example, [18, Lemma 7]), so Theorem 1.2(i) 
holds. Otherwise, one of Theorem 2.9(ii)–(v) holds. By Lemmas 5.1, 5.3, 5.7, 5.9, 5.11, 
5.12, 5.13, 5.14, 5.15, 5.16 and 5.17, Γ is the Schläfli graph or the McLaughlin graph. The 
Schläfli graph is 4-homogeneous [5], but it is not 5-CH, or else its local graph, the Clebsch 
graph, is 4-homogeneous by Lemma 3.1, a contradiction. Similarly, the McLaughlin graph 
is 4-CH by Lemma 5.11, but it is not 5-CH, or else its local graph, the point graph of 
Q−

5 (3), is 4-homogeneous, a contradiction. Thus one of Theorem 1.2(ii) or (iii) holds.

6. Locally disconnected graphs with girth 3 and c2 > 1

In this section, we prove Theorem 1.4, which describes the locally finite locally dis-
connected 4-CH graphs with girth 3 and c2 > 1. Recall that a locally finite 3-CH graph 
Γ is locally disconnected with girth 3 if and only if Γ is locally (t + 1) · Ks for some 
integers t � 1 and s � 2 (see Lemma 3.2).

The arguments in the next two lemmas are similar to those in the proof of [18, 
Lemma 6].

Lemma 6.1. Let Γ be a connected 4-CH graph that is locally (t + 1) · Ks where t � 1, 
s � 2 and c2(Γ) > 1. Then diam(Γ) = 2 and c2(Γ) = t + 1. In particular, Γ is the point 
graph of a finite distance-transitive generalised quadrangle of order (s, t).

Proof. Let G := Aut(Γ). Suppose for a contradiction that diam(Γ) > 2. Now there 
exists a geodesic (u, v, w, x) in Γ, and there exists y ∈ Γ(u) ∩ Γ(w) \ {v}. Note that 
y is not adjacent to v by Lemma 2.5. Let Cv be the clique of size s in Γ2(u) ∩ Γ(v)
that contains w, and let Cy be the clique of size s in Γ2(u) ∩ Γ(y) that contains w. 
If there exists z ∈ Cv ∩ Cy besides w, then {v, y, w, z} induces a complete graph with 
one edge removed, contradicting Lemma 2.5. Thus Cv ∩ Cy = {w}. Since s � 2, there 
exists z ∈ Cy \ {w}, and note that z /∈ Γ(v), or else z ∈ Cv. Since z ∈ Γ2(u), the sets 
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{u, v, w, z} and {u, v, w, x} induce path graphs, so there exists g ∈ Gu,v,w with xg = z, 
but x ∈ Γ3(u), a contradiction.

Thus diam(Γ) = 2. Let u ∈ V Γ and w ∈ Γ2(u). It follows from Lemma 2.5 that 
Γ(u) ∩ Γ(w) induces c2 ·K1, so c2 � t + 1. Suppose for a contradiction that c2 < t + 1. 
Let v ∈ Γ(u) ∩ Γ(w) and let Δ be the graph induced by Γ2(u) ∩ Γ2(v) ∩ Γ(w). Now 
Δ is a disjoint union of the graphs (c2 − 1) · Ks−1 and (t + 1 − c2) · Ks, so Δ is not 
a vertex-transitive graph, but Gu,v,w acts transitively on V Δ, a contradiction. Thus 
c2 = t + 1.

Now Γ is a strongly regular graph with parameters ((st +1)(s +1), (t +1)s, s −1, t +1). 
Since Γ is locally (t + 1) ·Ks, it is the point graph of a generalised quadrangle of order 
(s, t) by [4, Lemma 1.15.1], and this generalised quadrangle is distance-transitive since 
Γ is 3-CH. �

Before we prove Theorem 1.4, we establish some further restrictions on the structure 
of k-CH graphs that are locally c2 ·Ks for k � 3.

Lemma 6.2. Let Γ be a k-CH graph that is locally (t +1) ·Ks where k � 3, t � 1, s � 1 and 
c2(Γ) = t +1. Let m := min(t +1, k−1) and u ∈ V Γ. Then any m pairwise non-adjacent 
neighbours of u have a common neighbour in Γ2(u), and sm−2 divides t.

Proof. Let M be a subset of Γ(u) that induces the graph m ·Ks. Let X be the set of 
subsets of M that induce the graph m · K1. By Lemma 2.5 and our assumption that 
c2(Γ) = t + 1, if w ∈ Γ2(u), then Γ(w) ∩M ∈ X. Thus there is a map ϕ : Γ2(u) → X

defined by w 	→ Γ(w) ∩M for all w ∈ Γ2(u). Choose w ∈ Γ2(u), and let X1 := Γ(w) ∩M . 
If X2 ∈ X, then since m � k − 1, there exists g ∈ Aut(Γ)u such that Xg

