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1. Introduction

Tropical geometry investigates properties of tropical varieties, objects which are commonly consid-
ered to be combinatorial counterparts of algebraic varieties. There are several survey articles on this
recent branch of mathematics [14,16,17]. In particular, [6] concentrates on topics which are particu-
larly close to the subject of this paper.

Tropical varieties share many important features with their algebro-geometric analogues, and allow
for a variety of algebraic, combinatorial and geometric techniques to be used. We illustrate this on
several important examples related to the current paper.

• In [3], a version of the Riemann–Roch theorem for graphs was proved by purely combinatorial
methods. Shortly afterwards Gathmann and Kerber [7] used the result to prove Riemann–Roch
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theorem for tropical curves. Their contribution was a method of approximating a tropical curve
by graphs.

• Mikhalkin and Zharkov [15] gave (among others) another proof of the Riemann–Roch theorem for
tropical curves. Their approach used a combination of algebraic and combinatorial techniques.

• Recently, a machinery which allows one to transfer certain results from Riemann surfaces to
tropical curves has been developed in [2]. For example, Baker [2] introduced a tropical version of
Weierstrass points, and proved using this machinery that every tropical curve of genus more than
one contains at least one such point, a fact well known in the context of algebraic curves. Note
that the method necessarily has some limitations. Indeed, it is known that analogues of some
theorems about Riemann surfaces do not hold in the tropical context, Pappus’ Theorem being one
such example [16, §7].

In this paper, we contribute further towards the theory by proving new structural results on di-
visors on tropical curves. In particular, we confirm a conjecture of Baker [2] relating the ranks of a
divisor on a graph and on a tropical curve (see Theorem 1.3), and construct an algorithm for comput-
ing the rank of a divisor on a tropical curve (see Theorem 4.1). All the proofs in the paper are purely
combinatorial. In an expanded version of this article [8] we have employed these results to obtain an
alternative proof of the Riemann–Roch theorem for tropical curves.

1.1. Overview and notation

Throughout the paper, a graph G is a finite connected multigraph that can contain loops, i.e., G is
a pair consisting of a set V (G) of vertices and a multiset E(G) of edges, which are unordered pairs of
not necessarily distinct vertices. The degree degG(v) of a vertex v is the number of edges incident
with it (counting loops twice). The k-th subdivision of a graph G is the graph Gk obtained from G by
replacing each edge with a path with k inner vertices.

Graphs have been considered as analogues of Riemann surfaces in several contexts, in particular,
in [3,4] in the context of linear equivalence of divisors. In this paper we further investigate the prop-
erties of linear equivalence classes of divisors. We primarily concentrate on metric graphs, but let us
start the exposition by recalling the definitions and results from [3] related to (non-metric) graphs.

A divisor D on a graph G is an element of the free abelian group Div(G) on V (G). We can write
each element D ∈ Div(G) uniquely as

D =
∑

v∈V (G)

D(v)(v)

with D(v) ∈ Z. We say that D is effective, and write D � 0, if D(v) � 0 for all v ∈ V (G). For D ∈
Div(G), we define the degree of D by the formula

deg(D) =
∑

v∈V (G)

D(v).

Analogously, we define

deg+(D) =
∑

v∈V (G)

max
{

0, D(v)
}
.

For a function f : V (G) → Z, the divisor associated to f is given by the formula

div( f ) =
∑

v∈V (G)

∑
e=v w∈E(G)

(
f (v) − f (w)

)
(v).

Divisors associated to integer-valued functions on V (G) are called principal. An equivalence relation
∼ on Div(G), is defined as D ∼ D ′ , if and only if D − D ′ is principal. We sometimes write ∼G instead
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of ∼ when the graph is not clearly understood from the context. For a divisor D , |D| denotes the set
of effective divisors equivalent to it, i.e.,

|D| = {
E ∈ Div(G): E � 0 and E ∼ D

}
.

We refer to |D| as the (complete) linear system associated to D . Sometimes, we write |D|G for |D| if
the underlying graph G is not clear. If D ∼ D ′ , we call the divisors D and D ′ equivalent (or linearly
equivalent).

The rank of a divisor D on a graph G is defined as

rG(D) = min
E�0

|D−E|=∅
deg(E) − 1. (1)

We frequently omit the subscript G in rG(D) when the graph G is clear from the context. Also note
that r(D) depends only on the linear equivalence class of D . In the classical case, r(D) is usually
referred to as the dimension of the linear system |D|. In our setting, however, we are not aware of any
interpretation of r(D) as the topological dimension of a physical space. Thus, we refer to r(D) as “the
rank” rather than “the dimension”. See Remark 1.13 of [3] for further discussion about similarities and
differences between our definition of r(D) and the classical definition in the Riemann surface case.

The canonical divisor on G is the divisor KG defined as

KG =
∑

v∈V (G)

(
deg(v) − 2

)
(v).

The genus of G is the number g = |E(G)| − |V (G)| + 1. In graph theory, g is called the cyclomatic
number of G .

The following graph-theoretical analogue of the classical Riemann–Roch theorem is one of the
main results of [3].

Theorem 1.1. If D is a divisor on a loopless graph G of genus g, then

r(D) − r(KG − D) = deg(D) + 1 − g.

Let us note that while the graph-theoretical results, such as Theorem 1.1, can be viewed as simply
being analogous to classical results from algebraic geometry, there exist deep relations between the
two contexts, e.g., a connection arising from the specialization of divisors on arithmetic surfaces is
explored in [2].

Tropical geometry provides another connection between graph theory and the theory of algebraic
curves. The analogue of an algebraic curve in tropical geometry is an (abstract) tropical curve, which
following Mikhalkin [13], can be considered simply as a metric graph. A metric graph Γ is a graph
with each edge being assigned a positive length. Each edge of a metric graph is associated with an
interval of the length assigned to the edge with the end points of the interval identified with the
end vertices of the edge. A special type of edges are loops, which are edges where the two end points
coincide. The points of these intervals are referred to as points of Γ . The internal points of the interval
are referred to as internal points of the edge and they form the interior of the edge. Subintervals of
these intervals are then referred to as segments.

