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In this paper, we present a lattice-theoretic characterization 
for valuated matroids, which is an extension of the well-known 
cryptomorphic equivalence between matroids and geometric 
lattices (= atomistic semimodular lattices). We introduce a 
class of semimodular lattices, called uniform semimodular 
lattices, and establish a cryptomorphic equivalence between 
integer-valued valuated matroids and uniform semimodular 
lattices. Our result includes a coordinate-free lattice-theoretic 
characterization of integer points in tropical linear spaces, 
incorporates the Dress-Terhalle completion process of valuated 
matroids, and establishes a smooth connection with Euclidean 
buildings of type A.
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1. Introduction

Matroids can be characterized by various cryptomorphically equivalent axioms; see 
e.g., [1]. Among them, a lattice-theoretic characterization by Birkhoff [3] is well-known: 
The lattice of flats of any matroid is a geometric lattice (= atomistic semimodular lattice), 
and any geometric lattice gives rise to a simple matroid.
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The goal of the present article is to extend this classical equivalence to valuated 
matroids (Dress and Wenzel [9,10]). Valuated matroid is a quantitative generalization 
of matroid, which abstracts linear dependence structures of vector spaces over a field 
with a non-Archimedean valuation. A valuated matroid is defined as a function on the 
base family of a matroid satisfying a certain exchange axiom that originates from the 
Grassmann-Plücker identity. Just as matroids, valuated matroids enjoy nice optimization 
properties; they can be optimized by a greedy algorithm, and this property characterizes 
valuated matroids. In the literature of combinatorial optimization, the theory of valuated 
matroids has evolved into discrete convex analysis [20], which is a framework of “con-
vex” functions on discrete structures generalizing matroids and submodular functions. In 
tropical geometry (see e.g., [17]), a valuated matroid is called a tropical Plücker vector. 
The space of valuated matroids is understood as a tropical analogue of the Grassmann 
variety in algebraic geometry; see [22,23].

While Murota and Tamura [21] established cryptomorphically equivalent axioms for 
valuated matroids in terms of (analogous notions of) circuits, cocircuits, vectors, and 
covectors, a lattice-theoretic axiom has never been given in the literature. The goal of this 
paper is to establish a lattice-theoretic axiom for valuated matroids by introducing a new 
class of semimodular lattices, called uniform semimodular lattices. This class of lattices 
can be viewed as an affine-counterpart of geometric lattices, and is defined by a fairly 
simple axiom: They are semimodular lattices with the property that the operator x �→
(the join of all elements covering x) is an automorphism. This operator was introduced 
in a companion paper [13] to characterize Euclidean buildings in a lattice-theoretic way.

The main result of this paper is a cryptomorphic equivalence between uniform semi-
modular lattices and integer-valued valuated matroids. The contents of this equivalence 
and its intriguing features are summarized as follows:

• A valuated matroid is constructed from a uniform semimodular lattice L as follows. 
We introduce the notion of a ray and end in L. A ray is a chain of L with a certain 
straightness property, and an end is an equivalence class of the parallel relation on 
the set of rays. Ends will play the role of atoms in a geometric lattice. We introduce 
a matroid M∞ on the set E of ends, called the matroid at infinity, which will be 
the underlying matroid of our valuated matroid. As expected from the name, this 
construction is inspired by the spherical building at infinity in a Euclidean building. 
A Zn-sublattice S(B) (� Zn) is naturally associated with each base B in M∞, 
and plays the role of apartments in a Euclidean building. Then a valuated matroid 
ω = ωL,x on E is defined from apartments and any fixed x ∈ L; the value ω(B) is 
the negative of a “distance” between x and S(B). It should be emphasized that this 
construction is done purely in a coordinate-free lattice-theoretic manner.

• The reverse construction of a uniform semimodular lattice from a valuated matroid 
uses the concept of the tropical linear space. The tropical linear space T (ω) is a 
polyhedral object in RE associated with a valuated matroid ω on E. This concept 
and the name were introduced by Speyer [22] in the literature of tropical geometry. 



JID:YJCTA AID:5075 /FLA [m1L; v1.253; Prn:12/03/2019; 11:42] P.3 (1-35)
H. Hirai / Journal of Combinatorial Theory, Series A ••• (••••) •••–••• 3
Essentially equivalent concepts were earlier considered by Dress and Terhalle [7,8] as 
the tight span and by Murota and Tamura [21] as the space of covectors. In the case of 
a matroid (i.e., {0, −∞}-valued valuated matroid), the tropical linear space reduces 
to the Bergman fan of the matroid, which is viewed as a geometric realization of 
the order complex of the geometric lattice of flats [2]. We show that the set L(ω) :=
T (ω) ∩ZE of integer points in T (ω) forms a uniform semimodular lattice. Then the 
original ω is recovered by the above construction (up to the projective-equivalence), 
and T (ω) is a geometric realization of a special subcomplex of the order complex of 
L(ω). Thus our result establishes a coordinate-free lattice-theoretic characterization 
of tropical linear spaces.

• The above constructions incorporate, in a natural way, the completion process of val-
uated matroids by Dress and Terhalle [7], which is a combinatorial generalization of 
the p-adic completion. They introduced an ultrametric metrization of the underlying 
set E by a valuated matroid ω, and a completeness concept for valuated matroids 
in terms of the completeness of this metrization of E. They proved that any (sim-
ple) valuated matroid (E, ω) is (uniquely) extended to a complete valuated matroid 
(Ē, ω̄), which is called a completion of (E, ω).
We show that the space E of ends in a uniform semimodular lattice L admits an 
ultrametric metrization d, and it is complete in this metric, where d coincides with 
the Dress-Terhalle metrization of the constructed valuated matroid ωL,x. Then the 
process ω → L(ω) → ωL(ω),x coincides with the Dress-Terhalle completion of ω.

• Our result sums up, from a lattice-theory side, connections between valuated ma-
troids and Euclidean buildings (Bruhat and Tits [4]), pointed out by [6,8,15]; see 
also a recent work [25]. Let us recall the spherical situation, and recall a modular 
matroid, which is a matroid whose lattice of flats is a modular lattice. We can say 
that a modular matroid is equivalent to a spherical building of type A [24]. Indeed, a 
classical result of Birkhoff [3] says that a modular geometric lattice is precisely the 
direct product of subspace lattices of projective geometries. Another classical result 
by Tits [24] says that a spherical building of type A is the order complex of the direct 
product of subspace lattices of projective geometries.
An analogous relation is naturally established for valuated matroids by introducing 
the notion of a modular valuated matroid, which is defined as a valuated matroid 
such that the corresponding uniform semimodular lattice is a modular lattice. The 
companion paper [13] showed that uniform modular lattices are cryptomorphically 
equivalent to Euclidean buildings of type A. Thus a modular valuated matroid ω
is equivalent to a Euclidean building of type A, in which (the projection of) the 
tropical linear space T (ω) is a geometric realization of the Euclidean building. This 
generalizes a result by Dress and Terhalle [8] obtained for the Euclidean building of 
SL(Fn) for a valued field F .

The rest of this paper is organized as follows. Sections 2 and 3 are preliminary sections 
on lattice, (valuated) matroids, and tropical linear spaces. Section 4 constitutes the main 
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body of our results on uniform semimodular lattices. Section 5 discusses representative 
examples of valuated matroids in terms of uniform semimodular lattices.

2. Preliminaries

Let R denote the set of real numbers. Let Z and Z+ denote the sets of integers and 
nonnegative integers, respectively. For a set E (not necessarily finite), let RE , ZE , and 
ZE

+ denote the sets of all functions from E to R, Z, and Z+, respectively. A function 
g : E → Z is said to be upper-bounded if there is M ∈ Z such that g(e) ≤ M for all 
e ∈ E. If |g(e)| ≤ M for all e ∈ E, then g is said to be bounded. Let 1 denote the all-one 
vector in RE , i.e., 1(e) = 1 (e ∈ E). For a subset F ⊆ E, let 1F denote the incidence 
vector of F in RE , i.e., 1F (e) = 1 if e ∈ F and zero otherwise. 1{e} is simply denoted 
by 1e. Let 0 denote the zero vector. For x, y ∈ RE , let min(x, y) and max(x, y) denote 
the vectors in RE obtained from x, y by taking componentwise minimum and maximum, 
respectively; namely min(x, y)(e) = min(x(e), y(e)) and max(x, y)(e) = max(x(e), y(e))
for e ∈ E. The vector order ≤ on RE is defined by x ≤ y if x(e) ≤ y(e) for all e ∈ E. 
For e ∈ E and B ⊆ E, we denote B ∪ {e} and B \ {e} by B + e and B − e, respectively.

2.1. Lattices

We use the standard terminology on posets (partially ordered sets) and lattices (see, 
e.g., [1,3]), where � denotes a partial order relation, and x ≺ y means x � y and x 
= y. 
A lattice is a poset L such that every pair x, y has the greatest common lower bound 
x ∧ y and the least common upper bound x ∨ y; the former is called the meet of x, y, and 
the latter is called the join of x, y. For a subset S ⊆ L, the greatest lower bound of S
(the meet of S) is denoted by 

∧
S (if it exists), and the least upper bound of S (the join

of S) is denoted by 
∨
S (if it exists). For elements x, y with x � y, the interval [x, y] of 

x, y is the set of elements z with x � z � y. If [x, y] = {x, y} and x 
= y, then we say 
that y covers x and write x ≺1 y. A chain is a totally ordered subset C of L; a chain 
will be written, say, as x0 ≺ x1 ≺ · · · ≺ xm ≺ · · · . The length of chain C is defined as 
its cardinality |C| minus one. In this paper, we deal with lattices satisfying the following 
finiteness assumption:

(F) No interval [x, y] has a chain of infinite length.

An order-preserving bijection ϕ : L → L′ is called an isomorphism. If L = L′, then an 
isomorphism ϕ is called an automorphism on L. A sublattice of a lattice L is a subset 
L′ ⊆ L with the property that x, y ∈ L′ imply x ∧ y, x ∨ y ∈ L′. Intervals are sublattices. 
An atom is an element that covers the minimum 0̄ =

∧
L. The rank of L (having the 

minimum and maximum) is defined as the maximum length of a maximal chain of L. 
A height function of a lattice L is an integer-valued function r : L → Z such that 
r(y) = r(x) + 1 for any x, y ∈ L with x ≺1 y.
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A lattice L is said to be semimodular if x ∧ a ≺1 a implies x ≺1 x ∨ a for any 
x, a ∈ L. From the definition, we easily see that a semimodular lattice satisfies the 
Jordan-Dedekind chain condition:

(JD) For any interval [x, y], all maximal chains in [x, y] have the same length.

We denote this length by r[x, y], which is finite by (F).

Lemma 2.1. For a lattice L, the following conditions are equivalent:

(1) L is semimodular.
(2) For a, b ∈ L, if a, b cover a ∧ b, then a ∨ b covers a, b.
(3) L admits a height function r satisfying

r(x) + r(y) ≥ r(x ∧ y) + r(x ∨ y) (x, y ∈ L). (2.1)

Sketch of proof. We verify (1) ⇒ (3); other directions are easy or obvious. Fix z ∈ L, 
define r : L → Z by r(x) := r[z, x ∨ z] − r[x, x ∨ z]. Consider an element y that covers x. 
If y � x ∨ z, then x ∨ z = y ∨ z and r[y, y ∨ z] = r[x, x ∨ z] − 1. If y � x ∨ z, then by 
semimodularity, y ∨ z covers x ∨ z, and hence r[y, y ∨ z] = r[x, x ∨ z] and r[z, y ∨ z] =
r[z, x ∨ z] + 1. Thus r is a height function.

We show (2.1). Consider a maximal chain x ∧ y = z0 ≺1 z1 ≺1 · · · ≺1 zk = y, where 
k = r[x ∧y, y] by (JD). Consider a chain x = x ∨z0 � x ∨z1 � · · · � x ∨zk = x ∨y, which 
contains a maximal chain in [x, y] by the semimodularity. This implies r(x ∨ y) − r(x) =
r[x, x ∨ y] ≤ k = r[x ∧ y, y] = r(y) − r(x ∧ y), and (2.1). �

A modular pair is a pair x, y ∈ L satisfying (2.1) in equality. A geometric lattice is a 
semimodular lattice such that it has the minimum and maximum, and every element can 
be represented as the join of atoms. A hyperplane in a geometric lattice is an element 
that is covered by the maximum element. The following is well-known.

Lemma 2.2 (See, e.g., [1, Section II.3]). Let L be a geometric lattice.

(1) Every element in L is written as the meet of hyperplanes.
(2) Every interval in L is a geometric lattice.

A modular lattice is a lattice L such that for every triple x, y, z ∈ L with x � z it 
holds x ∨ (y ∧ z) = (x ∨ y) ∧ z. A modular lattice is precisely a semimodular lattice in 
which every pair is modular.



JID:YJCTA AID:5075 /FLA [m1L; v1.253; Prn:12/03/2019; 11:42] P.6 (1-35)
6 H. Hirai / Journal of Combinatorial Theory, Series A ••• (••••) •••–•••
2.2. Matroids

Here we introduce matroids on a possibly infinite ground set, where our treatment 
follows [1, Chapter VI]. A matroid M = (E, I) is a pair of a set E and a family I
of subsets of E such that ∅ ∈ I, I ′ ⊆ I ∈ I implies I ′ ∈ I, and for I, I ′ ∈ I with 
|I| < |I ′| there is e ∈ I ′ \ I such that I + e ∈ I, and maxI∈I |I| < +∞. A member 
of I is called an independent set. A maximal independent set is called a base. The set 
of all bases is denoted by B. A matroid can be defined by the base family, and also be 
written as M = (E, B). Bases have the same cardinality (< +∞), which is called the 
rank of M. A loop is an element e ∈ E such that no base contains e. Non-loop elements 
e, f ∈ E are said to be parallel if no base contains both e and f . The parallel relation 
gives rise to an equivalence relation on the set of non-loop elements, and an equivalence 
class is called a parallel class. If matroid M has no loop and no parallel pair, then M is 
called simple. For a subset E′ ⊆ E obtained by selecting one element from each parallel 
class, we obtain a simple matroid M′ = (E′, I ′) on E′, where I ′ := {I ∈ I | I ⊆ E′}. 
This matroid M′ is called a simplification of M. The rank function ρ : 2E → Z is 
defined by ρ(X) := max{|I| | I ∈ I : I ⊆ X}. The closure operator cl is defined by 
cl(X) = {e ∈ E | ρ(X + e) = ρ(X)}. A flat is a subset F ⊆ E with cl(F ) = F . A parallel 
class is exactly a flat F with ρ(F ) = 1. The family of all flats becomes a lattice with 
respect to the inclusion order.