1 = X2, so X2 =
ϕ(wg), and g maps ϕ−1(X1) to ϕ−1(X2). Thus ϕ is a surjective map whose preimages all 
have the same size; in particular, sm divides |Γ2(u)| = ts(t + 1)s/(t + 1) = ts2. We have 
also shown that any m pairwise non-adjacent neighbours of u have a common neighbour 
in Γ2(u). �
Proof of Theorem 1.4. Recall that Γ is a locally finite, connected, locally disconnected 
graph with girth 3 for which c2 > 1, and suppose that Γ is 4-CH. Now Γ is locally 
(t + 1) ·Ks for some t � 1 and s � 2. Let m := min(t + 1, 3). By Lemmas 6.1 and 6.2, 
Γ is the point graph of a distance-transitive generalised quadrangle Q of order (s, t), 
where sm−2 divides t. If t = 1, then by [4, §6.5], Γ � L(Ks+1,s+1) � Ks+1�Ks+1, so 
Theorem 1.4(i) holds. Thus we may assume that t � 2. Then m = 3, so s divides t. 
By Theorem 2.11, s is a power of a prime, and we may assume that Q is one of the 
following: W3(s), H4(s), Q4(s) for s odd, or Q−

5 (s). Recall that the points of Q are the 
one-dimensional totally singular subspaces of a symplectic, unitary or quadratic space on 
V := Vd(s), where d is 4, 5, 5 or 6 respectively, and the lines of Q are the two-dimensional 
totally singular subspaces of V . Further, Aut(Γ) � PΓLd(s).

We claim that s ∈ {2, 3, 4}. Choose a line � of Q, and let u1 and u2 be distinct points 
on �. For i ∈ {1, 2}, there exists vi ∈ V such that ui = 〈vi〉. Let u3 := 〈v1 + v2〉, and 
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note that u3 ∈ �. Since Γ is 4-CH and any four points on � induce K4, it follows that 
ΓLd(s)u1,u2,u3 acts transitively on the points of � \ {u1, u2, u3}. For g ∈ ΓLd(s)u1,u2,u3 , 
there exists σ ∈ Aut(Fs) such that (λx)g = λσxg for all x ∈ V and λ ∈ Fs, and vg1 = μv1
for some μ ∈ Fs, so vg2 = μv2, and 〈v1 + λv2〉g = 〈v1 + λσv2〉 for all λ ∈ Fs. It follows 
that Aut(Fs) acts transitively on Fs \ {0, 1}. Thus s ∈ {2, 3, 4}, proving the claim.

Suppose that either Q = W3(s) where s ∈ {2, 3, 4}, or Q = H4(4). Let (V, f) be 
the corresponding symplectic or unitary space. By [29, Propositions 2.3.2 and 2.4.1], 
V has a basis {e1, e2, f1, f2} or {e1, e2, f1, f2, x} where f(ei, ej) = f(fi, fj) = 0 and 
f(ei, fj) = δi,j for all i, j, and in the unitary case, f(x, x) = 1 and f(ei, x) = f(fi, x) = 0
for all i. Note that e1 + e2 + f2 is a singular vector in either case. Now 〈e2〉, 〈f2〉 and 
〈e1 +e2 +f2〉 are three pairwise non-adjacent neighbours of 〈e1〉, so they have a common 
neighbour w ∈ Γ2(〈e1〉) by Lemma 6.2. But w = 〈y〉 for some non-zero singular vector 
y, and 0 = f(y, e2) = f(y, f2) = f(y, e1 + e2 + f2), so f(y, e1) = 0, a contradiction.

Thus Q is Q4(3) or Q−
5 (s) for s ∈ {2, 3, 4}. In order to complete the proof of Theo-

rem 1.4, we must show that the point graph of Q−
5 (2) is 5-CH but not 6-CH, and also 

that the point graphs of Q4(3) and Q−
5 (s) for s ∈ {3, 4} are 4-CH but not 5-CH. The 

point graph of Q−
5 (2) is not 6-CH by Lemma 6.2 since Q−

5 (2) has order (2, 4), and it 
is routine to verify that it is 5-CH. Similarly, the point graph of Q4(3) is not 5-CH by 
Lemma 6.2 since Q4(3) has order (3, 3), and it is routine to verify that it is 4-CH. It is 
also routine to verify that the point graph of Q−

5 (s) is 4-CH for s ∈ {3, 4}, so it remains 
to show that this graph is not 5-CH.

Let s ∈ {3, 4}. Let (V, Q) be the quadratic space corresponding to Q−
5 (s), and let 

f be the bilinear form associated with Q. By [29, Proposition 2.5.3], V has a basis 
{e1, e2, f1, f2, x, y} where Q(ei) = Q(fi) = f(ei, x) = f(fi, x) = f(ei, y) = f(fi, y) =
f(ei, ej) = f(fi, fj) = 0 and f(ei, fj) = δi,j for all i, j, and Q(x) = 1, f(x, y) = 1 and 
Q(y) = α for some α ∈ Fs such that the polynomial X2 +X +α is irreducible over Fs. If 
s = 3, then α = −1, and if s = 4, then α ∈ F4 \ {0, 1}. Now 〈e2〉, 〈f2〉, 〈e2 − f2 + x〉 and 
〈e1+e2−α2f2+αx〉 are four pairwise non-adjacent neighbours of 〈e1〉 in the point graph 
of Q−

5 (s), so if this graph is 5-CH, then these four vertices have a common neighbour 
w whose distance from 〈e1〉 is 2 by Lemma 6.2. But w = 〈z〉 for some non-zero singular 
vector z, and 0 = f(z, e2) = f(z, f2) = f(z, e2 − f2 + x) = f(z, e1 + e2 − α2f2 + αx), so 
f(z, e1) = 0, a contradiction. �
7. Graphs with girth 4

In this section, we prove Theorem 1.6. Note that any graph Γ with girth 4 and valency 
n is locally n ·K1, and if the parameter c2 is defined for Γ, then c2 > 1. First we have 
some preliminary observations.