This geometric representation of Γ equips the metric graph with a topology, in particular, we can
speak about open and closed sets. The distance distΓ (v, w) between two points v and w of Γ is
measured in the metric space corresponding to the geometric representation of Γ . For an edge e of
Γ and two points x, y ∈ e we use diste(x, y) to denote the distance between x and y measured on
the edge e. Note that in general, distΓ (x, y) can be strictly smaller than diste(x, y).

The vertices of Γ are called branching points and the set of branching vertices of Γ is denoted by
B(Γ ). We allow branching points of degree two. As usual, we assume that the number of branching
points of Γ is finite.
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A tropical curve is a metric graph where edges incident with vertices of degree one (leaves) are
allowed to have infinite length. Such edges are identified with the interval [0,∞], such that ∞ is
identified with the vertex of degree one, and are called infinite edges. The points corresponding to
∞ are referred to as unbounded ends. The unbounded ends are also considered to be points of the
tropical curve.

The notions of genus, divisor, degree of a divisor and canonical divisor KΓ readily translate from
graphs to metric graphs and tropical curves (with basis of the free abelian group of divisors Div(Γ )

being the infinite set of all the points of Γ ). In order to define linear equivalence on Div(Γ ), the
notion of rational function has to be adapted.

A rational function on a tropical curve Γ is a continuous function f : Γ → R ∪ {±∞} which is
a piecewise linear function with integral slopes on every edge. We require that the number of lin-
ear parts of a rational function on every edge is finite and the only points v with f (v) = ±∞ are
unbounded ends.

The order ordv( f ) of a point v of Γ with respect to a rational function f is the sum of outgoing
slopes of all the segments of Γ emanating from v . In particular, if v is not a branching point of Γ

and the function f does not change its slope at v , ordv( f ) = 0. Hence, there are only finitely many
points v with ordv( f ) 	= 0. Therefore, we can associate a divisor div( f ) to the rational function f by
setting div( f )(v) = ordv( f ) for every point v of Γ . Observe that deg(div( f )) is equal to zero as each
linear part of f with slope s contributes towards the sum defining deg(div( f )) by +s and −s (at its
two boundary points). Note that ordv( f ) need not be zero for unbounded ends v .

Rational functions on tropical curves lead to a definition of principal divisors on tropical curves.
In particular, we say that divisors D and D ′ on Γ are equivalent and write D ∼ D ′ if there exists a
rational function f on Γ such that D = D ′ + div( f ). With this notion of equivalence the linear system
and the rank of a divisor on a tropical curve are defined in the same manner as for finite graphs
above, in particular:

|D| = {
E ∈ Div(Γ ): E � 0 and E ∼ D

}
,

rΓ (D) = min
E�0, E∈Div(Γ )

|D−E|=∅
deg(E) − 1.

We may occasionally use |D|Γ for |D| if the underlying tropical curve Γ is not clear from the context.
Gathmann and Kerber [7] and, independently, Mikhalkin and Zharkov [15] have proved the following
version of the Riemann–Roch theorem for tropical curves.

Theorem 1.2. Let D be a divisor on a tropical curve Γ of genus g. Then

r(D) − r(KΓ − D) = deg(D) + 1 − g.

Theorem 1.2 is also proven in an expanded version of this paper [8].
We prove in Section 3 the following theorem relating the ranks of divisors on ordinary and metric

graphs. Before stating the theorem we need to introduce a definition. We say that a metric graph Γ

corresponds to the graph G if Γ is obtained from G by setting the length of each edge of G to be
equal to one.

Theorem 1.3. Let D be a divisor on a loopless graph G and let Γ be the metric graph corresponding to G. Then,

rG(D) = rΓ (D).

The sets of effective divisors and principal divisors on Γ are both strictly larger than the respective
sets for G . Hence, Theorem 1.3 is not a priori obvious.

Theorem 1.3 implies a conjecture of Baker [2] that the rank of a divisor on a loopless graph G
is the same as its rank on the graph Gk , the graph where every edge of G is k times subdivided
(see Corollary 3.4). Gathmann and Kerber proved in [7, Proposition 2.4] the following statement:
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Given a divisor D on a loopless graph G there exist infinitely many subdivisions G ′ of G such that
rG(D) = rG ′ (D). Corollary 3.4 therefore strengthens quantification of [7, Proposition 2.4] by allowing
all possible subdivisions as opposed to just an infinite family of subdivisions.

We finish the paper by considering algorithmic applications of the results established in Sections 2
and 3, and design an algorithm for computing the rank of divisors on tropical curves.

1.2. The Riemann–Roch criterion

In this section, we recall an abstract criterion from [3] giving necessary and sufficient conditions
for the Riemann–Roch formula to hold (Theorem 1.4). By Theorem 1.2 we will be able to utilize these
conditions in the context of tropical curves in Section 2. In an expanded version of this paper [8],
we proceed the other way around: we show that the abstract conditions of Theorem 1.4 are met for
divisors on tropical curves, thereby giving another proof of Theorem 1.2.

The setting for the results of this section is as follows. Let X be a non-empty set, and let Div(X)

be the free abelian group on X . Elements of Div(X) are called divisors on X , divisors E with E � 0 are
called effective. Let ∼ be an equivalence relation on Div(X) satisfying the following two properties:

(E1) If D ∼ D ′ , then deg(D) = deg(D ′).
(E2) If D1 ∼ D ′

1 and D2 ∼ D ′
2, then D1 + D ′

1 ∼ D2 + D ′
2.

As before, given D ∈ Div(X), define

|D| = {
E ∈ Div(X): E � 0 and E ∼ D

}
and

r(D) = min
E�0

|D−E|=∅
deg(E) − 1.

