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1. Introduction

The nonsymmetric Askey–Wilson polynomials were first treated by Sahi [23]. They 
are expressed as certain Laurent polynomials, and are obtained in the double affine Hecke 
algebra (DAHA) of type (C∨

1 , C1) as eigenfunctions of the Cherednik–Dunkl operator on 
the basic representation for the algebra. The nonsymmetric Askey–Wilson polynomials 
along with the DAHA of rank one were studied in algebraic aspects by Noumi and 
Stokman [22], Macdonald [21, Section 6.6] and Koornwinder [17,18]. In the present paper 
we study the nonsymmetric Askey–Wilson polynomials in a combinatorial aspect, using 
a Q-polynomial distance-regular graph that contains a Delsarte clique.

The Q-polynomial property for distance-regular graphs was introduced by Delsarte [7]. 
Since then, this property has been receiving substantial attention from many mathemati-
cians; see e.g. [3,4,6,10,20,27]. In [20], Leonard characterized the q-Racah polynomials 
and their relatives in the Askey scheme using the duality property of Q-polynomial 
distance-regular graphs (see also [3, Section III.5]). Terwilliger defined the subcon-
stituent algebra (or Terwilliger algebra) as a method of the study of Q-polynomial 
distance-regular graphs [27–29]. This algebra has been a significant tool in the study 
of Q-polynomial distance-regular graphs and its connections to Lie theory, quantum 
algebras, and coding theory have also been revealed; see e.g. [9,11–14,24,26].

In [19] the author showed a relationship between Q-polynomial distance-regular graphs 
and the universal DAHA Ĥq of type (C∨

1 , C1) using the Terwilliger algebra. We briefly 
summarize this result. Let Γ denote a Q-polynomial distance-regular graph that contains 
a Delsarte clique C. Assume that Γ has q-Racah type. Fix a vertex x ∈ C. Partition-
ing the vertex set of Γ according to the path-length distance to both x and C gives a 
two-dimensional equitable partition, which takes a staircase shape consisting of nodes 
and edges. Let W denote the C-vector space spanned by the characteristic vectors corre-
sponding to the nodes of the staircase shape of the partition. Then W has an irreducible 
module structure for the algebra Ĥq [19, Sections 11,12].

From the above staircase picture of W, the q-Racah polynomials [1] arise naturally 
as follows. Roughly speaking, horizontal edges correspond to a sequence of q-Racah 
polynomials and vertical edges correspond to another sequence of q-Racah polynomials. 
In the present paper, using the irreducible Ĥq-module W, we define a finite sequence of 
certain Laurent polynomials that correspond to nodes of the staircase picture. We denote 
these polynomials by εσi , where σ ∈ {+, −}. The εσi are considered as nonsymmetric 
q-Racah polynomials, a discrete version of the nonsymmetric Askey–Wilson polynomials. 
And then we treat the orthogonality relations for εσi , using the Ĥq-module W and the 
theory of Leonard systems [32]. This orthogonality is new and it can be viewed as a 
discrete version of the orthogonality for the nonsymmetric Askey–Wilson polynomials, 
which was worked by Koornwinder and Bouzeffour [18, Section 5].

The paper is organized as follows. In Section 2, we review some basic definitions, con-
cepts and notation regarding nonsymmetric Askey–Wilson polynomials and DAHAs of 
type (C∨

1 , C1). In Sections 3 and 4, we review some backgrounds concerning Q-polynomial 
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distance-regular graphs, the Terwilliger algebra, Leonard systems, and parameter arrays. 
Our vector space W appears along with a comprehensible picture in Section 3. In Sec-
tion 5, we study the module for the Terwilliger algebra T on W and the associated 
q-Racah polynomials. The T -module W decomposes into the direct sum of two irre-
ducible T -modules, and the Leonard system corresponding to each T -module gives rise 
to a sequence of the q-Racah polynomials. We express these polynomials and the related 
formulae in terms of certain scalars a, b, c, d. In Section 6, we recall the algebra Ĥq and 
its properties. And we display the Ĥq-module W in terms of the scalars a, b, c, d. For 
this module, we describe the action of X := t3t0 ∈ Ĥq.

In Section 7, we define the Laurent polynomial g that plays a role to connect the 
above two irreducible T -submodules of W. Using g and the Ĥq-module W, we define 
a finite sequence of Laurent polynomials εσi (σ ∈ {+, −}). Moreover, for the element 
Y := t0t1 ∈ Ĥq we describe the action of εσi [Y] on the Ĥq-module W. In Section 8, we 
compute the eigenvalues/eigenvectors of Y on W. Using the results, in Section 9 we define 
a bilinear form on the vector space L spanned by {εσi }D−1

i=0 . With respect to this bilinear 
form we prove the orthogonality relations for the Laurent polynomials εσi . In Section 10, 
we consider the algebra Ĥq−1 by changing q by q−1. We discuss how the algebra Ĥq−1 is 
related to the (ordinary) DAHA H̃ of type (C∨

1 , C1). We, further, redescribe the Laurent 
polynomials εσi and the associated formulae in terms of q−1-version. In Section 11, we 
make a normalization for εσi of q−1-version and discuss how these polynomials are related 
to the nonsymmetric Askey–Wilson polynomials. The paper ends with a brief summary 
and direction for future work in Section 12. An Appendix provides some explicit data 
involving the Ĥq-action on W.

Notation 1.1. Throughout this paper we assume q ∈ C
∗ is not a root of unity. For a ∈ C,

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1), (1)

where n = 0, 1, 2, . . . . For a1, a2, . . . , ar ∈ C,

(a1, a2, . . . , ar; q)n := (a1; q)n(a2; q)n · · · (ar; q)n.

Let C[z, z−1] denote the space of the Laurent polynomials with a variable z. We write 
an element of C[z, z−1] by f [z]. We say f [z] is symmetric if f [z] = f [z−1], otherwise 
nonsymmetric. Note that a symmetric Laurent polynomial f [z] can be viewed as an 
ordinary polynomial f(x) in x = z + z−1.

2. Nonsymmetric Askey–Wilson polynomials

In this section we review some backgrounds concerning the Askey–Wilson polynomials, 
DAHAs of type (C∨

1 , C1), and the nonsymmetric Askey–Wilson polynomials. For more 
background, see [2,17,21,22]. We acknowledge that notation and presentations of the 
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nonsymmetric Askey–Wilson polynomials and the DAHA of type (C∨
1 , C1) are taken 

from Koornwinder’s papers [17,18]. Throughout this section, let a, b, c, d ∈ C
∗ be such 

that

ab, ac, ad, bc, bd, cd, abcd /∈ {q−m | m = 0, 1, 2, . . .}.

We now recall the Askey–Wilson polynomials [2]. For n = 0, 1, 2, . . . define a polynomial

pn(x) = pn[z; a, b, c, d | q] :=
∞∑
i=0

(q−n, abcdqn−1, az, az−1; q)i
(ab, ac, ad, q; q)i

qi

= 4φ3

(
q−n, abcdqn−1, az, az−1

ab, ac, ad

∣∣∣∣ q, q

)
, (2)

where x = z + z−1. The last equality follows from the definition of basic hypergeometric 
series [8, p. 4]. Observe that (q−n; q)i = 0 if i > n. We call pn the n-th Askey–Wilson 
polynomial. Consider the monic Askey–Wilson polynomials

Pn = Pn[z; a, b, c, d | q] := (ab, ac, ad; q)n
an(abcdqn−1; q)n 4φ3

(
q−n, abcdqn−1, az, az−1

ab, ac, ad

∣∣∣∣ q, q

)
.

Note that Pn is symmetric. For n = 1, 2, . . . , define a Laurent polynomial [18, Section 4]

Qn := a−1b−1z−1(1 − az)(1 − bz)Pn−1[z; qa, qb, c, d | q]. (3)

Definition 2.1. [18, §4 (4.2)–(4.3)] The nonsymmetric Askey–Wilson polynomials are de-
fined by

E−n := Pn −Qn (n = 1, 2, . . .),

En := Pn − ab(1 − qn)(1 − cdqn−1)
(1 − abqn)(1 − abcdqn−1)Qn (n = 0, 1, 2, . . .),

where (1 − qn)Qn := 0 for n = 0.

The DAHA of type (C∨
1 , C1), denoted by H̃ [17, Section 3], is defined by the generators 

Z, Z−1, T0, T1 and relations

(T1 + ab)(T1 + 1) = 0, (T0 + q−1cd)(T0 + 1) = 0,

(T1Z + a)(T1Z + b) = 0, (qT0Z
−1 + c)(qT0Z

−1 + d) = 0.

The algebra H̃ has a faithful representation on C[z, z−1], which is called the basic repre-
sentation [17, Section 3]. On the basic representation, by [17, Theorem 4.1] each of E±n
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Fig. 1. The eigenspaces of q1/2ηY .

is the eigenfunction for Y = T1T0;

Y E−n = q−nE−n (n = 1, 2, . . .), (4)

Y En = qn−1abcdEn (n = 0, 1, 2, . . .). (5)

Fix square roots a1/2, b1/2, c1/2, d1/2 and q1/2. Consider q1/2ηY , where η =
a−1/2b−1/2c−1/2d−1/2. From (4) and (5), it follows

q1/2ηY E−n = q−n+ 1
2 ηE−n (n = 1, 2, . . .), (6)

q1/2ηY En = qn−
1
2 η−1En (n = 0, 1, 2, . . .). (7)

By (6) and (7), we give a staircase diagram that describes the structure of eigenspaces 
of q1/2ηY .

We remark that each white node represents the eigenspace of q1/2ηY corresponding 
the eigenvalue q−n+ 1

2 η and the eigenvector E−n for n = 1, 2, . . . , and each black node 
represents the eigenspace of q1/2ηY corresponding the eigenvalue qn−

1
2 η−1 and the eigen-

vector En for n = 0, 1, 2, . . . . Observe that the product of eigenvalues of each vertical 
edge is equal to q−1 and the product of eigenvalues of each horizontal edge is equal to 1.

We discuss the orthogonality relations for the Askey–Wilson polynomials. By [5, 
Theorems I.4.4 and II.3.2] (or [18, (3.6)–(3.8)]), there exists a positive Borel measure 
μ = μa,b,c,d;q on R with μ(R) = 1 such that

〈Pm, Pn〉a,b,c,d;q :=
∫
R

Pm(x)Pn(x)dμ(x) = hnδm,n, (8)

where

hn = ha,b,c,d;q
n = (q, ab, ac, ad, bc, bd, cd; q)n

n−1 .
(abcd; q)2n(abcdq ; q)n
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In [18] Koorwinder and Bouzeffour introduced a presentation of nonsymmetric Laurent 
polynomials as two-dimensional vector-valued polynomials. By [18, p. 7], we can identify 
a Laurent polynomial f with 2-vector-valued symmetric Laurent polynomial (f1, f2)t, 
where t denotes transpose. In particular, from [18, (4.10) and (4.11)]

E−n =
(

Pn[z; a, b, c, d | q]
−a−1b−1Pn−1[z; aq, bq, c, d | q]

)
(n = 1, 2, . . .), (9)

En =

⎛⎝ Pn[z; a, b, c, d | q]
− (1 − qn)(1 − cdqn−1)

(1 − abqn)(1 − abcdqn−1)Pn−1[z; aq, bq, c, d | q]

⎞⎠ (n = 0, 1, 2, . . .),

(10)

where (1 −qn)Pn−1 := 0 for n = 0. In [18, Section 5], the authors introduced a symmetric 
bilinear form 〈·, ·〉 on C[z, z−1]:

〈g, h〉 = 〈(g1, g2)t, (h1, h2)t〉 = 〈g1, h1〉a,b,c,d;q + C〈g2, h2〉aq,bq,c,d;q, (11)

where 〈·, ·〉a,b,c,d;q is from (8) and

C = −ab
(1 − ab)(1 − abq)(1 − ac)(1 − ad)(1 − bc)(1 − bd)

(1 − abcd)(1 − abcdq) .

Note that the nonsymmetric Askey–Wilson polynomials En(n ∈ Z) are orthogonal with 
respect to the bilinear form (11). This bilinear form is positive definite with some con-
ditions for the scalars a, b, c, d; see [18, Proposition 5.1] for details.

Lemma 2.2. With respect to the bilinear form (11),

(i) for n = 1, 2, . . . ,

〈E−n, E−n〉 = (ab− 1)(1 − abcdq2n−1)
ab(1 − qn)(1 − cdqn−1)

(q, ab, ac, ad, bc, bd, cd; q)n
(abcd; q)2n(abcdqn−1; q)n

,

(ii) for n = 0, 1, 2, . . . ,

〈En, En〉 = (1 − ab)(1 − abcdq2n−1)
(1 − abqn)(1 − abcdqn−1)

(q, ab, ac, ad, bc, bd, cd; q)n
(abcd; q)2n(abcdqn−1; q)n

.

Proof. (i) From (9), we set f1 =Pn[z; a, b, c, d | q] and f2 =−a−1b−1Pn−1[z; aq, bq, c, d | q]. 
Then by (11)

〈E−n, E−n〉 = 〈(f1, f2)t, (f1, f2)t〉 = 〈f1, f1〉a,b,c,d;q + C〈f2, f2〉aq,bq,c,d;q.

Compute the right-hand side of the above equation by using (8). The result follows.
(ii) Similar to (i). �
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3. Q-polynomial distance-regular graphs

We recall some basic concepts and notation concerning Q-polynomial distance-regular 
graphs. For more information we refer the reader to [3,4,27]. Let X denote a nonempty 
finite set. Define MatX(C) to be the C-algebra consisting of the square matrices indexed 
by X with entries in C. Let V denote the C-vector space consisting of column vectors 
indexed by X with entries in C. View V as a left MatX(C)-module. We endow V with 
the Hermitian inner product 〈·, ·〉V such that 〈u, v〉V = utv̄, where t denotes transpose 
and ̄ denotes complex conjugate. We abbreviate ‖u‖2 = 〈u, u〉V for all u ∈ V . For y ∈ X

let ŷ denote the vector in V with a 1 in the y-coordinate and 0 in all other coordinates. 
For Y ⊆ X define Ŷ =

∑
y∈Y ŷ, called the characteristic vector of Y .