Lemma 7.1. Let Γ be a locally finite connected 5-CH graph with girth 4.

(i) If diam(Γ) � 4, then c2(Γ) = c3(Γ).
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(ii) If diam(Γ) � 3 and Γ has valency at least 4, then c2(Γ) � 3.

Proof. Let G := Aut(Γ). Since Γ is 5-CH, the parameters c2 and c3 are defined.
Suppose that diam(Γ) � 4. There exists a geodesic (u0, . . . , u4) in Γ. Note that c2 � c3

since Γ(u1) ∩ Γ(u3) ⊆ Γ(u3) ∩ Γ2(u0). If c2 < c3, then there exists v ∈ Γ2(u0) such that 
v is adjacent to u3 but not u1, so there exists g ∈ G such that ug

4 = v and ug
j = uj for 

0 � j � 3, a contradiction. Thus (i) holds.
Suppose that diam(Γ) � 3 and Γ has valency at least 4, but c2 = 2. There exists 

a geodesic (u0, u1, u2, u3) in Γ. Since dΓ(u1, u3) = 2 and c2 = 2, there exists a unique 
v ∈ Γ2(u0) \ {u2} such that v is adjacent to u1 and u3. Similarly, there exists a unique 
w ∈ Γ(u0) \ {u1} such that w is adjacent to u0 and v, and there exists a unique x ∈
Γ(u0) \ {u1} such that x is adjacent to u0 and u2. Note that x �= w, or else u2 and v are 
vertices at distance two with common neighbours u1, w and u3, a contradiction. Since 
Γ has valency at least 4, there exists y ∈ Γ(u0) \ {u1, x, w}. Since Γ is 5-CH, there exists 
g ∈ Aut(Γ) such that ug

i = ui for 0 � i � 3 and wg = y. But then vg = v, so wg = w, a 
contradiction. Thus (ii) holds. �
Theorem 7.2. Let Γ be a finite connected 5-CH graph with girth 4 and valency n. Then 
Γ is one of the following.

(i) Kn,n where n � 2.
(ii) K2 ×Kn+1 where n � 3.
(iii) The folded 5-cube �5.

In particular, Γ is CH.

Proof. Let G := Aut(Γ). Let u ∈ V Γ and H := G
Γ(u)
u . Since Γ has girth 4 and valency 

n, it is locally n · K1, and c2 � 2. If Γ is one of the graphs listed in (i), (ii) or (iii), 
then Γ is CH by Theorem 2.10, and the proof is complete, so we assume otherwise. 
Let r := min(n, 4). Now H is an r-transitive permutation group of degree n, so by 
Theorem 2.12, either An � H, or H � Mn where n ∈ {11, 12, 23, 24}.

First suppose that An �H. By [8, Theorem 4.5], Γ is one of the following: the n-cube 
Qn where n � 4 (since Q2 � K2,2 and Q3 � K2 × K4), the folded n-cube �n where 
n � 6 (since �4 � K4,4), the incidence graph of the unique 2-(7, 4, 2) design, or the 
incidence graph of the unique 2-(11, 5, 2) design. In each case, diam(Γ) � 3 and n � 4, 
but c2 = 2, contradicting Lemma 7.1(ii).

Thus H � Mn where n ∈ {11, 12, 23, 24}. In particular, Γ does not have valency 2m or 
(m +1)(m2+5m +5) for any positive integer m, so [8, Theorem 4.4] implies that either Γ
is a Hadamard graph, or c2 = 2. If Γ is a Hadamard graph, then it is distance-transitive 
with intersection array {2a, 2a −1, a, 1; 1, a, 2a −1, 2a} for some positive integer a (see [4, 
§1.8]), but then c2 �= c3, contradicting Lemma 7.1(i). Thus c2 = 2, so diam(Γ) = 2 by 
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Lemma 7.1(ii). Now the polynomial X2 + 2X + (2 −n) has integer roots by [4, Theorem 
1.3.1], a contradiction. �
Proof of Theorem 1.6. By Remark 1.1, we may assume that Γ is connected. Then The-
orem 7.2 implies that (i) holds. Using Lemma 3.3, it is routine to verify that the n-cube 
is 4-CH for n � 4, as is the folded n-cube for n � 6, so (ii) holds. �
8. Graphs with girth at least 5

In this section, we prove several results about the structure of finite k-CH graphs with 
girth at least 5, and we then use these results to prove Theorem 1.7. We begin with a 
result about 7-arc-transitive graphs, which requires the following standard definition.

Let G be a group with a subgroup H and element a such that a2 ∈ H. Define 
Γ(G, H, a) to be the graph whose vertices are the right cosets of H in G, where two 
cosets Hx and Hy are adjacent whenever xy−1 ∈ HaH. The action of G on V Γ(G, H, a)
by right multiplication induces an arc-transitive group of automorphisms. Conversely, if 
Γ is a G-arc-transitive graph with no isolated vertices, then for an arc (u, v), there exists 
g ∈ G such that ug = v and vg = u, and Γ � Γ(G, Gu, g) (see [4, Proposition A.3.1]).