For a non-negative integer g (which will correspond to the abstract genus of X), let us define the
set of non-special divisors

N = {
D ∈ Div(X): deg(D) = g − 1 and |D| = ∅}

. (2)

Some heed is needed when comparing our notion of non-special divisors to the classic notion from
the theory of Riemann surfaces. Indeed, suppose that Z is a compact Riemann surface Z of genus
gZ with its canonical divisor K Z . A divisor D on Z is called special whenever its rank satisfies
rZ (K Z − D) � 0. Thus, classically, non-special divisors do not necessarily have rank of the genus de-
creased by one, a property which will be guaranteed by our later choice of the abstract genus g .
However, when we additionally assume that degZ (D) = gZ − 1 then, by the Riemann–Roch Theorem
for Riemann surfaces, our definition (2) is consistent with the notion of non-special divisors.

Finally, let K be an element of Div(X) having degree 2g − 2. The following theorem from [3] gives
necessary and sufficient conditions for the Riemann–Roch formula to hold for elements of Div(X)/ ∼.

Theorem 1.4. Define ε : Div(X) → Z/2Z by declaring that ε(D) = 0 if |D| 	= ∅ and ε(D) = 1 if |D| = ∅. Then
the Riemann–Roch formula

r(D) − r(K − D) = deg(D) + 1 − g

holds for all D ∈ Div(X) if and only if the following two properties are satisfied:

(RR1) For every D ∈ Div(X), there exists ν ∈N such that

ε(D) + ε(ν − D) = 1.
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(RR2) For every D ∈ Div(X) with deg(D) = g − 1, we have

ε(D) + ε(K − D) = 0.

In addition to Theorem 1.4, we will later use the following lemma from [3] that also holds in the
abstract setting.

Lemma 1.5. If (RR1) holds, then for every D ∈ Div(X) we have

r(D) =
(

min
D ′∼D
ν∈N

deg+(
D ′ − ν

)) − 1.

1.3. Reducing tropical curves to loopless metric graphs

We finish the introductory part of the paper by reducing the study of divisors on tropical curves
to the corresponding situation on loopless metric graphs. Let Γ be a tropical curve, and let Γ ′ be
the metric graph obtained from Γ by removing interiors of infinite edges and their unbounded ends.
There exists a natural retraction map ψΓ : Γ → Γ ′ that maps deleted points of infinite edges of Γ to
the ends of those edges that belong to Γ ′ and is an identity on the points of Γ ′ . This map induces a
map from Div(Γ ) to Div(Γ ′), which is denoted by ψΓ . The following proposition combines the results
of Lemma 3.4, Remark 3.5, Lemma 3.6 and Remark 3.7 of [7].

Proposition 1.6. Let Γ be a tropical curve, and let Γ ′ and ψΓ be defined as above. Let D ∈ Div(Γ ), and set
D ′ = ψΓ (D). We have D ∼Γ D ′ , deg(D) = deg(D ′), and rΓ (D) = rΓ ′ (D ′). In addition, it holds that KΓ ′ =
ψΓ (KΓ ).

It follows from Proposition 1.6 that Theorem 1.2 restricted to metric graphs implies Theorem 1.2
in full generality. It also follows that given an algorithm to compute the rank of divisors on metric
graphs one can readily design an algorithm to compute rank of divisors on tropical curves. Based on
these observations we concentrate our further investigations on metric graphs.

Further, we shall restrict ourselves to loopless metric graphs in auxiliary lemmas leading to our
main results. The general case can be reduced to the loopless one by introducing a branching
point of degree two on each edge. This transformation does not change the set of divisors or their
properties.

1.4. Rank-determining sets

The results of this paper have been substantially extended since the first version of this manuscript
was posted on the arXiv in 2007. Most importantly, Luo [11] introduced the notion of rank-
determining set, and using this notion he extended Theorem 1.3. Indeed, our Theorem 1.3 asserts
that the rank of a divisor on a (loopless) metric graph with edges of integral lengths can be deter-
mined on a much simpler (and finite) object, that is, on a graph. Luo’s main result roughly speaking
says that such a finitization is possible even for general metric graphs. To state Luo’s result precisely,
we need to give the definition of rank-determing sets which in turn builds on the notion of restricted
rank. Let A be a non-empty set of points of a metric graph Γ . We then define the A-restricted rank of
a divisor D ∈ Div(Γ ) by

rA(D) = min
E∈Div(A),E�0

|D−E|=∅
deg(E) − 1. (3)

The set A is rank-determining if rΓ (D) = rA(D) for each D ∈ Div(Γ ).
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We are now ready to state our main result concerning rank-determining sets, a result originally
due to Luo [11].4

Theorem 1.7. The set B(Γ ) of branching points of any loopless metric graph Γ is rank-determining.

We give a proof of Theorem 1.7 in Section 3. See also [1] for an alternative proof of Theorem 1.7.
As we show in Section 3, Theorem 1.7 implies Theorem 1.3. While not difficult, the argument is

not entirely trivial. In particular, mind that the condition |D − E| = ∅ in (1) and in (3) refer to different
equivalence relations on the sets of divisors.

2. Non-special divisors, alignments, and rank-pairs

As in Subsection 1.2, we define the set of non-special divisors on a metric graph Γ to be

N = {
D ∈ Div(Γ ): deg(D) = g − 1 and |D| = ∅}

where g is the genus of Γ . The main results of this section is an alternative formula for computing
the rank of a divisor on a metric graph (Corollary 2.5).

We rely on results from [15]. An alternative, self-contained approach which gives as a by-product
another (purely combinatorial) proof of the Riemann–Roch theorem for tropical curves can be found
in an expanded version of this paper [8].