Let us review the relationship between matroids and geometric lattices. Let L be a 
geometric lattice with height function r. Assume r(0̄) = 0. A subset I of atoms of L is 
called independent if r(

∨
I) = |I|.

Theorem 2.3 ([3]; see [1, Chapter VI]).

(1) For a geometric lattice L with rank n, the pair ML of the set of atoms and the family 
of independent atoms is a simple matroid with rank n.

(2) The family of flats of a matroid M with rank n is a geometric lattice L with rank n, 
where ML is a simplification of M.

3. Valuated matroids and tropical linear spaces

Let M = (E, B) be a matroid with rank n. A valuated matroid on M is a function 
ω : B → R satisfying:

(EXC) For B, B′ ∈ B and e ∈ B \B′ there is e′ ∈ B′ \B such that

ω(B) + ω(B′) ≤ ω(B + e′ − e) + ω(B′ + e− e′). (3.1)
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A valuated matroid ω is viewed as a function on the set of all n-element subsets of E
by defining ω(B) = −∞ for B /∈ B. A valuated matroid is also written as a pair (E, ω). 
A valuated matroid is called simple if the underlying matroid is a simple matroid.

Lemma 3.1 ([7]). Let (E, ω) be a valuated matroid. If e, f ∈ E are parallel in the un-
derlying matroid, then there is α ∈ R such that ω(K + e) = ω(K + f) + α for every 
(n − 1)-element subset K ⊆ E \ {e, f}.

Therefore no essential information is lost when a valuated matroid (E, ω) is restricted 
to a simplification of the underlying matroid. The obtained simple valuated matroid 
(Ẽ, ω̃) is called a simplification of (E, ω).

For ω : B → R and x ∈ RE , define ω + x : B → R by

(ω + x)(B) := ω(B) +
∑
e∈B

x(e) (B ∈ B).

It is easy to see from (EXC) that ω+x is a valuated matroid if ω is a valuated matroid. 
Two valuated matroids ω and ω′ are said to be projectively equivalent if ω′ = ω + x for 
some x ∈ RE .

For ω : B → R, let Bω be the set of all bases B that attain maxB∈B ω(B). A direct 
consequence of (EXC) is as follows.

Lemma 3.2 ([9]; see [19, Theorem 5.2.7]). Let ω be a valuated matroid on (E, B). A base 
B ∈ B belongs to Bω if and only if

ω(B − e + f) ≤ ω(B)

for all e ∈ B and f ∈ E \B with B − e + f ∈ B.

One can also observe from (EXC) that for a valuated matroid ω, the maximizer family 
Bω is the base family of a matroid. Murota [18] proved that this property characterizes 
valuated matroids when E is finite.

Lemma 3.3 ([18]; see [19, Theorem 5.2.26]). Let M = (E, B) be a matroid. An upper-
bounded integer-valued function ω : B → Z is a valuated matroid if and only if (E, Bω+x)
is a matroid for every bounded integer vector x ∈ ZE.

Proof: Reduction to finite case. We reduce the proof of the if-part to finite case. Con-
sider bases B, B′ ∈ B. Let E′ := B ∪B′, and let (E′, ω′) be the restriction of (E, ω). By 
the upper-boundedness of ω, for x′ ∈ ZE′ , by choosing a large positive integer M and 
by defining x(e) := −M (e ∈ E \ E′), we can extend x′ to bounded vector x ∈ ZE so 
that Bω+x = Bω′+x′ ⊆ 2E′ . Thus the exchange property (EXC) of ω on B and B′ follows 
from that of ω′. �
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Next we introduce the tropical linear space [21,22] of a valuated matroid. Let ω be an 
integer-valued valuated matroid on (E, B). To deal with a possible infiniteness of E, we 
here employ the following definition. The tropical linear space T (ω) of ω is defined as 
the set of all vectors x ∈ RE such that matroid Mω+x = (E, Bω+x) has no loop, i.e.,

T (ω) := {x ∈ RE | Mω+x has no loop}.

This definition tacitly imposes that the maximum of ω + x for x ∈ T (ω) is attained by 
some B ∈ B. According to the definition in [21,22], the tropical linear space is the set of 
all points x ∈ RE satisfying:

(TW) For any (n + 1)-element subset C ⊆ E, the maximum of ω(C − f) − x(f) over all 
f ∈ C with C − f ∈ B is attained at least twice.

(In the definition of [21], the sign of x is opposite.) Speyer [22, Proposition 2.3] proved 
that the two definitions are equivalent when E is finite. Our infinite setting needs a little 
care; we prove a slightly modified equivalence in Lemma 3.8 below.

In the literature, the tropical linear space is referred to as its projection T (ω)/R1, 
since x ∈ T (ω) implies x + R1 ⊆ T (ω). Earlier than [21,22], Dress and Terhalle [7,8]
introduced the concept of the tight span T S(ω) of ω, which is defined by

T S(ω) :=

⎧⎨
⎩p ∈ RE

∣∣∣ p(e) = max
B∈B:e∈B

{ω(B)−
∑

f∈B\{e}
p(f)} (e ∈ E)

⎫⎬
⎭ .

Observe that T S(ω) is the set of representatives of the negative of T (ω)/R1. More 
precisely, it holds

T S(ω) = −{x ∈ T (ω) | max
B∈B

(ω + x)(B) = 0}. (3.2)

Dress and Terhalle [7,8] introduced an ultrametric metrization of the ground set E of a 
valuated matroid ω, which we explain below. Let us recall the notion of an ultrametric. 
An ultrametric on a set X is a metric d : X × X → R+ satisfying the ultrametric 
inequality

d(x, y) ≤ max{d(x, z), d(z, y)} (x, y, z ∈ X). (3.3)

For p ∈ T S(ω), define Dp : E × E → R by

Dp(e, f) :=
{

exp(max{(ω − p)(B) | B ∈ B : {e, f} ⊆ B}) if e 
= f,

0 if e = f
(e, f ∈ E).

Proposition 3.4 ([7]). Let (E, ω) be a simple valuated matroid. For p ∈ T S(ω), we have 
the following:
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(1) Dp is an ultrametric.
(2) For q ∈ T S(ω), it holds αDp ≤ Dq ≤ βDp for some α, β > 0.

A simple valuated matroid (E, ω) is called complete if the metric space (E, Dp) is 
a complete metric space. By the property (2) the convergence property is independent 
of the choice of p ∈ T S(ω). A completion of a valuated matroid (E, ω) is a complete 
valuated matroid (Ē, ω̄) with the properties that Ē contains E as a dense subset, and ω
is equal to the restriction of ω̄ to n-element subsets in E.

Theorem 3.5 ([7]). For a simple valuated matroid (E, ω), there is a (unique) completion 
(Ē, ω̄) of (E, ω).

The construction of a completion of valuated matroid (E, ω) is analogous to (and 
generalizes) that of p-adic numbers from rational numbers: Consider the set Ē of all 
Cauchy sequences (xi), relative to Dp, modulo the equivalence relation ∼ defined by 
(xi) ∼ (yi) ⇔ limi→∞ Dp(xi, yi) = 0. Regard E as a subset of Ē by associating 
x ∈ E with a Cauchy sequence converging to x, and extend Dp to Ē × Ē → R by 
Dp((xi), (yi)) := limi→∞ Dp(xi, yi). Then Ē is a complete metric space containing E as 
a dense subset. Accordingly, ω is extended to ω̄ by

ω̄(B) := lim
i→∞

ω(Bi),

where Bi ⊆ E consists of n elements each converging to an element of B ⊆ Ē. By a com-
pletion of nonsimple valuated matroid (E, ω) we mean a completion of a simplification 
of (E, ω). In Section 4.3, we give a natural interpretation of this completion process via 
a uniform semimodular lattice.

The rest of this section is to give some basic properties of the tropical linear space 
T (ω). Let (E, ω) be an integer-valued valuated matroid on underlying matroid M =
(E, B) of rank n. We suppose that T (ω) is endowed with the vector order ≤.

Lemma 3.6. Let (Ẽ, ω̃) be a simplification of (E, ω). Then the projection x �→ x|Ẽ is an 
order-preserving bijection from T (ω) to T (ω̃).

Proof. Let e, f ∈ E be a parallel pair with ω(K + e) = ω(K + f) + α for every (n −
1)-element subset K ⊆ E \ {e, f}; see Lemma 3.1. Let x ∈ T (ω). There is B ∈ Bω+x

containing e. By (ω+x)(B) ≥ (ω+x)(B− e + f) and ω(B) = ω(B− e + f) +α, we have 
x(e) ≥ x(f) −α. Similarly, by taking B′ ∈ Bω+x with f ∈ B′, we obtain x(e) = x(f) −α; 
then (ω + x)(B) = (ω + x)(B − e + f) holds for the above B. In particular, if B ∈ Bω+x

contains e, then B−e +f ∈ Bω+x. From this, we see that Bω̃+x|Ẽ is a subset of Bω+x, and 
Mω̃+x|Ẽ has no loop. Thus the projection x �→ x|Ẽ is an order-preserving map from T (ω)
to T (ω̃). By x(e) + α = x(f), where α is independent of x, we see that the projection is 
a bijection. �
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For x ∈ RE , let �x� ∈ ZE denote the vector obtained from x by rounding down each 
fractional component of x, i.e. �x�(e) := �x(e)� for e ∈ E.

Lemma 3.7. For x ∈ T (ω), we have the following:

(1) �x� ∈ T (ω).
(2) There are a chain ∅ 
= F1 ⊂ F2 ⊂ · · · ⊂ Fn = E of flats in Mω+�x� and coefficients 

λi ≥ 0 such that 
∑n

i=1 λi < 1 and x = �x� +
∑n

i=1 λi1Fi
.

Proof. (1). Let B ∈ Bω+x. By Lemma 3.2, we have (ω + x)(B + e − f) ≤ (ω + x)(B) for 
all e ∈ E \B and f ∈ B. From this, we have

(ω + �x�)(B + e− f) + Δ(e)−Δ(f) ≤ (ω + �x�)(B),

where Δ(g) := x(g) − �x(g)� ∈ [0, 1) for g ∈ E. Since Δ(e) − Δ(f) > −1 and ω is 
integer-valued, we have (ω + �x�)(B + e − f) ≤ (ω + �x�)(B). By Lemma 3.2 again, we 
have B ∈ Bω+�x�. Hence Bω+x ⊆ Bω+�x�. Therefore Mω+�x� has no loop.

(2). It suffices to show: If x ∈ T (ω) and α ∈ [0, 1), then Fα := {e ∈ E | x(e) −�x(e)� ≥
α} is a flat of matroid Mω+�x�. By Bω+x ⊆ Bω+�x� shown above, one can see that Bω+x

is the maximizer family of linear objective function B �→ (x − �x�)(B) over Bω+�x�. 
Suppose to the contrary that e ∈ cl(Fα) \Fα exists. Take a base B ∈ Bω+x containing e. 
Then cl(B− e) � Fα since otherwise e /∈ cl(B− e) = cl(cl(B− e)) ⊇ cl(Fα) � e. Thus we 
can choose f ∈ Fα such that B+f −e ∈ Bω+�x�. But the above linear objective function 
increases strictly. This is a contradiction. �
Lemma 3.8. A vector x ∈ RE belongs to T (ω) if and only if the maximum of ω + x over 
B is attained and x satisfies (TW).

Proof. (If part). Consider B ∈ Bω+x and e ∈ E \ B. Then maxf∈B+e:B+e−f∈B ω(B +
e − f) − x(f) is attained by f = e (Lemma 3.2), and f 
= e by (TW). This means that 
B + e − f ∈ Bω+x. Thus Mω+x is loop-free.

(Only if part). By Lemma 3.7 (2) and |Fi∩B| ∈ {0, 1, 2, . . . , n}, it holds {(ω+x)(B) |
B ∈ B} ⊆ Z + U for a finite set U = {

∑n
i=1 λiki | 0 ≤ ki ≤ n}. Consequently the 

maximum of ω + x + α1F is attained for all α ≥ 0 and F ⊆ E. The rest is precisely 
the same as in the proof of [22, Proposition 2.3]. Consider an arbitrary n + 1 element 
subset C. As α ≥ 0 increases, the maximizer family Bω+x+α1C

changes finitely many 
times. Also, for large α ≥ 0, Bω+x+α1C

consists only of bases B ∈ B with B ⊆ C. We 
show that each e ∈ C is not a loop in Bω+x+α1C

for α ≥ 0. For small ε > 0, any base B
in Bω+x+α1C

with maximal C ∩B is also a base in Bω+x+(α+ε)1C
; see below. Since each 

e ∈ C is not a loop in Mω+x, so is in Mω+x+α1C
. Thus, for large α > 0, the maximum 

of ω + x + α1C must be attained by at least two bases in C, which implies (TW). �
In the last step of the proof, we use the following lemma:
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Lemma 3.9 ([22]). Let x ∈ T (ω) and F ⊆ E. Any base B ∈ Bω+x with maximal B ∩ F

belongs to Bω+x+α1F
for sufficiently small α > 0. If ω and x are integer-valued, then we 

can take α = 1.

