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Given a multivariate generating function F(z1, ..., zd)=; ar1, ..., rd z
r1
1 · · · z

rd
d , we

determine asymptotics for the coefficients. Our approach is to use Cauchy’s integral
formula near singular points of F, resulting in a tractable oscillating integral. This
paper treats the case where the singular point of F is a smooth point of a surface of
poles. Companion papers treat singular points of F where the local geometry is
more complicated, and for which other methods of analysis are not known. © 2001

Elsevier Science
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1. INTRODUCTION

The generating function F(z) :=;.

r=0 arz
r for the sequence a0, a1, a2, ...

is one of the most useful constructions in combinatorics. If the function F
has a simple description, it is usually not too hard to obtain F as a formal
power series once one understands a recursive or combinatorial description
of the numbers {ar}. One may then analyze the analytic properties of F in
order to obtain asymptotic information about the sequence {ar}. While still
part art and part science, this latter analytic step has become quite syste-
matized. Stanley (1997) in his introduction to enumerative combinatorics
gives the example of the function F(z)=exp(z+z2/2), from which he says,
‘‘it is routine (for someone sufficiently versed in complex variable theory)
to obtain the asymptotic formula ar=2−1/2r r/2e−r/2+`r−1/4.’’ Routine, in
this case, means a single application of the saddle point method. When F
has singularities in the complex plane, the analysis is often more direct: the
location of the singularities and the behavior of F near these determine



almost algorithmically the asymptotic behavior of the sequence {ar}. For
those not sufficiently versed in complex variable theory, two useful sources
are Henrici (1977) and Odlyzko (1995). The transfer theorems of Flajolet
and Odlyzko (1990) encapsulate much of this knowledge in a very useful
way; see also Wilf (1994) for an elementary introduction.

When the sequence a0, a1, a2, ... is replaced by a multidimensional array
{ar1, ..., rd}, things become much more hit and miss. Let us use boldface to
denote vectors in Cd or Nd, and use multi-index notation, so that ar

denotes the multi-index ar1, ..., rd and zr denotes the product z r11 · · · z
rd
d which

we shall sometimes write in expanded form for clarity. The generating
function F : CdQ C is defined analogously to the one-dimensional
generating function by

F(z)= C
r ¥N

d
ar zr.

Surprisingly, techniques for extracting asymptotics of {ar} from the analy-
tic properties of F were, until recently, almost entirely missing. In a survey
of asymptotic methods, Bender (1974) says:

Practically nothing is known about asymptotics for recursions in two variables
even when a generating function is available. Techniques for obtaining asymp-
totics from bivariate generating functions would be quite useful.

In the intervening 25 years, some results have appeared, addressing chiefly
the case where the array {ar} obeys a central limit theorem. Common to all
of these is the following method. Treat {ar} as a sequence of (d−1)-
dimensional arrays indexed by rd; show that the nth (d−1)-dimensional
generating function is roughly the nth power of a given function; use this
approximation to invert the characteristic function and obtain a Central
Limit Theorem. We refer to these methods as GF-sequence methods. The
other body of work on multivariate sequences, which we will call the
diagonal method, is based on algebraic extraction of the diagonal, as found
in Hautus and Klarner (1971) (see also Furstenberg (1967) and later
Lipshitz (1988) for an algebraic description of the scope of this method;
variants are described in Stanley (1999) and Pippenger (2000)).

The most fundamental GF-sequence result is probably Bender and
Richmond (1983), with extensions appearing in later work of the same
authors. Flajolet and Sedgewick (1997) present a version of the same idea
which holds in much greater generality. Gao and Richmond (1992)
go beyond the central limit case, using the transfer theorems of Flajolet
and Odlyzko (1990) to handle functions that are products of powers
with powers of logs. Recent work of Bender and Richmond (Bender and
Richmond, 1996; Bender and Richmond, 1999) extends the applicability
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of the central limit results to many problems of combinatorial interest; see
also (Hwang 1995, Hwang 1998b), where more precise asymptotics are
given, and Hwang (1998a), which extends some results to the combinatorial
schemes of Flajolet and Soria (1993). This does not exhaust the recent
work on the problem of multivariable coefficient extraction, but does
circumscribe it.

The present paper, together with forthcoming companion papers, takes
aim at a large class of multivariable coefficient extraction problems, for
which a fair amount of information can be read off in a systematic way. An
ultimate goal (not our only goal) is to systematize the extraction of multi-
variate asymptotics sufficiently that it may be automated, say in Maple.
Everything we do, we do with complex contour integration. In this regard,
our methods are most similar to those of Bertozzi and McKenna (1993),
who, as we do, provide a general framework for harnessing the multivari-
able theory of residues for exact and series computation of coefficients. A
more detailed description of our method will be given in Section 3, but here
is an outline.

(1) Use the multidimensional Cauchy integral formula to represent ar

as an integral over a d-dimensional torus inside Cd.
(2) Expand the surface of integration across a point z where F is

singular, and use the residue theorem to represent ar as a (d−1)-
dimensional integral of one-variable residues. The choice of z determines
the directions in which asymptotics may be computed.

(3) Put this in the form of an integral > exp(lf(z)) k(z) dz for which
the large-l asymptotics can be read off from the theory of oscillating
integrals.

In the rest of this introductory section, we describe the scope of our
methods. Figure 1 depicts a classification of generating functions and illus-
trates the remainder of this paragraph. If a formal power series is nowhere
convergent, analytic methods are useless. Among those power series con-
verging in some neighborhood of the origin, there are three possibilities: a
function may be entire, may have singularities around which analytic con-
tinuations exist, or it may be defined only on some bounded subset of Cd.
Our methods are tailored to the second class. The third class, although in
some sense generic, seldom arises in any problem for which the generating
function may be effectively described. Incomplete asymptotic information
is available via Darboux’ method; details of this method in the univariate
case are given in Henrici (1977) and Odlyzko (1995). The first class can and
does arise frequently. Our methods are simply not equipped to handle
entire functions, and systematizing the asymptotic analysis of coefficients
of entire generating functions remains an important open problem.
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FIG. 1. Classification of generating functions.

For the remainder of this paper, we will assume that the formal power
series F converges in a neighborhood of the origin and may be analytically
continued everywhere except a set V of complex dimension d−1 which we
call the singular variety. The point z in step 2 is an element of V, and the
behavior of V near z greatly affects the subsequent analysis in step 3. This
paper addresses the case where z is a smooth point of V at which F has
a pole. The forthcoming companion papers will address cases where z
is a multiple point or a cone point.

The chief purpose of this study is to give a solution to the problem of
asymptotic evaluation of coefficients that is as general as possible. An
important part of this is re-derivation in a general setting of results
obtainable via GF-sequence or ad hoc methods. We show in Section 6 how
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unifying these results allows us to show that our method successfully finds
asymptotics for every function in a certain large class. Familiar examples
from this class include: lattice path counting, various known generating
functions for polyominos and stacked balls, enumeration of Catalan trees
by number of components or surjections by image cardinality (see Flajolet
and Sedgewick (1997)), stopping times for certain random walks (see
Larsen and Lyons (1999)), as well as the examples given in the GF-
sequence papers of Bender (1973) and Bender and Richmond (1983):
ordered set partitions enumerated by number of blocks, permutations
enumerated by rises, and Tutte polynomials of recursive sequences of
graphs.