2.1. A formula for the rank of a divisor

We present a class of non-special divisors that is of primary interest to us in our later considera-
tions. Let P be an ordered sequence of finitely many points of Γ . We say that the set of points in P
is the support of P and denote it by supp P . The sequence P can also be viewed as a linear order <P

on supp P . If B(Γ ) ⊆ supp P then P is an alignment of points of Γ . The set of all alignments of points
of Γ is denoted by P(Γ ).

We now define a divisor νP corresponding to an alignment P . A segment L of Γ is a P -segment
if both ends of L belong to supp P , and the interior of L is disjoint from supp P . For v ∈ supp P , let
S P (v) denote the set of P -segments of Γ with one end at v and the other end preceding v in the
order determined by P . Finally, let

νP =
∑

v∈supp P

(∣∣S p(v)
∣∣ − 1

)
(v).

It is easy to verify that deg(νP ) = g − 1, where g is the genus of Γ . We start our investigation of
divisors corresponding to alignments by giving two simple propositions.

Proposition 2.1. Let P be an alignment of points of a metric graph Γ . For every point v of Γ that is not
contained in supp P , there exists an alignment P ′ such that supp P ′ = supp P ∪ {v} and νP = νP ′ .

Proof. Such an alignment P ′ can be obtained by inserting the point v in the sequence P between the
(distinct) boundary points of the (unique) segment containing v . �
Proposition 2.2. ([15, Lemma 7.8].) If P is an alignment of points of a metric graph Γ , then νP ∈N .

The next fact asserts that every divisor is either equivalent to an effective divisor, or is equivalent
to a divisor dominated by νP for some alignment P , and not both.

4 The proof of Theorem 1.3 as given in the original version of the manuscript (version 1 on the arXiv) can actually serve as a
proof of Theorem 1.7 due to Luo if phrased in the right terminology.
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Corollary 2.3. (See [15, Corollary 7.9].) Let Γ be a metric graph. For every D ∈ Div(G), exactly one of the
following holds

(a) r(D) � 0; or
(b) r(νP − D) � 0 for some alignment P .

Corollary 2.4. (See [15, Corollary 7.10].) If ν is a non-special divisor on a metric graph Γ of genus g, then
ν ∼ νP for some alignment P of a finite set of points of Γ .

Corollary 2.3 is a consequence of Proposition 2.2. Corollary 2.4 in turn follows from Corollary 2.3
applied to non-special divisors. The arguments to derive these corollaries are rather straightforward.
We refer the reader to [15,8].

We finish this section with establishing a formula for rank of divisors on metric graphs that will
be central in our later analysis of the rank.

Corollary 2.5. If D is a divisor on a metric graph Γ , then the following formula holds:

r(D) = min
D ′∼D

P∈P(Γ )

deg+(
D ′ − νP

) − 1. (4)

Proof. The Riemann–Roch formula holds for divisors on metric graphs (Theorem 1.2), and hence con-
dition (RR1) from Theorem 1.4 is satisfied. Lemma 1.5 can be applied and we infer that

r(D) = min
D ′∼D
ν∈N

deg+(
D ′ − ν

) − 1. (5)

By Proposition 2.2, the minimum in (4) is taken over smaller set of parameters than the min-
imum in (5). Hence, it is enough to show that there exist D ′′ ∼ D and P ∈ P(Γ ) such that
r(D) = deg+(D ′′ − νP ) − 1. Let D ′ ∼ D and ν ∈N be chosen so that r(D) = deg+(D ′ − ν) − 1.

By Corollary 2.4, we have ν ∼ νP for some alignment P of points of Γ . Setting D ′′ = D ′ + (νP − ν)

yields

r(D) = deg+(
D ′ − ν

) − 1 = deg+(
D ′′ − νP

) − 1,

as desired. �
Motivated by Corollary 2.5, we say that the pair (D ′, P ) is a rank-pair for D if D ′ ∼ D , and r(D) =

deg+(D ′ − νP ) − 1.
Note that the result analogous to Corollary 2.5 also holds for non-metric graphs, as shown in [3].

Let P(G) denote the set of all alignments of V (G). As in the case of metric graphs, we can define the
divisor νP corresponding to P ∈P(G) by setting νP (v) to be equal to the number of edges from v to
vertices in V (G) preceding v , decreased by one. The next formula for the rank of a divisor on a finite
graph G was established by Baker and the last author [3].

Lemma 2.6. The following formula holds for the rank of every divisor D on a graph G:

r(D) = min
D ′∼D

P∈P(G)

deg+(
D ′ − νP

) − 1. (6)

It should be remarked that Lemma 2.6 follows in a straightforward fashion from the results above;
at least for loopless graphs. Indeed, we use the Riemann–Roch Theorem 1.1 to conclude that prop-
erty (RR1) in Theorem 1.4 holds. Then Lemma 2.6 is just Lemma 1.5. In [3], where these results were
first obtained the arguments proceeded the other way round: the Riemann–Roch Theorem 1.1 was
established as a consequence of abstract combinatorial criteria from Theorem 1.4.
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3. Rank of divisors on metric graphs

In this section we show that the divisor and the alignment in Corollary 2.5 can be assumed to
have a very special structure. We establish a series of lemmas strengthening our assumptions on
this structure. It will then follow from our results that the rank of a divisor on a graph and on the
corresponding metric graph are the same, thereby establishing Theorem 1.3.

Lemma 3.1. Let D be a divisor on a loopless metric graph Γ . Suppose there exists an alignment P of points of
Γ such that r(D) = deg+(D − νP )− 1. Then there also exists an alignment P ′ of the points of B(Γ )∪ supp D
such that r(D) = deg+(D − νP ′ ) − 1.

Proof. By Proposition 2.1, we can assume that the support of P contains all the points of B(Γ ) ∪
supp D . Choose among all alignments P ′ satisfying r(D) = deg+(D − νP ′ ) − 1 and B(Γ ) ∪ supp D ⊆
supp P ′ an alignment such that | supp P ′| is minimal.