Let Γ denote a simple connected graph with vertex set X and diameter D ≥ 3, where 
D := max{∂(x, y) | x, y ∈ X} and where ∂ is the shortest path-length distance function. 
For x ∈ X, define

Γi(x) = {y ∈ X | ∂(x, y) = i} (0 ≤ i ≤ D). (12)

We say that Γ is distance-regular whenever for 0 ≤ i ≤ D and vertices x, y ∈ X with 
∂(x, y) = i the numbers

ci = |Γi−1(x) ∩ Γ1(y)|, ai = |Γi(x) ∩ Γ1(y)|, bi = |Γi+1 ∩ Γ1(y)|, (13)

are independent of x and y. Define the matrix Ai ∈ MatX(C) by (Ai)xy = 1 if ∂(x, y) = i

and 0 otherwise. We call Ai the i-th distance matrix of Γ. In particular, A = A1 is called 
the adjacency matrix of Γ. Let M denote the subalgebra of MatX(C) generated by A, 
called the adjacency algebra. By definition, every element in M forms a polynomial in 
A. The graph Γ satisfies the P -polynomial property, that is, for 0 ≤ i ≤ D there exists a 
polynomial fi ∈ C[x] such that deg(fi) = i and fi(A) = Ai.

We recall the notion of Q-polynomial property. By [4, p. 127], the elements {Ai}Di=0
form a basis for M . Since A is real symmetric and generates M , A has D + 1 mutually 
distinct real eigenvalues, denoted by θ0, θ1, . . . , θD. Let Ei ∈ MatX(C) denote the or-
thogonal projection onto the eigenspace of θi(0 ≤ i ≤ D). We call Ei the i-th primitive 
idempotent of Γ. Note that {Ei}Di=0 form a basis for M . We say that Γ is Q-polynomial
with respect to the ordering E0, E1, . . . ED whenever there exists f∗

i ∈ C[x] such that 
deg(f∗

i ) = i and f∗
i (E1) = Ei, where the multiplication of M is under the entrywise 

product [3, p. 193]. Throughout the paper we assume that Γ is a Q-polynomial distance-
regular graph.

By a clique we mean a nonempty subset C of X such that any two distinct vertices 
in C are adjacent. It is known that |C| ≤ 1 − k/θmin [4, Proposition 4.4.6], where θmin is 
the minimum eigenvalue of A. We say that C is Delsarte when |C| = 1 −k/θmin. Assume 
that Γ contains a Delsarte clique C. For 0 ≤ i ≤ D − 1, we define

Ci := {y ∈ X | ∂(y, C) = i}, (14)
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Fig. 2. The set {C±
i }3

i=0 of X when d = 4.

where ∂(y, C) = min{∂(y, z) | z ∈ C}. For the rest of the paper we fix a vertex x ∈ C. 
Recall Γi = Γi(x) (0 ≤ i ≤ D) and Ci (0 ≤ i ≤ D − 1) from (12) and (14). For 
0 ≤ i ≤ D − 1 define

C−
i = Γi ∩ Ci, C+

i = Γi+1 ∩ Ci (0 ≤ i ≤ D − 1), (15)

see Fig. 2. Note that each of C±
i (0 ≤ i ≤ D − 1) is nonempty, and by construction the 

{C±
i }D−1

i=0 is an equitable partition of X in the sense of [10, p. 75]; see [19, Proposition 5.6]. 
Define W to be the subspace of V spanned by {Ĉ±

i }D−1
i=0 . By the previous comments one 

readily sees that {Ĉ±
i }D−1

i=0 is an orthogonal basis for W.
For 0 ≤ i ≤ D define the diagonal matrix E∗

i = E∗
i (x) ∈ MatX(C) by (E∗

i )yy = 1
if ∂(x, y) = i and 0 otherwise. We call E∗

i the i-th dual primitive idempotent of Γ with 
respect to x. Observe that I =

∑D
i=0 E

∗
i and E∗

i E
∗
j = δi,jE

∗
i for 0 ≤ i, j ≤ D. So the 

set {E∗
i }Di=0 forms a basis for a commutative subalgebra M∗ = M∗(x) of MatX(C). We 

call M∗ the dual adjacency algebra of Γ with respect to x. Define the diagonal matrix 
A∗

i = A∗
i (x) ∈ MatX(C) by (A∗

i )yy = |X|(Ei)xy for y ∈ X, called the i-th dual distance 
matrix of Γ with respect to x. By [27, p. 379] {A∗

i }Di=0 is a basis for M∗. We abbreviate 
A∗ = A∗

1, called the dual adjacency matrix of Γ with respect to x. By [27, Lemma 3.11]
A∗ generates M∗. By these comments A∗ has D + 1 mutually distinct real eigenvalues, 
denoted by θ∗0 , θ

∗
1 , . . . , θ

∗
D and called θ∗i the i-th dual eigenvalue of A∗.

Terwilliger algebra T = T (x) with respect to x is the subalgebra of MatX(C) generated 
by A, A∗ [27]. By T -module, we mean a subspace W ⊆ V such that BW ⊆ W for 
all B ∈ T . We define Ã∗ = Ã∗(C) = |C|−1∑

y∈C A∗(y) ∈ MatX(C), called the dual 
adjacency matrix of Γ with respect to C. The Terwilliger algebra T̃ = T̃ (C) with respect 
to C is the subalgebra of MatX(C) generated by A, Ã∗ [25]. In [19, Definition 5.20] we 
defined the generalized Terwilliger algebra T = T(x, C). The algebra T is the subalgebra 
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of MatX(C) generated by T , T̃ . Observe that A, A∗ and Ã∗ generate T. Note that W
has a module structure for both T and T̃ , and so is a T-module [19, Proposition 5.25]. 
The T -submodule (resp. T̃ -submodule) of W generated by x̂ (resp. Ĉ) will be called the 
primary T -module (resp. primary T̃ -module), denoted by Mx̂ (resp. MĈ). The {Aix̂}Di=0
(resp. {Ĉi}D−1

i=0 ) is a basis for Mx̂ (resp. MĈ). In Section 5, we will discuss the T -module 
W in more detail.

4. Leonard systems and parameter arrays

Let d denote a positive integer. Let Md+1(C) denote the C-algebra consisting of all 
(d + 1) × (d + 1) matrices that have entries in C. Let A denote a C-algebra isomorphic 
to Md+1(C). Let V denote an irreducible left A-module. Remark that V is unique up to 
isomorphism of A-modules and V has dimension d +1. For A ∈ A, A is called multiplicity-
free whenever A has d + 1 mutually distinct eigenvalues. Assume A is multiplicity-free. 
Let {θi}d

i=0 denote an ordering of distinct eigenvalues of A. For 0 ≤ i ≤ d let Vi denote 
the eigenspace of A associated with θi. Define Ei ∈ A by (Ei − I)Vi = 0 and EiVj = 0 for 
j 
= i (0 ≤ j ≤ d), where I is the identity of A. We call Ei the primitive idempotent of A
associated with θi. Observe that (i) AEi = θiEi, (ii) EiEj = δi,jEi, (iii) 

∑d
i=0 Ei = I. We 

now define a Leonard system in A.

Definition 4.1. [30, Definition 1.4] By a Leonard system on V, we mean a sequence

Φ = (A; A∗; {Ei}d
i=0; {E∗

i }d
i=0)

that satisfies (i)–(v) below.

(i) Each of A, A∗ is a multiplicity-free element in A.
(ii) {Ei}d

i=0 is an ordering of the primitive idempotents of A.
(iii) {E∗

i }d
i=0 is an ordering of the primitive idempotents of A∗.

(iv) For 0 ≤ i, j ≤ d,

EiA∗Ej =
{

0 if |i− j| > 1,

= 0 if |i− j| = 1.

(v) For 0 ≤ i, j ≤ d,

E∗
i AE∗

j =
{

0 if |i− j| > 1,

= 0 if |i− j| = 1.

We call d the diameter of Φ, and say Φ is over C.
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Example 4.2. Recall from Section 3 that Γ is a Q-polynomial distance-regular graph and 
T is the Terwilliger algebra of Γ with respect to x. Referring to Section 3, consider a 
sequence of elements of T

(A;A∗; {Ei}Di=0; {E∗
i }Di=0), (16)

where A (resp. A∗) is the adjacency matrix (resp. dual adjacency matrix) of Γ and Ei

(resp. E∗
i ) is the i-th primitive idempotent (resp. dual primitive idempotent) of Γ. Then 

the sequence (16) is a Leonard system on Mx̂.

Let Φ be a Leonard system in Definition 4.1. Each of the following is a Leonard system 
on V:

Φ∗ := (A∗; A; {E∗
i }d

i=0; {Ei}d
i=0),

Φ↓ := (A; A∗; {Ei}d
i=0; {E∗

d−i}d
i=0), Φ⇓ := (A; A∗; {Ed−i}d

i=0; {E∗
i }d

i=0).

For 0 ≤ i ≤ d, let θ∗i denote the eigenvalue of A∗ associated with E∗
i . By [30, Theorem 3.2]

there exist nonzero scalars {ϕi}d
i=0 and a C-algebra homomorphism 
 : A → Md+1(C)

such that

A� =

⎡⎢⎢⎢⎢⎣
θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd

⎤⎥⎥⎥⎥⎦, A∗� =

⎡⎢⎢⎢⎢⎣
θ∗0 ϕ1 0

θ∗1 ϕ2
θ∗2 ·

· ·
· ϕd

0 θ∗d

⎤⎥⎥⎥⎥⎦.

We call the sequence {ϕi}d
i=1 the first split sequence of Φ. We let {φi}d

i=0 denote the first 
split sequence of Φ⇓ and call this the second split sequence of Φ. By the parameter array
of Φ we mean the sequence

p(Φ) := ({θi}d
i=0, {θ∗i }d

i=0, {ϕi}d
i=1, {φi}d

i=1).

Let Ψ denote a Leonard system in a C-algebra B. We say that Ψ is isomorphic to Φ
whenever there is a C-algebra isomorphism α : A → B such that Ψ = Φα := (Aα; A∗α;
{Eα

i }d
i=0; {E∗α

i }d
i=0). In [30, Theorem 1.9] Terwilliger classified Leonard systems by using 

parameter arrays, and characterized the set of parameter arrays of Leonard systems with 
diameter d. Moreover, he displayed all the parameter arrays over C in [33]. We recall the 
q-Racah family of parameter arrays, that is the most general family.

Example 4.3. [33, Example 5.3] (q-Racah type) For 0 ≤ i ≤ d define

θi = θ0 + h(1 − qi)(1 − sqi+1)q−i, (17)

θ∗i = θ∗0 + h∗(1 − qi)(1 − s∗qi+1)q−i, (18)
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and for 1 ≤ i ≤ d define

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(1 − r1q
i)(1 − r2q

i), (19)

φi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(r1 − s∗qi)(r2 − s∗qi)/s∗, (20)

where θ0 and θ∗0 are scalars in C, and where h, h∗, s, s∗, r1, r2 are nonzero scalars in C
such that r1r2 = ss∗qd+1. To avoid degenerate situations assume that

(i) none of qi, r1qi, r2qi, s∗qi/r1, s∗qi/r2 is equal to 1 for 1 ≤ i ≤ d,
(ii) neither of sqi, s∗qi is equal to 1 for 2 ≤ i ≤ 2d.

Then the sequence ({θi}d
i=0, {θ∗i }d

i=0, {ϕi}d
i=1, {φi}d

i=1) is a parameter array over C. This 
parameter array is said to have q-Racah type.

We say that Φ has q-Racah type whenever its parameter array has q-Racah type.
Let u be a nonzero vector in E0V. By [32, Lemma 10.2], the sequence {E∗

i u}d
i=0 is a 

basis for V, called a Φ-standard basis for V. The following is a characterization of the 
Φ-standard basis.

Lemma 4.4. [32, Lemma 10.4] Let {vi}d
i=0 denote a sequence of vectors in V, not all 0. 

Then this sequence is a Φ-standard basis for V if and only if both (i) vi ∈ E∗
i V for 

0 ≤ i ≤ d; (ii) 
∑d

i=0 vi ∈ E0V.

Consider the Leonard system Φ from Definition 4.1 and its corresponding parameter 
array p(Φ). The matrix representing A∗ relative to a Φ-standard basis is

diag(θ∗0 , θ∗1 , θ∗2 , . . . , θ∗d).

Moreover, the matrix representing A relative to a Φ-standard basis is the tridiagonal 
matrix ⎡⎢⎢⎢⎢⎢⎣

a0 b0 0
c1 a1 b1

c2 a2
. . .

. . . . . . bd−1
0 cd ad

⎤⎥⎥⎥⎥⎥⎦, (21)

where {ai}d
i=0, {bi}d−1

i=0 , {ci}d
i=1 are some scalars in C. We call ai, bi, ci the intersection 

numbers of Φ. Note that the matrix (21) has constant row sum θ0 [32, Lemma 10.5].

Example 4.5. Let Φ be the Leonard system in Example 4.2. Then {Aix̂}Di=0 form a 
Φ-standard basis for Mx̂. Recall the scalars ai, bi, ci from (13). These are the intersection 
numbers of Φ [28, Theorem 4.1(vi)].
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Note 4.6. Recall from Section 3 that Γ is a Q-polynomial distance-regular graph. Let 
Φ = Φ(Γ) denote the Leonard system (16) associated with Γ. We say that Γ has 
q-Racah type when Φ has q-Racah type. For the rest of the paper, assume that Γ has 
q-Racah type. Because p(Φ) has q-Racah type, it satisfies (17)–(20) for some scalars 
h, h∗, s, s∗, r1, r2. We fix this notation for the rest of the paper. Referring to this nota-
tion, whenever we encounter square roots, these are interpreted as follows. We fix square 
roots s1/2, s∗1/2, r1/2

1 , r1/2
2 such that r1/2

1 r
1/2
2 = s1/2s∗1/2q(D+1)/2.