Weiss [38] proved that there exists a finitely presented infinite group R4,7 such that 
the automorphism group G of any finite connected quartic 7-arc-transitive graph is a 
homomorphic image of R4,7. Conder and Walker [12] defined an equivalent presentation 
for R4,7 in order to prove that there are infinitely many finite connected quartic 7-arc-
transitive graphs. We use their presentation of R4,7 to prove the following.

Proposition 8.1. Let Γ be a finite connected 7-arc-transitive graph with valency 4. Then 
Γ is 6-CH but not 7-CH.

Proof. Let G := Aut(Γ). By [38,12], G = 〈h, p, q, r, s, t, u, v, b〉 where h has order 4, the 
elements p, q, r, s, t, u and hu have order 3, the elements v, b, uv and huv are involutions, 
and the relations given for the definition of R4,7 on [12, p. 622] are satisfied; we will 
use these relations throughout this proof without reference. Further, Γ � Γ(G, H, b)
where H := 〈h, p, q, r, s, t, u, v〉. We may assume that Γ = Γ(G, H, b). By [12, §2], H =
〈p, q, r, s, t〉:〈h, u, v〉 where 〈p, q, r, s, t〉 has order 35 and 〈h, u, v〉 � GL2(3), and the group 
K := 〈h2, p, q, r, s, t, u, v〉 = H ∩ b−1Hb is the stabiliser of the arc (H, Hb) and has index 
4 in H. Thus the set of cosets of K in H is

{K,Kh−1 = Kh,Khv = Khu,Khu−1},

and for x ∈ G and any transversal T of K in H, the neighbourhood Γ(Hx) = {Hbyx :
y ∈ T}.

By Lemma 2.7, Γ has girth at least 12, so every connected induced subgraph of Γ of 
order at most 11 is a tree. In particular, if Σ is a connected induced subgraph of Γ of 
order at most 10, then any vertex in V Γ \ V Σ is adjacent to at most one vertex in V Σ.
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Fig. 1. An obstruction for 7-connected-homogeneity.

Fig. 2. The graphs for 6-connected-homogeneity.

First we show that Γ is not 7-CH. Consider the induced subgraph Δ of Γ in Fig. 1. 
(Note that Hbhbh−1 is adjacent to Hbh since Hbh = Hbh−1.) Let S be the pointwise sta-
biliser in G of V Δ \{Hbhbhv}. To show that Γ is not 7-CH, it suffices to show that S is not 
transitive on Γ(Hbhv) \{H}. Let T be the pointwise stabiliser of V Δ \{Hbhv, Hbhbhv}. 
By [12, §2], T = 〈p, q, r, t−1h2, s−1t−1uv〉 and |T | = 108. Now s−1t−1uv maps Hbhu−1 to 
Hbhv, so T is transitive on Γ(H) \ {Hb, Hbh} = {Hbhv, Hbhu−1}, while S = THbhv, so 
[T : S] = 2. Since p, q and r have odd order, they must be elements of S. It is routine to 
verify that the involution t−1h2 ∈ S and 〈p, q, r, t−1h2〉 � C3

3 :C2, so S = 〈p, q, r, t−1h2〉. 
Now S fixes the vertex Hbhbhv ∈ Γ(Hbhv) \ {H}, so Γ is not 7-CH.

Next we prove that Γ is 6-CH. Since Γ is 7-arc-transitive, we only need to consider 
those connected induced subgraphs of Γ of order at most 6 that are not path graphs; these 
are described in Fig. 2. For each induced subgraph Δ of Γ in Fig. 2, the vertices of some 
connected induced subgraph Σ of order |V Δ| −1 have been labelled with elements of V Γ. 
To show that Γ is 6-CH, by Lemma 3.3, it suffices to verify the following: for each Δ in 
Fig. 2, the pointwise stabiliser P in G of V Σ is transitive on Γ(H) \V Σ. Cases (b) and (d) 
are trivial since |Γ(H) \V Σ| = 1. In all remaining cases, Γ(H) \V Σ = {Hbhv, Hbhu−1}. 
For cases (a), (c), (e) and (f), the element r−1s−1t−1uv lies in P and maps Hbhu−1 to 
Hbhv. In case (g), the element (t−1h2)(t−1uv) lies in P and maps Hbhu−1 to Hbhv. �
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Remark 8.2. If Γ is the incidence graph of the split Cayley hexagon of order (3, 3)—i.e., 
the generalised hexagon associated with the group G2(3)—then Γ is 7-arc-transitive with 
valency 4 [38], so Γ is 6-CH but not 7-CH by Proposition 8.1.

In order to prove Theorem 1.7, we first establish two more detailed results: Theo-
rem 8.3 concerns those graphs with diameter 2, while Theorem 8.4 concerns those graphs 
with diameter at least 3. Observe that if Γ is a finite connected graph with valency 2, 
then Γ � Cn for some n, so in what follows, we focus on the case where Γ has valency 
at least 3.