Proof. We only show the case where ω and x are integer-valued; the proof of the non-
integral case is essentially the same. We can assume that x = 0. Consider a base 
B ∈ Bω with maximal B ∩ F . By Lemma 3.2, it suffices to show that ω(B) + |B ∩ F | ≥
ω(B − e + f) + |(B − e + f) ∩ F | for e ∈ B and f ∈ E \ B with B − e + f ∈ B. 
By ω(B) ≥ ω(B − e + f), if f /∈ F or e ∈ F , then this obviously holds. Suppose 
that f ∈ F and e /∈ F . Then |(B − e + f) ∩ F | = 1 + |B ∩ F |. By the maximal-
ity, B − e + f does not belong to Bω, implying ω(B − e + f) ≤ ω(B) − 1. Thus 
ω(B) + |B ∩ F | ≥ ω(B − e + f) + |(B − e + f) ∩ F |. �

The tropical linear space enjoys a tropical version of convexity introduced by Develin-
Sturmfels [5]. A subset Q ⊆ RE is said to be tropically convex [5] if min(x +α1, y+β1) ∈
Q for all x, y ∈ Q and α, β ∈ R. An equivalent condition for the tropical convexity con-
sists of (TC∧) and (TC+1) below:

(TC∧) min(x, y) ∈ Q for all x, y ∈ Q.
(TC+1) x + α1 ∈ Q for all x ∈ Q, α ∈ R.

These two properties of T (ω) were recognized by Murota-Tamura [21] (in finite case).

Lemma 3.10 ([21, Theorem 3.4]; see also [12, Proposition 2.14]). The tropical linear 
space T (ω) is tropically convex.

Proof. We show that T (ω) satisfies (TC∧), while (TC+1) is obvious. Let x, y ∈ T (ω). 
As in the proof of Lemma 3.8, we see from Lemma 3.7 (2) that the image {(ω + x ∧
y)(B) | B ∈ B} of ω + x ∧ y is discrete in R. Hence the maximum of ω + x ∧ y is 
attained by some base. Let C be an (n + 1)-element subset of E. We may assume that 
maxf ω(C−f) −x(f) ≥ maxf ω(C−f) −y(f). Necessarily maxf ω(C−f) −(x ∧y)(f) =
maxf ω(C − f) − x(f). By (TW) and Lemma 3.8, we can choose distinct e, e′ ∈ C that 
attain maxf ω(C− f) −x(f). Necessarily x(e) = (x ∧ y)(e) and x(e′) = (x ∧ y)(e′). Thus 
e, e′ attain maxf ω(C − f) − (x ∧ y)(f). By Lemma 3.8, we have x ∧ y ∈ T (ω). �

By this property, T (ω) ∩ZE becomes a lattice with respect to the vector order ≤. In 
the next section, we characterize this lattice T (ω) ∩ ZE .

4. Uniform semimodular lattices

The ascending operator of a lattice L is a map (·)+ : L → L defined by

(x)+ :=
∨

{y ∈ L | y covers x}.



JID:YJCTA AID:5075 /FLA [m1L; v1.253; Prn:12/03/2019; 11:42] P.12 (1-35)
12 H. Hirai / Journal of Combinatorial Theory, Series A ••• (••••) •••–•••
A uniform semimodular lattice L is a semimodular lattice such that the ascending op-
erator (·)+ is defined, and is an automorphism on L. If, in addition, L is a modular 
lattice, then L is called a uniform modular lattice. The condition for (·)+ is viewed as a 
lattice-theoretic analogue of condition (TC+1). The simplest but important example of 
a uniform (semi)modular lattice is Zm:

Example 4.1. View Zm as a poset with vector order ≤. Then Zm is a lattice, where the 
join x ∨ y and meet x ∧ y are max(x, y) and min(x, y), respectively. The component 
sum x �→

∑m
i=1 xi is a height function satisfying the semimodularity inequality (2.1) (in 

equality). Therefore Zm is a (semi)modular lattice. Observe that the ascending operator 
is equal to x �→ x + 1, which is obviously an automorphism. Thus Zm is a uniform 
(semi)modular lattice (with uniform-rank m).

Example 4.2. Let E be a finite set with |E| = m. Consider the poset ZE(� Zm) by 
vector order ≤. For positive integer n with n ≤ m, let ZE,n denote the subposet of ZE

consisting of all x such that the minimum of x(e) over e ∈ E is attained by at least 
m − n + 1 elements. If n = m, then ZE,n is equal to the above uniform modular lattice 
ZE � Zm. By using notation Argminx := {e ∈ E | x(e) = minf∈E x(f)}, ZE,n is written 
as

ZE,n = {x ∈ ZE | |Argminx| ≥ m− n + 1}.

One can see from (TW) that ZE,n is the set of integer points of the tropical linear 
space of the trivial valuation (ω = 0) of the uniform matroid, or the Bergman fan of the 
uniform matroid (of rank n); see Section 5.

It might be instructive to verify from the definition that ZE,n is a uniform semimodular 
lattice. Since x, y ∈ ZE,n implies min(x, y) ∈ ZE,n, the meet x ∧ y is equal to min(x, y). 
Then ZE,n becomes a lattice in which the join x ∨y is given by x ∨y =

∧
{z ∈ ZE,n | z ≥

max(x, y)}. We next show the semimodularity. For x, y ∈ ZE,n, if | Argminx| = m −n +1, 
then y covers x if and only if y = x +1Argmin x or y = x +1e for some e ∈ E \Argminx. 
If | Argminx| > m − n + 1, then y covers x if and only if y = x + 1e for some e ∈ E. 
From this, one can verify the condition of Lemma 2.1 (2). For x, y covering z(= x ∧y), if 
| Argmin z| = m −n +2, x = z+1e and y = z+1f for distinct e, f ∈ Argmin z, then x ∨y

is equal to z + 1Argmin z, which covers x, y. For other cases, x ∨ y is equal to max(x, y), 
which obviously covers x, y. Hence ZE,n is a semimodular lattice. Also (x)+ is given by 
x �→ x + 1, which is obviously an automorphism. The uniform-rank is equal to n, since 
0, 1{e1}, 1{e1,e2}, . . . , 1{e1,...,en−1}, 1 is a maximal chain of [0, 1].

4.1. Basic concepts and properties

In this section, we introduce basic concepts on uniform semimodular lattices and 
prove some of basic properties, which will be a basis of our cryptomorphic equivalence to 
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valuated matroids. Some of them were introduced and proved in [13] for uniform modular 
lattices.

Let L be a uniform semimodular lattice, and let r denote a height function of L.

Lemma 4.3. For x, y ∈ L, the intervals [x, (x)+] and [y, (y)+] are geometric lattices of 
the same rank.

Proof. The semimodularity of [x, (x)+] is obvious. We show that every element in 
[x, (x)+] is the join of a subset of atoms (= elements covering x). Take arbitrary 
y ∈ [x, (x)+]. Since (·)+ is an automorphism, we can take z ∈ L with (z)+ = y and 
z � x. By definition, y is the join of atoms in [z, y], i.e., the join of elements z1, z2, . . . , zk
covering z. Consider elements x ∨ z1, x ∨ z2, . . . , x ∨ zk, by the semimodularity, each of 
which equals x or covers x. Also their join is equal to y. This means that y is represented 
as the join of atoms in [x, (x)+]. Hence [x, (x)+] is a geometric lattice.

We show that [x, (x)+] and [y, (y)+] have the same rank. It suffices to consider the 
case where y covers x. Since (·)+ is an automorphism, (y)+ covers (x)+. Therefore we 
have 1 + r[y, (y)+] = r[x, (y)+] = r[x, (x)+] + 1 (by (JD)), which implies r[x, (x)+] =
r[y, (y)+]. �

The uniform-rank of L is defined as the rank r[x, (x)+] of interval [x, (x)+] for x ∈ L. 
We next study the inverse (·)− of the ascending operator (·)+.

Lemma 4.4. The inverse (·)− of (·)+ is given by

(x)− =
∧

{y ∈ L | y is covered by x} (x ∈ L). (4.1)

Proof. Suppose that y ∈ L is covered by (x)+. Since (·)+ is an automorphism, there 
is y′ ∈ L such that (y′)+ = y. Also x covers y′, which implies x � (y′)+ = y by the 
definition of (·)+. Namely y belongs to [x, (x)+]. Now x is also the meet of all hyperplanes 
of geometric lattice [x, (x)+] (Lemma 2.2 (1)). By the above argument, they are exactly 
elements covered by (x)+ in L. This means that the right hand side of (4.1) exists, and 
equals (x)−. �

For x ∈ L and k ∈ Z, define (x)+k by

(x)+k :=

⎧⎪⎨
⎪⎩

x if k = 0,
((x)+(k−1))+ if k > 0,
((x)+(k+1))− if k < 0.

For k > 0, we denote (x)+(−k) by (x)−k.

Lemma 4.5. For x, y ∈ L, there is k ≥ 0 such that x � (y)+k.
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Proof. We may assume that x � y. Hence x � x ∧y. Choose an atom a in [x ∧y, x]. Then 
a ∧ y = x ∧ y. By semimodularity, a ∨ y is an atom in [y, (y)+], and x ∧ y ≺ a � x ∧ (y)+. 
Thus, for k ≥ r[x ∧ y, x], it holds x ∧ (y)+k = x, implying x � (y)+k. �
4.1.1. Segments and rays

A segment is a chain e0 ≺ e1 ≺ · · · ≺ es such that e� covers e�−1 for 
 = 1, 2, . . . , s, and 
e�+1 /∈ [e�−1, (e�−1)+](� e�) for 
 = 1, 2, . . . , s −1. A ray is an infinite chain e0 ≺ e1 ≺ · · ·
such that e0 ≺ e1 ≺ · · · ≺ e� is a segment for all 
.

Example 4.6. Consider the case of L = Zn. Then a ray is precisely a chain

x ≺ x + 1i ≺ x + 21i ≺ x + 31i ≺ · · · (4.2)

for some x ∈ Zn and i ∈ {1, 2, . . . , n}, where 1i denote the i-th unit vector.
The case of L = ZE,n is similar. But, for x ∈ ZE,n with | Argmin x| = m − n + 1 and 

e ∈ Argmin x, the chain

x ≺ x + 1Argmin x ≺ x + 21Argmin x ≺ · · · ≺ y ≺ y + 1e ≺ y + 21e ≺ · · · (4.3)

is also a ray, where y := x + k1Argmin x for the difference k between the minimum of x
and the second minimum. Other rays in ZE,n are of form (4.2).

The following characterization of segments was suggested by K. Hayashi.

Lemma 4.7. A chain x = e0 ≺ e1 ≺ · · · ≺ es = y is a segment if and only if [x, y] =
{e0, e1, . . . , es}.

Proof. (If part). Suppose to the contrary that e�+1 ∈ [e�−1, (e�−1)+]. Then there is an 
atom a in [e�−1, (e�−1)+] such that e�+1 = a ∨ e� (by Lemma 2.2 (2)). This implies that 
a ∈ [e�−1, e�+1], which contradicts [e�−1, e�+1] = {e�−1, e�, e�+1}.

(Only if part). We use the induction on the length s; the case of s = 1 is obvious. Sup-
pose that [x, es−1] = {e0, e1, . . . , es−1}, and suppose to the contrary that [x, y] properly 
contains {e0, e1, . . . , es}. Then (by induction applied to {e1, e2, . . . , es−1, es}) there is an 
atom a of [x, y] not belonging to {e0, e1, . . . , es}. In particular, a � es−1. By semimodu-
larity, a ∨ es−1 covers es−1, and is equal to es. Consider es−2 ∨ a, which covers es−2 and 
is not equal to es−1 (by a � es−1). The join (es−2 ∨ a) ∨ es−1 is equal to es. However 
this contradicts es /∈ [es−2, (es−2)+]. �

A ray (or segment) e0 ≺ e1 ≺ · · · with x = e0 is called an x-ray (or x-segment).

Lemma 4.8. Let x = e0 ≺ e1 ≺ · · · ≺ es be an x-segment. For p � x with p ∧ e1 = x, 
chain p = p ∨ e0 ≺ p ∨ e1 ≺ · · · ≺ p ∨ es is a p-segment.
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Proof. It suffices to consider the case where p covers x. By p 
= e1 and [e0, es] =
{e0, e1, . . . , es} by Lemma 4.7, it holds p � es. Then, by semimodularity, (p, es) is a 
modular pair. Consequently, p ∨ e�+1 covers p ∨ e� and e�+1. Let f � := p ∨ e�. We show 
(f �)+ = (f �−1)+ ∨ f �+1, which implies f �+1 /∈ [f �−1, (f �−1)+]. By f �−1 ∨ e� = f �, 
we have (f �−1)+ ∨ (e�)+ = (f �)+. By (e�)+ = (e�−1)+ ∨ e�+1, we have (f �)+ =
(f �−1)+ ∨ (e�−1)+ ∨ e�+1 = (f �−1)+ ∨ e�+1 = (f �−1)+ ∨ f � ∨ e�+1 = (f �−1)+ ∨ f �+1, 
as required. �

For x ∈ L, let rx be a height function (on [x, (x)+]) defined by rx(y) = r(y) − r(x). A 
set of x-rays (e�i) (i = 1, 2, . . . , k) is said to be independent if rx(e1

1 ∨ e1
2 ∨ · · · ∨ e1

k) = k, 
or equivalently if e1

i ∧ (
∨

j 	=i e
1
j ) = x for each i.

Proposition 4.9. The sublattice generated by an independent set of k x-rays is isomorphic 
to Zk

+, where the isomorphism is given by

Zk
+ � (z1, z2, . . . , zk) �→ ez11 ∨ ez22 ∨ · · · ∨ ezkk .