Let Φ denote a Leonard system in Definition 4.1. Let p(Φ) = p(Φ; q) denote the 
parameter array of Φ that has q-Racah type in Example 4.3. In the following proposition 
we describe the parameter array that has q−1-Racah type.

Proposition 4.7. (q−1-Racah type) For 0 ≤ i ≤ d define

θ′i = θ′0 + h′(1 − q−i)(1 − s′q−i−1)qi, (22)

θ∗i
′ = θ∗0

′ + h∗′(1 − q−i)(1 − s∗′q−i−1)qi, (23)

and for 1 ≤ i ≤ d define

ϕi
′ = h′h∗′q−1+2i(1 − q−i)(1 − q−i+d+1)(1 − r′1q

−i)(1 − r′2q
−i), (24)

φi
′ = h′h∗′q−1+2i(1 − q−i)(1 − q−i+d+1)(r′1 − s∗′q−i)(r′2 − s∗′q−i)/s∗′, (25)

where

θ′0 = θ0, θ∗0
′ = θ∗0 , (26)

h′ = hsq, s′ = s−1, r′1 = r−1
1 , (27)

h∗′ = h∗s∗q, s∗′ = s∗−1, r′2 = r−1
2 . (28)

Then the sequence p(Φ; q−1) := ({θ′i}d
i=0, {θ∗i ′}d

i=0, {ϕ′
i}d

i=1, {φ′
i}d

i=1) is equal to p(Φ; q). 
Therefore p(Φ; q−1) is the parameter array that has q−1-Racah type.

Proof. Using (26)–(28) one checks that θ′i = θi, θ∗i
′ = θ∗i for 0 ≤ i ≤ d and ϕ′

i = ϕi, 
φ′
i = φi for 1 ≤ i ≤ d. It follows that p(Φ; q−1) is the parameter array of Φ. By definition 

of q-Racah type in Example 4.3, p(Φ; q−1) has q−1-Racah type. �
5. T -module W

We recall the T -module W from the last paragraph in Section 3. Note that W is 
decomposed into the direct sum of two irreducible T -modules Mx̂ and Mx̂⊥ [19, Sec-
tion 5]. We first discuss Mx̂ and its associated polynomials. Recall from Example 4.2 that 
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Φ := (A, A∗, {Ei}Di=0, {E∗
i }Di=0) is a Leonard system on Mx̂. Also recall from Example 4.5

that {Aix̂}Di=0 is the Φ-standard basis for Mx̂ and the intersection numbers ai, bi, ci
of Φ. Abbreviate vi = Aix̂ for 0 ≤ i ≤ D. Observe that v0 = Ĉ−

0 = x̂, vi = Ĉ+
i−1 + Ĉ−

i

(1 ≤ i ≤ D−1), and vD = Ĉ+
D−1. We now define a sequence of polynomials f0, f1, . . . , fD

by f0 := 1 and

xfi = bi−1fi−1 + aifi + ci+1fi+1 (0 ≤ i ≤ D − 1),

where f−1 = 0. Then by [32, Theorem 13.4] we have

fi(A)v0 = vi (0 ≤ i ≤ D). (29)

For 0 ≤ i ≤ D, define the scalars ki by

ki = b0b1 · · · bi−1/c1c2 · · · ci. (30)

With the scalars ki and the polynomials fi we define the polynomial Fi by

Fi = fi/ki (0 ≤ i ≤ D). (31)

One routinely checks that

xFi = biFi+1 + aiFi + ciFi−1 (0 ≤ i ≤ D − 1),

where F−1 = 0. By [32, Theorem 23.2], it follows that for 0 ≤ i ≤ D

Fi(x) =
i∑

j=0

(θ∗i − θ∗0)(θ∗i − θ∗1) · · · (θ∗i − θ∗j−1)
ϕ1ϕ2 · · ·ϕj

(x− θ0)(x− θ1) · · · (x− θj−1). (32)

Definition 5.1. With reference to the parameters s, s∗, r1, r2, D associated with p(Φ) =
p(Φ; q), define the scalars a, b, c, d by

a =
(

r1r2
s∗qD

)1/2

, b =
(

s∗

r1r2qD

)1/2

, c =
(
r2s

∗qD+2

r1

)1/2

, d =
(
r1s

∗qD+2

r2

)1/2

.

(33)

We say that the scalars a, b, c, d are associated with p(Φ).

Referring to Definition 5.1, we have the following equations which are useful for our 
calculation.

ab = q−D, ac = r2q, ad = r1q,

bc = s∗q/r1, bd = s∗q/r2, cd = s∗qD+2, abcd = s∗q2.
(34)
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Lemma 5.2. Let the scalars a, b, c, d be as in Definition 5.1. Then the following hold:

(i) none of abqi, acqi, adqi, bcqi, bdqi is equal to 1 for 0 ≤ i ≤ D − 1,
(ii) cdqi 
= 1 for −D ≤ i ≤ D − 2,
(iii) abcdqi 
= 1 for 0 ≤ i ≤ 2D − 2.

Proof. Use assumption (i), (ii) in Example 4.3 and (34). �
Consider a finite sequence of the polynomials {pi(y + y−1)}Di=0 which are defined by 

the scalars a, b, c, d associated with p(Φ):

pi(y + y−1) = pi(y + y−1; a, b, c, d | q) = 4φ3

(
q−i, abcdqi−1, ay, ay−1

ab, ac, ad

∣∣∣∣ q, q

)
, (35)

where y is indeterminate; cf. (2). Applying (33) and the equation r1r2 = ss∗qD+1 to (35)
gives

pi(y + y−1) = 4φ3

(
q−i, s∗qi+1, (sq)1/2y, (sq)1/2y−1

q−D, r1q, r2q

∣∣∣∣ q, q

)
. (36)

Lemma 5.3. Recall the polynomial sequences {Fi}Di=0 from (32) and {pi(y + y−1)}Di=0
from (36). Let x be of the form

h(sq)1/2(y + y−1) + (θ0 − h− hsq), (37)

where h, s, θ0 are associated with p(Φ). Then

Fi(x) = pi(y + y−1), i = 0, 1, 2, . . . D. (38)

Proof. First we compute the left-hand side in (38). Put (37) for x in (32) and evaluate 
the result to obtain

i∑
j=0

(q−i; q)j(s∗qi+1; q)j(s1/2q1/2y; q)j(s1/2q1/2y−1; q)j
(r1q; q)j(r2q; q)j(q−D; q)j(q; q)n

qj .

This is equal to the right-hand side of (36) by the definition of basic hypergeometric 
series. Therefore the result follows. �
Remark 5.4. With the above discussion, pick an integer j (0 ≤ i ≤ D). Evaluating (36)
at y = s1/2q1/2+j (or y = s−1/2q−1/2−j) we get

4φ3

(
q−i, s∗qi+1, q−j , sqj+1

q−D, r q, r q

∣∣∣∣ q, q

)
.

1 2
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By this and definition of the q-Racah polynomials [1], {pi(y+y−1)}D−1
i=0 are the q-Racah 

polynomials.

We now consider Mx̂⊥, the orthogonal complement of Mx̂ in W. From [19, Section 6]
the sequence Φ⊥

i := (A, A∗, {E⊥
i }D−2

i=0 , {E∗⊥
i }D−2

i=0 ) acts as a Leonard system on Mx̂⊥, 
where E⊥

i = Ei+1 and E∗⊥
i = E∗

i+1 for 0 ≤ i ≤ D − 2. Define the vectors {v⊥i }D−2
i=0 by

v⊥i = ξi+1Ĉ
+
i + ξi+1εi+1Ĉ

−
i+1, (39)

where for 1 ≤ i ≤ D − 1

ξi = q1−i(1 − qi−D)(1 − s∗qi+1), εi = (1 − qi)(1 − s∗qD+i+1)
qD(1 − qi−D)(1 − s∗qi+1) . (40)

Then the sequence {v⊥i }D−2
i=0 is a Φ⊥-standard basis for Mx̂⊥ [19, Lemma 6.6]. Let a⊥i , b⊥i , 

c⊥i denote the intersection numbers of Φ⊥ [19, (83)]. We define a sequence of polynomials 
f⊥
0 , f⊥

1 , . . . , f⊥
D−2 by f⊥

0 := 1 and

xf⊥
i = b⊥i−1f

⊥
i−1 + a⊥i f

⊥
i + c⊥i+1f

⊥
i+1 (0 ≤ i ≤ D − 3),

where f−1 = 0. By [32, Theorem 13.4] we have

f⊥
i (A)v⊥0 = v⊥i (0 ≤ i ≤ D − 2). (41)

For 0 ≤ i ≤ D − 2 define the scalars k⊥i by

k⊥i = b⊥0 b
⊥
1 · · · b⊥i−1/c

⊥
1 c

⊥
2 · · · c⊥i . (42)

With the scalars k⊥i and the polynomials f⊥
i we define the polynomial F⊥

i by

F⊥
i = f⊥

i /k⊥i (0 ≤ i ≤ D − 2). (43)

One routinely checks that

xF⊥
i = b⊥i F

⊥
i+1 + a⊥i F

⊥
i + c⊥i F

⊥
i−1 (0 ≤ i ≤ D − 3),

where F⊥
−1 = 0. Consider the parameter array p(Φ⊥) = ({θ⊥i }D−2

i=0 , {θ∗⊥i }D−2
i=0 , {ϕ⊥

i }D−2
i=0 ,

{φ⊥
i }D−2

i=0 ). Applying [32, Theorem 23.2] to Φ⊥ we find that for 0 ≤ i ≤ D − 2

F⊥
i (x) =

i∑
j=0

(θ∗⊥i − θ∗⊥0 )(θ∗⊥i − θ∗⊥1 ) · · · (θ∗⊥i − θ∗⊥j−1)
ϕ⊥

1 ϕ
⊥
2 · · ·ϕ⊥

j

(x− θ⊥0 )(x− θ⊥1 ) · · · (x− θ⊥j−1).

(44)
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Lemma 5.5. [19, Theorem 6.10, Corollary 6.11] The parameter array p(Φ⊥) has q-Racah 
type. With reference to the scalars h, h∗, s, s∗, r1, r2 associated with p(Φ) and the scalars 
h⊥, h∗⊥, s⊥, s∗⊥, r⊥1 , r⊥2 associated with p(Φ⊥), their relations are as follows.

h⊥ = hq−1, s⊥ = sq2, r⊥1 = r1q, (45)

h∗⊥ = h∗q−1, s∗⊥ = s∗q2, r⊥2 = r2q. (46)

Consider the scalars a⊥, b⊥, c⊥, d⊥ associated with p(Φ⊥) in a view of Definition 5.1. 
Then by Lemma 5.5,

a⊥ =
(

r1r2
s∗qD−2

)1/2
, b⊥ =

(
s∗

r1r2qD−2

)1/2
,

c⊥ =
(

r2s
∗qD+2

r1

)1/2
, d⊥ =

(
r1s

∗qD+2

r2

)1/2
. (47)

Using Definition 5.1 one can readily check that

a⊥ = aq, b⊥ = bq, c⊥ = c, d⊥ = d.

We define a finite sequence of the polynomials {p⊥i (y + y)}D−2
i=0 which are defined by the 

scalars a⊥, b⊥, c⊥, d⊥ associated with p(Φ⊥):

p⊥i (y + y−1) := pi(y + y−1; a⊥, b⊥, c⊥, d⊥ | q) = pi(y + y−1; aq, bq, c, d | q). (48)

Using (47) we find

p⊥i (y + y−1) = 4φ3

(
q−i, s∗qi+3, (sq)1/2qy, (sq)1/2qy−1

q−D+2, r1q
2, r2q

2

∣∣∣∣ q, q

)
. (49)

Lemma 5.6. Recall the polynomial sequences {F⊥
i }D−2

i=0 from (44) and {p⊥i (y+ y−1)}D−2
i=0

from (49). Let x be of the form

h(sq)1/2(y + y−1) + (θ0 − h− hsq),

where h, s, θ0 are associated with p(Φ). Then

F⊥
i (x) = p⊥i (y + y−1), i = 0, 1, 2, . . . D − 2.

Proof. Similar to Lemma 5.3. �
Recall the Φ-standard basis {vi}Di=0 for Mx̂ and the Φ⊥-standard basis {v⊥i }D−2

i=0 for 
Mx̂⊥. By [19, Lemma 8.3], for 1 ≤ i ≤ D − 1

Ĉ+
i−1 = εi

εi − 1vi + 1
ξi(1 − εi)

v⊥i−1, Ĉ−
i = 1

1 − εi
vi + 1

ξi(εi − 1)v
⊥
i−1. (50)
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Lemma 5.7. For 1 ≤ i ≤ D − 1,

Ĉ+
i−1 = εi

εi − 1fi(A)v0 + 1
ξi(1 − εi)

f⊥
i−1(A)v⊥0 , (51)

Ĉ−
i = 1

1 − εi
fi(A)v0 + 1

ξi(εi − 1)f
⊥
i−1(A)v⊥0 . (52)

And

Ĉ−
0 = f0(A)v0, Ĉ+

D−1 = fD(A)v0.

Proof. To get (51), (52) use (29), (41) together with (50). Note that Ĉ−
0 = v0 and 

Ĉ+
D−1 = vD. The result follows. �
We finish this section with a few comments. The following lemmas will be useful in 

the sequel.