If supp P ′ = B(Γ ) ∪ supp D , then the lemma holds. Assume that there exists a point v0 ∈ supp P ′ \
(B(Γ )∪supp D). Let v1, v2 ∈ supp P ′ be such that the segments in Γ with ends v0 and vi , for i = 1,2,
contain no other points of supp P ′ . We can assume by symmetry that v1 <P ′ v2.

Consider now the alignment P ′′ obtained from P ′ by removing the point v0. We shall distinguish
three cases based on the mutual order of v0, v1 and v2 in P ′ , and conclude in each of the cases that
deg+(D − νP ′′ ) � deg+(D − νP ′ ). This, together with the fact that supp P ′′ � supp P ′ will contradict
the choice of P ′ .

If v0 <P ′ v1 and v0 <P ′ v2, then νP ′ (v0) = −1. Observe that νP ′′ (v1) = νP ′ (v1) − 1, νP ′′ (v0) = 0,
and νP ′′ (v) = νP ′ (v) for v 	= v0, v1. We infer that

deg+(D − νP ′) − deg+(D − νP ′′)

= 1 + max
{

D(v1) − νP ′(v1),0
} − max

{
D(v1) − νP ′(v1) + 1,0

}
� 0.

Therefore deg+(D − νP ′′ ) � deg+(D − νP ′ ).
If v1 <P ′ v0 <P ′ v2, then νP ′ = νP ′′ and again deg+(D − νP ′′ ) = deg+(D − νP ′ ).
It remains to consider the case v1 <P ′ v0 and v2 <P ′ v0. Observe that νP ′ (v0) = 1, νP ′′ (v0) = 0,

νP ′′ (v2) = νP ′ (v2) + 1, and νP ′′ (v) = νP ′ (v) for v 	= v0, v2. We conclude that

deg+(D − νP ′) − deg+(D − νP ′′)

= max
{

D(v2) − νP ′(v2),0
} − max

{
D(v2) − νP ′(v2) − 1,0

}
� 0.

Consequently, deg+(D − νP ′′ ) � deg+(D − νP ′ ). �
Next, we show that the divisor D ′ ∼ D that minimizes minP∈P(Γ ) deg+(D ′ − νP ) can be assumed

to be non-negative everywhere except for the points of B(Γ ).

Lemma 3.2. Let D be a divisor on a loopless metric graph Γ . There exists a rank-pair (D ′, P ) for D such that
P is an alignment of the points of B(Γ ) ∪ supp D ′ and D ′ is non-negative on the interior of every edge of Γ .

Proof. By Corollary 2.5 and Lemma 3.1, there exist a divisor D0 equivalent to D and an alignment P0
of the points of B(Γ ) ∪ supp D0 such that r(D) = deg+(D0 − νP0 ) − 1. Among all such divisors let us
consider the divisor D0 such that the sum

S =
∑

v∈supp D0\B(Γ )

min
{

0, D0(v)
}

is maximal. If S = 0, then the divisor D0 is non-negative on the interior of every edge of Γ , and there
is nothing to prove. Hence, we assume S < 0 in the rest, i.e., there exists an edge e with an internal
point where D0 is negative.
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Let v1, . . . , vk be the longest sequence of points of supp D0 in the interior of e, such that
D0(vi) < 0 for i = 1, . . . ,k and the points are consecutive points, i.e., there is no point of supp D0
on the segment between vi and vi+1, i = 1, . . . ,k − 1. Let w1 be the point of B(Γ ) ∪ supp D0 such
that the segment between v1 and w1 contains no point of B(Γ ) ∪ supp D0 and w1 	= v2, and let
w2 be the point of B(Γ ) ∪ supp D0 such that the segment between vk and w2 contains no point of
B(Γ ) ∪ supp D0 and vk−1 	= w2.

We now modify the divisor D0 and the alignment P0. By symmetry, we can assume that
diste(w1, v1) � diste(w2, vk). Let d0 = diste(w1, v1), let L be the segment from w1 to w2 that con-
tains v1, . . . , vk and let v ′

k be the point of L at distance d0 from w2. Consider the rational function f
equal to 0 on L between v1 and v ′

k and f (v) = min{d0,diste(v, v1),diste(v, v ′
k)} elsewhere. Observe

that ordw1 ( f ) = ordw2 ( f ) = −1 if w1 	= w2, ordw1 ( f ) = −2 if w1 = w2, ordv1 ( f ) = ordv ′
k
( f ) = 1 if

v1 	= v ′
k , ordv1 ( f ) = 2 if v1 = v ′

k , and ordv( f ) = 0 if v 	= w1, w2, v1, v ′
k . In addition, observe that if

w1 = w2, then L is a loop in Γ , and w1 = w2 is a branching point of Γ .
Let D ′

0 = D0 + div( f ). We first show that the sum

S ′ =
∑

v∈supp D ′
0\B(Γ )

min
{

0, D ′
0(v)

}

is strictly larger than S . The value of D ′
0 is smaller than the value of D0 only at w1 and w2. If w1

is a branching point, then the change of the value of the divisor at w1 does not affect the sum.
Otherwise, the points w1 and w2 are distinct (as we have observed earlier), and D0(w1) � 1 by
the choice of w1. Hence, D ′

0(w1) � 0 and the sum is not affected by the corresponding summand.
Analogous statements are true for the point w2. We infer from ordv1 ( f ) > 0 that D ′

0(v1) > D0(v1).
Since D0(v1) < 0, this change increases the sum by one. Finally, the change at v ′

k either increases
the sum by one (if D0(v ′

k) < 0) or does not affect the sum (if D0(v ′
k) � 0) at all. We conclude that

S ′ � S + 1.
We next modify the alignment P0 to P ′

0 in such a way that deg+(D0 − νP0 ) = deg+(D ′
0 − νP ′

0
).