Proof. Suppose that x-rays (e�i) (i = 1, 2, . . . , k) are independent. We first show:

Claim. For z ∈ Zk
+, we have the following.

(1) rx(ez11 ∨ ez22 ∨ · · · ∨ ezkk ) =
∑k

i=1 zi.
(2) e

zj
j ∧ (

∨
i:i	=j e

zi
i ) = x for j ∈ {1, 2, . . . , k}.

Proof. (1). We prove the claim by induction on k; the case of k = 1 is obvious. From 
Lemma 4.7 and the independence of (e�i), we have e1

j ∧ ezkk = x for j = 1, 2, . . . , k− 1. By 
Lemma 4.8, (e�j ∨ ezkk ) (j = 1, 2, . . . , k− 1) are ezkk -segments. We next show that they are 
independent. Indeed, e2

k covers e1
k and e2

k � e1
1 ∨ e1

2 ∨ · · · ∨ e1
k (otherwise e2

k ∈ [e0
k, (e0

k)+]). 
Thus, by semimodularity, re2k(e1

1 ∨ e1
2 ∨ · · · ∨ e1

k−1 ∨ e2
k) = re1k(e1

1 ∨ e1
2 ∨ · · · ∨ e1

k) = k − 1, 
and e1

j ∨ e1
k (j = 1, 2, . . . , k − 1) are independent in [e1

k, (e1
k)+]. Repeating this, we see 

that e1
j ∨ ezkk (j = 1, 2, . . . , k− 1) are independent in [ezkk , (ezkk )+]. By induction, we have 

rx(ez11 ∨ ez22 ∨ · · · ∨ ezkk ) = rezkk
(ez11 ∨ ez22 ∨ · · · ∨ ezkk ) + zk =

∑k
i=1 zi, as required.

(2). From (1) and semimodularity (2.1), we have 
∑

i:i	=j zi + zj = rx(
∨

i:i	=j e
zi
i ) +

rx(e
zj
j ) ≥ rx(ez11 ∨ ez22 ∨ · · · ∨ ezkk ) + rx(e

zj
j ∧ (

∨
i:i	=j e

zi
i )) ≥

∑
i zi. Thus rx(ezjj ∧

(
∨

i:i	=j e
zi
i )) = 0 must hold, implying x = e

zj
j ∧ (

∨
i:i	=j e

zi
i ). �

By (2) of the claim, any element y in the sublattice generated by e�i (i = 1, 2, . . . , k, 
 =
0, 1, 2, . . .) can be written as

y = ez11 ∨ ez22 ∨ · · · ∨ ezkk (4.4)

for z = (z1, z2, . . . , zk) ∈ Zk
+. It suffices to show that the expression (4.4) is unique. For 

i = 1, 2, . . . , k, let z′i := max{
 ∈ Z+ | e�i � y}. Then zi ≤ z′i (since ezii � y). Consider 
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y′ := e
z′
1

1 ∨ e
z′
2

2 ∨ · · · ∨ e
z′
k

k . Then y′ � y, which implies rx(y′) ≤ rx(y). On the other hand, 
rx(y) = z1 + z2 + · · · + zk ≤ z′1 + z′2 + · · · + z′k = rx(y′). Thus it must hold zi = z′i for 
i = 1, 2, . . . , k, and y = y′. �
4.1.2. Parallelism and ends

Here we introduce a parallel relation for rays, and introduce the concept of an end as 
an equivalence class of this relation.

Lemma 4.10. Let x = e0 ≺ e1 ≺ · · · be an x-ray. For y � x, there is an index 
 such that 
e� � y and e�+1 � y. In particular, y = e� ∨ y ≺ e�+1 ∨ y ≺ · · · is a y-ray.

Proof. By (F), there is no infinite chain in any interval. Therefore e� � y for all 
 is 
impossible. The latter statement follows from Lemma 4.8. �

For an x-ray (e�) = (x = e0 ≺ e1 ≺ · · · ) and y � x, the y-ray in the above lemma is 
denoted by (e�) ∨ y.

An x-ray (e�) and y-ray (f �) are said to be parallel if (e�) ∨ (x ∨ y) = (f �) ∨ (x ∨ y). 
We write (e�) ≈ (f �) if they are parallel. Notice that (e�)+ ≈ (e�) holds since (es)+ =
(es−1)+ ∨ es+1 = (es−2)+ ∨ es ∨ es+1 = · · · = x ∨ es+1 for s = 0, 1, 2, . . ..

Lemma 4.11. The parallel relation ≈ is an equivalence relation on the set of all rays.

Proof. We first show the following claim:

Claim. Let (e�) and (f �) be x-rays, and let y � x. Then (e�) = (f �) if and only if 
(e�) ∨ y = (f �) ∨ y.

Proof. The only if part is obvious. We prove the if part. Suppose that (e�) 
= (f �). We 
show that (e�) ∨ y 
= (f �) ∨ y. We may assume that y covers x. The above claim is 
clearly true when y = e1 = f1. Suppose that y = e1 
= f1. By Proposition 4.9 applied to 
independent x-rays (e�), (f �), we have y ∨ e2 = e2 
= y ∨ f1, and (e�) ∨ y 
= (f �) ∨ y.

Suppose that y 
= e1 and y 
= f1. For some k ≥ 0, we have e� = f � for 
 ≤ k

and ek+1 
= fk+1. It suffices to show that (y ∨ ek)-rays (y ∨ ek ≺ y ∨ ek+1 ≺ · · · ) and 
(y∨fk ≺ y∨fk+1 ≺ · · · ) are different. So we may consider the case k = 0. By the above 
argument, we can assume that y, e1, and f1 are different. If y, e1, and f1 are independent 
in [x, x+], then y∨e1 and y∨f1 are different, and (e�) ∨y 
= (f �) ∨y, as required. Suppose 
that they are dependent; namely y∨e1∨f1 = y∨e1 = y∨f1 = e1∨f1 =: z. Then e2 
= z

and f2 
= z (since e0 ≺ e1 ≺ e2 is a segment). We show that y∨e2 and y∨f2 are different. 
By Lemma 4.8, e1 ≺ z = e1 ∨ f1 ≺ e1 ∨ f2 = y ∨ f2 is a segment. If y ∨ e2 = y ∨ f2, 
then y ∨ e2 = z ∨ e2 implies that y ∨ f2 is the join of z and e2, both covering e1; this 
contradicts the fact that e1 ≺ z ≺ y ∨ f2 is a segment. Thus (e�) ∨ y 
= (f �) ∨ y. �
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It suffices to show that (e�) ≈ (f �) and (f �) ≈ (g�) imply (e�) ≈ (g�). Suppose that 
(e�), (f �), and (g�) are x-, y-, and z-rays, respectively. Then (e�) ∨ (x ∨y) = (f �) ∨ (x ∨y)
and (f �) ∨ (y∨z) = (g�) ∨ (y∨z). This implies that (e�) ∨ (x ∨y∨z) = (f �) ∨ (x ∨y∨z) =
(g�) ∨ (x ∨ y ∨ z). By the above claim, it must hold (e�) ∨ (x ∨ z) = (g�) ∨ (x ∨ z). �

An equivalence class is called an end. Let E = EL denote the set of all ends.

Lemma 4.12. For an x-ray (e�) and y ∈ L, there (uniquely) exists a y-ray that is parallel 
to (e�).

Proof. Consider y′ := (y)+k � x (Lemma 4.5). Then ((e�) ∨ y′)−k ≈ (e�) ∨ y′ ≈ (e�), 
implying ((e�) ∨ y′)−k ≈ (e�), where ((e�) ∨ y′)−k is a y-ray. �

Let Ex denote the set of all x-rays. By the above lemma, for each end e ∈ E, there is 
an x-ray ex ∈ Ex that is a representative of e. In particular Ex and E are in one-to-one 
correspondence. For e ∈ E, the representative of e in Ex is denoted by ex = (x = e0

x ≺
e1
x ≺ e2

x ≺ · · · ). In particular, Ex = {ex | e ∈ E}.

Example 4.13. Consider the parallel relation on rays in Zn and in ZE,n; see Example 4.6. 
In Zn, two rays (x + 
1i), (y + 
1j) (of form (4.2)) are parallel if and only if i = j, i.e., 
their directions are the same. More generally, two rays (e�), (f �) in ZE,n are parallel if 
and only if e�+1 − e� = f �+1 − f � = 1e for some e ∈ E and large 
. Thus the set EZE,n

of ends is identified with E.

4.1.3. Ultrametric on the space of ends
Let x ∈ L. Define δx : E ×E → Z+ by

δx(e, f) := sup{i | eix = f i
x} (e, f ∈ E),

and define dx : E ×E → R+ by

dx(e, f) := exp(−δx(e, f)) (e, f ∈ E).

Observe from Proposition 4.9 that two different x-rays (e�x), (f �
x) never meet again once 

they are separated, i.e., if eix 
= f i
x then ejx 
= f j

x for j > i. In particular, all elements 
in x-rays in Ex induce a rooted tree with root x in the Hasse diagram of L. From this 
view, δx(e, f) is the distance between the root x and the lowest common ancestor (lca) 
of e and f .

Proposition 4.14. For x ∈ L, we have the following:

(1) dx is an ultrametric on E.
(2) The metric space (E, dx) is complete.
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(3) For y ∈ L, it holds α−1dy ≤ dx ≤ αdy for a positive constant α := exp(r[x, x ∨ y] +
r[y, x ∨ y]).

Proof. (1). From the view of rooted tree, one can easily see that δx satisfies the anti-
ultrametric inequality:

δx(e, f) ≥ min(δx(e, g), δx(g, f)) (e, f, g ∈ E).

Hence dx satisfies the ultrametric inequality (3.3). If e 
= f then δx(e, f) is finite, and 
dx(e, f) is nonzero. This means that dx is an ultrametric.

(2). Consider a Cauchy sequence (ei)i=1,2,... in E relative to dx. We construct e ∈ E

such that limi→∞ dx(e, ei) = 0. Let a0 := x. For 
 ∈ Z+, there is n� ∈ Z+ such that 
δx(ei, ei′) ≥ 
 for i, i′ ≥ n�. Let a� := f �

x for f := en�
. Then all (ei)x for i ≥ n� contain a�. 

Hence (a�) is an x-ray such that (ei) converges to the end e of x-ray (a�).
(3). We first show:

Claim. If z covers x, then δx(e, f) − 1 ≤ δz(e, f) ≤ δx(e, f) + 1.

Consider x-rays (e�x), (f �
x). Suppose that ekx = fk

x and ek+1
x 
= fk+1

x , i.e., δx(e, f) = k. 
If z = e1

x = f1
x , then δz(e, f) = δx(e, f) − 1. If z = e1

x and z 
= f1
x , then δz(e, f) =

δx(e, f) = 0 (by Proposition 4.9 and Lemma 4.10). So suppose e1
x 
= z 
= f1

x . Then 
(e�z) = (e�x) ∨ z = z ≺ z ∨ e1

x ≺ · · · and (f �
z) = (f �

x) ∨ z = z ≺ z ∨ f1
x ≺ · · · . Also esz covers 

esx and fs
z covers fs

x. Consider z ∨ ekx = z ∨ fk
x . If z ∨ ekx, ek+1

x , and fk+1
x are independent 

in [ekx, (ekx)+], then z ∨ ek+1
x 
= z ∨ fk+1

x and δz(e, f) = δx(e, f) = k. If z ∨ ekx, ek+1
x , and 

fk+1
x are dependent, i.e., z∨ ek+1

x = z∨fk+1
x = z∨ ek+1

x ∨fk+1
x , then z∨ ek+2

x 
= z∨fk+2
x

holds, as seen in the proof of Lemma 4.11, and δz(e, f) = δx(e, f) + 1.
By the claim, we have δy(e, f) − r[y, x ∨ y] − r[x, x ∨ y] ≤ δx(e, f) ≤ δy(e, f) + r[y, x ∨

y] + r[x, x ∨ y]. Then α−1dy(e, f) ≤ dx(e, f) ≤ αdy(e, f). �
Thus EL is endowed with the topology induced by ultrametric dx, which is indepen-

dent of the choice of x ∈ L by (3). We will see in Section 4.3 that EL coincides with the 
Dress-Terhalle completion when L comes from a valuated matroid (E, ω).

4.1.4. Realization in ZE

Here we show that L can be realized as a subset of ZE, which will be the set of integer 
points of a tropical linear space. Let x ∈ L. For y � x, the x-coordinate of y is an integer 
vector yx ∈ ZE

+ defined by

yx(e) := max{
 ∈ Z+ | e�x � y} (e ∈ E).

Lemma 4.15. For x � y � z, we have the following:

(1) zx = zy + yx.
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(2) (y)+x = yx + 1 = y(x)− .
(3) y =

∨
e∈E

eyx(e)
x .

Proof. (1). It suffices to consider the case where z covers y. Consider e ∈ E. By semi-
modularity, y ∨ e

yx(e)+1
x covers y. If z = y ∨ e

yx(e)+1
x , then z = e1

y and zy(e) = 1, and 

zx(e) = yx(e) +1, where zx(e) > yx(e) +1 is impossible by Lemma 4.8. If z 
= y∨eyx(e)+1
x , 

then zy(e) = 0 and zx(e) = yx(e) (since z ∨ e
yx(e)+1
x = z ∨ (y ∨ e

yx(e)+1
x ) covers z).

(2). It is easy to see (u)+u = 1. By (1), we obtain (y)+x = (y)+y + yx = 1 + yx =
yx + x(x)− = y(x)− .