Lemma 5.8. Recall the Hermitian inner product 〈·, ·〉V from the first paragraph in Sec-
tion 3. For 0 ≤ i ≤ D − 1,

‖Ĉ−
i ‖2 =

(
s∗qD

r1r2

)i (q1−D, s∗q2, r1q, r2q; q)i
(q, s∗qD+2, s∗q/r1, s∗q/r2; q)i

,

‖Ĉ+
i ‖2 = −s∗(1 − r1q)(1 − r2q)

(r1 − s∗q)(r2 − s∗q)

(
s∗qD

r1r2

)i (q1−D, s∗q2, r1q
2, r2q

2; q)i
(q, s∗qD+2, s∗q2/r1, s∗q2/r2; q)i

.

Proof. Evaluate [19, Lemma 5.7] using [19, (17)–(20)] and [19, Corollary 4.9]. The results 
routinely follow. �

Note that ‖Ĉ−
i ‖2, ‖Ĉ+

i ‖2 are all positive integral, since they are equal to the cardi-
nality of C−

i , C+
i , respectively.

Lemma 5.9. [31, Section 18]

(i) Recall the scalar ki (0 ≤ i ≤ D) from (30). Then

ki = (r1q; q)i(r2q; q)i(q−D; q)i(s∗q; q)i(1 − s∗q2i+1)
siqi(q; q)i(s∗q/r1; q)i(s∗q/r2; q)i(s∗qD+2; q)i(1 − s∗q) .

To get k∗i , replace (s, s∗) with (s∗, s).
(ii) Recall the scalar k⊥i (0 ≤ i ≤ D − 2) from (42). Then

k⊥i = (r1q2; q)i(r2q2; q)i(q−D+2; q)i(s∗q3; q)i(1 − s∗q2i+3)
siq3i(q; q)i(s∗q2/r1; q)i(s∗q2/r2; q)i(s∗qD+2; q)i(1 − s∗q3) .

To get k∗⊥i , replace (s, s∗) with (s∗, s).
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(iii) Let ν be the scalar such that tr(E0E
∗
0 ) = ν−1. Then

ν = (sq2; q)D(s∗q2; q)D
rD1 qD(sq/r1; q)D(s∗q/r1)D

.

(iv) Let ν⊥ be the scalar such that tr(E⊥
0 E∗⊥

0 ) = ν⊥−1. Then

ν⊥ = (sq4; q)D−2(s∗q4; q)D−2

rD−2
1 q2D−4(sq2/r1; q)D−2(s∗q2/r1)D−2

.

Proof. (i), (iii): From [31, p. 37].
(ii): In part (i) replace D by D − 2 and use (45), (46) to get the result.
(iv): In part (iii) replace D by D − 2 and use (45), (46) to get the result. �
6. The universal DAHA of type (C∨

1 , C1)

In this section we discuss the universal DAHA of type (C∨
1 , C1) and its properties. 

For notational convenience define an index set I = {0, 1, 2, 3}.

Definition 6.1. [34, Definition 3.1] The universal DAHA of type (C∨
1 , C1) is the C-algebra 

Ĥq defined by generators {t±1
n }n∈I and relations

(i) tnt
−1
n = t−1

n tn = 1 (n ∈ I); (ii) tn + t−1
n is central (n ∈ I); (iii) t0t1t2t3 = q−1/2.

For notational convenience define the following elements in Ĥq:

Y = t0t1, X = t3t0, X̃ = t1t2 = q−1/2(t3t0)−1,

A = Y + Y−1, B = X + X−1, B̃ = X̃ + X̃−1.

Lemma 6.2. There exists a unique antiautomorphism † of Ĥq that sends

t0 �→ t1, t1 �→ t0, t2 �→ t3, t3 �→ t2.

Moreover †2 = 1.

Proof. Use Definition 6.1. �
By Lemma 6.2 we have the following:

Y† = Y, X† = X̃, X̃† = X. (53)

In [19, Section 11] the author showed that the space W is an Ĥq-module as well as a 
T-module, and displayed its module structure in detail. In the present paper, for the 
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purpose of our study we will twist W via a certain C-algebra automorphism of Ĥq. 
Recall the Ĥq-module W from [19, Section 11]. Consider a C-algebra automorphism 
ρ : Ĥq → Ĥq that sends

t0 �→ t1, t1 �→ t0, t2 �→ t−1
0 t3t0, t3 �→ t1t2t

−1
1 .

Observe that ρ2 = 1. There exists an Ĥq-module structure on W, called W twisted via ρ, 
that behaves as follows; for all h ∈ Ĥq, w ∈ W, the vector h.w computed in W twisted 
via ρ coincides with the vector hρ.w computed in the original Ĥq-module W. We display 
the Ĥq-module structure W twisted via ρ in Appendix 13.1 in detail. For the rest of the 
paper, we regard an Ĥq-module W as the Ĥq-module W twisted via ρ. The Ĥq-module 
structure on W is determined by the scalars q, s, s∗, r1, r2, D associated with p(Φ). We 
denote this module by W(s, s∗, r1, r2, D; q).

Define the scalars {κn}n∈I by

κ0 =
(

1
qD

)1/2

, κ1 =
(r1r2

s∗

)1/2
, κ2 =

(
r2
r1

)1/2

, κ3 =
(
s∗qD+1)1/2 .

(54)

Lemma 6.3. For each n ∈ I, the scalar κn is not equal to ±1.

Proof. Use assumption (i), (ii) in Example 4.3. �
Lemma 6.4. For each n ∈ I, tn is diagonalizable on W(s, s∗, r1, r2, D; q).

Proof. By [19, Lemma 11.9] for each n ∈ I it follows (tn + t−1
n ).w = (κn + κ−1

n ).w for 
all w ∈ W. So the minimal polynomial of tn is (x − κn)(x − κ−1

n ), and this has distinct 
roots by Lemma 6.3. The result follows. �

On W(s, s∗, r1, r2, D; q) the action of X on {Ĉ±
i }D−1

i=0 as follows [19, Lemma 11.8]:

X.Ĉ−
i = qi(s∗q)1/2Ĉ−

i , X.Ĉ+
i = q−i−1(s∗q)−1/2Ĉ+

i (0 ≤ i ≤ D − 1). (55)

The action of Y on {Ĉ±
i }D−1

i=0 is given as a linear combination of four terms; see Ap-
pendix 13.2. Recall the generators A, A∗, Ã∗ of the algebra T and the elements A, 
B, B̃ of Ĥq. The following theorem explains how the T-action on W is related to the 
Ĥq-action.

Theorem 6.5. [19, Theorem 12.1] On W,

(i) A acts as h(sq)1/2A + (θ0 − h − hsq);
(ii) A∗ acts as h∗(s∗q)1/2B + (θ∗0 − h∗ − h∗s∗q);
(iii) Ã∗ acts as h̃∗(s̃∗q)1/2B̃ + (θ̃∗0 − h̃∗ − h̃∗s̃∗q);
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(iv) (t0 − κ−1
0 )(κ0 − κ−1

0 )−1 acts as the projection of W onto Mx̂;
(v) (t1 − κ−1

1 )(κ1 − κ−1
1 )−1 acts as the projection of W onto MĈ.

We now consider the scalars a, b, c, d from Definition 5.1. Using the relations (33) we 
can describe the Ĥq-module W(s, s∗, r1, r2, D; q) in terms of a, b, c, d and q as follows.

Lemma 6.6. Let the scalars a, b, c, d be as in Definition 5.1. Consider the block diagonal 
matrices Tn(n ∈ I):

T0 = blockdiag
[
τ0(0), τ0(1), . . . , τ0(D − 1), [(ab)1/2]

]
,

T1 = blockdiag
[
τ1(0), τ1(1), . . . , τ1(D − 1)

]
,

T2 = blockdiag
[
τ2(0), τ2(1), . . . , τ2(D − 1)

]
,

T3 = blockdiag
[
τ3(0), τ3(1), . . . , τ3(D − 1), [(cdq−1)−1/2]

]
,

where τ0(0) =
[
(ab)1/2

]
and for 1 ≤ i ≤ D − 1,

τ0(i) = (ab)−1/2

⎡⎢⎣ (1−abqi)(1−abcdqi−1)
1−abcdq2i−1 + ab − (1−abqi)(1−abcdqi−1)

1−abcdq2i−1

ab(1−qi)(1−cdqi−1)
1−abcdq2i−1 −ab(1−qi)(1−cdqi−1)

1−abcdq2i−1 + ab

⎤⎥⎦ ,
and for 0 ≤ i ≤ D − 1,

τ1(i) = (ab−1)1/2

⎡⎢⎣ (1−bcqi)(1−bdqi)
1−abcdq2i + b

a − b
a

(1−adqi)(1−acqi)
1−abcdq2i

(1−bcqi)(1−bdqi)
1−abcdq2i

b
a

(
1 − (1−adqi)(1−acqi)

1−abcdq2i

)
⎤⎥⎦ ,

and for 0 ≤ i ≤ D − 1,

τ2(i) = (cd)−1/2

⎡⎢⎣ 1
aqi

(
1 − (1−adqi)(1−acqi)

1−abcdq2i

)
bcdqi(1−adqi)(1−acqi)

1−abcdq2i

− 1
bqi

(1−bcqi)(1−bdqi)
1−abcdq2i acdqi

(
(1−bcqi)(1−bdqi)

1−abcdq2i + b
a

)
⎤⎥⎦ ,

and τ3(0) =
[
(cdq−1)1/2

]
and for 1 ≤ i ≤ D − 1,

τ3(i) = (cdq−1)−1/2

⎡⎢⎣ 1
qi

(
1 − (1−qi)(1−cdqi−1)

1−abcdq2i−1

)
1

abqi
(1−abqi)(1−abcdqi−1)

1−abcdq2i−1

−abcdqi−1(1−qi)(1−cdqi−1)
1−abcdq2i−1 cdqi−1

(
(1−abqi)(1−abcdqi−1)

1−abcdq2i−1 + ab
)
⎤⎥⎦ .

Then there exists an Ĥq-module structure on W such that for n ∈ I the matrix Tn

represents the generator tn relative to {Ĉ±
i }D−1

i=0 .
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Proof. In Definition 13.1, replace s, s∗, r1, r2, D by a, b, c, d using relations (33). �
For the rest of the paper we let W(a, b, c, d; q) denote the Ĥq-module in Lemma 6.6.

Lemma 6.7. Referring to the Ĥq-module W(a, b, c, d; q) in Lemma 6.6, the action of X
on {Ĉ±

i }D−1
i=0 is as follows.

{
X.Ĉ−

i = qi−
1
2 (abcd)1/2Ĉ−

i for i = 0, 1, . . . , D − 1,
X.Ĉ+

i−1 = q−i+ 1
2 (abcd)−1/2Ĉ+

i−1 for i = 1, 2, . . . , D.

Proof. By Definition 5.1, (s∗q)1/2 = q−1/2(abcd)1/2. By this and (55) the result fol-
lows. �
7. Nonsymmetric Laurent polynomials ε±i

In this section we define certain nonsymmetric Laurent polynomials {ε±i }D−1
i=0 and 

discuss their properties. Let C[y, y−1] denote the space of Laurent polynomials with 
a variable y. Recall the Φ-standard basis {vi}Di=0 for Mx̂ and the Φ⊥-standard basis 
{v⊥i }D−2

i=0 for Mx̂⊥. Define the Laurent polynomial

g[y] :=
(

s∗

r1r2qD

)1/2 (1−s∗q2)(1−s∗q3)
(1−s∗q/r1)(1−s∗q/r2)

(
y −
(

r1r2
s∗qD

)1/2
−
(

s∗

r1r2qD

)1/2
+ 1

qD
y−1
)
.

(56)

Lemma 7.1. Recall Y = t0t1. On the Ĥq-module W(s, s∗, r1, r2, D; q),

g[Y]v0 = v⊥0 .

Proof. Abbreviate u = v⊥0 −g[Y]v0. We show that u = 0. By (39), v⊥0 = ξ1Ĉ
+
0 +ξ1ε1Ĉ

−
1 . 

Next evaluate g[Y]v0 using Lemma 13.2(a), Lemma 13.3(a) and v0 = Ĉ−
0 . Using these 

comments, we evaluate u to get zero. The result follows. �
We now define nonsymmetric Laurent polynomials ε−i , ε

+
i (0 ≤ i ≤ D− 1). Recall the 

equation (51), that is,

Ĉ+
i−1 = εi

εi − 1fi(A)v0 + 1
ξi(1 − εi)

f⊥
i−1(A)v⊥0 .

Applying (31) and (43) to the right-hand side of the above equation gives

εi
kiFi(A)v0 + 1

k⊥i−1F
⊥
i−1(A)v⊥0 . (57)
εi − 1 ξi(1 − εi)
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Applying Theorem 6.5(i) to (57) we find

Ĉ+
i−1 = εi

εi − 1kiFi

(
h(sq)1/2A + (θ0 − h− hsq)

)
v0

+ 1
ξi(1− εi)

k⊥i−1F
⊥
i−1

(
h(sq)1/2A+(θ0 −h−hsq)

)
v⊥0

(by Lemma 5.3 and Lemma 5.6) = εi
εi − 1kipi(A)v0 + 1

ξi(1 − εi)
k⊥i−1p

⊥
i−1(A)v⊥0

(by Lemma 7.1) =
(

εi
εi − 1kipi(A) + 1

ξi(1 − εi)
k⊥i−1p

⊥
i−1(A)g[Y]

)
v0,

(58)

where A = Y + Y−1. Similarly we find

Ĉ−
i =
(

1
1 − εi

kipi(A) + 1
ξi(εi − 1)k

⊥
i−1p

⊥
i−1(A)g[Y]

)
v0. (59)

Motivated by (58) and (59) we make a definition as follows.