Nevertheless, our pursuit of this problem was also motivated by some
specific applications which we mention briefly now and discuss more
thoroughly later. These are cases where known methods do not suffice to
obtain complete asymptotic information. There is a class of tiling enu-
meration problems for which an explicit three variable rational generating
function may be obtained. This class includes the Aztec Diamond domino
tilings of Cohn, Elkies and Propp (1996). Asymptotics in the so-called
region of fixation are obtained from analysis of the smooth points of V
(Theorem 3.5 below), while asymptotics in the region of positive entropy
are derived from analysis of the cone point. Cohn and Pemantle (2001)
applies a cone point analysis to a tiling enumeration problem for which the
only previous results are some pictures via simulation (http://www.
math.ohio-state.edu/ ’ pemantle/pix/plot.gif). Another motivation has
been to solve the general multivariable linear recursion. Depending on
whether one allows forward recursion in some of the variables, one typi-
cally obtains either rational or algebraic generating functions (less well-
behaved functions can also result — see Bousquet-Mélou and Petkovšek
(2000) for more details). The general rational function may have any of the
types of singularities mentioned above: smooth points, nodes, cones,
cusps, branchpoints, etc. Even the simple rational generating function
1/(3−3z−w+z2) of Example 3.4 requires two separate analyses in order
to get asymptotics in all directions. We shall see that Theorem 3.1 gives
asymptotics in one region, while Theorem 3.3 is required for other direc-
tions.

Asymptotics derived near smooth pole points nearly always exhibit
central limit behavior. Smooth pole points are the topic of this first paper,
and are exactly the case to which existing methods may apply. While one
function of this paper is to lay foundations for the cases in which the sin-
gularity is more complicated, there are several ways in which it improves
upon available analyses of the smooth case.

First, most of the existing results assume that the singular point z ¥V
has positive real coordinates, and that it is strictly minimal in a sense

ASYMPTOTICS OF MULTIVARIATE SEQUENCES, I 133



defined in the next section. This assumption often holds when the coeffi-
cients {ar} are nonnegative reals, though it will fail if, for example, there is
any periodicity. The assumption always fails when the coefficients {ar}
have mixed signs, as is the case for example with the generating functions
(1−zw)/(1−2zw+w2) and 1/(1−2zw+w2) for the Chebyshev polyno-
mials of the first and second kinds (Comtet, 1974, p. 50). GF-sequence
methods may be adapted to some of these situations. Indeed, the presenta-
tion of these methods by Flajolet and Sedgewick (1997, Theorem 9.7)
accomplishes this adaptation in great generality. But certainly there
are cases such as the rational generating function 1/(1−z−w+bzw),
where the points z with given moduli form a continuum and standard
GF-sequence methods are not sufficient.

Second, our methods obtain automatically a full asymptotic expansion
of ar1, ..., rd in decreasing powers of the indices rj. This is certainly not
inherent in the existing results, whose relatively short proofs involve inver-
sion of the characteristic function (see, however, Hwang (1995) and Hwang
(1996) for something in this direction). The expansion to n terms is
completely effective in terms of the first n partial derivatives of 1/F at z, as
is the error bound.

Third, these results explicitly cover the case where the pole at z has order
greater than 1. The behavior in this case is not according to the central
limit theorem. The only existing work addressing this case is Gao and
Richmond (1992), and they require nonnegativity assumptions, as men-
tioned above. In the case where F=Gk is an exact power, one could
attempt first to solve the problem for G and then to take the k-fold con-
volution. This is much harder than the present approach, as may be seen
by the rather involved computation in Cohn, et al. (1996).

Fourth, the potential for increasing the scope to new applications seems
greater for contour methods than for GF-sequence methods. The contour
method reduces the asymptotic problem to the problem of an oscillating
integral near a singularity, which can almost certainly be done. By contrast,
the GF-sequence method requires first an understanding of the sequence of
(d−1)-dimensional generating functions arising from the given d-dimen-
sional generating function, and then another result in order to transfer this
information to asymptotics of the coefficients ar.

Fifth, although our results in the case of smooth pole points are often
similar to those obtained by GF-sequence methods, our hypotheses are
quite different. In Section 6 we show how our hypotheses may be univer-
sally established for functions that generate nonnegative values and are
meromorphic through their domain of convergence.

Finally, we compare our method to recent results from the diagonal
method. It is known (Lipshitz, 1988) that the diagonal sequence an, n, ..., n of
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a multivariate sequence with rational generating function has a generating
function satisfying a linear differential equation over rational functions.
Much is known about how to compute this equation (see, for example,
Chyzak and Salvy (1998)). If one wants asymptotics on the diagonal, or in
any direction where the coordinate ratios are rational numbers with small
denominators, then these methods give results that are in theory at least as
good as ours. The method, however, is inherently non-uniform in the
direction, so there is no hope of extending it to larger sets of directions,
which is what we accomplish in the present work.

The remainder of the paper is organized as follows. In the next section
we set forth notation and define the terms necessary to state the main
results of the paper. The main results are stated in Section 3, and examples
are given. The next section contains a proof of these results, modulo the
computation of some oscillating integrals. This computation is carried out
in Section 5. Section 6 outlines some details of taxonomy and discusses
universality of the method of complex contour integration. The final
section discusses some open problems.

2. NOTATION AND PRELIMINARIES

The main results of this paper give asymptotics valid under certain
geometric assumptions on V and computable from some quantities that
are in turn effectively computable from the generating function F. Thus in
addition to setting out basic notation, we need to define some terms related
to the geometry of V and some quantities associated with F.

2.1. Notation. Throughout the paper, F will denote a function on Cd

analytic in a neighborhood of the origin, with Taylor series representation
F(z)=; ar zr. We also suppose that there are analytic functions G, H such
that F=G/H wherever F is defined. The (open) domain of convergence of
the power series will be denoted D. For z ¥ Cd, let T(z) denote the torus
consisting of points w with |wj |=|zj | for 1 [ j [ d and let D(z) denote the
closed polydisk of points w with |wj | [ |zj | for 1 [ j [ d. Recall (see
Hörmander (1990)) that the domain D is a union of tori T(z) and is
logarithmically convex, that is, the set

log D :={x ¥ Rd : (ex1, ..., exd) ¥D}

is a convex subset of Rd and is an order ideal (a subset closed under [ in
the coordinatewise partial order).

Many of our examples will be in dimension 2, in which case we will often
use z and w in place of z1 and z2, use (z, w) in place of z, and use (r, s) in
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place of (r1, r2). We sometimes need to treat Cd as Cd−1×C (although
symmetry of the coordinates is preserved most of the time). Accordingly,
when the dimension is greater than 2, we use ẑ to denote (z1, ..., zd−1).
Partial derivatives will be denoted H1 for “H/“z1 and so forth; in dimen-
sion 2 we will also use Hz and Hw.

As is usual for asymptotic analyses, we let f ’ g denote f/gQ 1, with
the limit taken at infinity unless otherwise specified. The function f is said
to be rapidly decreasing if f(x)=O(x−N) for every N, and is said to be
exponentially decreasing if f(x)=O(e−cx) for some c > 0. We also use the
symbol ‘‘ ’ ’’ to denote asymptotic expansion. Thus

f ’C bn gn

is normally taken to mean that f−;N
n=0 bn gn=o(bN gN), where bn ¥ C and

{gn} is a fixed sequence of functions such that gn+1=o(gn) for each n. We
broaden this to allow bn=0 when n ] 0, so that the remainder term need
only be o(gn) and not o(bn gn). In particular, if

f(x) ’ g(x) · C
.

n=0
cnx−n

with c0=1, then we say we have obtained a full asymptotic expansion for
f in decreasing powers of x with leading term g.

2.2. Geometry of V. As in the one-dimensional case, the points of V
nearest the origin are the most important. Accordingly we define a point
z ¥V to be minimal if V 5 D(z) ı T(z) and, in addition, G and H are
analytic on a neighborhood of D(z).2 We say that z is locally minimal if the

2 This last condition is satisfied by all globally meromorphic F; the greater generality allows
us to cover examples such as the generating function for self-avoiding random walks (Chayes
and Chayes, 1986) or percolation paths in the subcritical regime (Campanino, Chayes and
Chayes, 1991). In these cases, all the work is in showing the function is meromorphic in a
neighborhood of D(z). Without further knowledge, the authors then conclude central limit
behavior.

analogous relation holds with V replaced by a neighborhood of z in V.
Divide the minimal points of V into three types. Say that z is strictly
minimal, finitely minimal or toral, according to whether the cardinality of
V 5 D(z) is 1, finite, or infinite. When infinite, the intersection must be
uncountable. If z is a minimal point of V then the interior of D(z) is con-
tained in D, so the assumption that G and H are analytic on a neigh-
borhood of D(z) is just a little stronger than what is true automatically.
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A simple pole of F is a point z ¥V where H vanishes to order 1. Equiv-
alently, the gradient NH does not vanish. Let z be a simple pole of F and
assume for specificity that Hd is nonzero at z. By the implicit function
theorem, there is a neighborhood of z where V may be parametrized by
zd=g(z1, ..., zd−1) for some analytic function g. We will always use g to
denote this parametrization.