(3). Observe from y � e
yx(e)
x that (�) holds; in particular, the right hand side of (3) 

actually exists. We show the equality (=). Let u(� y) denote the right hand side of (3). 
Then ux = yx. From yx = yu + ux by (1), we have yu = 0. Here y � u is impossible, 
otherwise yu 
= 0. �

For general x, y ∈ L, the x-coordinate yx of y is defined by

yx := (y)+k
x − k1

for an integer k with y+k � x. This is well-defined by Lemma 4.15 (2). Then 
Lemma 4.15 (1) and (2) also hold for general x, y, z. Indeed, (2) is obvious. (1) follows 
from: (z)+k

x = (z)+k
(y)+�+(y)+�

x for x � (y)+� � (z)+k implies zx+k1 = zy+k1 −
1 +yx+
1
and zx = zy + yx. By 0 = xx = xy + yx, we have:

Lemma 4.16. For x, y ∈ L, it holds yx = −xy.

For x ∈ L, define Z(L, x) ⊆ ZE by

Z(L, x) := {yx | y ∈ L}. (4.5)

The partial order on Z(L, x) is induced by vector order ≤ in ZE

Proposition 4.17. Let x ∈ L. Then L is isomorphic to Z(L, x) by y �→ yx.

Proof. By Lemma 4.15 (3), the map y �→ yx is injective on {y ∈ L | y � x}. Via 
Lemma 4.15 (2), it is injective and bijective on L.

We show that the order is preserved. Suppose that y � z. For some k, we have 
x � y+k � z+k. By Lemma 4.15, we have (z)+k

x = (z)+k
(y)+k + (y)+k

x , and zx = zy + yx. 
By zy ≥ 0, we have zx ≥ yx. �

Thus Z(L, x) is a uniform semimodular lattice with vector order ≤ and ascending 
operator x �→ x + 1.



JID:YJCTA AID:5075 /FLA [m1L; v1.253; Prn:12/03/2019; 11:42] P.20 (1-35)
20 H. Hirai / Journal of Combinatorial Theory, Series A ••• (••••) •••–•••
4.1.5. Matroid at infinity
Here we introduce matroid structures on the set E of ends. Suppose that L has 

uniform-rank n. For x ∈ L, a subset I ⊆ E of ends is called independent at x or 
x-independent if {e1

x | e ∈ I} is independent in [x, (x)+]. Let Ix = IL,x denote the 
family of all x-independent subsets in E.

Lemma 4.18. (E, Ix) is a loop-free matroid with rank n.

Indeed, (E, Ix) is obtained by adding parallel elements to the simple matroid corre-
sponding to geometric lattice [x, (x)+] whose rank is equal to the uniform-rank n of L. 
The matroid Mx = ML,x := (E, Ix) is called the matroid at x. Its base family is denoted 
by Bx. Let I∞ :=

⋃
x∈L Ix be the union of all x-independent subsets over all x ∈ L. The 

goal here is to show the following.

Proposition 4.19. (E, I∞) is a simple matroid with rank n.

We call M∞ := (E, I∞) the matroid at infinity. The base family B∞ of M∞ is given 
by B∞ =

⋃
x∈L Bx. We see in Section 4.2 that B∞ is the domain of the valuated matroid 

corresponding to L.

Example 4.20. Consider the case of L = ZE,n, where EL is identified with E (Exam-
ple 4.13). Let x ∈ ZE,n. The atoms of [x, x +1] are x +1e (e ∈ E) if | Argmin x| > m −n +1, 
and x + 1Argmin x and x + 1e (e ∈ E \ Argminx) if | Argmin x| = m − n + 1. If 
| Argmin x| = m − n + 1, then every subset of atoms is independent. Otherwise a subset 
J of atoms is independent if and only if |J ∩Argminx| ≤ n − |E \Argminx|. For an end 
e ∈ E, the atom e1

x of [x, x + 1] is equal to x + 1Argmin x if | Argmin x| = m − n + 1 and 
e ∈ Argmin x, and x + 1e otherwise. Therefore the matroid Mx = (E, Ix) at x is given 
by

Ix = {J ⊆ E | |J ∩Argminx| ≤ n− |E \Argmin x|}.

Namely, Mx is the direct sum of coloops and the uniform matroid with rank n −m +
| Argmin x|. In particular, Mx ⊆ M0 for every x ∈ ZE,n. Hence the matroid M∞ at 
infinity is equal to M0 and is the uniform matroid on the ground set E with rank n.

We are going to prove Proposition 4.19.

Lemma 4.21. For K ⊆ E and x ∈ L, we have the following:

(1) For any z ∈ L with z � x and z � e1
x (e ∈ K), if K ∈ Iz, then K ∈ Ix.

(2) For any z ∈ [x, (x)+] with z �
∨

e∈K e1
x, it holds r[z, 

∨
e∈K e1

z] ≥ r[x, 
∨

e∈K e1
x]; in 

particular, if K ∈ Ix, then K ∈ Iz.
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(3) For I ⊆ K, let y :=
∨

e∈I e
1
x. If I ∈ Ix, K ∈ By, and e1

x � y for e ∈ K \ I, then 
K ∈ Bx.

Proof. (1). We show the contrapositive; suppose |K| > rx(
∨

e∈K e1
x), i.e., K /∈ Ix. By 

z � e1
x, it holds e1

z = z ∨ e1
x for e ∈ K. Then rx(z) + |K| > rx(z) + rx(

∨
e∈K e1

x) ≥
rx(

∨
e∈K e1

z) + rx(z ∧
∨

e∈K e1
x) = rx(z) + rz(

∨
e∈K e1

z) + rx(z ∧
∨

e∈K e1
x) ≥ rx(z) +

rz(
∨

e∈K e1
z). Thus |K| > rz(

∨
e∈K e1

z), and K /∈ Iz.
(2). Let y :=

∨
e∈K e1

x. We can choose an x-independent subset K ′ ⊆ K such that 
y =

∨
e∈K′ e1

x. Also we can choose an x-independent subset J ⊆ E \ K such that y ∨
(
∨

e∈J e1
x) = z. Then K ′∪J is x-independent. Now z belongs to the sublattice generated 

by independent x-rays ex (e ∈ K ′ ∪ J). From Proposition 4.9, we conclude that K ′ is 
independent at z. Hence rx[x, 

∨
e∈K e1

x] = |K ′| = rz[z, 
∨

e∈K′ e1
z] ≤ rz[z, 

∨
e∈K e1

z].
(3). By 

∨
e∈K e1

x = y ∨
∨

e∈K\I e
1
x =

∨
e∈K\I e

1
y (since e1

x � y for e ∈ K \ I), we have 
r[y, 

∨
e∈K e1

x] = r[y, 
∨

e∈K\I e
1
y] = |K| − |I| = n − |I| (by K ∈ By). Thus r[x, 

∨
e∈K e1

x] =
r[x, y] + r[y, 

∨
e∈K e1

x] = n. This implies that K is a base at x. �
Lemma 4.22. For I ⊆ E and x ∈ L, define x = x0, x1, . . . by

xk :=
∨
e∈I

ekx (k = 0, 1, 2, . . .). (4.6)

If I ∈ I∞, then there is m ≥ 0 such that I is independent at xm.

Proof. By the definition of I∞, there is y ∈ L such that I is independent at y. We 
can assume that y � x (Lemma 4.5). Consider the x-coordinate yx ∈ ZE of y, and let 
z :=

∨
e∈I e

yx(e)
x (� y). By Lemma 4.15 (1), it holds yz(e) = 0 for all e ∈ I. This means 

that e1
z � y for all e ∈ I. Therefore, by Lemma 4.21 (1) and I ∈ Iy, I is independent at 

z. By z � e
yx(e)+1
x and Lemma 4.10, it holds elz = z ∨ e

yx(e)+l
x for e ∈ I and l ≥ 0.

Let m := maxe∈I yx(e). Then xm =
∨

e∈I e
yx(e)
x ∨ emx =

∨
e∈I z ∨ emx =

∨
e∈I e

m−yz(e)
z . 

Thus xm belongs to the sublattice generated by independent z-rays, which implies that 
I is independent at xm. �
Lemma 4.23. For I ⊆ E and x ∈ L, define x = x0, x1, . . . by (4.6). Then we have

xk =
∨
e∈I

e1
xk−1 (k = 1, 2, . . .). (4.7)

Proof. We show by induction on k that ekx � xk−1 for e ∈ I. This implies e1
xk−1 = xk−1∨

ekx by Lemma 4.10, and implies (4.7): xk :=
∨

e∈I e
k
x =

∨
e∈I e

k−1
x ∨ekx =

∨
e∈I x

k−1∨ekx =∨
e∈I e

1
xk−1 .

For e ∈ I, by induction, ek−1
x � xk−2. Then ekx ∨ xk−2 = e2

xk−2 (by Lemma 4.10). 
If ekx � xk−1, then e2

xk−2 = ekx ∨ xk−2 � xk−1, and xk−2 = e0
xk−2 ≺ e1

xk−2 ≺ e2
xk−2 �

xk−1 =
∨

e∈I e
1
xk−2 � (xk−2)+, contradicting e2

xk−2 /∈ [xk−2, (xk−2)+]. Thus ekx � xk−1, 
as required. �
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Proof of Proposition 4.19. We verify the axiom of independent sets. Choose I, J ∈ I∞

with |I| < |J |. By the definition of I∞, there is x ∈ L with I ∈ Ix. Consider x1 :=∨
e∈I e

1
x and y1 :=

∨
e∈J e1

x. If y1 � x1, then we can choose e∗ ∈ J \ I with (e∗)1x � x1, 
and I + e∗ is independent at x; I + e∗ ∈ Ix ⊆ I∞, as required.

So suppose y1 � x1. For k = 1, 2, . . ., let xk :=
∨

e∈I e
k
x, and let yk :=

∨
e∈J ekx. 

By Lemma 4.21 (2) and Lemma 4.23, I is independent at all xk. By Lemma 4.22 and 
J ∈ I∞, there is 
 such that J is independent at all yk for k ≥ 
. With Lemma 4.23, 
it holds r[xk, xk+1] = r[xk, 

∨
e∈I e

1
xk ] = |I| < |J | = r[yk, 

∨
e∈J e1

yk ] = r[yk, yk+1] for 
k ≥ 
. For large k, the increase of the height of yk is greater than that of xk. Therefore 
there is k∗ such that yk∗ � xk∗ and yk

∗+1 � xk∗+1. This implies that xk∗+1 � xk∗ ∨
yk

∗+1 = xk∗ ∨
∨

e∈J e1
yk∗ �

∨
e∈J e1

xk∗ . Thus 
∨

e∈J e1
xk∗ �

∨
e∈I e

1
xk∗ (= xk∗+1), and there 

is e∗ ∈ J \ I with I + e∗ ∈ Ixk∗ , as above.
For distinct e, f ∈ E and x ∈ L, let y := e

δx(e,f)
x = f

δx(e,f)
x . Then e1

y 
= f1
y ; see 

Section 4.1.3. This means that {e, f} is independent on M∞. Thus M∞ is a simple 
matroid. �
Lemma 4.24. Let x ∈ L. For a bounded vector c ∈ ZE

+, let y :=
∨

e∈E e
c(e)
x . Then there is 

B ∈ By such that yx(e) = c(e) for e ∈ B, and

y =
∨
e∈B

ec(e)x . (4.8)

Notice that 
∨

e∈E e
c(e)
x exists by 

∨
e∈E e

c(e)
x � (x)+ maxe∈E c(e).

Proof. We use the induction on maxe∈E c(e). Define c′ ∈ ZE
+ by c′(e) := max{c(e) −1, 0}. 

Let z :=
∨

e∈E e
c′(e)
x . Let Z := {e ∈ E | ec(e)x � z}. Then, for e ∈ Z, it holds c(e) > 0 and 

e
c(e)−1
x � z � e

c(e)
x . This implies

zx(e) = c(e)− 1 (e ∈ Z).

Now y =
∨

e∈E z ∨ e
c(e)
x =

∨
e∈Z e1

z. Consider the matroid Mz at z. Then

yz(e) =
{

1 if e ∈ cl(Z)(⇔ e1
z � y),

0 otherwise,
(e ∈ E). (4.9)

Therefore, by Lemma 4.15 (1) we have

yx(e) = yz(e) + zx(e) = c(e) (e ∈ Z). (4.10)

By induction, there is B′ ∈ Bz such that zx(e) = c′(e) for e ∈ B′ and z =
∨

e∈B′ e
c′(e)
x . 

Let I := {e ∈ B′ | c(e) > 0}. By c(e) − 1 = c′(e) = zx(e) for e ∈ I, it holds I ⊆ Z. 
By I ∈ Iz (from B′ ∈ Bz), there is J ∈ Iz such that I ⊆ J ⊆ Z and y =

∨
e∈J e1

z
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(i.e., cl(J) = cl(Z)). By z =
∨

e∈I e
c(e)−1
x and I ⊆ J ⊆ Z, it holds y =

∨
e∈J e1

z =∨
e∈J z ∨ e

c(e)
x =

∨
e∈I e

c(e)−1
x ∨

∨
e∈J e

c(e)
x =

∨
e∈J e

c(e)
x . Therefore, if J ∈ Bz, then 

J ∈ By (by Proposition 4.9), and by (4.10) J is a desired subset. Suppose not. By the 
independence axiom for B′, J ∈ Iz with |B′| > |J | we can choose a subset K ⊆ B′ \ J
with J∪K ∈ Bz. Necessarily K is disjoint with cl(Z). Then B := J∪K is a desired base in 
By. Indeed, by K ⊆ B′ \ I, we have 0 = c(e) = c′(e) = zx(e) for e ∈ K. By K ∩ cl(Z) = ∅
and (4.9), we have yz(e) = 0 for e ∈ K. Thus yx(e) = yz(e) + zx(e) = 0 = c(e) for e ∈ K; 
then yz(e) = c(e) for e ∈ B = J ∪K. Also y =

∨
e∈J e

c(e)
x =

∨
e∈B e

c(e)
x . �

4.1.6. Zn-skeletons
Let x ∈ L, and B ∈ Bx. By Proposition 4.9, the sublattice Sx(B) generated by 

elements in x-rays ex ∈ B is isomorphic to Zn
+, where n is the uniform rank of L. This 

sublattice is closed under the ascending operation. Define sublattice S(B) by

S(B) :=
⋃
k∈Z

(Sx(B))k.