First we consider the case where Γ has diameter 2. The Hoffman-Singleton graph is 
a strongly regular graph with parameters (50, 7, 0, 1) and girth 5; it has automorphism 
group PΣU3(5) and point stabiliser S7. See [4, §13.1] for several constructions of this 
graph.

Theorem 8.3. Let Γ be a finite connected graph with girth at least 5, valency at least 3, 
and diameter 2. If Γ is 3-CH, then one of the following holds.

(i) Γ is the Petersen graph. Here Γ is CH.
(ii) Γ is the Hoffman-Singleton graph. Here Γ is 5-CH but not 6-CH.

Proof. Since Γ has girth at least 5, it is locally (t +1) ·K1 for some t � 2, and c2(Γ) = 1. 
Since Γ has diameter 2, it follows that a2(Γ) = t. In particular, Γ has girth 5, so Γ is a 
Moore graph (see [4, §6.7]). Since Γ is 3-CH, it is distance-transitive, so either t = 2 and 
Γ is the Petersen graph, in which case (i) holds by Theorem 2.10, or t = 6 and Γ is the 
Hoffman-Singleton graph [1,25].

Suppose that Γ is the Hoffman-Singleton graph. Let u ∈ V Γ, write Γ(u) =
{v, x, x1 . . . , x5}, and let w1, w2 ∈ Γ2(u) ∩ Γ(v). Let Δi be the subgraph of Γ induced 
by {u, v, x, w1, w2, xi} for i ∈ {1, . . . , 5}. For each i, the graph Δi is isomorphic to the 
tree on 6 vertices with two vertices of valency 3. However, using Magma [3], we de-
termine that there exists i ∈ {1, . . . , 5} such that the pointwise stabiliser in Aut(Γ) of 
{u, v, x, w1, w2} also fixes xi, so Γ is not 6-CH. Using [3,39], it is routine to verify that 
Γ is 5-CH (see Remark 1.11). �

Next we consider the case where Γ has diameter at least 3. For n � 4, the odd graph 
On (see [4, §9.1D]) has girth 6, valency n and diameter n − 1, and this graph is 4-CH 
but not 5-CH, as it is not 4-arc-transitive. On the other hand, we will see shortly that 
the valency of a 5-CH graph with girth at least 5 is very restricted. We will also see that 
the only 5-CH graphs with girth at least 5 and diameter 3 are the incidence graphs of 
the projective planes PG2(q) for 2 � q � 4. Note that the incidence graph of the Fano 
plane PG2(2) is often called the Heawood graph. Recall the definition of an s-transitive 
graph from §2.1.
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Theorem 8.4. Let Γ be a finite connected 5-CH graph with girth at least 5, valency n � 3, 
and diam(Γ) � 3. Then 3 � n � 5, Γ is 4-arc-transitive, and one of the following holds.

(i) diam(Γ) = 3 and Γ is the incidence graph of the projective plane PG2(q) for 
2 � q � 4. Here Γ is 6-CH but not 7-CH.

(ii) diam(Γ) = 4 and Γ is the incidence graph of the generalised quadrangle W3(q) for 
q = 2 or 4. Here Γ is 6-CH but not 7-CH.

(iii) diam(Γ) � 5 and Γ is not 7-CH. Further, if Γ is 6-CH, then either Γ is 5-transitive 
and n = 3 or 5, or Γ is 7-transitive and n = 4.

Proof. Let G := Aut(Γ), let u ∈ V Γ and let H := G
Γ(u)
u . The graph Γ is locally (t +1) ·K1

for some t � 2. Now H is an r-transitive permutation group of degree t + 1 where 
r := min (t + 1, 4), so by Theorem 2.12, either At+1 � H � St+1, or H is the simple 
group Mt+1 where t + 1 ∈ {11, 12, 23, 24}. Let (u0, . . . , u4) be a 4-arc. Since Γ has 
diameter at least 3, it has girth at least 6 by Lemma 3.12(i), so the subgraph induced by 
{u0, . . . , u4} is a path graph with 5 vertices. Thus Γ is 4-arc-transitive. In particular, Γ
is s-transitive for some s � 4, so by [37], PSL2(t) �H and t is a power of a prime � such 
that either s = 4, or s = 2� + 1 and � � 3. If t � 5, then H has a unique non-abelian 
composition factor, namely At+1 or Mt+1, but neither of these groups is isomorphic to 
the simple group PSL2(t), a contradiction. Thus t ∈ {2, 3, 4} and n ∈ {3, 4, 5}.