Definition 7.2. For 1 ≤ i ≤ D − 1, define

ε+
i−1[y] := εi

εi − 1kipi(y + y−1) + 1
ξi(1 − εi)

k⊥i−1p
⊥
i−1(y + y−1)g[y],

ε−i [y] := 1
1 − εi

kipi(y + y−1) + 1
ξi(εi − 1)k

⊥
i−1p

⊥
i−1(y + y−1)g[y].

Moreover, we define

ε−0 := 1, ε+
D−1 := kDpD.

Remark 7.3. With reference to Definition 7.2, the Laurent polynomials {ε±i }D−1
i=0 are 

considered as nonsymmetric q-Racah polynomials in a view of Remark 5.4. The explicit 
forms are as follows. For 1 ≤ i ≤ D − 1

ε+
i−1 :=

(1−qi)(1−s∗qD+i+1)(q−D,r1q,r2q,s
∗q;q)i

siqi(1−qD)(1−s∗q)(q,s∗q/r1,s∗q/r2,s∗qD+2;q)i 4φ3

(
q−i, s∗qi+1, (sq)1/2y, (sq)1/2y−1

q−D, r1q, r2q

∣∣∣ q, q)
+ s1−iq2−2i(q−D+2,r1q

2,r2q
2,s∗q3;q)i−1g[y]

(1−q−D)(1−s∗q3)(q,s∗q2/r1,s∗q2/r2,s∗qD+2;q)i−1 4φ3

(
q−i+1, s∗qi+2, (sq)1/2qy, (sq)1/2qy−1

q−D+2, r1q2, r2q2

∣∣∣ q, q),
ε−i :=

(1−qi−D)(1−s∗qi+1)(q−D,r1q,r2q,s
∗q;q)i

siqi(1−q−D)(1−s∗q)(q,s∗q/r1,s∗q/r2,s∗qD+2;q)i 4φ3

(
q−i, s∗qi+1, (sq)1/2y, (sq)1/2y−1

q−D, r1q, r2q

∣∣∣ q, q)
− s1−iq2−2i(q−D+2,r1q

2,r2q
2,s∗q3;q)i−1g[y]

(1−q−D)(1−s∗q3)(q,s∗q2/r1,s∗q2/r2,s∗qD+2;q)i−1 4φ3

(
q−i+1, s∗qi+2, (sq)1/2qy, (sq)1/2qy−1

q−D+2, r1q2, r2q2

∣∣∣ q, q),
where g[y] is from (56).
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Proposition 7.4. Referring to the Ĥq-module W(s, s∗, r1, r2, D; q), for 0 ≤ i ≤ D − 1

ε−i [Y].v0 = Ĉ−
i , ε+

i [Y].v0 = Ĉ+
i .

Proof. By (58) and (59) along with Definition 7.2, the result follows. �
By Proposition 7.4 we can see that the Laurent polynomials ε+

i , ε
−
i play a role of 

a map that sends v0 to each Ĉ+
i , Ĉ−

i . Recall the scalars a, b, c, d from Definition 5.1. 
We will express the nonsymmetric Laurent polynomials {ε±i }D−1

i=0 in terms of the scalars 
a, b, c, d. To this end, we need some preliminary lemmas.

Lemma 7.5. Recall the Laurent polynomial g[y] from (56). Then

g[y] = b(1 − abcd)(1 − abcdq)
(1 − bc)(1 − bd) y(1 − ay−1)(1 − by−1).

Proof. Apply the relations (33) to (56). The result follows. �
Lemma 7.6. The following hold.

(i) For 1 ≤ i ≤ D − 1,

εi
εi − 1 = ab(1 − qi)(1 − cdqi−1)

(ab− 1)(1 − abcdq2i−1) ,
1

1 − εi
= (1 − abqi)(1 − abcdqi−1)

(1 − ab)(1 − abcdq2i−1) ,

1
ξi(εi − 1) = qi−1

(ab− 1)(1 − abcdq2i−1) ,
1

ξi(1 − εi)
= qi−1

(1 − ab)(1 − abcdq2i−1) .

(ii) For 0 ≤ i ≤ D − 1,

ki = (ab, ac, ad; q)i(abcd; q)2i
a2i(q, bc, bd, cd, abcdqi−1; q)i

.

For i = D,

kD = (ab, ac, ad; q)D(abcd; q)2D−1

a2D(q, bc, bd, abcdqD−1; q)D(cd; q)D−1
.

(iii) For 0 ≤ i ≤ D − 2,

k⊥i = (abq2, acq, adq; q)i(abcdq2; q)2i
(aq)2i(q, bcq, bdq, cd, abcdqi+1; q)i

.

Proof. (i): Use (33) and (40).
(ii), (iii): Use (33) and Lemma 5.9 (i), (ii). �
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Recall the polynomial sequences {pi}Di=0 and {p⊥i }D−2
i=0 from (35) and (48), respectively. 

Denote their monic polynomials by

Pi = (ab, ac, ad; q)i
ai(abcdqi−1; q)i

pi, P⊥
i = (abq2, acq, adq; q)i

(aq)i(abcdqi+1; q)i
p⊥i . (60)

One checks that P⊥
i = Pi[y; aq, bq, c, d | q].

Lemma 7.7.

(i) For 0 ≤ i ≤ D − 1,

kipi = (abcd; q)2i
ai(q, bc, bd, cd; q)i

Pi.

For i = D,

kDpD = (abcd; q)2D−1

aD(q, bc, bd; q)D(cd; q)D−1
PD.

(ii) For 0 ≤ i ≤ D − 2,

k⊥i p
⊥
i = (abcdq2; q)2i

aiqi(q, bcq, bdq, cd; q)i
P⊥
i .

Proof. Use Lemma 7.6 (ii), (iii) and (60). �
Proposition 7.8. Let {ε±i }D−1

i=0 be as in Definition 7.2. Referring to the scalars a, b, c, d
associated with p(Φ), the {ε±i }D−1

i=0 are equal to the following: For 1 ≤ i ≤ D − 1,

ε+
i−1 = ab(1 − qi)(1 − cdqi−1)

(ab− 1)(1 − abcdq2i−1)
(abcd; q)2i

ai(q, bc, bd, cd; q)i
(
Pi − y(1 − ay−1)(1 − by−1)P⊥

i−1
)
,

ε−i = (1 − abqi)(1 − abcdqi−1)
(1 − ab)(1 − abcdq2i−1)

(abcd; q)2i
ai(q, bc, bd, cd; q)i

×
(
Pi −

ab(1 − qi)(1 − cdqi−1)
(1 − abqi)(1 − abcdqi−1)y(1 − ay−1)(1 − by−1)P⊥

i−1

)
.

Moreover,

ε−0 = 1, ε+
D−1 = (abcd; q)2D−1

aD(q, bc, bd; q)D(cd; q)D−1
PD.

Proof. Apply Lemma 7.6 and Lemma 7.7 to Definition 7.2. The result follows. �
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We give a comment. For 1 ≤ i ≤ D − 1, the ε+
i−1 has of the form

ab(1 − qi)(1 − cdqi−1)
(ab− 1)(1 − abcdq2i−1)

(abcd; q)2i
ai(q, bc, bd, cd; q)i

(
(constant)yi−1 + · · · + (1 − ab)y−i

)
,

and the ε−i has of the form

(abcd; q)2i
ai(q, bc, bd, cd; q)i

(
yi + · · · + 1 + ab− abqi − abcdqi−1

1 − abcdq2i−1 y−i

)
.

Therefore the set {ε±i }D−1
i=0 is linearly independent in C[y, y−1].

Remark 7.9. Let L denote the subspace of C[y, y−1] spanned by {ε±i }D−1
i=0 . By the above 

comment, {ε±i }D−1
i=0 are a basis for L. Recall the Ĥq-module W(a, b, c, d; q) in Lemma 6.6. 

The space L is isomorphic to W via a C-vector space isomorphism that sends εσi to Ĉσ
i

for σ ∈ {+, −} and i = 0, 1, . . . , D − 1. By these comments we can endow a module 
structure for Ĥq with L. On this module L, the matrix representing tn relative to a basis 
ε−0 , ε

+
0 , ε

−
0 , ε

+
0 , . . . , ε

−
D−1, ε

+
D−1 coincides with the matrix Tn in Lemma 6.6. We denote 

this module by L(a, b, c, d; q).

8. The operator Y

In Section 6 we mentioned the eigenvalues/eigenvectors of X on W(s, s∗, r1, r2, D; q). 
In this section we will find eigenvectors of Y along with the corresponding eigenvalues 
on W(s, s∗, r1, r2, D; q). First we find the eigenvalues of A = Y+Y−1. Throughout this 
section we work on the Ĥq-module W = W(s, s∗, r1, r2, D; q).

Lemma 8.1. The eigenvalues of A are qi(sq)1/2 + q−i(sq)−1/2 for 0 ≤ i ≤ D.

Proof. By Theorem 6.5(i), we find the equation A = h−1(sq)−1/2 (A− (θ0 − h− hsq)I)
on W. Recall that A has the eigenvalues {θi}Di=0 and each θi has the form (17). By these 
comments, the result follows. �

For notational convenience we denote �i = qi(sq)1/2 + q−i(sq)−1/2 for 0 ≤ i ≤ D. 
Let W�i denote the eigenspace of A for �i. Then W�i = EiW for 0 ≤ i ≤ D since A
and A share a common eigenvector by Theorem 6.5(i). Observe that W =

∑D
i=0 W�i , 

the orthogonal direct sum. Moreover, by construction of the T -module W the following 
lemma holds.

Lemma 8.2. For 1 ≤ i ≤ D − 1, we have

W�i = span{Eiv0, E
⊥
i−1v

⊥
0 }.

Moreover, W�0 = span{E0v0} and W�D = span{EDv0}.
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By Lemma 6.4 each of t0 and t1 is diagonalizable. By [15, Lemma 3.8] t0 and t1
commute with A = t0t1 + (t0t1)−1, so each of t0 and t1 shares the eigenspaces of A. It 
follows that W�i(0 ≤ i ≤ D) is invariant under tn(n = 0, 1). By these comments and 
Lemma 8.2 the matrix representing tn(n = 0, 1) relative to the ordered basis

B := {E0v0, E1v0, E
⊥
0 v⊥0 , E2v0, E

⊥
1 v⊥0 , . . . , ED−1v0, E

⊥
D−2v

⊥
0 , EDv0}

for W takes the form
⎛⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ . . . ∗ ∗
∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ . (61)

We explicitly find the matrix representing tn(n = 0, 1) relative to B, in order to find 
the eigenvectors of Y. First we find the eigenvectors of t0 in terms of vectors in B. For 
notational convenience we define Ĉ−

−1 = 0, Ĉ+
−1 = 0 and Ĉ−

D = 0, Ĉ+
D = 0.

Lemma 8.3. For 1 ≤ i ≤ D − 1,

t0.(Ĉ+
i−1 + Ĉ−

i ) = κ0(Ĉ+
i−1 + Ĉ−

i ), (62)

t0.(ε−1
i Ĉ+

i−1 + Ĉ−
i ) = κ−1

0 (ε−1
i Ĉ+

i−1 + Ĉ−
i ), (63)

where εi is from (40) and κ0 is from (54).

Proof. To show (62) it suffices to show that (t0−κ0).(Ĉ+
i−1+Ĉ−

i ) = 0. By Theorem 6.5(iv) 
the (t0 − κ−1

0 )(κ0 − κ−1
0 )−1 acts as the projection onto Mx̂. By this and since Ĉ+

i−1 +
Ĉ−

i = vi ∈ Mx̂, we find (62). Next we show (63). Similar to (62), it suffices to show 
(t0−κ−1

0 ).(ε−1Ĉ+
i−1 + Ĉ−

i ) = 0. Since (t0−κ0)(κ−1
0 −κ0)−1 = 1 − (t0−κ−1

0 )(κ0−κ−1
0 )−1

acts as the projection onto Mx̂⊥ and ε−1
i Ĉ+

i−1 + Ĉ−
i = ε−1

i ξ−1
i v⊥i−1 ∈ Mx̂⊥ for 1 ≤ i ≤

D − 1, the desired result follows. �
Consider the eigenvector Ĉ+

0 + Ĉ−
1 of t0 for κ0. Observe that Ĉ+

0 + Ĉ−
1 = v1 = Av0 =∑D

r=0 θrErv0, where the last equation is from A =
∑D

r=0 θrEr. Therefore the coordinate 
vector of Ĉ+

0 + Ĉ−
1 relative to B is

[
θ0, θ1, 0, θ2, 0, . . . , θD−1, 0, θD

]t
. (64)

Lemma 8.4. For i ∈ {0, D},

t0.Eiv0 = κ0Eiv0,

where κ0 is from (54).
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Proof. The matrix representing t0 relative to B has the form (61). This matrix has the 
eigenvector (64) corresponding to the eigenvalue κ0. Use this and linear algebra to get 
the result. �

Next consider the eigenvector ε−1
1 Ĉ+

0 + Ĉ−
1 of t0 for κ−1

0 . From the left in (50) for 
i = 0,

Ĉ+
0 = ε1

ε1−1v1 + 1
ξ1(1−ε1)v

⊥
0 =

D∑
r=0

ε1θr
ε1−1Erv0 +

D−2∑
s=0

1
ξ1(1−ε1)E

⊥
s v⊥0 , (65)

where the last equality holds from v1 = Av0 =
∑D

r=0 θrEr and v⊥0 =
∑D−2

s=0 E⊥
s v⊥0 . 