We shall see later (in the proof of Theorem 6.3) that under some
hypotheses on F, minimal points of V are always found in the positive real
orthant. A relation true in complete generality is the following.

Lemma 2.1. Let z be a simple pole of F and suppose that zdHd does not
vanish there. If z is locally minimal then for all j < d, the quantity
zjHj/(zdHd) is real and nonnegative.

Proof. Given h and j, let z (h) be the result of varying z by multiplying
the jth coordinate by e ih and adjusting the last coordinate so as to remain
on V (that is, z (h)d =g(z1, ..., zj−1, zje

ih, zj+1, ..., zd−1)). Differentiating the
relation H(z (h))=0 implicitly with respect to h at 0 yields

izjHj+Hd
dz (h)d
dh
=0.(2.1)

By minimality of z, we know that the modulus of z (h)d has a minimum at
h=0, hence (dz(h)d /dh)/zd is purely imaginary. Plugging this into (2.1)
proves that zjHj/(zdHd) is real. If zjHj/(zdHd)=−b < 0 then V has a
tangent vector at z in the direction −zjej−bzded, where ej is the jth coor-
dinate vector. This contradicts minimality. Hence zjHj/(zdHd) \ 0. L

Definition 2.2. Suppose that z has all coordinates nonzero. Define
dir(z) to be the equivalence class of (complex) scalar multiples of the vector
(z1H1, ..., zdHd).

The previous lemma shows that when z is a minimal pole of F with
nonzero coordinates, dir(z) can be considered as a well defined element of
RPd−1.

The importance of dir is that analysis of F near z yields asymptotic
information about ar with r ¥ dir(z) (of course, since r has integer coordi-
nates, for a given r this latter inclusion will fail to hold for most values of z,
so that z must be chosen appropriately as we shall see later). The function
dir appears in GF-sequence method literature as m. When z ¥ “D is on the
boundary of the domain of convergence, dir(z) is the normal to the support
hyperplane of the convex set log D at the point (log |z1 |, ..., log |zd |).

ASYMPTOTICS OF MULTIVARIATE SEQUENCES, I 137



TABLE I

Reserved Notation in the Remainder of This Article

Given information:
the function F in the form G/H

First level:
g parametrizes the zero set, V ofH
dir(z) is the coordinatewise product (NH)· (z) in projective space

Second level:
k is the residue in zd of F/zd at points (ẑ, g(ẑ))
f is log g, plus a term linear in log zj and depending on r.

Third level:
k̃, g̃ and f̃ are k, g and f expressed in terms of h

We now define a few more quantities associated with F and g. Again, we
shall reserve the names of these functions, so as not to burden the notation
with subscripts and arguments. If z is a simple pole of F with zdHd not
vanishing there, define a function k on a neighborhood of ẑ by

k(ŵ)=− lim
wQ g(ŵ)

(w−g(ŵ))
F(ŵ, w)
w

.(2.2)

Suppose now that ŵ ¥ T(ẑ) and write wj=zje ihj. For fixed r with rd ] 0,
define a function f on a neighborhood of ẑ in T(ẑ) by

f(ŵ)=log 1g(ŵ)
g(ẑ)
2+i C

d−1

j=1

rj
rd
hj.(2.3)

We shall be parametrizing integrals over T(ẑ) by h, so we shall want the
above function expressed in terms of ĥ. We therefore compose with the
map M taking ĥ to ŵ defined by M(h1, ..., hd−1)=(z1e ih1, ..., zd−1e ihd−1),
and define the functions g̃ :=g pM, f̃ :=f pM, k̃ :=k pM.

Although it is not obvious yet, f̃ will always vanish at 0 to at least two
orders (Lemma 4.2 below), and the hypothesis Q ] 0 in Theorem 3.1 is
equivalent to f̃ having nonvanishing quadratic term. For ease of reference,
Table I summarizes the foregoing definitions, stratified by how many times
the given data G and H have been manipulated.

3. STATEMENT OF RESULTS, WITH EXAMPLES

Before going on, we pause to state a prototype of our results in the
simplest possible setting, namely where the number of variables is 2, the
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functions G and g are as nondegenerate as possible, and only the leading
term asymptotic is given. The proof is in Section 4.

Theorem 3.1. Let F=G/H be a meromorphic function of two variables,
not singular at the origin. Define

Q(z, w) :=−w2H2wzHz−wHwz
2H2z −w

2z2(H2wHzz+H
2
zHww−2HzHwHzw).

Then

ar, s ’
G(z, w)

`2p
z−rw−s= −wHw

sQ

uniformly as (z, w) varies over a compact set of strictly minimal, simple poles
of F on which Q and G are nonvanishing, and (r, s) ¥ dir(z, w).

Remark. Usually the expression in the radical will be positive real, as
will the coefficients ars. The result is true in general, though, as long as the
square root is taken to be −(wHw)−1 times the principal root of
(−wH3w)/(sQ). Also note that when (r, s) ¥ dir(z, w) then the expression
wHw/s is coordinate-invariant, that is, equal to zHz/r. Thus the given
expression for ar, s has the expected symmetry.

Example 3.2 (Lattice Paths). Let ar, s be the number of nearest-neigh-
bor paths from the origin to (r, s) moving only north, east and northeast;
these are sometimes called Delannoy numbers (Stanley, 1999, p. 185). The
generating function is F(z, w)=1/(1−z−w−zw). The zero set V of
H=1−z−w−zw is given by w=(1−z)/(1+z), and the minimal points
of V are those where w ¥ [0, 1]. With the help of relations that hold when
z ¥V we may compute as

Hz=−1−w

−zHz=1−w

Q=(1−z)(1−w)(1−zw)

zHz
wHw
=
1−w
1−z

=
1−w2

2w

with Hw and −wHw given by reversing z and w. As z varies over [e, 1− e],
the functions Q and G :=1 do not vanish. The minimal pair (z, w) that
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solves (r, s) ¥ dir(z, w) is given by z=(`r2+s2−s)/r and w=(`r2+s2−
r)/s. Theorem 3.1 then gives

ars ’ 1
`r2+s2−s

r
2−r 1 `r2+s2−r

s
2−s= 1

2p
= 1−z
s

1
1−zw

=1 `r
2+s2−s
r
2−r 1 `r2+s2−r

s
2−s= 1

2p

= rs

(r+s−`r2+s2 )2`r2+s2
,

uniformly when r/s and s/r remain bounded. In particular, when r=s=n,
this gives the following formula for the nth diagonal coefficient (which may
alternatively be obtained by computing the diagonal generating function
(1−6s+s2)−1/2 according to the method given in Stanley (1999, Sect. 6.3):

(`2−1)−2n= 1
2p

2−1/4

2−`2
.

The computations in Theorem 3.1 in terms of the values and derivatives
of G and H are explicit. As we state more general theorems, it becomes
cumbersome and in fact obfuscating to give formulae for the expansion
coefficients directly in terms of derivatives of G and H. This is one
reason we have already introduced the functions in Table I. It should
be emphasized, however, that while we use higher level quantities in the
statements of subsequent theorems, each expansion coefficient can be
computed from finitely many derivatives of G and H. We begin with a rel-
atively explicit computation for the general two-variable case.