Without loss of generality, we assume that v ′
k ∈ supp P0 (cf. Proposition 2.1). The alignment P ′

0 is
obtained from P0 as follows: all the points of supp P0 distinct from v1, . . . , vk and v ′

k form the initial
part of the alignment in the same order as in P0, and the points v1, v2, . . . , vk, v ′

k then follow (in this
order).

Let W = {w1, w2, v1, . . . , vk, v ′
k}. For simplicity, let us assume that the points w1 and w2 are

distinct, as well as the points v1, vk and v ′
k . It is easy to verify that all our arguments translate to the

setting when some of these points coincide. Since D0(v) = D ′
0(v) and νP0 (v) = νP ′

0
(v) for all points

v /∈ W , the following holds:

deg+(D0 − νP0) − deg+(
D ′

0 − νP ′
0

)

=
∑
v∈W

(
max

{
0, (D0 − νP0)(v)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(v)

})
.

By the choice of the points v1, . . . , vk , we have D0(vi) � −1 and therefore (D0 − νP0 )(v) � 0
for v ∈ W \ {v ′

k, w1, w2}. Note also that νP ′
0
(vi) = 0 and νP ′

0
(v ′

k) = 1. Finally, note that D ′
0(vi) �

D0(vi) + 1 � 0, unless vi = v ′
k , and D ′

0(v ′
k) � 1. As a result, we have (D ′

0 − νP ′
0
)(v) � 0 for v ∈

W \ {w1, w2}. Consequently, we obtain the following:

deg+(D0 − νP0) − deg+(
D ′

0 − νP ′
0

)
= max

{
0, (D0 − νP0)(w1)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(w1)

}
+ max

{
0, (D0 − νP0)(w2)

} − max
{

0,
(

D ′
0 − νP ′

)
(w2)

}
.

0
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Since ordw1 ( f ) = −1, we have D ′
0(w1) = D0(w1) − 1. On the other hand, the value νP ′

0
(w1) is ei-

ther equal to νP0 (w1), or to νP0 (w1) − 1 (the latter is the case if w1 >P0 v1). We conclude that
(D ′

0 − νP ′
0
)(w1) is equal to either (D0 − νP0 )(w1) or (D0 − νP0 )(w1) − 1. Hence,

max
{

0, (D0 − νP0)(w1)
} − max

{
0,

(
D ′

0 − νP ′
0

)
(w1)

}
� 0.

An entirely analogous argument yields that

max
{

0, (D0 − νP0)(w2)
} − max

{
0,

(
D ′

0 − νP ′
0

)
(w2)

}
� 0.

Consequently, we obtain that

deg+(D0 − νP0) − deg+(
D ′

0 − νP ′
0

)
� 0.

Since r(D) = deg+(D0 −νP0 )−1, and D ′
0 is equivalent to D , the inequality above must be the equality,

and thus r(D) = deg+(D ′
0 − νP ′

0
)− 1. By Lemma 3.1, there exists an alignment P ′′

0 of points of B(Γ )∪
supp D ′

0 such that r(D) = deg+(D ′
0 − νP ′′

0
) − 1. As S ′ > S , the existence of D ′

0 contradicts the choice
of D0. �

Next, we show that the divisor D ′ can be assumed to be zero outside B(Γ ), except possibly for a
single point on each edge, where its value could be equal to one.

Lemma 3.3. Let D be a divisor on a loopless metric graph Γ . There exists rank-pair (D ′, P ) for D such that P
is an alignment of the points of B(Γ ) ∪ supp D ′ , and every edge e of Γ contains at most one point v where D ′
is non-zero, and if such a point v exists, then D ′(v) = 1.

Furthermore, the alignment P can be assumed to be such that all the non-branching points of supp P follow
the branching points in the order determined by P .

Proof. By Lemma 3.2, there exist a divisor D0 and an alignment P0 of the points of B(Γ ) ∪ supp D0
such that (D0, P ) is a rank-pair for D , and D0 is non-negative in the interior of every edge of Γ .
Among all such divisors, consider the divisor D0 such that the sum

S =
∑

v∈supp D0\B(Γ )

D0(v)

is minimal. If every edge e contains at most one point v where D0 is non-zero, and D0(v) = 1 at such
a point v , then the lemma holds. We assume that D0 does not have this property for a contradiction.

Choose an edge e such that the sum of the values of D0 in the interior of e is at least two. Let
w1 and w2 be the end points of e and v1, . . . , vk all the points of supp D0 inside e ordered from w1
to w2. In the rest we assume that v1 	= vk . As in the proof of the previous lemma, our arguments
readily translate to the setting when some of these points are the same, but this assumption helps us
to avoid technical complications during the presentation of the proof. Let us note, in order to assist
the reader with the verification of the remaining cases, that if v1 = vk , then D0(v1) � 2.

By symmetry, we can assume that diste(w1, v1) � diste(w2, vk). Let d0 = diste(w1, v1) and let
w ′

2 be the point on the segment between vk and w2 at distance d0 from vk . For the sake of
simplicity, we assume that w2 	= w ′

2; again, our arguments readily translate to the setting when
w2 = w ′

2. Consider the rational function f equal to 0 on the points outside the edge e and on the
segment between w2 and w ′

2 and f (v) = min{diste(v, w1),diste(v, w ′
2),d0} elsewhere. Observe that

ordw1 ( f ) = ordw ′
2
( f ) = 1, ordv1 ( f ) = ordvk ( f ) = −1, and ordv( f ) = 0 if v 	= w1, w ′

2, v1, vk .
Let D ′

0 = D0 + div( f ). Since D ′
0(v1) = D0(v1) − 1 � 0, D ′

0(vk) = D0(vk) − 1 � 0 and D ′
0(w ′

2) = 1,
the sum

S ′ =
∑

v∈supp D ′
0\B(Γ )