Similarly, from the right in (50) for i = 1 we find

Ĉ−
1 =

D∑
r=0

θr
1−ε1

Erv0 +
D−2∑
s=0

1
ξ1(ε1−1)E

⊥
s v⊥0 . (66)

Using (65) and (66) we have ε−1
1 Ĉ+

0 + Ĉ−
1 =
∑D−2

s=0
1

ξ1ε1
E⊥

s v⊥0 . Therefore the coordinate 

vector of ε−1
1 Ĉ+

0 + Ĉ−
1 relative to B is

[
0, 0, 1

ξ1ε1
, 0, 1

ξ1ε1
, 0, 1

ξ1ε1
, . . . , 0, 1

ξ1ε1
, 0
]t
. (67)

Lemma 8.5. The matrix representation of t0 relative to B is

blockdiag
(
[κ0], [t0(1)], [t0(2)], . . . , [t0(D − 1)], [κ0]

)
,

where [t0(i)] = diag(κ0, κ
−1
0 ) for 1 ≤ i ≤ D − 1.

Proof. Let [t0]B denote the matrix representation of t0 relative to B. Since [t0]B has the 
form (61) and by Lemma 8.4 we denote [t0]B by blockdiag([κ0], [t0(1)], . . . , [t0(D − 1)],
[κ0]), where the [t0(i)] is the matrix representing t0 relative to {Eiv0, E⊥

i−1v
⊥
0 } for 1 ≤

i ≤ D − 1. Using linear algebra along with (64) and (67) we find the equation

[t0(i)]
[
θi 0
0 1

ξ1ε1

]
=
[
θi 0
0 1

ξ1ε1

] [
κ0 0
0 κ−1

0

]
.

Evaluate [t0(i)] using the above equation. The result follows. �
We now find the matrix representation of t1 relative to B. We start with the following 

lemma.
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Lemma 8.6. For 0 ≤ i ≤ D − 1,

t1.(Ĉ−
i + Ĉ+

i ) = κ1(Ĉ−
i + Ĉ+

i ),

t1.(τiĈ−
i + Ĉ+

i ) = κ−1
1 (τiĈ−

i + Ĉ+
i ),

where κ1 is from (54) and

τi = s∗(1 − r1q
i+1)(1 − r2q

i+1)
(r1 − s∗qi+1)(r2 − s∗qi+1) .

Proof. It is similar to Lemma 8.3. Use Theorem 6.5(v) and the fact that {Ĉ−
i + Ĉ+

i }D−1
i=0

is a basis for MĈ and {τiĈ−
i + Ĉ+

i }D−1
i=0 is a basis for MĈ⊥. �

Consider the eigenvector Ĉ−
0 + Ĉ+

0 of t1 for κ1. Since Ĉ−
0 = v0 =

∑D
r=0 Erv0, by this 

and (65) we have

Ĉ−
0 + Ĉ+

0 = v0 + ε1
ε1−1v1 + 1

ξ1(1−ε1)v
⊥
0 =

D∑
r=0

(
1 + ε1θr

ε1−1

)
Erv0 +

D−2∑
s=0

1
ξ1(1−ε1)E

⊥
s v⊥0 .

One routinely checks that 1 + ε1θD
ε1−1 = 0, and so the coordinate vector of Ĉ−

0 +Ĉ+
0 relative 

to B is[
1 + ε1θ0

ε1−1 , 1 + ε1θ1
ε1−1 ,

1
ξ1(1−ε1) , 1 + ε1θ2

ε1−1 ,
1

ξ1(1−ε1) , . . . , 1 + ε1θD−1
ε1−1 , 1

ξ1(1−ε1) , 0
]t
. (68)

Similarly, for the eigenvector τ0Ĉ−
0 + Ĉ+

0 of t1 for k−1
1 we find

τ0Ĉ
−
0 + Ĉ+

0 =
D∑

r=0

(
τ0 + ε1θr

ε1−1

)
Erv0 +

D−2∑
s=0

1
ξ1(1−ε1)E

⊥
s v⊥0 .

One routinely checks that τ0 + ε1θ0
ε1−1 = 0, and so the coordinate vector of τ0Ĉ−

0 + Ĉ+
0

relative to B is[
0, τ0 + ε1θ1

ε1−1 ,
1

ξ1(1−ε1) , τ0 + ε1θ2
ε1−1 ,

1
ξ1(1−ε1) , . . . , τ0 + ε1θD−1

ε1−1 , 1
ξ1(1−ε1) , τ0 + ε1θD

ε1−1

]t
. (69)

Lemma 8.7. We have

t1.E0v0 = κ1E0v0, t1.EDv0 = κ−1
1 EDv0.

Proof. The matrix representing t1 relative to B has the form (61). Use this and linear 
algebra together with (68), (69). The result follows. �
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Lemma 8.8. The matrix representation of t1 relative to B is

blockdiag
(
[κ1], [t1(1)], [t1(2)], . . . , [t1(D − 1)], [κ−1

1 ]
)
,

where for 1 ≤ i ≤ D − 1

[t1(i)] =

⎡⎣κ−1
1

(
κ2
1−τ0
1−τ0

− θi
ε1(κ2

1−1)
(1−ε1)(1−τ0)

)
κ−1
1 ξ1(1−κ2

1)(ε1θi−1+ε1)(ε1θi−τ0+τ0ε1)
(1−ε1)(1−τ0)

κ−1
1 (κ2

1−1)
ξ1(1−ε1)(1−τ0) κ−1

1

(
θi

ε1(κ2
1−1)

(1−ε1)(1−τ0) −
k2
1τ0−1
1−τ0

) ⎤⎦ .
Proof. Similar to the proof of Lemma 8.5. �

Based on our discussion so far, we find the matrix representation of Y relative to B.

Lemma 8.9. The matrix representing Y relative to B is

blockdiag
(
[(sq)1/2], [Y(1)], [Y(2)], . . . [Y(D − 1)], [q−D(sq)−1/2]

)
,

where for 1 ≤ i ≤ D − 1

[Y(i)] =

⎡⎣κ0κ
−1
1

(
κ2
1−τ0
1−τ0

− θi
ε1(κ2

1−1)
(1−ε1)(1−τ0)

)
κ0κ

−1
1

ξ1(1−κ2
1)(ε1θi−1+ε1)(ε1θi−τ0+τ0ε1)

(1−ε1)(1−τ0)

κ−1
0 κ−1

1
(κ2

1−1)
ξ1(1−ε1)(1−τ0) κ−1

0 κ−1
1

(
θi

ε1(κ2
1−1)

(1−ε1)(1−τ0) −
k2
1τ0−1
1−τ0

) ⎤⎦ .
(70)

Proof. Recall Y = t0t1. The matrix representing Y relative to B is the product of the 
matrix representing t0 relative to B and the matrix representing t1 relative to B. By 
Lemma 8.5 and Lemma 8.8 the result follows. �
Lemma 8.10. The eigenvalues of Y are

(sq)1/2, q(sq)1/2, q2(sq)1/2, . . . , qD−1(sq)1/2,
q−1(sq)−1/2, q−2(sq)−1/2, . . . , q1−D(sq)−1/2, q−D(sq)−1/2.

Therefore Y is multiplicity-free.

Proof. The eigenvalues of Y are routinely obtained from Lemma 8.9. The last assertion 
follows from assumption (ii) in Example 4.3. �

For notational convenience we abbreviate

λr =
{
qr(sq)1/2 (r = 0, 1, 2, . . . , D − 1),
qr(sq)−1/2 (r = −1,−2, . . . ,−D).
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Note that λ−1
i = λ−i for i = ±1, ±2, . . . , ±(D − 1) and �j = λj + λ−j for 0 ≤ j ≤ D. 

We will find an eigenvector of Y associated with λr(−D ≤ r ≤ D− 1), and express as a 
linear combination of elements of B.

Lemma 8.11. With the above notation, there exist an eigenvector yi of Y associated with 
the eigenvalue λi such that for i ∈ {0, D}

y0 = E0v0, y−D = EDv0,

and for 1 ≤ i ≤ D − 1

y−i = ω−iEiv0 + E⊥
i−1v

⊥
0 , yi = ωiEiv0 + E⊥

i−1v
⊥
0 ,

where

ω−i = m

(
q−i + θi

h(q−D − 1) + r1r2(1 − r1q)(1 − r2q) − (r1 − s∗q)(r2 − s∗q)
(r1r2 − s∗)(1 − s∗q2)

)
,

ωi = m

(
sqi+1 + θi

h(q−D − 1) + r1r2(1 − r1q)(1 − r2q) − (r1 − s∗q)(r2 − s∗q)
(r1r2 − s∗)(1 − s∗q2)

)
,

and m = s∗(1−q−D)(1−s∗q2)(1−s∗q3)
(r1−s∗q)(r2−s∗q) .

Proof. Note that A and Y share common eigenvectors. Without loss of generality one 
can choose y0 = E0v0 and y−D = EDv0. Let 1 ≤ i ≤ D−1. Since A = Y+Y−1, each of 
yi, y−i is an eigenvector of A associated with �i. So yi, y−i ∈ W�i . Let [yi] (resp. [y−i]) 
denote the coordinate vector of yi (resp. y−i) relative to {Eiv0, E⊥

i−1v
⊥
0 }. It suffices to 

find the vectors [yi] and [y−i]. By Lemma 8.9 we have

[Y(i)][yi] = λi[yi] and [Y(i)][y−i] = λ−i[y−i].

Evaluate the above equations using (70) and simplify the vectors [yi], [y−i]. The result 
follows. �

We normalize the vectors {yi}D−1
i=−D so that the sum of these vectors is equal to v0. 

For 1 ≤ i ≤ D − 1 set

y−i := − qi

m(sq2i+1 − 1)y−i = − qiω−i

m(sq2i+1 − 1)Eiv0 −
qi

m(sq2i+1 − 1)E
⊥
i−1v

⊥
0 , (71)

yi := qi

m(sq2i+1 − 1)yi = qiωi

m(sq2i+1 − 1)Eiv0 + qi

m(sq2i+1 − 1)E
⊥
i−1v

⊥
0 . (72)

Set

y0 := y0 = E0v0, y−D := y−D = EDv0. (73)
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Theorem 8.12. With reference to the notation (71)–(73), each yi is an eigenvector of Y
associated with λi, and

D−1∑
i=−D

yi = v0. (74)

Proof. It suffices to show (74). Evaluate the right-hand side in (74) using Lemma 8.11
together with (71)–(73). Then

D−1∑
i=−D

yi = y0 +
D−1∑
i=1

(yi + y−i) + y−D = E0v0 +
D−1∑
i=1

qi(yi − y−i)
m(sq2i+1 − 1) + EDv0

=
D∑
i=0

Eiv0 = v0,

as required. �
For the rest of this paper we fix the eigenvectors {yi}D−1

i=−D of Y as in Theorem 8.12. 
Let Wλi

denote the eigenspace of Y for λi. Observe that W =
⊕D−1

i=−D Wλi
, an orthog-

onal direct sum. Recall the Hermitian inner product 〈·, ·〉V from the first paragraph in 
Section 3. We find the norm of yi for −D ≤ i ≤ D − 1.

Proposition 8.13. For 1 ≤ i ≤ D − 1,

‖y−i‖2 =
q2iω2

−i

m2(sq2i+1 − 1)2 k
∗
i ν

−1 + q2i

m2(sq2i+1 − 1)2 k
∗⊥
i−1ν

⊥−1‖v⊥0 ‖2,

‖yi‖2 = q2iω2
i

m2(sq2i+1 − 1)2 k
∗
i ν

−1 + q2i

m2(sq2i+1 − 1)2 k
∗⊥
i−1ν

⊥−1‖v⊥0 ‖2,

where k∗i , k∗⊥i , ν, ν⊥ are from Lemma 5.9, m is from Lemma 8.11, and

‖v⊥0 ‖2 = s∗(1 − qD)(1 − q1−D)(1 − s∗q2)(1 − s∗q3)(1 − r1q)(1 − r2q)
qDr1r2(1 − s∗q/r1)(1 − s∗q/r2)

. (75)

Moreover,

‖y0‖2 = ν−1, ‖y−D‖2 = k∗Dν−1.

Proof. Recall from [32, Theorem 15.3] that

〈Eiv0, Ejv0〉V = δijk
∗
i ν

−1‖v0‖2 (0 ≤ i, j ≤ D − 1). (76)
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Let 1 ≤ i ≤ D − 1. We first find ‖y−i‖2. By (71), we have

‖y−i‖2 =
〈
− qiω−i

m(sq2i+1 − 1)
Eiv0 −

qi

m(sq2i+1 − 1)
E⊥

i−1v
⊥
0 ,

− qiω−i

m(sq2i+1 − 1)Eiv0 −
qi

m(sq2i+1 − 1)E
⊥
i−1v

⊥
0

〉
V

=
q2iω2

−i

m2(sq2i+1 − 1)2 ‖Eiv0‖2 + q2i

m2(sq2i+1 − 1)2 ‖E
⊥
i−1v

⊥
0 ‖2

=
q2iω2

−i

m2(sq2i+1 − 1)2 k
∗
i ν

−1‖v0‖2 + q2i

m2(sq2i+1 − 1)2 k
∗⊥
i−1ν

⊥−1‖v⊥0 ‖2,

where the last equation is from (76). Recall that ‖v0‖2 = 1. The line (75) is obtained 
from [19, Lemma 6.14] together with Lemma 5.8. Similarly we obtain the norm of yi. �
9. Orthogonality for ε±i

Recall the nonsymmetric Laurent polynomials {ε±i }D−1
i=0 from Definition 7.2 and recall 

the subspace L of C[y, y−1] spanned by {ε±i }D−1
i=0 from Remark 7.9. In this section we 

define a bilinear form on L that satisfies the orthogonality relations for {ε±i }D−1
i=0 . Recall 

the bilinear form 〈·, ·〉V and the Ĥq-module W(s, s∗, r1, r2, D; q).

Lemma 9.1. Let the antiautomorphism † be as in Lemma 6.2. For h ∈ Ĥq and u, v ∈
W(s, s∗, r1, r2, D; q),

〈h.u, v〉V = 〈u, h†.v〉V .