If diam(Γ) = 3, then Γ is distance-transitive with intersection array {t +1, t, t; 1, 1, c3}
where c3 = 1 or t + 1 by Lemma 3.12. We claim that Γ is the incidence graph of the 
projective plane PG2(t). If t = 2, then Γ is the Heawood graph by [4, Theorem 7.5.1], so 
the claim holds. If t = 3 or 4, then Γ is the point graph of a generalised hexagon of order 
(1, t) by [4, Theorem 7.5.3], so Γ is the incidence graph of a projective plane of order t
(see [4, §6.5]); since PG2(t) is the unique projective plane of order t when t = 3 or 4, the 
claim holds. Next we show that Γ is not 7-CH. Choose a point p of PG2(t), and let �1, 
�2 and �3 be pairwise distinct lines on p. Let q1 and q2 be points on �1 \ {p} and �2 \ {p}
respectively. Let � be the unique line on q1 and q2, and let q3 be the unique point on �
and �3. For x ∈ �3 \ {p}, let Δx be the subgraph of Γ induced by {p, �1, �2, �3, q1, q2, x}, 
and observe that Δx � Δy for all y ∈ �3 \ {p}. Observe also that q3 ∈ �3 \ {p} and 
|�3 \{p}| = t � 2. Suppose that g ∈ Aut(Γ) fixes {p, �1, �2, �3, q1, q2} pointwise. Note that 
g is a collineation of Γ; that is, g maps points to points and lines to lines. Since q1 and 
q2 are distinct points on �, we must have �g = �. Now qg3 lies on �g = � and �g3 = �3, so 
qg3 = q3. Thus Γ is not 7-CH. It is routine to verify that Γ is 6-CH, so (i) holds.

If diam(Γ) = 4, then Γ is distance-transitive with intersection array {t + 1, t, t, t; 1, 1,
1, c4} by Lemma 3.12, so Γ is the incidence graph of the generalised quadrangle W3(t)
where t ∈ {2, 4} by [4, Theorems 7.5.1 and 7.5.3]. We may view the points and lines of 
W3(t) as points and lines respectively of PG2(t), and the above proof shows that Γ is 
not 7-CH (even though the line � is not a line of W3(t)). It is routine to verify that Γ is 
6-CH, so (ii) holds.
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We may therefore assume that diam(Γ) � 5. Now ai = 0 and ci = 1 for 1 � i � 3 by 
Lemma 3.12, so Γ has girth at least 8. Thus the subgraph induced by a 5-arc (or 6-arc) 
is a path graph with 6 (or 7) vertices. If Γ is 6-CH, it follows that Γ is 5-arc-transitive, 
and since s = 2� + 1 where 2 � � � 3 and t is a power of �, we conclude that either Γ is 
5-transitive and n = 3 or 5, or Γ is 7-transitive and n = 4. Similarly, if Γ is 7-CH, then Γ
is 6-arc-transitive and therefore 7-arc-transitive with valency 4, but no such graph exists 
by Proposition 8.1. Thus (iii) holds. �
Proof of Theorem 1.7. (i) Let Γ be a finite 7-CH graph with girth at least 5. By Re-
mark 1.1, we may assume that Γ is connected. If Γ has valency 0 or 1, then Γ is CH. If 
Γ has valency 2, then Γ � Cn for some n � 5, so Γ is CH. If Γ has valency at least 3, 
then by Theorems 8.3 and 8.4, Γ is the Petersen graph and Γ is CH.

(ii) By [12], there are infinitely many finite connected quartic 7-arc-transitive graphs, 
all of which have girth at least 12 by Lemma 2.7, and by Proposition 8.1, any such graph 
is 6-CH but not 7-CH.

(iii) Let Γ be a finite graph with valency 4 and girth at least 7. Note that Γ is 7-
arc-transitive if and only if Γ is a disjoint union of connected 7-arc-transitive graphs, 
all of which are isomorphic, so by Remark 1.1, we may assume that Γ is connected. 
Note that the Petersen graph has girth 5, and the incidence graph of PG2(q) has girth 
6. If Γ is 6-CH, then by Theorems 8.3 and 8.4, Γ is 7-arc-transitive. Conversely, if Γ is 
7-arc-transitive, then Γ is 6-CH by Proposition 8.1. �

We finish this section with the following observation.

Proposition 8.5. Any finite cubic 4-arc-transitive graph is 5-CH.

Proof. Let Γ be a finite 4-arc-transitive graph with valency 3. By Lemma 2.7, Γ has 
girth at least 6, so the only connected induced subgraphs of Γ with order at most 5 that 
are not s-arcs are the trees with order 4 and 5 that contain a vertex of valency 3. Since 
Γ has valency 3, it follows from Lemma 3.3 that Γ is 5-CH. �
9. Locally disconnected graphs with girth 3 and c2 = 1

Recall that a finite 3-CH graph Γ is locally disconnected with girth 3 if and only if Γ
is locally (t + 1) ·Ks for some integers t � 1 and s � 2 (see Lemma 3.2). In this section, 
we consider such graphs Γ for which c2 = 1. In §9.1, we consider the case where t = 1; 
in particular, we prove Theorem 1.8. In §9.2, we briefly consider the case where t � 2.

9.1. The case where t = 1

Lemma 9.1. Let Γ be a finite connected graph. For s � 2, the following are equivalent.

(i) Γ is locally 2 ·Ks and c2(Γ) = 1.
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(ii) Γ is the line graph of a finite connected graph with girth at least 5 and valency s +1.