For k at least 2, we define constants

A+(k, l) :=
1
k
C 1 l+1

k
2(3.1)

A(k, l) :=
1
k
C 1 l+1

k
211+e sgn Arg(ck) ip( l+1/k)2 if k is odd,(3.2)

A(k, l) :=
2
k
C 1 l+1

k
2 if k, l are even,(3.3)

A(k, l) :=0 if k is even and l is odd.
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In situations of interest to us, there is a neighborhood of 0 in which Re f \ 0.
In that case let

y(x)=f(x)1/k=c1/kk x 11+
f(x)−ckxk

ckxk
21/k ,(3.4)

where ck is the first nonvanishing Taylor coefficient of f(x)=;.

j=k cjx
j

and the argument of c1/kk is taken between −p/(2k) and p/(2k). We also
let g denote the inverse function to y, and let {bj} denote the Taylor coef-
ficients of (k̃ p g) ·gŒ. Clearly each {bj} is determined by finitely many
partial derivatives of G and H, and the index l0 of the first nonvanishing bl
is the same as the order of vanishing of k̃ at 0. The coefficients bl are easily
computed from the coefficients b̃j :=k̃ (j)(0)/j! and cj :=f̃ (j)(0)/j!; in
particular, if f̃ ’ ckxk near 0 then

bl0=b̃l0c
−1/k
k .(3.5)

Theorem 3.3. Let F=G/H=; arsz rw s have a strictly minimal, simple
pole at (z, w). Let k be the order of vanishing of f̃ at 0. Let l0 be the order to
which G vanishes near (z, w) onV, that is, the largest l such that G(zŒ, wŒ)=

FIG. 2. V for Example 3.4.
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O(|z−zŒ| l+|w−wŒ| l) as (zŒ, wŒ)Q (z, w) in V. Then there is a full asympto-
tic expansion

ar, s ’
1
2p
z−rw−s C

l \ l0

A(k, l) bls−(l+1)/k ,(3.6)

where A(k, l) denotes A(k, l) if Im{ck} \ 0 and A(k, l) otherwise. The
expansion is uniform as (z, w) varies over a compact set of strictly minimal
poles with (r, s) ¥ dir(z, w) and k and l0 not changing.

Example 3.4 (Cube Root Asymptotics). Let F(z, w)=1/(3−3z−
w+z2). The set V is the set {w=z2−3z+3} and g(z)=z2−3z+3. The
point (1, 1) is in V (Fig. 2), indicating that the maximal exponential
growth rate will be zero. Indeed, for directions above the diagonal,
Theorem 3.1 or 3.3 may be used at the minimal points {(z, g(z)):
0 < z < 1}, while each direction below the diagonal corresponds to a pair of
complex minimal points fitting the hypotheses of Corollary 3.7; the result is
that the coefficients decay exponentially at a rate that is uniform over
compact subsets of directions not containing the diagonal.

The interesting behavior is near the diagonal. The relevant minimal point
is (1, 1), where z rw s — 1 and the decay is sub-exponential. Computing f̃œ(0)
via Eq. (4.8) below gives

f̃œ(z)=−3
z(z2−4z+3)
(z2−3z+3)2

.

This vanishes when z=1, and computing further, we find that f̃ vanishes
to order exactly 3 here, with c3 :=f̃ −−−(0)/3!=i. Along with k̃(0)=1, this
then results in an asymptotic expansion whose leading term is given by

ar, r ’
1
2p
A(3, 0) i−1/3(1+e−ip/3) r−1/3=

C(2/3)

6`3 p
r−1/3 .

Combinatorially natural examples of such cubic singularities have been
discussed by Banderier, Flajolet, Schaeffer and Soria (2000) under the
name of ‘‘Airy phenomena.’’ In Section 7 we discuss the question of com-
puting asymptotics ‘‘in the gaps’’ so as to be able to conclude that
lim sup log ar/log |r|=−1/3 or even lim sup |r|1/3 ar=C(2/3)/6`3 p.

For more than two variables a result holds similar to the two-variable
result.
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Theorem 3.5. Let F=G/H=;ar zr have a strictly minimal, simple
pole at z. Suppose zdHd does not vanish. If the Hessian of f̃ at z is nonsin-
gular, then there is an expansion

ar ’ z−r C
l \ l0

Clr
(1−d−l)/2
d ,

where l0 is the degree to which G vanishes on V near the point z . When G
does not vanish at z then l0=0 and

C0=(2p) (1−d)/2H−1/2 G(z)
zdHd

,

whereH is the determinant of the Hessian at z.

Example 3.6 (Domino Tilings). Random perfect tilings of planar
regions by dominos have been a subject of some interest, since the analysis
by Fisher (1961) of this model for dimer packing uncovered an exact
expression for the partition function of the ensemble. A generating function
is given in Cohn et al. (1996) which allowed the authors to determine, after
some cumbersome analysis, which parts of a diamond-shaped region (a
union of lattice squares approximating the region |x|+|y| [ k) were
asymptotically deterministic and which contained randomness in the limit
as the edge size of the diamond grew.

An easier analysis in the region of non-randomness is available via
Theorem 3.5 together with a slightly more informative generating function
than was used by Cohn et al. (1996). In particular, let

F(x, y, z)=C
.

t=0
C

|r|+|s| [ t
ar, s, tx ry sz t

be the generating function for the probability ar, s, t that the tile covering
position (r, s) of a random diamond of size t will be horizontal. For
brevity, we omit formal descriptions of the diamond and its indexing. We
remark that the use of negative indices (for each fixed t, the sum ; |r|+|s| [ t is
a polynomial in x, x−1, y and y−1) does not require any alterations in the
theory (see Cohn and Pemantle (2001) for justification), and that the
natural way to parametrize directions is by the pair (r/t, s/t) which varies
over the diamond |r/t|+|s/t|=1. From Cohn et al. (1996) or from the
generation algorithm in Gessel, Ionescu, and Propp (1995), one finds

F(x, y, z)=
z/2

(1−yz)(1−(x+x−1+y+y−1) z/2+z2)
.
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Cohn and Pemantle (2001) show that whenever (r, s, t) or any scalar
multiple satisfies

t=`r2+s2+2`r2+1 `s2+1−2,

then there is a smooth minimal point (x, y, z) on the pole manifold of F
for which (r, s, t) ¥ dir(x, y, z), yielding exponential decay in the direction
(r, s, t). The set of directions so parametrized turns out to be the region
between the diamond |r/t|+|s/t|=1 and the inscribed circle (r/t)2+
(s/t)2=1/2. Thus they recover the description of the region of non-ran-
domness as the complement of the inscribed circle. They also obtain
descriptions of the region of fixation for related tiling problems in which no
other analysis has been carried out.

The extension of all of the above results to finitely minimal points is
routine.

Corollary 3.7. Suppose z is a finitely minimal point of V with V 5
T(z)={z1, ..., zn}. Then

ar ’ C
n

j=1
Ej(r),

where Ej(r) is the asymptotic expression given by the previous theorems with
z=zj. In other words, if there are finitely many points on V 5 T(z), then
sum the contributions as if each were strictly minimal.

Example 3.8 (Chebyshev Polynomials). Let F(z, w)=1/(1−2zw+w2)
be the generating function for Chebyshev polynomials of the second kind
[17]; of course asymptotics for these are well known and easy to derive by
other means. To use Corollary 3.7, first find the minimal points for the
direction (r, s), which are (i(b−b−1)/2, ib) for b=± `(s−r)/(s+r) .
Computing Q=4a2(1−a2) and summing the two contributions then gives

ars ’=
2
p
(−1) (s−r)/21 2r

`s2−r2
2−r 1= s−r

s+r
2−s= s+r

r(s−r)

when r+s is even and zero otherwise, uniformly as r/s varies over compact
subsets of (0, 1).