Then S(B) is isomorphic to Zn with (y)+ = y + 1 for y ∈ S(B) (identified with Zn). 
We call S(B) the Zn-skeleton generated by B. The next lemma shows that S(B) is 
independent of the choice of x, and is well-defined for B ∈ B∞.

Lemma 4.25. For B ∈ Bx, it holds S(B) = {y ∈ L | B ∈ By}.

Proof. From Proposition 4.9, the inclusion (⊆) is obvious. We show the converse. Let 
y ∈ L with B ∈ By. We may assume that y � x by considering (y)+k and by (S(B))+k =
S(B). Let y′ :=

∨
e∈B e

yx(e)
x . Then y′ � y. We show y′ = y. Suppose not: y′ ≺ y. There 

is an atom a of [y′, (y′)+] with a � y; necessarily a 
= e1
y′ for e ∈ B. By Lemma 4.21 (1), 

B is also a maximal independent set at y′. Hence ry′(a ∨
∨

e∈B e1
y′) = ry′((y′)+) = n and 

n − 1 = ra(
∨

e∈B(a ∨ e1
y′)) = ra(

∨
e∈B e1

a). Namely B is dependent at a with a � y � e1
a

for e ∈ B. By Lemma 4.21 (1), B is dependent at y, contradicting B ∈ By. �
4.2. Valuated matroids from uniform semimodular lattices

Let L be a uniform semimodular lattice with uniform-rank n. For x ∈ L and B ∈ B∞, 
define xB ∈ L as the maximum element y ∈ S(B) with y � x:

xB :=
∨

{y ∈ S(B) | y � x}.

The maximum element xB indeed exists by (F) and the fact that S(B) is a sublattice. 
Now define ω = ωL,x : B∞ → Z by

ω(B) := −r[xB , x] (B ∈ B∞). (4.11)
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This quantity ω(B) is the negative of a “distance” between x and S(B). One of the main 
theorems is as follows:

Theorem 4.26. Let L be a uniform semimodular lattice with uniform-rank n, and let 
x ∈ L. Then ω = ωL,x is a complete valuated matroid with rank n, where

(1) T (ω) ∩ ZE is isomorphic to L, and
(2) T (ω) is a geometric realization of simplicial complex C(L) consisting of all chains 

x0 ≺ x1 ≺ · · · ≺ xm with xm � (x0)+.

Example 4.27. We consider the case of L = ZE,n. For B ∈ B∞ (an arbitrary n-element 
subset of E), a point y ∈ ZE,n belongs to S(B) if and only if E \ Argmin y ⊆ B. 
Then the Zn-skeleton S(B) is actually isomorphic to ZB � Zn; indeed consider the map 
ZB � x �→ x̄ ∈ S(B), where x̄(e) := x(e) for e ∈ B and x̄(e) := mine∈B x(e) for e ∈ E\B. 
Let x ∈ ZE,n. Then one can observe that xB is given by

xB(e) :=
{

minf∈E x(f) if e ∈ (E \Argmin x) \B,

x(e) otherwise.

Observe from the covering relation in ZE,n (Example 4.2) that r[xB , x] is equal to ∑
e∈(E\Argmin x)\B(x(e) −minf∈E x(f)). Observe further that this quantity is also written 

as maxB∈B∞ x(B′) − x(B). Thus ω(B) = x(B) −maxB∈B∞ x(B′), and ω is projectively 
equivalent to the trivial valuation on the uniform matroid.

To prove Theorem 4.26, we show several properties of xB.

Lemma 4.28. Let x, y ∈ L with y � x, and B ∈ B∞.

(1) y = xB if and only if B ∈ By and xy(e) = 0 for all e ∈ B.
(2) xB � y if and only if xy(e) = 0 for all e ∈ B.

Proof. (1). Suppose that y ∈ S(B) (⇔ B ∈ By). Then y � xB and xB =
∨

e∈B e
(xB)y(e)
y

(by Proposition 4.9). By Lemma 4.15 (1), it holds xy = xxB
+ (xB)y. Therefore, if 

xy(e) = 0 for e ∈ B, then (xB)y(e) = 0 for e ∈ B and xB =
∨

e∈B e
(xB)y(e)
y = y. If 

xy(e) > 0 for some e ∈ B, then 
∨

e∈B e
xy(e)
y belongs to S(B), is greater than y, and is 

not greater than x, i.e., y 
= xB. In particular, xxB
(e) = 0 for e ∈ B.

(2). The only-if part follows from xxB
= xy + yxB

and xxB
(e) = 0 of all e ∈ B. We 

show the if part. Suppose that B is dependent at y (otherwise y = xB by (1)). Define 
the sequence y = y0, y1, y2, . . . by

yk := (
∨

eky)−k (k = 0, 1, 2, . . .). (4.12)

e∈B
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Then it holds that

yk = (
∨
e∈B

e1
yk−1)−1 (k = 1, 2, . . .). (4.13)

Indeed, let zk :=
∨

e∈B eky . Then yk = (zk)−k = (
∨
e1
zk−1)−k = (

∨
(e1

zk−1)−k+1)−1 =
(
∨

e1
(zk−1)−k+1)−1 = (

∨
e1
yk−1)−1, where the second equality follows from Lemma 4.23

and the fourth one follows from the observation (e1
u)−1 = e1

u−1 . Since 
∨

e∈B e1
yk−1 ∈

[yk−1, (yk−1)+], we have yk � yk−1. In particular, x � y � y1 � y2 � · · · holds. By 
Lemma 4.15 (1) and (2), it holds xyk(e) = xyk−1(e) +(yk−1)yk(e) = xyk−1(e) +(1 − 1) =
xyk−1(e) for e ∈ B. This implies xyk(e) = xy(e) = 0 for all e ∈ B. By Lemma 4.22
and (4.12), there is 
 such that B ∈ By� . By (1), we have y� = xB , and xB � y, as 
required. �
Lemma 4.29. For x, y ∈ L with y � x, we have the following:

r(xB) +
∑
e∈B

yx(e)
{

= r(y) if y ∈ S(B)(⇔ B ∈ By),
< r(y) otherwise.

(B ∈ B∞).

Proof. Suppose that y ∈ S(B). By Lemmas 4.15 (1) and 4.28 (1), 
∨

e∈B e
xy(e)
y is equal 

to xB. By Proposition 4.9, r[y, xB ] =
∑

e∈B xy(e). Therefore r(y) +
∑

e∈B xy(e) = r(xB)
holds, which implies r(y) = r(xB) +

∑
e∈B yx(e) by yx = −xy; see Lemma 4.16.

Suppose that y /∈ S(B). Let y′ :=
∨

e∈B e
xy(e)
y . Then xy = xy′ + y′y and y′y(e) = xy(e)

for e ∈ B imply y′x(e) = 0 for e ∈ B. By Lemma 4.28 (2), we have xB � y′ � x, and

r[y, y′] ≤
∑
e∈B

xy(e),

r(xB) ≤ r(y′).

It suffices to show that one of the inequalities is strict. If y′ � xB, then (<) holds in the 
second inequality. Suppose that y′ = xB , and suppose to the contrary that equality holds 
in the first inequality. Let I := {e ∈ B | xy(e) > 0}(
= ∅), and let y′′ :=

∨
e∈I e

xy(e)−1
y . 

Then y′ = xB =
∨

e∈I e
1
y′′ . By the equality in the first inequality and Lemma 4.15(1), I

must be independent at y′′, and e1
y′′ � y′ for e ∈ B\I (otherwise xy(e) > 0 for e ∈ B\I). 

By Lemma 4.21 (3), B is independent at y′′. Also r[y, y′′] =
∑

e∈B max{xy(e) − 1, 0}
holds. By repeating this argument (to y′′), we eventually obtain a contradiction that B
is independent at y /∈ S(B). �
Proof of Theorem 4.26. Observe that ω is upper-bounded. By Lemma 3.3, we show that 
for any bounded vector c ∈ ZE the maximizer family Bω+c is a matroid base family.

Suppose that c = yx for some y � x. By Lemma 4.29, the maximizer family Bω+c is 
nothing but By.
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Suppose that c is general. From Bω+c = Bω+c+k1, we can assume that c ≥ 0. Let y :=∨
e∈E e

c(e)
x . By Lemma 4.24, there is B ∈ By such that y =

∨
e∈B e

c(e)
x and c(e) = yx(e) for 

e ∈ B. Let c̃ := yx. Then c̃ ≥ c. Thus −r[xB′ , x] +
∑

e∈B′ c(e) ≤ −r[xB′ , x] +
∑

e∈B′ c̃(e)
for arbitrary B′ ∈ B∞, and the equality holds for B by c(e) = yx(e) = c̃(e) (e ∈ B). 
Since B ∈ By = Bω+c̃ (by above), the maximum of ω + c is the same as that of ω + c̃. 
This implies that Bω+c ⊆ Bω+c̃. Now Bω+c is viewed as the maximizer family of a linear 
function B �→

∑
e∈B(c − c̃)(e) over the matroid base family Bω+c̃, and is a matroid base 

family, as required.
(1) follows from Proposition 4.17 and the next claim.

Claim. T (ω) ∩ ZE = Z(L, x).

Proof. For c = yx ∈ Z(L, x), the maximizer family Bω+c is equal to By, as seen above. 
The matroid My = (E, By) is loop-free (Lemma 4.18). Hence (⊇).

Let c ∈ ZE
+ with c /∈ Z(L, x). Consider c̃ as above. Then c̃ ≥ c, and c̃ 
= c. As seen 

above, maxB −r[xB , x] +
∑

e∈B c(e) = maxB −r[xB , x] +
∑

e∈B c̃(e). This means that an 
element e ∈ E with c̃(e) > c(e) cannot belong to any maximizer in Bω+c. Namely e is a 
loop in Bω+c. Thus c /∈ T (ω) ∩ Zn, implying (⊆). �

(2) is a corollary of this claim and Lemma 3.7 (2). By Proposition 4.19, (E, ω) is a 
simple valuated matroid. Lemma 4.35 in the next section shows that topologies on E
induced by dx and by Dp from ω coincide. By Proposition 4.14 (2), ω is complete. �
4.3. Uniform semimodular lattices from valuated matroids

The main statement for the uniform semimodular lattice of a valuated matroid is as 
follows.

Theorem 4.30. Let (E, ω) be an integer-valued valuated matroid with rank n. Then 
L(ω) := T (ω) ∩ ZE is a uniform semimodular lattice with uniform-rank n, in which 
the following hold:

(1) The ascending operator is equal to x �→ x + 1.
(2) A height function r is given by

x �→ max
B∈B

(ω + x)(B).

(3) The meet ∧ and the join ∨ are given by

x ∧ y = min(x, y),

x ∨ y =
∧

{z ∈ L(ω) | x ≤ z ≥ y} (x, y ∈ L(ω)).
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(4) For x ∈ L(ω), the valuated matroid (EL(ω), ωL(ω),x) is a completion of a valuated 
matroid projectively equivalent to (E, ω).

The rest of this section is to devoted to the proof. Let M = (E, B) be the underlying 
matroid of ω. By (TC+1), if x ∈ L(ω) then x +1 ∈ L(ω). We first show that the interval 
[x, x + 1] in L(ω) is a geometric lattice corresponding to Mω+x.

Lemma 4.31. Let x ∈ L(ω).

(1) [x, x + 1] is isomorphic to the lattice of flats of Mω+x, where the isomorphism is 
given by the map x + 1F �→ F .

(2) y ∈ L(ω) covers x if and only if y = x + 1F for a parallel class F in Mω+x.

Proof. (1). By replacing ω by ω + x, we can assume x = 0. By Lemma 3.9, for a flat 
F of Bω, and any e ∈ F and f /∈ F we can choose B ∈ Bω ∩ Bω+1F

containing e, f . 
This implies x + 1F ∈ L(ω). Suppose that F is not a flat of Bω. Consider e ∈ cl(F ) \ F . 
Then max{|B ∩ (F + e)| | B ∈ Bω} = max{|B ∩ F | | B ∈ Bω}. This implies that 
maxB(ω + 1F )(B) = maxB(ω + 1F+e)(B). Thus no base in Bω+1F

contains e, implying 
x + 1F /∈ L(ω).

(2). By (1), it suffices to the only-if part. We first show that for F ⊆ E and e ∈ E \F , 
if e is a loop in Mω then so is Mω+1F

. Choose B ∈ Bω with maximal B ∩ F . By 
Lemma 3.9 it holds B ∈ Bω+1F

. Suppose (to the contrary) that there is a base in Bω+1F

containing e. By the exchange axiom there is f ∈ B such that B + e − f ∈ Bω+1F
. Then 

B+e −f /∈ Bω, and ω(B+e −f) ≤ ω(B) −1. By e /∈ F , it holds |(B+e −f) ∩F | ≤ |B∩F |. 
Therefore (ω + 1F )(B + e − f) < (ω + 1F )(B), contradicting B + e − f ∈ Bω+1F

. Thus 
no base in Bω+1F

contains e.
Let y = x +

∑
i 1Fi

for F1 ⊇ F2 ⊇ · · · ⊇ Fm. By repeated uses of the above property, 
one can see that F1 must be a flat in Bω+x; otherwise e ∈ cl(F1) \ F1 is a loop in Bω+y. 
Consider the parallel class F of e ∈ F1 in Mω+x. By (1), x + 1F belongs to L(ω). 
Therefore x ≤ x + 1F ≤ y, implying y = x + 1F . �
Proof of Theorem 4.30 (1-3). First we show (2) that a height function r of L(ω) is 
given by x �→ maxB∈B(ω + x)(B). Consider x, y ∈ L(ω) such that y covers x. By 
Lemma 4.31 (2), y = x + 1F for a parallel class F . Then Bω+y ⊇ {B ∈ Bω+x | |B ∩F | =
1}(
= ∅) by Lemma 3.9. Therefore r(y) = r(x) + 1.