Proof. If (i) holds, then (ii) holds by [4, Proposition 1.2.1]. Conversely, if (ii) holds, then 
it is routine to verify that (i) holds. �

Let Γ1 and Γ2 be finite connected graphs where EΓ1 �= ∅. If ϕ : Γ1 → Γ2 is an 
isomorphism, then there is a natural isomorphism ϕ̂ : L(Γ1) → L(Γ2) defined by {u, v} 	→
{uϕ, vϕ} for all {u, v} ∈ EΓ1. Conversely, if Γ1 and Γ2 have at least five vertices, 
and if ψ : L(Γ1) → L(Γ2) is an isomorphism, then there exists a unique isomorphism 
ϕ : Γ1 → Γ2 such that ψ = ϕ̂ by [23, Theorem 8.3]. It is routine to verify that this also 
holds when Γ1 and Γ2 have at least three vertices and do not contain any triangles. In 
particular, if Γ is a finite connected regular graph with girth at least 5 and valency at 
least 3, then Γ contains a cycle with length at least 5, so there is a group isomorphism 
of Aut(Γ) onto Aut(L(Γ)) defined by g 	→ ĝ for all g ∈ Aut(Γ).

Lemma 9.2. Let Γ be a finite connected regular graph with girth at least 5 and valency at 
least 3. For k � 2, the following are equivalent.

(i) The line graph L(Γ) is k-CH.
(ii) Γ is (k + 1)-CH and has girth at least k + 2.

Proof. Suppose that L(Γ) is k-CH. The graph Γ has girth at least 5 and valency at least 
3, so there exists an induced subgraph Δ of Γ such that Δ is a path graph with 5 vertices. 
Write EΔ = {e1, e2, e3, e4} where ei is incident with ei+1 for 1 � i � 3. Now L(Δ) is a 
path graph with 4 vertices that is an induced subgraph of L(Γ), so if diam(L(Γ)) = 2, 
then there exists e ∈ EΓ such that e is incident with e1 and e4, but then e ∈ EΔ, a 
contradiction. Thus diam(L(Γ)) � 3.

Let r be the girth of Γ. Now Γ has an induced subgraph Δ′ such that Δ′ � Cr, so 
L(Δ′) is an induced subgraph of L(Γ) that is isomorphic to Cr. Let Γ have valency s +1, 
and note that s � 2. By Lemma 9.1, L(Γ) is locally 2 · Ks and c2(L(Γ)) = 1. Thus 
r � k + 2 by Lemma 3.14.

Now we prove that Γ is (k + 1)-CH. Let Δ1 and Δ2 be connected induced subgraphs 
of Γ where 3 � |V Δ1| � k + 1, and let ϕ : Δ1 → Δ2 be an isomorphism. Since Γ has 
girth at least k + 2, the graph Δ1 is a tree and therefore has at most k edges. Now 
L(Δ1) and L(Δ2) are connected induced subgraphs of L(Γ) with order at most k, and 
ϕ̂ : L(Δ1) → L(Δ2) is an isomorphism, so there exists g ∈ Aut(Γ) such that ϕ̂ extends to 
ĝ ∈ Aut(L(Γ)), whence ϕ extends to g, as desired. In particular, we have proved that Γ
is 2-arc-transitive; since Γ has valency at least 2, it follows that Γ is 2-CH and therefore 
(k + 1)-CH. Thus (ii) holds.

Conversely, suppose that Γ is (k+1)-CH and has girth at least k+2. Let Δ1 and Δ2 be 
connected induced subgraphs of L(Γ) with order at most k, and let ψ : Δ1 → Δ2 be an 
isomorphism. It is clear that L(Γ) is vertex-transitive, so we may assume that |Δ1| � 2. 
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Let Σi be the subgraph of Γ induced by the edges in V Δi. Now Σi is connected and 
L(Σi) = Δi. In particular, there exists an isomorphism ϕ : Σ1 → Σ2 such that ψ = ϕ̂. 
Since Σi has |V Δi| edges and Γ has girth at least k + 2, it follows that Σi is a tree, so 
|V Σi| = |V Δi| +1. If Σi is not a (vertex) induced subgraph of Γ, then the graph induced 
by V Σi contains a cycle of length at most k + 1, a contradiction. Hence there exists 
g ∈ Aut(Γ) such that ϕ extends to g, in which case ψ = ϕ̂ extends to ĝ ∈ Aut(L(Γ)). 
Thus (i) holds. �
Remark 9.3. By Lemma 9.2, any result from §8 can be reinterpreted for locally 2 · Ks

graphs where s � 2 and c2 = 1. For example, if Γ is the line graph of the incidence 
graph of PG2(q) for 2 � q � 4, then Γ is 4-CH but not 5-CH (since the incidence graph 
of PG2(q) has girth 6). Similarly, if Γ is the line graph of the incidence graph of either 
W3(q) for q = 2 or 4, or the split Cayley hexagon of order (3, 3), then Γ is 5-CH but not 
6-CH.

The following result is an easy consequence of Theorems 8.3 and 8.4.

Theorem 9.4. Let Γ be a finite connected graph that is locally 2 · Ks where s � 2 and 
c2(Γ) = 1. Then Γ is not 6-CH. If Γ is 4-CH, then s ∈ {2, 3, 4} and Γ is the line graph 
of a finite connected 4-arc-transitive graph with valency s + 1.