4. PROOFS OF MAIN RESULTS

In this section we prove Theorems 3.1–3.5 modulo some technical results
on oscillatory integrals, which are stated and proved in Section 5.
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In each case it is straightforward to see that if r is bounded away from
dir(z), then |zrar | decreases exponentially. Indeed, consider Cauchy’s
formula

ar=1
1
2pi
2d F

T
w−r−1F(w) dw,(4.1)

where the multi-exponent r−1 means (r1−1, ..., rd−1). If z is a minimal
point of V, then letting T approach T(z) from the inside, we see that |zr|ar

does not increase exponentially. If, furthermore, the hyperplane through
(log |z1 |, ..., log |zd |) normal to r is not a support hyperplane for log D, then
some x ¥ log D has x · r > (log |z1 |, ..., log |zd |) · r, and integrating on the
torus T(ex) shows that |zr|ar decreases exponentially.

Our theorems demonstrate the converse, namely that when the
hyperplane normal to r is a support hyperplane, then z−r does give the right
exponential order for ar. This is done by evaluating ar.

Theorems 3.1–3.5 all begin with the reduction of an iterated Cauchy
integral to an oscillating integral in one fewer dimension.

Lemma 4.1. Let z be a strictly minimal simple pole of F=G/H. Assume
that zdHd ] 0. For a neighborhoodN2 of 0 in Rd−1 define a quantity

X :=(2p)1−d z−r F
N2

exp(−rdf̃(ĥ)) k̃(ĥ) dĥ.(4.2)

Then the quantity

|zr| |ar−X|

decreases exponentially asN2 remains fixed and r Q..

Proof. For e ¥ (0, |zd |), let T be the torus T(z) shrunk in the last coor-
dinate by e, that is, the set of w for which |wj |=|zj |, j < d and |wd |=|zd |− e.
Write Cauchy’s formula as an iterated integral

ar=1
1
2pi
2d F

T(ẑ)
ŵ−r̂−1 5F

C1

w−rdd F(w)
dwd
wd
6 dŵ .(4.3)

Here C1 is the circle of radius |zd |− e. Let K ı T(ẑ) be a compact set
not containing ẑ. For each fixed ŵ ¥K, the function F(ŵ, · ) has radius of
convergence greater than |zd |. Hence the inner integral in Eq. (4.3) is
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O(|zd |+d)−rd for some d > 0. By continuity of the radius of convergence,
we may integrate over K to see that

|zr| F
K×C1

w−r−1F(w) dw

decreases exponentially. Thus if N is any neighborhood of ẑ in T(ẑ), the
quantity

|zr| : ar−1
1
2pi
2d F

N
ŵ−r̂−1 5F

C1

F(w)
w rd+1d

dwd6 dŵ :

decreases exponentially. Thus we have reduced the problem to an integral
over a neighborhood of ẑ.

Near z there is a parametrization wd=g(ŵ) of V. Let C2 be the circle of
radius |zd |+e. Then when N is sufficiently small compared to e, the image
of N under g is disjoint from C2. Fix such a neighborhood N. For any
ŵ ¥N, the function F(ŵ, · ) has a single simple pole in the annulus
bounded by C1 and C2, occurring at g(ŵ). The residue in the last variable of
F at g(ŵ) is equal to

R(ŵ) :=−k(ŵ) g(ŵ)−rd,(4.4)

where k is defined in (2.2). Therefore, for each fixed ŵ ¥N,

F
C1

F(w)
w rd+1d

dwd=F
C2

F(w)
w rd+1d

dwd−2piR(ŵ).

But |zr >C2 F(w) dwd/wr+1| is bounded by a constant multiple of (1+
e/|zd |)−rd (the constant depending on the maximum of F on C2) and hence
|zr| |ar−X| is exponentially decreasing, where

X=(2pi)1−d F
N
(ŵ)−r̂−1g(ŵ)−rd k(ŵ) dŵ(4.5)

=(2pi)1−d z−r F
N

ŵ−r̂

ẑ−r̂

dŵ
<d−1
j=1 wj
1 g(ŵ)
g(zd)
2−rd k(ŵ).

Changing variables to wj=zje ihj and dwj=iwjdhj turns the quantity X into

(2p)1−d z−r F
N2

D
d−1

j=1
e−irjhj k̃(ĥ) 1g(ŵ)

g(ẑ)
2−rd dĥ
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and plugging in the definitions of f and f̃ at (2.3) above yields

(2p)1−d z−r F
N2

exp(−rdf̃(ĥ)) k̃(ĥ) dĥ

which is none other than X. L

Remark. It is possible to compute from Cauchy’s integral formula in a
more coordinate-free way as follows. There is a unique holomorphic (d−1)-
form wF on V for which wNdH=G dz1 N · · · Ndzd. Let W be a (d+1)-
manifold that is a homotopy from a small torus to a torus at infinity. Then
M :=W 5V is a (d−1)-manifold and ar=(2pi)−d >M w−r−1 dF in the
sense of currents, which is none other than >M wr−1wF. See Kenyon and
Pemantle (2001) for a more thorough discussion of the foregoing. The
manifold M is any member of a certain homology class in V with the
coordinate axes removed, and choosing M to pass through the stationary
phase point for the integrand replicates the selection of z with r ¥ dir(z).
Although more canonical, the coordinate-free method is less suitable for
explicit computation, so we do not pursue it further here. Suffice it to point
out that the conclusion of Theorem 3.5 may of course be written in terms
more evidently symmetric, as was done in Theorem 3.1.

Equation (4.2) is easily recognized as the standard form for an oscillating
integral. The only unusual feature is that the phase is neither real nor
purely imaginary. This presents no difficulties, but it does necessitate the
statement of a result in Section 5 that is a little different from the usual
results on purely oscillating integrals, found in, for example, Stein (1993) or
Bleistein and Handelsman (1986). We first establish that ĥ=0 is a station-
ary phase point for the function f̃ when r ¥ dir(z).

Lemma 4.2. The quantity f̃(0) always vanishes. If r ¥ dir(z) then
Nf̃(0)=0 and the real part of f̃ has a strict minimum at 0.

Proof. The first statement is immediate. To prove the second, let
j [ d−1 and see from the definition of f that

rdfj(ẑ)=
rd gj(ẑ)
g(ẑ)

+
rj
zj
.

By definition of dir, the ratio rj/(zjHj) is some constant c independent of j,
hence

c−1rdf(z)=gj(z) Hd(z)+Hj(z).
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The right hand side of this is the derivative of H(w1, ..., wd−1, g(ŵ)) with
respect to wj at ẑ. By definition of g this vanishes, and hence fj(ẑ)=0. But
f̃j(0)=izjfj(z), so the gradient of f̃ must vanish at 0. Finally, observe that
Re{f̃(ĥ)}=−log |g̃(ĥ)/zd |. By strict minimality of z, the modulus of
g(ŵ)=g̃(ĥ) is greater than |zd | for any ŵ ¥ T(ẑ). L

We now prove Theorems 3.1, 3.3 and 3.5 in reverse order. We see from
Lemma 4.1 that proving any of these theorems amounts to evaluating the
quantity X in equation (4.2). From Lemma 4.2 we see that 0 is a stationary
point for the function f̃ as long as r ¥ dir(z). The function f̃ is in general
complex valued, but we shall see in Theorem 5.4 that it may be treated as if
it were real valued, given the strict minimality of the zero guaranteed by
Lemma 4.2 and the nonsingularity hypothesis. In particular the leading
term of the integral in (4.2) is (2p) (d−1)/2 k̃(0) r (1−d)/2d divided by the
product of the square roots of the eigenvalues of the Hessian. Once we
have identified k̃(0)=k(0) as G(0)/(zdHd), Theorem 3.5 follows directly
from Theorem 5.4.

Theorem 3.3 follows from the more explicit asymptotic development
given in Corollary 5.3. Finally, to prove Theorem 3.1, it remains to
compute the quantity f̃œ(0) in terms of the partial derivatives of H. We
make use of the notation and computations immediately preceding the
statement of Theorem 3.3.

First we compute the derivatives of g in the 2-variable case.