D ′
0(v)

is equal to S − 1, and D ′
0 is non-negative in the interior of all the edges of Γ .
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Next, we construct an alignment P ′
0 such that r(D) = deg+(D ′

0 − νP ′
0
) − 1. First, insert w ′

2 into P0

between vk and w2, preserving the order of vk and w2 (this did not change νP0 , see Proposition 2.1).
The alignment P ′

0 is obtained from P0 as follows: the points v1, . . . , vk form the initial part of P ′
0 in

the same order as they appear in P0, and the remaining points form the final part of P ′
0, again in the

same order as they appear in P0.
It is easy to verify that νP0 (v) = νP ′

0
(v) for all points v /∈ {w1, w ′

2, v1, vk}. Hence,

deg+(D0 − νP0) − deg+(
D ′

0 − νP ′
0

)
= max

{
0, (D0 − νP0)(w1)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(w1)

}
+ max

{
0, (D0 − νP0)

(
w ′

2

)} − max
{

0,
(

D ′
0 − νP ′

0

)(
w ′

2

)}
+ max

{
0, (D0 − νP0)(v1)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(v1)

}
+ max

{
0, (D0 − νP0)(vk)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(vk)

}
.

Let us first consider the points v1 and w1. We distinguish two cases based on the mutual order of v1
and w1 in P0.

The case we consider first is that v1 <P0 w1. We have νP0 (v1) = νP ′
0
(v1) � 0 and νP0 (w1) =

νP ′
0
(w1) � 0. As D ′

0(v1) = D0(v1) − 1 � 0, we have that

max
{

0, (D0 − νP0)(v1)
} − max

{
0,

(
D ′

0 − νP ′
0

)
(v1)

} = 1.

As D ′
0(w1) = D0(w1) + 1, we have that

max
{

0, (D0 − νP0)(v1)
} − max

{
0,

(
D ′

0 − νP ′
0

)
(v1)

}
� −1.

We conclude that

max
{

0, (D0 − νP0)(w1)
} − max

{
0,

(
D ′

0 − νP ′
0

)
(w1)

}
+ max

{
0, (D0 − νP0)(v1)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(v1)

}
� 0.

Let us deal with the other case when v1 >P0 w1. Since νP0 (v1) = νP ′
0
(v1) + 1 and D ′

0(v1) =
D0(v1) − 1, we have

max
{

0, (D0 − νP0)(v1)
} = max

{
0,

(
D ′

0 − νP ′
0

)
(v1)

}
.

Similarly, since νP0 (w1) = νP ′
0
(w1) − 1 and D ′

0(w1) = D0(w1) + 1, we have

max
{

0, (D0 − νP0)(w1)
} = max

{
0,

(
D ′

0 − νP ′
0

)
(w1)

}
.

Therefore, in this case we also obtain that

max
{

0, (D0 − νP0)(w1)
} − max

{
0,

(
D ′

0 − νP ′
0

)
(w1)

}
+ max

{
0, (D0 − νP0)(v1)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(v1)

} = 0.

A symmetric argument yields that

max
{

0, (D0 − νP0)
(

w ′
2

)} − max
{

0,
(

D ′
0 − νP ′

0

)(
w ′

2

)}
+ max

{
0, (D0 − νP0)(vk)

} − max
{

0,
(

D ′
0 − νP ′

0

)
(vk)

} = 0.

Hence,

deg+(D0 − νP0) − deg+(
D ′

0 − νP ′
) = 0.
0
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Since r(D) = deg+(D0 − νP0 ) − 1, we have that r(D) = deg+(D ′
0 − νP ′

0
). Since the alignment P ′

0 can
be chosen in such a way that supp P ′

0 = B(Γ ) ∪ supp D ′
0 by Lemma 3.1 and S ′ < S , the existence of

D ′
0 and P ′

0 contradict the choice of D0 and P0.
Last, we prove the “furthermore” part of the statement. That is, we show that the alignment P can

be assumed to be such that all the non-branching points of supp P follow the branching points in the
order determined by P .

Consider the alignment P ′ obtained from P by moving a point v ∈ supp D ′ \ B(Γ ) to the end of
the alignment. We claim that r(D) = deg+(D ′ − νP ′ ) − 1.

By Corollary 2.5, it suffices to show that deg+(D ′ − νP ′ ) � deg+(D ′ − νP ). Let w1 and w2 be the
end points of the edge containing v . We consider in detail the case when v <P w1 and v <P w2;
the other cases are analogous. As D ′(v) = 1 and νP (v) = −1, it holds that D ′(v) − νP (v) = 2 and
D ′(v) − νP ′ (v) = 0. Similarly, νP ′ (wi) = νP (wi)− 1, and thus D ′(wi)− νP ′ (wi) = D ′(wi) − νP (wi) + 1
for i = 1,2. We conclude that

deg+(
D ′ − νP

) − deg+(
D ′ − νP ′

)
= max

{
0, D ′(w1) − νP (w1)

} − max
{

0, D ′(w1) − νP ′(w1)
}

+ max
{

0, D ′(w2) − νP (w2)
} − max

{
0, D ′(w2) − νP ′(w2)

}
+ max

{
0, D ′(v) − νP (v)

} − max
{

0, D ′(v) − νP ′(v)
}

�
(

D ′(w1) − νP (w1)
) − (

D ′(w1) − νP ′(w1)
)

+ (
D ′(w2) − νP (w2)

) − (
D ′(w2) − νP ′(w2)

) + 2 � 0.

The claim now follows. Hence, we can assume without loss of generality that all the points of
supp D ′ \ B(Γ ) follow the points of B(Γ ) in the order determined by P , i.e., νP (v) = 1 for v ∈
supp D ′ \ B(Γ ). �

Lemma 3.3 allows us to prove Theorem 1.7. We are grateful to an anonymous referee for suggesting
the proof.