Proof. Let 0 ≤ i, j ≤ D − 1. Routinely check

〈tδn.Ĉσ
i , Ĉ

τ
j 〉V = 〈Ĉσ

i , t
δ†
n .Ĉτ

j 〉V ,

for n ∈ I and σ, τ, δ ∈ {+, −}. Since {t±1
n }n∈I generates Ĥq, the result follows. �

Lemma 9.2. For −D ≤ i ≤ D− 1, let yi be an eigenvector of Y for the eigenvalue λi as 
in Theorem 8.12. For L1, L2 ∈ L,

〈L1[Y].v0, L2[Y].v0〉V =
D−1∑
i=−D

L1[λi]L2[λi]‖yi‖2,

where the norm ‖yi‖2 is given by Proposition 8.13.
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Proof. Compute

〈L1[Y].v0, L2[Y].v0〉V = 〈L1[Y]
∑
i

yi, L2[Y]
∑
j

yj〉V (by line (74))

=
∑
i,j

〈L1[Y]yi, L2[Y]yj〉V

=
∑
i,j

〈L1[λi]yi, L2[λj ]yj〉V

=
∑
i,j

L1[λi]L2[λj ]〈yi,yj〉V

=
∑
i

L1[λi]L2[λi]‖yi‖2,

where the last equation follows since {yi}D−1
i=−D is an orthogonal basis for W. �

Motivated by Lemma 9.2 we define a bilinear form 〈·, ·〉L : L × L → C as follows. For 
L1, L2 ∈ L

〈L1[y], L2[y]〉L :=
D−1∑
i=−D

L1[λi]L2[λi]‖yi‖2, (77)

where ‖yi‖2 is from Proposition 8.13.

Lemma 9.3. Let L1, L2 ∈ C[y, y−1]. With reference to the form (77),

〈yL1[y], L2[y]〉L = 〈L1[y], yL2[y]〉L. (78)

Proof. On the left-hand side in (78) put L′
1[y] = yL1[y]. Then by Lemma 9.2

〈L′
1[y], L2[y]〉L = 〈L′

1[Y]v0, L2[Y]v0〉V = 〈YL1[Y]v0, L2[Y]v0〉V .

By Lemma 9.1 and Y = Y† from (53), it follows 〈YL1[Y]v0, L2[Y]v0〉V = 〈L1[Y]v0,

YL2[Y]v0〉V . But the right-hand side in (78) is equal to 〈L1[Y]v0, YL2[Y]v0〉V . The 
result follows. �

We now show that the Laurent polynomials ε+
i , ε

−
i satisfy the orthogonality relation 

with respect to the bilinear form (77).

Theorem 9.4. Let ε+
i , ε

−
i be the Laurent polynomials in Definition 7.2. For −D ≤ r ≤

D− 1, let yr be an eigenvector of Y for the eigenvalue λr as in Theorem 8.12. Then for 
σ, τ ∈ {+, −},



108 J.-H. Lee / Journal of Combinatorial Theory, Series A 147 (2017) 75–118
D−1∑
r=−D

εσi [λr]ετj [λr]‖yr‖2 = δσ,τδi,j‖Ĉσ
i ‖2,

where ‖yr‖2 is given in Proposition 8.13 and ‖Ĉσ
i ‖2 is given in Lemma 5.8.

Proof. Using Lemma 9.2 and Corollary 7.4 we find

D−1∑
r=−D

εσi [λr]ετj [λr]‖yr‖2 = 〈εσi [Y]v0, ε
τ
j [Y]v0〉V = 〈Ĉσ

i , Ĉ
τ
j 〉V .

By Lemma 5.8 the result follows. �
Recall ‖Ĉ±

i ‖2 from Lemma 5.8 and the scalars a, b, c, d from Definition 5.1. Using (33)
evaluate ‖Ĉ±

i ‖2 in terms of a, b, c, d. Then by Theorem 9.4 it follows

〈εσi , ετj 〉L = δσ,τδi,j‖Ĉσ
i ‖2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δσ,τδi,j

(abq, ac, ad, abcd; q)i
a2i(q, bc, bd, cd; q)i

if σ = −,

δσ,τδi,j(−1)b(1 − ac)(1 − ad)
a(1 − bc)(1 − bd)

(abq, acq, adq, abcd; q)i
a2i(q, bcq, bdq, cd; q)i

if σ = +.

(79)

10. The algebra Ĥq−1

Recall from Section 6 that Ĥq is the universal DAHA of type (C∨
1 , C1). In this section 

we change q by q−1 and discuss the algebra Ĥq−1 and its module. Recall from Section 2
that H̃ = H̃(a, b, c, d; q) is the DAHA of type (C∨

1 , C1). We will compare Ĥq−1 and H̃
shortly.

Lemma 10.1. There exists a C-algebra isomorphism η1 : Ĥq−1 → Ĥq that sends

t0 �→ t−1
0 , t1 �→ t0t

−1
1 t−1

0 , t2 �→ t−1
3 t−1

2 t3, t3 �→ t−1
3 .

Moreover, η2
1 = 1.

Proof. Use Definition 6.1. �
Lemma 10.2. [34, Lemma 16.8] There is a surjective C-algebra homomorphism η2 : Ĥq →
H̃ that sends

t0 �→ −(ab)−1/2T1, t1 �→ −(ab)1/2T−1
1 Z−1,

t2 �→ −q−1(cd)1/2ZT−1
0 , t3 �→ −q1/2(cd)−1/2T0.
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Referring to Lemma 10.1 and Lemma 10.2 we define the map ξ : Ĥq−1 → H̃ to be the 
composition ξ = η2η1. Observe that this map is surjective and sends

t0 �→ −(ab)1/2T−1
1 ,

t1 �→ −(ab)−1/2T1Z,

t2 �→ −q(cd)−1/2Z−1T0,

t3 �→ −q−1/2(cd)1/2T−1
0 .

(80)

Lemma 10.3. Recall Y = T1T0 ∈ H̃. Referring to the map ξ in (80), for X, Y ∈ Ĥq−1

Xξ = q−1/2(abcd)1/2Y −1, (X−1)ξ = q1/2(abcd)−1/2Y,

Yξ = Z, (Y−1)ξ = Z−1.

Proof. Recall X = t3t0 and Y = t0t1. Use definition of ξ. �
In Section 6 we discussed the Ĥq-module W(s, s∗, r1, r2, D; q). We consider an 

Ĥq−1-module on W, denoted by W(s′, s∗′, r′1, r′2, D′; q−1). Note that D = D′. By Propo-
sition 4.7,

W(s′, s∗′, r′1, r′2, D′; q−1) = W(s−1, s∗−1, r−1
1 , r−1

2 , D; q−1).

Recall the scalars a, b, c, d from Definition 5.1. In the q−1-Racah version, by (33) the 
scalars a, b, c, d become a−1, b−1, c−1, d−1, respectively. By Lemma 6.6, we can describe 
a structure of an Ĥq−1-module W(a−1, b−1, c−1, d−1; q−1). For the rest of the paper, we 
denote Wq−1 := W(a−1, b−1, c−1, d−1; q−1).

Lemma 10.4. On the Ĥq−1-module Wq−1 the action of X−1 on {Ĉ±
i }D−1

i=0 is as follows.

{
X−1.Ĉ−

i = qi−
1
2 (abcd)1/2Ĉ−

i for i = 0, 1, . . . , D − 1,
X−1.Ĉ+

i−1 = q−i+ 1
2 (abcd)−1/2Ĉ+

i−1 for i = 1, 2, . . . , D.

Proof. Use Lemma 6.7. �
Recall ε−i = ε−i [y; a, b, c, d | q] and ε+

i = ε+
i [y; a, b, c, d | q] from Proposition 7.8. We 

describe these polynomials in q−1-version

εσi [y; q−1] = εσi [y; a−1, b−1, c−1, d−1 | q−1],

where 0 ≤ i ≤ D − 1 and σ ∈ {+, −}. To this end we need a few preliminary lemmas.
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Lemma 10.5. For n = 0, 1, 2 . . . and a nonzero scalar x ∈ C,

(x−1; q−1)n = (−1)nx−nq−
n(n−1)

2 (x; q)n.

Proof. Use the definition (1) to compute (x−1; q−1)n. �
Lemma 10.6. Let the monic polynomials Pi[y; a, b, c, d | q] be as in (60). Then

Pi[y; a, b, c, d | q] = Pi[y; a−1, b−1, c−1, d−1 | q−1].

Proof. Evaluate Pi[y; a−1, b−1, c−1, d−1 | q−1] using (60) and Lemma 10.5. �
For notational convenience, for 1 ≤ i ≤ D − 1 we define the Laurent polynomials 

Qi = Qi[y; a, b, c, d | q] by

Qi := a−1b−1y−1(1 − ay)(1 − by)P⊥
i−1, (81)

where we recall P⊥
i = Pi[y; aq, bq, c, d | q] from (60); cf. (3).

Proposition 10.7. Let the scalars a, b, c, d be as in Definition 5.1. Recall the polynomials 
Pi = Pi[y; a, b, c, d | q] from (60) and Qi = Qi[y; a, b, c, d | q] from (81). Then the Laurent 
polynomials ε±i [y; q−1] are described as follows: for 1 ≤ i ≤ D − 1

ε+
i−1[y; q

−1] = ab(1 − qi)(1 − cdqi−1)
(ab− 1)

(abcd; q)2i−1

ai(q, bc, bd, cd; q)i
(Pi −Qi) ,

ε−i [y; q−1] = (1 − abqi)(1 − abcdqi−1)
(1 − ab)

(abcd; q)2i−1

ai(q, bc, bd, cd; q)i

×
(
Pi −

ab(1 − qi)(1 − cdqi−1)
(1 − abqi)(1 − abcdqi−1)Qi

)
.

Moreover,

ε−0 [y; q−1] = 1, ε+
D−1[y; q

−1] = (abcd; q)2D−1

aD(q, bc, bd; q)D(cd; q)D−1
PD.

Proof. In Proposition 7.8, replace a, b, c, d, q by a−1, b−1, c−1, d−1, q−1. Evaluate this 
using Lemma 10.5 and Lemma 10.6 and simplify the result. Note that y(1 −a−1y−1)(1 −
b−1qy−1) = a−1b−1y−1(1 − ay)(1 − by). The results routinely follow. �

We finish this section with some comments.
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Lemma 10.8. Referring the basis {Ĉ±
i }D−1

i=0 for Wq−1 , the following hold. For 0 ≤ i ≤
D − 1,

‖Ĉ−
i ‖2 = 1 − abqi

1 − ab

(ab, ac, ad, abcd; q)i
a2i(q, bc, bd, cd; q)i

,

‖Ĉ+
i ‖2 = ab(1 − qi+1)(1 − cdqi)

(ab− 1)(1 − abcdqi)
(ab, ac, ad, abcd; q)i+1

a2i+2(q, bc, bd, cd; q)i+1
.

Proof. In line (79) we expressed ‖Ĉ±
i ‖2 in terms of the scalars a, b, c, d, q. Replace these 

scalars by a−1, b−1, c−1, d−1, q−1, respectively. Evaluate this using Lemma 10.5 and sim-
plify it. The result routinely follows. �
Note 10.9. In Remark 7.9 we discussed the Ĥq-module L = L(a, b, c, d; q). We re-
call from (77) that 〈·, ·〉L is the bilinear form on L. Consider the Ĥq−1-module 
L(a−1, b−1, c−1, d−1; q−1). Abbreviate Lq−1 := L(a−1, b−1, c−1, d−1; q−1). Observe that 
the Laurent polynomials ε+[y; q−1], ε−[y; q−1] in Proposition 10.7 form a basis for Lq−1 . 
By (79) and Lemma 10.8, the bilinear form 〈·, ·〉Lq−1 satisfies

〈εσi [y; q−1], ετj [y; q−1]〉Lq−1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δσ,τδi,j

1 − abqi

1 − ab

(ab, ac, ad, abcd; q)i
a2i(q, bc, bd, cd; q)i

if σ = −,

δσ,τδi,j
ab(1 − qi+1)(1 − cdqi)
(ab− 1)(1 − abcdqi)

(ab, ac, ad, abcd; q)i+1

a2i+2(q, bc, bd, cd; q)i+1
if σ = +.

(82)

11. Nonsymmetric Askey–Wilson polynomials and ε±i

We continue to work with the algebra Ĥq−1 in Section 10. Throughout this section 
we let the scalars a, b, c, d be as in Definition 5.1. Recall the nonsymmetric Laurent 
polynomials ε+

i = ε+
i [y; q−1], ε−i = ε−i [y; q−1] from Proposition 10.7. Referring to this 

proposition, we make a definition of the Laurent polynomials Ei (−D ≤ i ≤ D − 1)
which is a natural normalization of ε+

i , ε
−
i .

Definition 11.1. Recall the Laurent polynomial sequences Pi from (60) and Qi from (81). 
With reference to Proposition 10.7, we define

E−i := Pi −Qi (1 ≤ i ≤ D − 1),

Ei := Pi −
ab(1 − qi)(1 − cdqi−1)

(1 − abqi)(1 − abcdqi−1)Qi (1 ≤ i ≤ D − 1),

and E0 := 1 and E−D := PD; cf. Definition 2.1.
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By Proposition 10.7 and Definition 11.1 one can readily find that for 1 ≤ i ≤ D − 1,

E−i = (ab− 1)
ab(1 − qi)(1 − cdqi−1)

ai(q, bc, bd, cd; q)i
(abcd; q)2i−1

ε+
i−1, (83)

Ei = (1 − ab)
(1 − abqi)(1 − abcdqi−1)

ai(q, bc, bd, cd; q)i
(abcd; q)2i−1

ε−i . (84)

Moreover,

E0 = ε−0 , E−D = aD(q, bc, bd; q)D(cd; q)D−1

(abcd; q)2D−1
ε+
D−1. (85)

Recall from Note 10.9 that Lq−1 is the Ĥq−1-module and 〈·, ·〉Lq−1 is the bilinear 
form on Lq−1 . By a comment in Note 10.9 and (83)–(85) the Laurent polynomials Ei in 
Definition 11.1 form a basis for Lq−1 . Observe that Ei are orthogonal with respect to 
〈·, ·〉Lq−1 . In the following proposition, we give a discrete version of Lemma 2.2.