Lemma 4.3. In a neighborhood of (z, w), k and the derivatives of g are

gŒ(z)=−
Hz
Hw

(4.6)

gœ(z)=−
1
Hw
5Hzz−2

Hz
Hw
Hzw+

H2z
H2w
Hww6 .(4.7)

k(z)=
G(z, w)
−wHw(z, w)

.

Proof. Differentiate the equationH(z, g(z))=0 to getHz+gŒ(z) Hw=0
which is the same as (4.6). Differentiate again to get

Hzz+2gŒHzw+gœHw+(gŒ)2Hww=0

and use (4.6) to eliminate gŒ, giving (4.7). The formula for k follows from
the definitions of k and of the partial derivative. L
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Now, making use of the notation and computations immediately preced-
ing the statement of Theorem 3.3, we can prove Theorem 3.1.

Proof of Theorem 3.1 via direct computation We know from Lemma 4.2
that f̃ vanishes to order at least two at 0. To compute f̃œ(0), observe first
that f̃œ− log g̃ is linear in h, so f̃œ=(log g̃)œ. When Z=ze ih, we have
(d/dh)=iZ(d/dZ), so

f̃œ=iZ
d
dZ
1 iZ d log g

dZ
2=−Z d

dZ
1ZgŒ
g
2 .

Expanding this yields

f̃œ=−Z
gŒ+Zgœ
g
+
Z2(gŒ)2

g2
.(4.8)

By our assumption, G does not vanish at (z, w), so as long as f̃œ(0) ] 0, we
may use Theorem 3.3 to conclude that the leading term asymptotic for ar, s
is the k=2, l=0 term of (3.6). The term b0 there is equal to

k̃(0) gŒ(0)=k(z)`2/f̃œ(0)=
G(z, w)
−wHw(z, w)

= 2

f̃œ(0)
.

Thus from Theorem 3.3,

ar, s ’
A(2, 0)
2p

z−rw−s
G(z, w)
−wHw(z, w)

= 2

sf̃œ(0)
.

Now evaluate this using the value A(2, 0)=`p and Eq. (4.8) along
with (4.6) and (4.7) to obtain

ar, s ’
1

`2p
z−rw−s

G(z, w)
−wHw(z, w)

= (−wHw(z, w))3
sQ

where

Q=(−wHw(z, w))3 f̃œ(0)=(−wHw(z, w))3 z
−gŒ(z)−zgœ(z)

g(z)
+
z2(gŒ(z))2

(g(z))2
.

With the help of Lemma 4.3 we see (using g(z)=w) that

Q=(−wHw)3 5−z
Hz
−wHw

−z2
1

−wHw
1Hzz−2

Hz
Hw
Hzw+

H2z
H2w
Hww2+

z2H2z
w2H2w
6 ,
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evaluated at (z, w), which simplifies to the expression in Theorem 3.1. We
see also that the nonvanishing hypotheses on Q is enough to guarantee
f̃œ(0) ] 0, which finishes the proof of Theorem 3.1. L

5. SOME OSCILLATING INTEGRALS

The oscillating integrals we require are integrals over a neighborhood of
zero in Rd of the complex-valued integrand,

F
N

exp(−lf(x)) k(x) dx,

where f is analytic, f(0)=0, Nf(0)=0 and Re f \ 0. They are not diffi-
cult to compute, but since the standard references assume f is either real or
purely imaginary, we sketch the development of these results. We mostly
follow the exposition of Stein (1993), adapting it to complex-valued phase
functions and simplifying it to take advantage of the decay of the magni-
tude of the integrand in this case.

We begin with one-dimensional results. Let C.0 denote the class of
smooth functions with compact support. The following proposition is a
well known consequence of Watson’s Lemma (see, for example, Wong
(1989, Chap. 2, Theorem 1)).

Proposition 5.1. Let k ¥ C.0 (R) and let bj=k
(j)(0)/j!. Then as lQ.,

there is an asymptotic development

F
.

0
exp(−lxk) k(x) dx ’ C

.

l=0
A+(k, l) bll−(l+1)/k,

where, as in (3.1),

A+(k, l) :=k−1C 1
l+1
k
2 .

We extend this to more general one-sided integrals by a complex change
of variables. Given any f as above defined on an interval [0, B], suppose
also that fŒ ] 0 on (0, B], and let k \ 2 be minimal so that f (k)(0) ] 0. Let
k ¥ C.0 vanish to order l \ 0 at 0. Let cj=f(j)(0)/j! and bj=k (j)(0)/j!.
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The real part of ck is necessarily nonnegative. Define a function y on
[0, B] by

y(x)=f(x)1/k=c1/kk x 11+
f(x)−ckxk

ckxk
21/k ,

where the argument of c1/kk is between −p/(2k) and p/(2k). The quantity
f(x)−ckxk is O(xk+1) near zero, so y is analytic near 0, and, in particular,
is a diffeomorphism between [0, B] and a contour c from 0 to some Bg.
Let g invert y. The derivatives of g at 0 are easy to compute formally and
the first j+1 starting from the kth depend only on the first j coefficients of
f starting at ck. Define

kg=(k p g) ·gŒ ;

bgj=k
g (j)(0)/j! .

(5.1)

Theorem 5.2. Let f be analytic and complex-valued on an interval
[0, B] and suppose that k \ 2 is minimal such that f (k)(0) ] 0 (so in particu-
lar f(0)=fŒ(0)=0). Assume that fŒ ] 0 on (0, B], and that Re f has a
strict minimum at 0.
Let m be minimal so that the real part of f (m)(0) does not vanish. Let
k ¥ C.0 , let l be minimal such that k

(l)(0) ] 0, and denote cj :=f(j)(0)/j!,
bj :=k (j)(0)/j!. Define b

g
j as in (5.1).

Then there is an asymptotic development

F
B

0
exp(−lf(x)) k(x) dx ’ C

.

j=l
A+(k, j) b

g
j l
−(j+1)/k.(5.2)

The constant in the O(l−(N+1)/k) term depends continuously (only) on the
derivatives of f and k up to (N+1) m/k−1.

Proof. Changing variables to y=f(x)1/k, the integral becomes

F
c

exp(−lyk) kg(y) dy;

the curve c is the image of [0, B] under y, so cŒ(0)=c1/kk and c remains in
the right half plane, strictly except at 0. For 0 < N <M write kg as
PM+yM+1RM, where PM is a polynomial of degree M and RM is bounded;
this can be done since kg may be approximated by a degree M polynomial
to within O(yM+1) at 0.
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First, evaluate

F
c

exp(−lyk) PM(y) dy

by moving the contour. Replace c by two line segments, the first of which
goes some distance e along the positive real axis and the second of which is
strictly in the right half plane (we assumed Re{f} > 0 except at 0). The
integral along the second segment is exponentially small since the integrand
is. Hence the combined contribution is the series (5.2) out to the j=M
term.

Next, bound

: F
c

exp(−lyk) yM+1RM(y) dy : .

With C representing different constants in different lines, we now observe
that on c we have Re{−yk} < −C |y|m. Thus, parametrizing c by arc-
length, an upper bound is given by

F
.

0
exp(−lCtm) tM+1 C |RM(c(t))| dt.

This is easily seen to be bounded above by Cl−(M+2)/m where C depends on
the firstM derivatives of f and k. ChoosingM \ m(N+1) k−1 we have a
remainder term that is O(l−(N+1)/k), proving the theorem. L

The value of a two-sided integral follows as a corollary.

Corollary 5.3. Assume the hypotheses of Theorem 5.2, with f now
defined on an interval [−B, B]. Then there is an asymptotic development

F
B

−B
exp(−lf(x)) k(x) dx ’ C

.

j=l
A(k, j) bgj l

−(j+1)/k.(5.3)

with A(k, j) given by (3.2) and (3.3). The bounds on the remainder terms each
depend continuously on finitely many derivatives of f and k on [−B, B].