Proof. By Lemma 9.1, Γ = L(Σ) for some finite connected graph Σ with girth at least 
5 and valency s + 1. If Γ is 4-CH, then Σ is 5-CH with girth at least 6 by Lemma 9.2, so 
by Theorems 8.3 and 8.4, Σ is 4-arc-transitive and s ∈ {2, 3, 4}. If Γ is 6-CH, then Σ is 
7-CH and has girth at least 8 by Lemma 9.2, but no such graph exists by Theorems 8.3
and 8.4. �
Proof of Theorem 1.8. By Theorem 9.4 and Remark 1.1, Theorem 1.8(i) holds. By [12], 
there are infinitely many finite connected 7-arc-transitive graphs with valency 4, all of 
which are 6-CH by Proposition 8.1, so Theorem 1.8(ii) follows from Lemmas 2.7, 9.1
and 9.2. �
Proposition 9.5. The line graph of a finite connected cubic 4-arc-transitive graph is 4-CH.

Proof. Let Γ be a finite connected 4-arc-transitive graph with valency 3. Then Γ is 5-
CH by Proposition 8.5, and Γ has girth at least 6 by Lemma 2.7, so L(Γ) is 4-CH by 
Lemma 9.2. �
9.2. The case where t � 2

For finite connected locally (t + 1) · Ks graphs Γ with t � 2, s � 2 and c2 = 1, our 
only general results are Lemmas 3.12 and 3.14. Note that Kantor [27] proved (without 



A. Devillers et al. / Journal of Combinatorial Theory, Series A 173 (2020) 105234 43
using the CFSG) that no finite connected 3-CH graph with girth 3 and c2 = 1 is strongly 
regular.

In the following, we determine those 4-CH graphs Γ that are distance-transitive with 
valency at most 13. The point graph of the Hall-Janko near octagon (see [4, §13.6]) is 
locally 5 ·K2 and distance-transitive with intersection array {10, 8, 8, 2; 1, 1, 4, 5}. It has 
automorphism group J2 :2, where J2 denotes the Hall-Janko sporadic simple group.

Proposition 9.6. Let Γ be a finite connected 4-CH graph that is locally (t + 1) ·Ks where 
t � 2, s � 2 and c2(Γ) = 1. If Γ is distance-transitive with valency at most 13, then one 
of the following holds.

(i) Γ is the point graph of the dual of the split Cayley hexagon of order (2, 2). Here Γ
is 4-CH but not 5-CH.

(ii) Γ is the point graph of the Hall-Janko near octagon. Here Γ is 4-CH but not 5-CH.

Proof. By [27], Γ is not strongly regular, so d := diam(Γ) � 3. By Lemma 3.12, Γ
has intersection array {s(t + 1), st, st, b3, . . . , bd−1; 1, 1, c3, . . . , cd}. In particular, b0 =
s(t +1) � 6 and b1 = b2 = st � 4. Further, neither b0 nor b1 is prime, and b0−b1 = s � 2. 
By [4, Theorem 7.5.3], one of the following holds.

(a) Γ is the point graph of a generalised hexagon of order (2, 2). Here Γ has intersection 
array {6, 4, 4; 1, 1, 3} and is locally 3 ·K2 with order 63.

(b) Γ is the point graph of the Hall-Janko near octagon. Here Γ has intersection array 
{10, 8, 8, 2; 1, 1, 4, 5} and is locally 5 ·K2 with order 315.

(c) Γ is the point graph of a generalised octagon of order (2, 4). Here Γ has intersection 
array {10, 8, 8, 8; 1, 1, 1, 5} and is locally 5 ·K2 with order 1755.

(d) Γ is the point graph of a generalised hexagon of order (3, 3). Here Γ has intersection 
array {12, 9, 9; 1, 1, 4} and is locally 4 ·K3 with order 364.

(e) Γ is the point graph of a generalised octagon of order (4, 2). Here Γ has intersection 
array {12, 8, 8, 8; 1, 1, 1, 3} and Γ is locally 3 ·K4 with order 2925.

If (b) holds, then Γ is not 5-CH by Lemma 3.12, and using Magma [3] and [39] (see 
Remark 1.11), it is routine to verify that Γ is 4-CH, so (ii) holds.

Thus we may assume that one of (a), (c), (d) or (e) holds. Now Γ is the point graph of 
a distance-transitive generalised n-gon S for some n. By [7], one of the following holds: 
in (a), S is the split Cayley hexagon of order (2, 2) or its dual; in (c), S is the Ree-Tits 
octagon of order (2, 4); in (d), S is the split Cayley hexagon of order (3, 3) (since this 
generalised hexagon is self-dual); and in (e), S is the dual of the Ree-Tits octagon of 
order (2, 4).

If (c) or (d) holds, then using [3,39], it is routine to verify that Γ is not 4-CH (the 
tree of order 4 with a vertex of valency 3 fails). Similarly, if (e) holds, then using [3,39], 
it is routine to verify that Γ is not 3-CH (the cycle of length 3 fails).
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Lastly, suppose that (a) holds. Neither graph is 5-CH by Lemma 3.12. In order to 
differentiate between the split Cayley hexagon and its dual, here is a construction of 
the former: its points are the one-dimensional totally singular subspaces of a quadratic 
space on V7(2), and its 63 lines are an orbit of G2(2) � PΩ7(2) on the two-dimensional 
totally singular subspaces. (See [36, §2.4.13] for an explicit description of the lines.) Using
Magma [3], it is routine to verify that the point graph of the split Cayley hexagon is 
not 4-CH (the tree of order 4 with a vertex of valency 3 fails), while the point graph of 
the dual of the split Cayley hexagon is 4-CH. Thus (i) holds. �
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