Next we show that L(ω) is a lattice with property (3). Let x, y ∈ L(ω), and let z :=
min(x, y). By the tropical convexity (Lemma 3.10), z belongs to L(ω), and necessarily 
x ∧ y = z. By Lemma 4.31 (2) and (2) shown above, x − z and y− z are upper-bounded. 
This implies that max(x, y) −x and max(x, y) − y are upper-bounded. Thus {z ∈ L(ω) |
z ≥ max(x, y)} is nonempty; for example, consider x + α1 for large α. By this fact and 
the existence of a height function, 

∧
{z ∈ L(ω) | z ≥ max(x, y)} exists, and is the join of 

x, y.
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By Lemma 4.31, if a, b cover a ∧ b, then a ∨ b covers a, b. Hence L(ω) is semimodular 
(Lemma 2.1). The property (1) is also an immediate corollary of the same lemma. The 
map x �→ x + 1 is obviously an automorphism. Thus L(ω) is a uniform semimodular 
lattice. The uniform-rank is equal to the rank of [x, x + 1] that is equal to the rank 
of M. �

To show the property (4), we have to study the relationship between E and the space 
EL(ω) of ends in L(ω).

Lemma 4.32. Let (a�) be a ray in L(ω).

(1) There is a decreasing sequence F0 ⊇ F1 ⊇ · · · of nonempty subsets in E such that

a�+1 = a� + 1F�
(
 = 0, 1, . . .),

where F� is a parallel class of Mω+a� .
(2) If 

⋂
� F� is nonempty, then 

⋂
� F� is a parallel class of M.

Proof. (1). By Lemma 4.31 (2), F� is a parallel class of Mω+a� . It suffices to show 
F0 ⊇ F1. Here F0 ∩ F1 = ∅ is impossible, since otherwise a2 ∈ [a0, a0 + 1] contradicting 
the fact that (a�) is a ray. Suppose F1 \F0 
= ∅. Choose e ∈ F0∩F1 and f ∈ F1 \F0. Then 
there is a base B ∈ Bω+a0 containing e, f . By Lemma 3.9, B is also a base in Bω+a1 . 
Namely e, f are independent in Mω+a1 . However this is a contradiction to the fact that 
F1 is a parallel class of Mω+a1 .

(2). Suppose that there are distinct non-parallel elements e, f ∈
⋂

� F�. There is B ∈ B
containing e, f . Then (ω + a�+1)(B) − (ω + a�)(B) ≥ 2. On the other hand, r(a�+1) −
r(a�) = 1 for all 
. Recall Theorem 4.30 (2) that a hight function r is given by x �→
maxB(w + x)(B). Then B must be in Bω+a�′ for some 
′; this is a contradiction to the 
fact that e, f are parallel in Mω+a� for all 
. �

In the case of (2), ray (a�) is said to be normal and have ∞-direction F =
⋂

� F�.

Lemma 4.33.

(1) Two normal rays are parallel if and only if they have the same ∞-direction.
(2) For x ∈ L(ω) and a parallel class F of M, there is a normal x-ray having 

∞-direction F .

Proof. (1). Let (a�) be a normal ray having ∞-direction F , and let y ∈ L(ω) with 
a�

′+1 � y � a�
′ . We show that ray (a�) ∨ y = (y = a�

′ ∨ y ≺ a�
′+1 ∨ y ≺ · · · ) is a normal 

ray having ∞-direction F . By Lemma 4.32 (1), we can suppose that y ∨ a�
′+k+1 =

y ∨ a�
′+k + 1Gk

for Gk ⊆ E. By min(y, a�′+1) = y ∧ a�
′+1 = a�

′ and a�
′+1 = a�

′ + 1F�′ , 
it holds y ∨ a�

′+1 − y ≥ max(y, a�′+1) − y = 1F ′ . Necessarily G0 ⊇ F�′+1. Consequently 

�
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Gk ⊇ F�′+k+1 for all k. Therefore 
⋂

k Gk contains F , and must be equal to F , since 
⋂

k Gk

is also a parallel class of M (Lemma 4.32 (2)). Thus (a�) ∨ y has ∞-direction F . The 
only-if part is immediate from this property. The if-part also follows from this property 
and the observation that if two normal rays at the same starting point have the same 
∞-direction, then the two rays must be equal.

(2). Note that F is a rank-1 subset in Mω+y for every y ∈ L(ω). Let a0 := x. For 

 = 0, 1, 2, . . ., define F � as cl (F ) in Mω+a� , and a�+1 := a� + 1F � . Then (a�) is a ray, 
since a�+1 ≥ a�−1+21F and a�+1 /∈ [a�−1, a�−1+1]. Also (a�) is normal with ∞-direction 
F (since parallel class 

⋂
� F

� contains F and equals F ). �
In the case where ω is simple, by associating e ∈ E with the end having ∞-direction 

{e}, we can regard E as a subset of EL(ω). Then each local matroid Mω+x is the restric-
tion of ML,x to E:

Lemma 4.34. For x ∈ L(ω), it holds Bω+x = {B ∈ BL,x | B ⊆ E}.

Proof. By Lemma 4.31, B ∈ Bω+x if and only if x +1Fe
(e ∈ B) are independent atoms 

in geometric lattice [x, x + 1], where Fe is the parallel class of e in Mω+x. If e ∈ E is 
regarded as a normal ray, then e1

x = x + 1Fe
. From this, we see the equality to hold. �

We verify that dx and Dp induce the same topology on the set E of normal rays.

Lemma 4.35. Suppose that ω is simple. For x ∈ L(ω), if r(x) = 0, then −x ∈ T S(ω), 
and D−x(e, f) = dx(e, f) for e, f ∈ E.

Proof. The fact −x ∈ T S(ω) follows from (3.2) and r(x) = maxB(ω + x)(B). It suffices 
to show that for two normal rays e, f ∈ E, it holds

δx(e, f) = −max{(ω + x)(B) | B ∈ B : {e, f} ⊆ B} (≥ 0). (4.14)

Consider the sequence x = x0, x1, . . . defined by xi+1 := e1
xi ∨ f1

xi = ei+1
x ∨ f i+1

x ; recall 
Lemmas 4.22 and 4.23. Then δx(e, f) is the minimum index i∗ such that r(xi∗+1) =
r(xi∗) + 2 or equivalently that there is B ∈ Bω+xi∗ with e, f ∈ B, i.e., r(xi∗) = (ω +
xi∗)(B). For i ≤ i∗, it holds r(xi) = r(xi−1) + 1, and (ω + xi)(B) = (ω + xi−1)(B) + 2
for base B ∈ B with e, f ∈ B. Therefore the index i∗ must be the right hand side of 
(4.14). �
Lemma 4.36. The set E of normal rays is dense in EL(ω).

Proof. Consider a ray e ∈ EL(ω). Let x ∈ L. Then x-ray ex is represented as in 
Lemma 4.32 for some decreasing sequence F1 ⊇ F2 ⊇ · · · of nonempty subsets 
in E. For each i, choose ei ∈ Fi. Then the sequence (ei) of normal rays satisfies 
limi→∞ dx(e, ei) = 0. �
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Proof of Theorem 4.30(4). We can assume that ω is simple. Let x ∈ L(ω). By Lem-
mas 4.35 and 4.36, EL(ω) coincides with the Dress-Terhalle completion of E. Finally we 
verify the linear equivalence between ω and ωL,x (restricted to E).

Claim. For B ∈ B, it holds (ω + x)(B) = r(xB) = ωL,x(B) + r(x).

Proof. It suffices to show the first equality; the second follows from the definition (4.11)
of ωL,x. Consider the sequence x = x0 � x1 � · · · defined by xi := (

∨
e∈B e1

xi−1)−1 =∨
e∈B e1

xi−1 −1. As seen in the proof of Lemma 4.28 (see (4.12) and (4.13)), for some k it 
holds xk = xB . We prove the statement by induction on k. In the case of k = 0, x = xB , 
B ∈ BL,x, and B ∈ Bω+x by Lemma 4.34. Then r(xB) = r(x) = (ω + x)(B), implying 
the base case.

Suppose k > 0. Notice (x1)B = xB. By induction, (ω+x1)(B) = r(xB). By definition 
of xk, it holds x1(e) = x(e) for e ∈ B. Therefore, (ω+x)(B) = (ω+x1)(B) +(x −x1)(B) =
r(xB), as required. �

Note the constant term r(x) is represented as linear term (r(x)/n)1. Thus ω is 
projectively equivalent to the restriction of ωL(ω),x to E. This completes the proof of 
Theorem 4.30. �
5. Examples

Tree metrics Tree metrics may be viewed as valuated matroids of rank 2; see e.g., [8]. 
We here study tree metrics from our framework of uniform semimodular lattice. Let T =
(V, E) be a tree, and let X be a subset of vertices of T . Let B := {{u, v} ⊆ X | u 
= v}. 
Then M = (X, B) is a uniform matroid of rank 2. Define d : B → Z by

d(u, v) := the number of edges in the unique path in T connecting u and v,

where d({u, v}) is written as d(u, v). Then the classical four-point condition of tree-
metrics says

d(u, v) + d(u′, v′) ≤ max{d(u, v′) + d(u′, v), d(u′, v) + d(u, v′)}

for distinct u, v, u′, v′ ∈ X. This is nothing but the exchange axiom (EXC). Thus d is a 
valuated matroid on M.

Let us construct the corresponding uniform semimodular lattice in a combinatorial 
way. First delete all redundant vertices not belonging to the (shortest) path between any 
pair of X. Fix a vertex z ∈ V (as a root). Next, for each u ∈ X, consider an infinite 
path Pu (with V (Pu) ∩ V (T ) = ∅) having a vertex u′ of degree one. Glue T and Pu by 
identifying u and u′. Let L denote the union of V × 2Z and E × (2Z + 1). For each 
(uv, k) ∈ E × (2Z + 1), consider binary relations (directed edges) (uv, k) ← (u, k + 1), 
(uv, k) ← (v, k+1), (u, k−1) ← (uv, k), and (v, k−1) ← (uv, k). The partial order � on 
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Fig. 1. The uniform semimodular lattice for a tree.

L is induced by the transitive closure of ←. Then L is a uniform (semi)modular lattice 
of uniform-rank 2, where the ascending operator is given by (x, k) �→ (x, k + 2); see [13, 
Example 3.2]. See also Fig. 1 for this construction.

Ends are naturally identified with Pu (u ∈ X). In particular B = B∞. For two ends 
Pu, Pv, there is a simple path P of T containing Pu, Pv. The Z2-skeleton S({u, v}) is the 
sublattice of L induced by the union of V (P ) × Z and E(P ) × (2Z + 1). In the figure, 
base {u, v} is abbreviated as uv. Let x := (z, 0). For the lowest common ancestor zu,v of 
u, v in T , x{u,v} is given by (zu,v, −2d(z, zu,v)). Thus the valuated matroid ω = ωL,x is 
given by

ω(u, v) = −2d(z, zu,v) ({u, v} ∈ B).

From the relation −2d(z, zu,v) = d(u, v) − d(z, u) − d(z, v), we see the projective-
equivalence between ω and d.

The Bergman fan of a matroid A matroid M = (E, B) is naturally viewed as a 
{0, −∞}-valued valuated matroid ω by

ω(B) := 0 ⇔ B ∈ B.

In this case, the tropical linear space T (ω) is a polyhedral fan in RE , which is called 
the Bergman fan of M [2]. Suppose that M is simple. Ardila and Klivans [2] showed 
that T (ω) admits a simplicial cone decomposition isomorphic to the order complex of 
the lattice of flats of M. Indeed, T (ω) is explicitly written as:

T (ω) = R1 +
⋃

F0,F1,...,Fk

the conical hull of 1F1 ,1F2 , . . .1Fk
, (5.1)

where the union is taken over all chains ∅ 
= F1 ⊂ F2 ⊂ · · · ⊂ Fk 
= E (k ≥ 1) of 
(nontrivial) flats. Notice that every x ∈ T (ω) has a unique expression x = μ1 +

∑
i λi1Fi

for μ ∈ R, a chain of flats ∅ 
= F1 ⊂ F2 ⊂ · · · ⊂ Fk 
= E, and positive coefficients 
λ1, λ2, . . . , λk. Therefore T (ω) is viewed as a conical geometric realization of the order 
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complex of the geometric lattice of flats. This actually holds for our infinite setting. 
Indeed, a point x in T (ω) is precisely a linear objective vector for which the maximizer 
family over bases of M has no loop. (In [2], the Bergman fan is defined by the minimizer 
family and hence is the negative of (5.1).) From this, one can verify by the same argument 
of the proof of Lemma 3.7 (2) that if x ∈ T (ω) and α ∈ R then F = {e ∈ E | x(e) ≥ α}
is a flat of M, which implies (5.1).

The family L(ω) of integer points of T (ω), the uniform semimodular lattice of ω, is 
given by

L(ω) = Z1 +
⋃

F0,F1,...,Fk

the integer conical hull of 1F1 ,1F2 , . . .1Fk
, (5.2)

where the union is taken over chains of flats, as above, and the integer conical hull means 
the set of all nonnegative integer combinations. The matroid at the origin 0 ∈ L(ω) is 
equal to M, and the matroid at x = μ1 +

∑k
i=1 λi1Fi

∈ L(ω) is a submatroid of M that 
is the direct product of (M|Fi+1)/Fi for i = 0, 1, . . . , k (with F0 = ∅ and Fk+1 = E), 
where | and / mean the restriction and contraction, respectively. See [2]. The 0-rays for 
are given by (k1e)k∈Z+ (e ∈ E). So E is naturally identified with the space EL(ω) of 
ends. In particular, ω is a complete valuated matroid. The matroid at infinity is also 
equal to M.