Proof. The two-sided integral is the sum of two one-sided integrals on
intervals [0, B] and [−B, 0]. The integral over [−B, 0] may be written as
an integral over [0, B] of the function exp(−lf(−x)) k(−x) dx. With bgl
still denoting the coefficients resulting form the application of Theorem 5.2
to the first integral, let b̌gl denote the coefficients when Theorem 5.2 is
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applied to the second integral. In order to add the two integrals, we write
b̌gl in terms of bgl by means of the following routine computation.

Let ck :=cke ia with c > 0 and |a| [ p/2 and define the analytic quantity R
so that

y(x)=[ckxk(1+R(x))k]1/k=ce ia/kx(1+R(x)).

If k is odd, then then the hypothesis Re{f} \ 0 implies that ck is purely
imaginary. We have

y̌(x)=[−ckxk(1+R(−x))k]1/k=ce−ia/kx(1+R(−x))=−y(−x) e−2ia/k.

Writing g for the inverse function to y and ǧ for the inverse function to y̌
we then have

ǧ(x)=−g(−e2ia/kx) .

Hence, letting Cl[ · ] denote the coefficient of y l,

b̌gl=Cl[k(−ǧ(x)) · ǧŒ(x)]

=Cl[k(g(−e2ia/kx)) · e2ia/k ·gŒ(−e2ia/kx)]

and thus

b̌gl=(−1)
l e2ia(l+1)/kbgl .

When k is even, the computation is similar but easier, resulting in

b̌gl=(−1)
l bgl .

Now observe that if k is odd, hence ck is purely imaginary, then
e2ia(l+1)/k=e ±ip(l+1)/k according to the sign of the argument of ck. Setting
A(k, l)=(1+(−1) l) A+(k, l) if k is even and (1+e sgn Arg(ck) ip(l+1)/k) A+(k, l)
if k is odd, we recover the definition in (3.2) and (3.3) and prove the
corollary. L

Theorem 5.4. Let f be a smooth complex-valued function on a neigh-
borhood of 0 in Rd such that Re{f} \ 0 with equality only at 0. Suppose
further that N f(0)=0, and that the Hessian (matrix of second partials) of
f has eigenvalues with positive real parts. Let H denote the Hessian deter-
minant at 0. Then for k ¥ C.0 , there is an asymptotic expansion

F exp(−lf(x)) k(x) dx ’ C
j \ l
Cjl−(j+d)/2,
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where l is the degree of vanishing of k at 0. If l=0 then C0=
k(0)(2p)d/2H−1/2. The choice of square root is determined by H−1/2=
<d
j=1 m

−1/2
j where mj are the eigenvalues of the Hessian and the principal

square root is taken in each case.

Proof. Let Q=;d
i, j=1 qi, jzizj be the quadratic form determined by the

Hessian at the origin. Denote the eigenvalues of Q by {mj: 1 [ j [ d} and
note that each mj has nonnegative real part.

Step 1. Change coordinates to make f exactly equal to the quadratic
form Q. Indeed since f(x)=Q(x)/2+O(|x|3), and the Hessian is nonde-
generate, there is a locally smooth change of variables {xj(z): 1 [ j [ d}
such that f(z)=Q(x(z))/2 and the Jacobian at the origin is 1.
Step 2. Normalize by H1/2. For any quadratic form Q there is a

linear change of variables y(x) such that Q(x)=;d
j=1 y

2
j . The change of

variables matrix P satisfies PPT=M(Q), the symmetric matrix represent-
ing Q. Changing variables to y introduces an integrating factor of det P
which is a square root of H sinceM(Q) is just the Hessian. Let NŒ be the
region of integration over which y varies when z varies over an appropri-
ately small neighborhood of 0.
Step 3. Expand k̃ into monomials. The function k has now become

k̃, where k̃(0)=H−1/2k(0) and the sign of the square root will be chosen
later. We may expand k̃ into monomials, using the same argument as in the
proof of Theorem 5.2 to show the remainder term can be made O(|y|N) for
any N. It remains to evaluate the integral over the region of integration,
NŒ of

F
NŒ

exp 1 −l C
d

j=1
y2j 2 k̃(y) dy

when k̃ is a monomial.
Step 4. Move the region of integration to the real d-space. Let Nœ be

the projection of NŒ onto Rd by setting the imaginary part to zero. We
claim that changing the region of integration from NŒ to Nœ alters the
integral by an amount rapidly decreasing in l. To show this, let W be the
region {Re{x}+it Im{x} : x ¥NŒ, t ¥ [0, 1]}. The boundary of W (as a
manifold) is composed of NŒ,Nœ (with opposite signs) together with
S :={Re{x}+it Im{x} : x ¥ “NŒ, t ¥ [0, 1]}. For any d-form w, >W dw=
>“ W w. When w=exp(−l;d

j=1 mj y
2
j ) yr dy1 N · · · Ndyd is a holomorphic

d-form, we see that dw vanishes (being the sum of “/“zj terms) so that

F
NŒ
w=F

Nœ
w+F

S
w.
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We know that Re{;j mj y2j } is bounded away from 0 on “NŒ, and its
minimal value on S lies on “NŒ, hence the integral over S decays exponen-
tially.
Step 5. Evaluate the integral. Factoring >Nœ yr exp(−l;d

j=1 y
2
j ) into

one-dimensional integrals and plugging into Proposition 5.1 yields an
asymptotic expansion whose leading term (when l=0) is equal to (2p)d/2 k(0)
H−1/2. When f(z) is the function ;d

j=1 z
2
j , then the positive square root is

taken. The choice of square root must be continuous in the analytic topol-
ogy on functions having nondegenerate Hessians and having eigenvalues
with positive real parts, and the only such choice is the product of the
principal square roots of the eigenvalues of the Hessian. L

6. CLASSIFICATION OF CASES

For purposes of classification some natural questions are:

(i) What are all possible local geometries of minimal points of V?
(ii) Which of these can be handled by variants of the methods in this

article?
(iii) Are these sufficient to yield a good approximation to ar no

matter what the direction, r/|r|, and no matter which generating function
in the class, say, of functions meromorphic in a neighborhood of their
domain of convergence?

To make the last question more concrete, consider the simplest possible
example, namely binomial coefficients, where F=1/(1−z−w) and V is a
complex line. There are no nonsmooth points here, but how do we know
that as (z, w) varies over minimal points of V, the direction dir(z, w) will
cover all of RP1?

This question will be answered by Theorem 6.3, but first we need to add
some detail to the geometric discussion begun in Section 2.2. It will be
evident that quite a few cases need to be considered, some of which require
new tools and some of which require only minor modifications. Accord-
ingly, the results will appear in several papers, currently under preparation.
In other words, a discussion of taxonomy will necessarily refer to results
not yet published, and we shall indicate to the best of our knowledge which
ones are expected to be routine.

Given a point z ¥V, we extend the definition of dir(z) to mean the set of
limits of dir(y) as y Q z along smooth points. When z is minimal, this is
just the set of normals to support hyperplanes of log D at the point
(log |z1 |, ..., log |zd |), so this is consistent with the old definition. As we
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shall see shortly, dir(z) may be a (d−1)-dimensional subset of RPd−1 when
z is a nonsmooth point of V.

When H has a repeated factor, the residue computation in equation (4.4)
must be replaced by one involving the derivative. The remainder of the
computation proceeds without a hitch as before. Details are given in
Pemantle and Wilson (2001b). For the remainder of the taxonomy, we
assume H to be square-free. Toral smooth points may be handled by
methods exactly the same as strictly minimal points. The inner integrand
in (4.3) will in this case have its maximal modulus on a set of dimension
larger than zero. A modification of the necessary oscillating integral com-
putation that works in this case is also given in Pemantle and Wilson
(2001b).

If z ¥V is not smooth, all the first partials vanish. The expansion of
H(x) near z is then a sum of terms of degrees 2 and higher. We call z a
homogeneous point of degree k if this expansion contains terms (xj−zj)k for
each j=1, ..., d, and contains no terms of total degree less than k.