Proposition 11.2. (cf. Lemma 2.2) For 1 ≤ i ≤ D − 1

〈E−i, E−i〉Lq−1 = (ab− 1)(1 − abcdq2i−1)
ab(1 − qi)(1 − cdqi−1)

(q, ab, ac, ad, bc, bd, cd; q)i
(abcd; q)2i(abcdqi−1; q)i

, (86)

〈Ei, Ei〉Lq−1 = (1 − ab)(1 − abcdq2i−1)
(1 − abqi)(1 − abcdqi−1)

(q, ab, ac, ad, bc, bd, cd; q)i
(abcd; q)2i(abcdqi−1; q)i

. (87)

Moreover,

〈E0, E0〉Lq−1 = 1, 〈E−D, E−D〉Lq−1 = ab(1 − qD)
(ab− 1)

(q, ab, ac, ad, bc, bd; q)D(cd; q)D−1

(abcd; q)2D−1(abcdqD−1; q)D
.

(88)

Proof. We first show (86). Evaluate the left-hand side of (86) using (83) and (82). Sim-
plify the result to get the right-hand side of (86). Lines (87), (88) are similarly obtained 
using (84), (85) together with (82). �

From Proposition 11.2, we can view that the Laurent polynomials Ei in Definition 11.1
are a discrete analogue of the nonsymmetric Askey–Wilson polynomials in Definition 2.1. 
We further describe a discrete analogue of the eigenspace of Y of the basic representation 
in Section 2. Consider the Ĥq−1-module Lq−1 . By construction each basis element Ei is 
the eigenvector of the action of X on Lq−1 . With reference to Lemma 10.4, we visualize 
the eigenspaces of X−1 on Lq−1 as follows. Let η = a−1/2b−1/2c−1/2d−1/2.

Note that each white node represents the eigenspace of X−1 corresponding the eigen-
value q−i+ 1

2 η and the eigenvector E−i for i = 1, 2, . . . , D, and each black node represents 
the eigenspace of X−1 corresponding the eigenvalue qi−

1
2 η−1 and the eigenvector Ei for 
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Fig. 3. The eigenspaces of X−1.

i = 0, 1, 2, . . . , D − 1. Compare Fig. 3 with Fig. 1 in Section 2. Then one can see that 
Fig. 3 coincides with Fig. 1 up to (D − 1)-th horizontal edge. This is very natural since 
X−1 corresponds to q1/2ηY by Lemma 10.3.

12. Conclusion

In this paper we have studied certain Laurent polynomials, which are naturally ob-
tained from a Q-polynomial distance-regular graph Γ of q-Racah type that contains 
a Delsarte clique. Using an irreducible module of the universal DAHA Ĥq and Γ, we 
proved the orthogonality relations for those polynomials. Consequently, we showed that 
the above Laurent polynomials are a finite/combinatorial analogue of the nonsymmetric 
Askey–Wilson polynomials.

As we mentioned earlier in Section 1, the theorem of D. Leonard [20] (cf. [3, Sec-
tion III.5]) characterized the terminating branch of the Askey scheme [16] of basic 
hypergeometric orthogonal polynomials by the duality property of Γ, which has had 
a significant impact on the theory of orthogonal polynomials. According to this theorem, 
the q-Racah polynomials are the most general self-dual orthogonal polynomials in the 
above branch. Our results in the present paper can be thought of as a nonsymmetric ver-
sion of the q-Racah polynomials in the situation of Leonard’s theorem. We are planning 
to apply our results to the study of nonsymmetric version of other types of orthogonal 
polynomials in the terminating branch of the Askey scheme, such as Krawtchouk poly-
nomials, using Γ of the corresponding type that contains a Delsarte clique. This will give 
a characterization of a nonsymmetric case of Leonard’s theorem.

13. Appendix

In this Appendix we describe the Ĥq-module structure W(s, s∗, r1, r2, D; q) twisted 
via ρ (see §6) and display the action of Y on this module explicitly. Recall the scalars 
s, s∗, r1, r2, D, q from Note 4.6.
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13.1. An Ĥq-module in terms of the scalars s, s∗, r1, r2, D, q

Definition 13.1. (cf. [19, Definition 11.1]) We define some matrices as follows.

(a) For 1 ≤ i ≤ D − 1, the (2 × 2)-matrix t0(i) is⎡⎢⎣ qD/2(1−qi−D)(1−s∗qi+1)
1−s∗q2i+1 + 1

qD/2
qD/2(qi−D−1)(1−s∗qi+1)

1−s∗q2i+1

(1−qi)(1−s∗qD+i+1)
qD/2(1−s∗q2i+1)

(qi−1)(1−s∗qD+i+1)
qD/2(1−s∗q2i+1) + 1

qD/2

⎤⎥⎦
and

t0(0) =
[

1
qD/2

]
, t0(D) =

[
1

qD/2

]
.

(b) For 0 ≤ i ≤ D − 1, the (2 × 2)-matrix t1(i) is⎡⎢⎢⎣
1

(s∗r1r2)1/2

(
(r1−s∗qi+1)(r2−s∗qi+1)

1−s∗q2i+2 + s∗
)

−
(

s∗

r1r2

)1/2 (1−r1q
i+1)(1−r2q

i+1)
1−s∗q2i+2

1
(s∗r1r2)1/2

(r1−s∗qi+1)(r2−s∗qi+1)
1−s∗q2i+2

(
s∗

r1r2

)1/2 (
1 − (1−r1q

i+1)(1−r2q
i+1)

1−s∗q2i+2

)
⎤⎥⎥⎦ .

(c) 0 ≤ i ≤ D − 1, the (2 × 2)-matrix t2(i) is⎡⎢⎣ 1
qi+1(r1r2)1/2

(
1 − (1−r1q

i+1)(1−r2q
i+1)

1−s∗q2i+2

)
s∗qi+1

(r1r2)1/2
(1−r1q

i+1)(1−r2q
i+1)

1−s∗q2i+2

− 1
s∗qi+1(r1r2)1/2

(r1−s∗qi+1)(r2−s∗qi+1)
1−s∗q2i+2

qi+1

(r1r2)1/2

(
(r1−s∗qi+1)(r2−s∗qi+1)

1−s∗q2i+2 + s∗
)
⎤⎥⎦ .

(d) For 1 ≤ i ≤ D − 1, the (2 × 2)-matrix t3(i) is⎡⎢⎣ 1
qi(s∗q)1/2

(
(qi−1)(1−s∗qD+i+1)
qD/2(1−s∗q2i+1) + 1

qD/2

)
1

qi(s∗q)1/2

(
qD/2(1−qi−D)(1−s∗qi+1)

1−s∗q2i+1

)
qi(s∗q)1/2

(
(qi−1)(1−s∗qD+i+1)
qD/2(1−s∗q2i+1)

)
qi(s∗q)1/2

(
qD/2(1−qi−D)(1−s∗qi+1)

1−s∗q2i+1 + 1
qD/2

)
⎤⎥⎦

and

t3(0) =
[

(s∗qD+1)1/2
]
, t3(D) =

[
1

(s∗qD+1)1/2

]
.

With reference to Definition 13.1, we define a 2D×2D block diagonal matrix Tn(n ∈ I)
as follows.

T0 := blockdiag
(
t0(0), t0(1), . . . , t0(D − 1), t0(D)

)
,

T1 := blockdiag
(
t1(0), t1(1), . . . , t1(D − 1)

)
,
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T2 := blockdiag
(
t2(0), t2(1), . . . , t2(D − 1)

)
,

T3 := blockdiag
(
t0(0), t0(1), . . . , t0(D − 1), t0(D)

)
.

One checks that (i) each Tn(n ∈ I) is invertible; (ii) Tn + T−1
n = (κn + κn)I, where κn is 

from (54); (iii) T0T1T2T3 = q−1/2I. By this and Definition 6.1, there exists an Ĥq-module 
structure on W such that for n ∈ I the matrix Tn represents the generator tn relative to 
the basis {Ĉ±

i }D−1
i=0 [19, Proposition 11.10].

13.2. The action of Y

Referring to Section 13.1, we display the action of Y on {Ĉ±
i }Di−1. For this section, 

we abbreviate Wq := W(s, s∗, r1, r2, D; q).

Lemma 13.2. (cf. [19, Lemma 12.2]) On Wq,

(a) For 0 ≤ i ≤ D − 1, the action Y.Ĉ−
i is given as a linear combination with the 

following terms and coefficients:

term coefficient

Ĉ+
i−1

(
qD

s∗r1r2

)1/2 ( (r1−s∗qi+1)(r2−s∗qi+1)
1−s∗q2i+2 + s∗

)(
(qi−D−1)(1−s∗qi+1)

1−s∗q2i+1

)
Ĉ−

i

(
1

qDs∗r1r2

)1/2 ( (r1−s∗qi+1)(r2−s∗qi+1)
1−s∗q2i+2 + s∗

)(
(qi−1)(1−s∗qD+i+1)

1−s∗q2i+1 + 1
)

Ĉ+
i

(
qD

s∗r1r2

)1/2 ( (r1−s∗qi+1)(r2−s∗qi+1)
1−s∗q2i+2

)(
(1−qi+1−D)(1−s∗qi+2)

1−s∗q2i+3 + 1
qD

)
Ĉ−

i+1

(
1

s∗r1r2qD

)1/2 (1−qi+1)(1−s∗qD+i+2)(r1−s∗qi+1)(r2−s∗qi+1)
(1−s∗q2i+2)(1−s∗q2i+3)

,

where Ĉ+
−1 = 0 and Ĉ−

D = 0.
(b) For 0 ≤ i ≤ D − 1, the action Y.Ĉ+

i is given as a linear combination with the 
following terms and coefficients:

term coefficient

Ĉ+
i−1

(
s∗qD

r1r2

)1/2 (1−qi−D)(1−s∗qi+1)(1−r1q
i+1)(1−r2q

i+1)
(1−s∗q2i+1)(1−s∗q2i+2)

Ĉ−
i −

(
s∗

r1r2qD

)1/2 ( (1−r1q
i+1)(1−r2q

i+1)
1−s∗q2i+2

)(
(qi−1)(1−s∗qi+D+1)

1−s∗q2i+1 + 1
)

Ĉ+
i

(
s∗qD

r1r2

)1/2 (
1 − (1−r1q

i+1)(1−r2q
i+1)

1−s∗q2i+2

)(
(1−qi+1−D)(1−s∗qi+2)

1−s∗q2i+3 + 1
qD

)
Ĉ−

i+1

(
s∗

r1r2qD

)1/2 (
1 − (1−r1q

i+1)(1−r2q
i+1)

1−s∗q2i+2

)(
(1−qi+1)(1−s∗qD+i+2)

1−s∗q2i+3

)
,

where Ĉ+
−1 = 0 and Ĉ−

D = 0.
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Lemma 13.3. (cf. [19, Lemma 12.3]) On Wq,

(a) For 0 ≤ i ≤ D − 1, the action Y−1.Ĉ−
i is given as a linear combination with the 

following terms and coefficients:

term coefficient

Ĉ−
i−1

(
s∗qD

r1r2

)1/2 (1−qi−D)(1−s∗qi+1)(1−r1q
i)(1−r2q

i)
(1−s∗q2i)(1−s∗q2i+1)

Ĉ+
i−1

(
qD

s∗r1r2

)1/2 ( (1−qi−D)(1−s∗qi+1)
1−s∗q2i+1

)(
(r1−s∗qi)(r2−s∗qi)

1−s∗q2i + s∗
)

Ĉ−
i

(
s∗qD

r1r2

)1/2 ( (1−qi−D)(1−s∗qi+1)
1−s∗q2i+1 + 1

qD

)(
1 − (1−r1q

i+1)(1−r2q
i+1)

1−s∗q2i+2

)
Ĉ+

i −
(

qD

s∗r1r2

)1/2 ( (1−qi−D)(1−s∗qi+1)
1−s∗q2i+1 + 1

qD

)(
(r1−s∗qi+1)(r2−s∗qi+1)

1−s∗q2i+2

)
,

where Ĉ−
−1 = 0 and Ĉ+

−1 = 0.
(b) For 0 ≤ i ≤ D − 1, the action Y−1.Ĉ+

i is given as a linear combination with the 
following terms and coefficients:

term coefficient

Ĉ−
i

(
qD

s∗r1r2

)1/2 ( (qi+1−1)(1−s∗qD+i+2)
1−s∗q2i+3 + 1

)(
(1−r1q

i+1)(1−r2q
i+1)

1−s∗q2i+2

)
Ĉ+

i

(
1

s∗r1r2qD

)1/2 ( (qi+1−1)(1−s∗qD+i+2)
1−s∗q2i+3 + 1

)(
(r1−s∗qi+1)(r2−s∗qi+1)

1−s∗q2i+2 + s∗
)

Ĉ−
i+1

(
s∗

r1r2qD

)1/2 ( (1−qi+1)(1−s∗qD+i+2)
1−s∗q2i+3

)(
(1−r1q

i+2)(1−r2q
i+2)

1−s∗q2i+4 − 1
)

Ĉ+
i+1

(
1

s∗r1r2qD

)1/2 (1−qi+1)(1−s∗qD+i+2)(r1−s∗qi+2)(r2−s∗qi+2)
(1−s∗q2i+3)(1−s∗q2i+4)

,

where Ĉ−
−1 = 0 and Ĉ+

−1 = 0.
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