This construction of the Bergman fan gives rise to a general construction of a uniform 
semimodular lattice from a geometric lattice. Indeed, the right hand side of (5.2) is 
definable for an arbitrary geometric lattice L. In this way, every geometric lattice is 
extended canonically to a uniform semimodular lattice.

Representable valuated matroids Let K be a field, and K(t) the field of rational func-
tions with an indeterminate t. The degree deg(p/q) of p/q ∈ K(t) with polynomials p, q is 
defined by deg(p) −deg(q). Consider the vector space K(t)n over K(t). Let E be a subset 
of K(t)n, and let B be the family of K(t)-bases B ⊆ E of K(t)n. Then M = (E, B) is a 
matroid. Define ω = ωE : B → Z by

ωE(B) := deg det(B) (B ∈ B),

where B ∈ B is regarded as a nonsingular n × n matrix consisting of vectors in B. Then 
ωE is a valuated matroid. Such a valuated matroid is called representable (over K(t)). In 
fact, this construction of valuated matroids is possible even if K is a skew field; see [14].

A tropical interpretation [21–23] of L(ω) = T (ω) ∩ ZE is the set of degree vectors 
(deg(q�e) : e ∈ E) for all q ∈ K(t)n, where we need to add −∞ to Z for deg(0) := −∞. 
We here consider a different algebraic interpretation, which is essentially the same as 
the concept of the membrane due to Keel and Tevelev [16] and is viewed as an analogue 
of: The lattice of flats of the matroid represented by a matrix M is the lattice of vector 
spaces spanned by columns of M .
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Let K(t)− denote the ring of elements p/q in K(t) with deg(p/q) ≤ 0. Then K(t)n
is also viewed as a K(t)−-module. For a subset F ⊆ K(t)n, let 〈F 〉 denote the 
K(t)−-module generated by F , i.e., 〈F 〉 = {

∑
u∈F ′ λuu | λu ∈ K(t)−, F ′ ⊆ F : |F ′| <

∞}. Also, for z ∈ ZF , let F z := {tz(u)u | u ∈ F}.
Suppose that E ⊆ K(t)n contains a K(t)-basis of K(t)n. Let B ⊆ 2E be the family 

of K(t)-bases, which is the underlying matroid of (E, ω). Define the family L(E) of 
K(t)−-submodules of K(t)n by

L(E) := {〈Ez〉 | z ∈ ZE}.

The membrane of E [16] in is the projection of L(E) by the equivalence relation � defined 
by L � L′ ⇔ L = tkL′ (∃t ∈ Z); see also [15,25]. The partial order on L(E) is defined as 
the inclusion relation. For L ∈ L(E), define zL ∈ ZE by

zL(p) := max{α ∈ Z | tαp ∈ L} (p ∈ E).

Proposition 5.1. L(E) is a uniform semimodular lattice that is isomorphic to L(ωE) by 
the maps L �→ zL and z �→ 〈Ez〉, where the following hold:

(1) The ascending operator is given by L �→ tL.
(2) The Zn-skeleton S(B) of B ∈ B is equal to L(B)(:= {〈Bz〉 | z ∈ ZB}).
(3) A height function r of L(E) is given by

r(L) = deg det(Q) (L ∈ L(E)),

where Q is a K(t)−-basis of L.
(4) For x ∈ L(ω), it holds

〈Ex〉B = 〈Bx〉,
ωL(ω),x(B) = (ωE + x)(B)− r(〈Ex〉) (B ∈ B).

Note that a part of the claim, e.g., the equivalence between L(E) and L(ωE), follows 
from results in [16]. Here we prove Proposition 5.1 in a self-contained way. For F ⊆ E

and x ∈ ZE , we denote F x|F by F x. The proof uses the following basic lemma.

Lemma 5.2. 〈E〉 is a free K−(t)-module having any B ∈ Bω as a basis.

Proof. Choose any B ∈ Bω. Since B is a K(t)-basis of K(t)n, every element u ∈ E is 
represented as u = Bλ for λ ∈ K(t)n, where B is regarded as a matrix. By Cramer’s 
rule, the i-th component λi of λ is equal to det(Bi)/ det(B), where Bi is obtained from 
B by replacing the i-th column with u. Then deg(λi) = deg det(Bi) − deg det(B) =
ω(Bi) − ω(B) ≤ 0 by B ∈ Bω. This means that λ ∈ K−(t). Consequently 〈E〉 is a free 
K−(t)-module of basis B. �
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Proof of Proposition 5.1. Obviously we have L = 〈EzL〉. We show that zL ∈ L(ω). 
Suppose indirectly that p ∈ E is a loop in Bω+zL . By the above lemma, for any B ∈
Bω+zL , BzL is a basis of L. Consider equation BzL

λ = tz
L(p)p. By using Cramer’s rule as 

above, we have deg λi = (ω+zL)(B−ei +p) − (ω+zL)(B) ≤ −1 for each i = 1, 2, . . . , n, 
where ei is the i-th column of B. The inequality follows from the fact that p is a loop in 
Bω+zL . This means that tzL(p)+1p also belongs to 〈BzL〉 = L. This is a contradiction to 
the definition of zL. Thus zL ∈ L(ω). Also L �→ zL is the inverse of z �→ 〈Ez〉. Indeed, 
zE

z ≥ z. If zEz (e) > z(e), then one can see as above that e does not belong to any base 
of Bω+z, contradicting z ∈ L(ω).

(1). This follows from ztL = zL + 1.
(2). Observe that the sublattice L(B) = {〈Bz〉 | z ∈ ZB} of L(E) is isomorphic to Zn. 

By Lemma 5.2, we have B ∈ Bω+zL for L = 〈Bz〉 ∈ L(B). By Lemma 4.25, we have 
B ∈ S(B). Thus L(B) ⊆ S(B). Both L(B) and S(B) are isomorphic to Zn with the 
same ascending operator. Consequently, it must hold L(B) = S(B).

(3). Suppose that L′ covers L. We can choose B ∈ B with L, L′ ∈ S(B). Neces-
sarily L′ = 〈Bz′〉 and L = 〈Bz〉 for z − z′ = 1e for some e ∈ B. Then deg detBz′ =
deg detBz + 1.

(4). It obviously holds that 〈Bx〉 ∈ L(B) = S(B), and 〈Bx〉 ⊆ 〈Ex〉B . Suppose 
indirectly that the inclusion is strict. Then, for some e ∈ B, it holds 〈Bx+1e〉 ⊆ 〈Ex〉B ⊆
〈Ex〉. This means that 〈Ex+1e〉 = 〈Ex〉. However this is a contradiction to x = z〈E

x〉.
From the definition, we have ωL(ω),x(B) = −r[〈Bx〉, 〈Ex〉] = deg det(Bx) − r(〈Ex〉) =

ωEx(B) − r(〈Ex〉) = (ωE + x)(B) − r(〈Ex〉). �
Modular valuated matroids and Euclidean buildings Analogous to a modular matroid — 
a matroid whose lattice of flats is a modular lattice, a modular valuated matroid is defined 
as an integer-valued valuated matroid (E, ω) such that the corresponding L(ω) is a 
uniform modular lattice. The companion work [13] showed that uniform modular lattices 
and Euclidean buildings of type A are cryptomorphically equivalent in the following 
sense. For a uniform modular lattice L, define equivalence relation � on L by x � y

if x = (y)+k for some k. Then the simplicial complex C(L) modulo � is a Euclidean 
building of type A; recall Theorem 4.26 for the simplicial complex C(L) of short chains 
of L. Conversely, every Euclidean building of type A is obtained in this way. Thus we 
have the following:

Theorem 5.3. For a modular valuated matroid (E, ω), the tropical linear space T (ω)/R1
is a geometric realization of the Euclidean building associated with the uniform modular 
lattice L(ω).

Dress and Terhalle [8] claimed this result on the Euclidean building for SL(Fn), where 
F is a field with a discrete valuation. In the previous example, take the whole set K(t)n
as E. In this case, L(E) is the lattice of all full-rank free K(t)−-submodules of K(t)n, 
and is a uniform modular lattice of uniform-rank n; see [13, Example 3.3]. In particular, 



JID:YJCTA AID:5075 /FLA [m1L; v1.253; Prn:12/03/2019; 11:42] P.35 (1-35)
H. Hirai / Journal of Combinatorial Theory, Series A ••• (••••) •••–••• 35
valuated matroid (E, ωE) is a modular valuated matroid. The simplicial complex C(L(E))
is nothing but the Euclidean building for SL(K(t)n); see [11, Section 19].

Acknowledgments

The author thanks Kazuo Murota, Yuni Iwamasa, and Koyo Hayashi for careful read-
ing and helpful comments, and also thanks the referees for helpful comments. This work 
was partially supported by JSPS KAKENHI Grant Numbers JP25280004, JP26330023, 
JP26280004, JP17K00029.

References

[1] M. Aigner, Combinatorial Theory, Springer, Berlin, 1979.
[2] F. Ardila, C.J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. 

Theory Ser. B 96 (2006) 38–49.
[3] G. Birkhoff, Lattice Theory, American Mathematical Society, New York, 1940, 3rd edn., American 

Mathematical Society, Providence, RI, 1967.
[4] F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Publ. Math. Inst. Hautes Études Sci. 41 

(1972) 5–251.
[5] M. Develin, B. Sturmfels, Tropical convexity, Doc. Math. 9 (2004) 1–27.
[6] A. Dress, J. Kåhrström, V. Moulton, A ‘non-additive’ characterization of ℘-adic norms, Ann. Comb. 

15 (2011) 37–50.
[7] A.W.M. Dress, W. Terhalle, A combinatorial approach to p-adic geometry, Geom. Dedicata 46 

(1993) 127–148.
[8] A. Dress, W. Terhalle, The tree of life and other affine buildings, in: Proceedings of the International 

Congress of Mathematicians, Vol. III, Berlin, 1998, in: Documenta Mathematica Extra Vol. III, 1998, 
pp. 565–574.

[9] A.W.M. Dress, W. Wenzel, Valuated matroids: a new look at the greedy algorithm, Appl. Math. 
Lett. 3 (1990) 33–35.

[10] A.W.M. Dress, W. Wenzel, Valuated matroids, Adv. Math. 93 (1992) 214–250.
[11] P.B. Garrett, Building and Classical Groups, Chapman & Hall, London, 1997.
[12] S. Hampe, Tropical linear spaces and tropical convexity, Electron. J. Combin. 22 (2015) 4.43.
[13] H. Hirai, Uniform modular lattice and Euclidean building, preprint, arXiv :1801 .00240, 2017.
[14] H. Hirai, Computing degree of determinant via discrete convex optimization on Euclidean building, 

preprint, arXiv :1805 .11245, 2018.
[15] M. Joswig, B. Sturmfels, J. Yu, Affine buildings and tropical convexity, Albanian J. Math. 1 (2007) 

187–211.
[16] S. Keel, J. Tevelev, Geometry of Chow quotients of Grassmannians, Duke Math. J. 134 (2006) 

259–311.
[17] D. Maclagan, B. Sturmfels, Introduction to Tropical Geometry, American Mathematical Society, 

Providence, RI, 2015.
[18] K. Murota, Characterizing a valuated delta-matroid as a family of delta-matroids, J. Oper. Res. 

Soc. Japan 40 (1997) 565–578.
[19] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.
[20] K. Murota, Discrete Convex Analysis, SIAM, Philadelphia, 2003.
[21] K. Murota, A. Tamura, On circuit valuation of matroids, Adv. in Appl. Math. 26 (2001) 192–225.
[22] D.E. Speyer, Tropical linear spaces, SIAM J. Discrete Math. 22 (2008) 1527–1558.
[23] D. Speyer, B. Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004) 389–411.
[24] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, vol. 386, 

Springer-Verlag, Berlin-New York, 1974.
[25] L. Zhang, Computing convex hulls in the affine building of SLd, preprint, arXiv :1811 .08884, 2018.

http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4169676E6572s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib417264696C614B6C6976616E733036s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib417264696C614B6C6976616E733036s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4269726B686F6666s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4269726B686F6666s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib42727568617454697473s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib42727568617454697473s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib446576656C696E537475726D66656C73s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib44726573734B6168727374726F6D4D6F756C746F6E3131s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib44726573734B6168727374726F6D4D6F756C746F6E3131s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737354657268616C6C653933s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737354657268616C6C653933s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737354657268616C6C653938s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737354657268616C6C653938s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737354657268616C6C653938s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737357656E7A656C5F677265656479s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737357656E7A656C5F677265656479s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib447265737357656E7A656Cs1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib47617272657474s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib48616D70653135s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4848313861s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4848313863s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4848313863s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4A6F73776967537475726D66656C7359753037s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4A6F73776967537475726D66656C7359753037s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4B65656C546576656C65763036s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4B65656C546576656C65763036s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib54726F706963616C426F6F6Bs1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib54726F706963616C426F6F6Bs1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4D75726F74613937s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4D75726F74613937s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4D75726F74614D6174726978s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4D75726F7461426F6F6Bs1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib4D75726F746154616D7572613031s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib5370657965723038s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib537065796572537475726D66656C733034s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib54697473s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib54697473s1
http://refhub.elsevier.com/S0097-3165(19)30028-7/bib5A68616E6732303138s1

	Uniform semimodular lattices and valuated matroids
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Matroids

	3 Valuated matroids and tropical linear spaces
	4 Uniform semimodular lattices
	4.1 Basic concepts and properties
	4.1.1 Segments and rays
	4.1.2 Parallelism and ends
	4.1.3 Ultrametric on the space of ends
	4.1.4 Realization in ZE
	4.1.5 Matroid at inﬁnity
	4.1.6 Zn-skeletons

	4.2 Valuated matroids from uniform semimodular lattices
	4.3 Uniform semimodular lattices from valuated matroids

	5 Examples
	Acknowledgments
	References