Lemma 6.1. If z is a locally minimal point of V with all coordinates
nonzero and F is meromorphic in a neighborhood of z, then z is homogeneous.

Proof. Passing to F(z1x1, ..., zdxd) if necessary, we may assume z=1.
Setting xj=1 for all but one index j, we cannot obtain the zero function
(by minimality), and so some term in the expansion around 1 is a pure
power of (xj−1), and we denote the minimal degree such term by
cj(xj−1)kj. If z is not a homogeneous point, then there is some j for which
some monomial has total degree lower than kj. Assume without loss of
generality that j=d. The function F(x, x, ..., x, y) then has a minimal
degree pure y−1 term c0(y−1)k, k :=kd, and some term cŒ(x−1)a (y−1)b

with a+b < k. In other words, the Newton Polygon of F(x, ..., x, y)
around (1, 1) has a support line passing through (0, k) with slope −p/q in
lowest terms, and p > q. It is well known that we may describe the solu-
tions y(x) of the equation

F(1+x, ..., 1+x, 1+y)=0

as follows. Write

H :=(y−1)k (c0+c1(y−1)−p (x−1)q

+c2(y−1)−2p (x−1)2q+·· ·+cs(y−1)−sp (x−1) sq)

for the polynomial collecting all the terms on this support line. Then for
each qth root of unity, w, and each root l of ; cs−j l j=0, there is a solution
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y=l1/pxq/p(w+o(1)) as xQ 0. A proof may be found in Brieskorn and
Knörrer (1986).

Varying x over the set |p−arg(x)| [ p/4, we see that the solutions y(x)
must sometimes be in this set as well. For those x, the points (1+x, ...,
1+x, 1+y) will be in V 5 D(1)0T(1), violating minimality of 1. By con-
tradiction, we have shown that no monomial in the expansion around 1 has
lower total degree than any pure power term, hence 1 is minimal. L

Continuing the taxonomy, suppose that z is a homogeneous point of V
of degree k \ 2. We say that z is a multiple point if V is locally the union of
k analytic surfaces. Algebraically, this implies that the leading (order k)
term in the expansion of H near z factors into linear pieces and is implied
by the factorization of the leading term into distinct linear pieces. If the
homogeneous point z is not a multiple point, we say it is a cone point.
When d=2 the only locally irreducible cone points are cusps, since any
homogeneous polynomial in 2 variables factors completely over C.

Our understanding of cone points is not yet complete, but an analysis
involving cone points is underway in Cohn and Pemantle (2001). For mul-
tiple points, most of the story is given in Pemantle and Wilson (2001a). In
particular, the following theorem is proved there.

Theorem 6.2 (Pemantle and Wilson (2001a)). Let z be an isolated,
minimal, multiple point of V with multiplicity k. Let S ı RPd−1 be the set of
outward normals to support hyperplanes to log D at the point (log |z1 |, ...,
log |zd |). Then there is an integer p \ 0 and a polynomial function f: SQ R
such that the asymptotic expansion

ar ’ z−rf(r) C
j
Cj(rd)k−p/2−j/2(6.1)

holds uniformly as r varies over compact subsets of the interior of S.

The extension to toral multiple points is given in Pemantle and Wilson
(2001b). If a multiple point is not isolated or toral, then the degree of mul-
tiplicity, k, must be less than the dimension, d. This cannot happen of
course when d=2, but does happen when d \ 3. The method for handling
this case, toral or otherwise, is given in Pemantle and Wilson (2001b). That
paper will also contain some subcases of the isolated multiple point case,
namely when the sheets of V intersect non-transversely and will discuss
cusps in the case d=2.

Having more or less completed the taxonomy, we now discuss when we
can guarantee that our methods yield asymptotics in all directions.

Theorem 6.3. Let F=G/H=; ar, sz rw s be the quotient of analytic
functions G, H: C2Q C. Suppose that the coefficients ar, s are all nonnegative,
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and that F(z, 0) and F(0, w) are not entire. Then for every direction a ¥ RP1

there is a minimal z ¥V with a ¥ dir(z).

Proof. Let (x, y) be any point on the boundary of log D. For u < ex

and v < ey the power series for F is convergent at (u, v). As u ‘ ex and v ‘ ey

therefore, F(u, v) is finite and increasing. On the other hand, the power
series for F is not absolutely convergent on T(ex, ey), since we know F to
have some singularity on this torus. Hence F(u, v) ‘. as (u, v) ‘ (ex, ey).
Since F is meromorphic, it must have a pole at (ex, ey), hence (ex, ey) ¥V
and is a minimal point of V. As (x, y) varies over the boundary of log D,
we let c ıV denote the curve traced out by this minimal point.

Pick any a ¥ RP1. The convex set log D has horizontal and vertical
support hyperplanes (by non-entirety of F(z, 0) and F(0, w)), and therefore
has a support hyperplane normal to a; let (x, y) be a point of intersection
of this support plane with log D. We have just seen that z(a) :=(ex, ey) is a
minimal point of V. If z is a smooth point of V then a ¥ dir(z): either z is
finitely minimal, in which case Theorem 3.3 applies, or it is toral, in which
case the toral version of this theorem from Pemantle and Wilson (2001b)
applies.

Assume now that z is not a smooth point. By Lemma 6.1, z is a homo-
geneous point, and since d=2, z is a multiple point or a cusp. Theorem 6.2
and its extensions in Pemantle and Wilson (2001b) then show that
a ¥ dir(z) in this case as well. This finishes the proof. L

7. FURTHER DETAILS AND OPEN QUESTIONS

The theorems in this and subsequent papers give estimates that are
uniform away from the boundary of the domain in which they are valid. In
order for all of these to be patched together so as to give estimates valid
now matter how r Q., one must determine the bandwidth around the
boundary for which the boundary estimates on either side hold. For
instance, suppose (z, w) is a multiple point of degree 2 and that dir(z, w) is
the set of slopes between 1/2 and 2. It appears that the asymptotic estimate
in Pemantle and Wilson (2001a) holding near the line {s=2r} can be
written so it is valid out to s=2r+c`r . If the estimate for the region
s/rg̃ 2+e can be widened so it holds to s=2r+c`r and a description
given that is valid in the regime (s−2r)/`rQ c, then the estimates will
patch together completely.

Another natural question is the universality of the method when the
coefficients have mixed signs. We conjecture that Theorem 6.3 still holds,
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in the sense that for every direction there is point z ¥V for which integra-
tion near z yields correct asymptotics. What we know is that z may no
longer be minimal. For example, if G=1 and

H=(1−(2/3) w−(1/3) z)(1+(1/3) w−(2/3) z)

then the point (3/2, 3/4) is not minimal but yields asymptotics in the
diagonal direction; one sees this by integrating along a deformed torus
rather than along T(3/2, 3/4). In fact we conjecture that such a deforma-
tion always exists, but the topology seems not transparent enough to yield
an easy proof.

The class of algebraic functions is in some ways almost as nice as the
set of rational functions, and nicer than the meromorphic functions. For
one thing, an algebraic function is determined by a finite amount of data,
and may thus easily be input into a symbolic math package. Gao and
Richmond (1992) give an analysis of algebraic and logarithmic singulari-
ties, but sometimes the relevant singularities for algebraic functions are
poles. For example, in Larsen and Lyons’ analysis (Larsen and Lyons,
1999) of merge times for coalescing particles, they find an algebraic func-
tion of the form

F(z, w)=
q(z, w)

w−1−`1−z

with q analytic. The branch of the square root is chosen so that at the
origin the denominator is −2, not 0. There is a branchline at z=1, but for
all directions in RP1, there is a smooth pole on the curve w=1+`1−z
yielding asymptotics in the desired direction. It is natural to ask when this
will happen, and how one can tell effectively. Some questions of effective-
ness are addressed in Pemantle and Wilson (2001a) and Pemantle and
Wilson (2001b), but there is probably substantial room for improvements
on an algorithmic level.
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