Proof of Theorem 1.7. Consider an arbitrary divisor D on a loopless metric graph Γ . By Lemma 3.3
there exists a rank-pair (D ′, P ) for D such that P is an alignment of supp(D ′) ∪ B(Γ ). Every edge of
Γ contains at most one inner point v with non-zero value D ′(v), and if such a point v exists, then
D ′(v) = 1. Furthermore, the points of B(Γ ) precede the other points of supp(D ′).

Let E be the non-negative part of D ′ − νP . Note that supp(E) ⊆ B(Γ ). We have, D ′ − E � νP .
Applying the rank on this inequality and using the fact that νP is non-special, we get rΓ (D ′ − E) �
rΓ (νP ) = −1. By the choice of D ′ and P , we have rΓ (D) = deg(E) − 1. Consequently, |D ′ − E| = ∅,
that is, E is as in (3), showing that rB(Γ )(D ′) � deg(E) − 1. Consequently,

rΓ (D) � rB(Γ )(D) = rB(Γ )

(
D ′) � deg(E) − 1 = deg+(

D ′ − νP
) − 1 = rΓ (D).

It follows that rΓ (D) = rB(Γ )(D), proving the theorem. �
With Theorem 1.7 at hand, we can now give a short proof of Theorem 1.3.

Proof of Theorem 1.3. The following claim establishes one of the two desired inequalities between
the ranks.

Claim 3.3.1. For an arbitrary divisor F ∈ Div(G) we have rG(F ) � rΓ (F ).

Proof of Claim 3.3.1. If F ′ is a divisor equivalent to F on the graph G then F ′ is equivalent to F also
on the metric graph Γ . Thus the range of minimization in (4) is a superset of that in (6), and the
claim follows. �
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Consider an arbitrary divisor D on G . By Theorem 1.7 the set B(Γ ) = V (G) is rank-determining,
i.e., we have rΓ (D) = rV (G)(D), where rV (G)(D) refers to V (G)-restricted rank on Γ . To prove the
theorem, it thus suffices to show that we range over the same sets of divisors E in the formula (1)
(for the rank on G) and (3) (for the V (G)-restricted rank on Γ ). In other words, it needs to be
shown that for a divisor E ∈ Div(V (G)) we have |D − E|G = ∅ if and only if |D − E|Γ = ∅. Clearly,
if |D − E|Γ = ∅ then |D − E|G = ∅. The other direction follows from Claim 3.3.1 which tells us that
rG(D − E) = −1 implies rΓ (D − E) = −1. �

As a corollary of Theorem 1.3 we can prove that the rank of a divisor on a graph is preserved
under subdivision. We say that a bijection ϕ between the points of a metric graph Γ and the points
of a metric graph Γ ′ is a homothety if there exists a real number α > 0 such that distΓ (v, w) =
α ·distΓ ′ (ϕ(v),ϕ(w)) for every two points v and w of Γ . Note that composition of a rational function
with a homothety is a rational function, and thus a homothety preserves the rank of divisors.

Corollary 3.4. Let D be a divisor on a loopless graph G and let Gk be the graph obtained from G by subdividing
each edge of G exactly k times. The ranks of D in G and in Gk are the same.

Proof. Let Γ be the metric graph corresponding to G . Observe that there exists a homothety from Γ

to the metric graph Γ ′ corresponding to Gk . Since the rank of D in G is equal to the rank of D in Γ

by Theorem 1.3 and the rank of D in Gk is equal to the rank of D in Γ ′ by the same theorem, the
ranks of D in G and in Gk are the same. �

Finally, we show that, in addition to the conditions given in Lemma 3.3, the divisor D ′ can be
assumed to be zero inside edges of a spanning tree of Γ . This will be used as a main auxiliary result
in Section 4.1 to give an algorithm for computing the rank of divisors on metric graphs.

Lemma 3.5. Let D be a divisor on a loopless metric graph Γ . There exists a divisor D ′ , a spanning tree T of Γ ,
and an alignment P ∈P(Γ ) such that (D ′, P ) is a rank-pair for D, D ′ is zero in the interior of every edge of T ,
and every edge e /∈ T contains at most one interior point v where D ′(v) 	= 0, and, if such a point v exists, then
D ′(v) = 1.

Proof. Let D ′ be a divisor equivalent to D , and let P be an alignment of the points of B(Γ ) ∪ supp D ′
as in Lemma 3.3.

Let us now color the edges of Γ with red and blue, so that the red edges contain in their interior
a point v in Γ with D ′(v) = 1 and the blue edges do not. Let V 1, . . . , Vk be the components of Γ

formed by blue edges. Choose among all divisors D ′ equivalent to D , and alignments P , satisfying the
conditions of Lemma 3.3, the divisor D ′ such that the number k of the components V 1, . . . , Vk is the
smallest possible. If k = 1, there exists a spanning tree of Γ formed by the blue edges, and there is
nothing to prove.

Assume now that k � 2 for the divisor D ′ which minimizes k. Recall that v <P v ′ for every v ∈
B(Γ ) and v ′ ∈ supp D ′ \ B(Γ ). Let us call the red edges connecting points of V 1 to points of B(Γ )\ V 1
orange edges. We can assume that the points of V 1 ∩ B(Γ ) follow all the other points of B(Γ ) in the
order determined by P , as every orange edge contains a point in supp D ′ \ B(Γ ). For an orange edge
e incident with a branching point v1 of V 1, let d(e) be the distance between v1 and the point of
supp D ′ in the interior of e. Let d0 be the minimum d(e) taken over all orange edges e.

Consider the following rational function f : f (v) = 0 for points v on edges between two branching
points of V 1,

f (v) = min
{

d0,max
{

0,diste(v1, v) + d0 − d(e)
}}

for points v on any orange edge e incident with any branching point v1 of V 1, and f (v) = d0 for the
remaining points of Γ . Set D ′′ = D ′ + div( f ). Clearly, D ′′ is a divisor equivalent to D that is non-zero
on at most one point in the interior of every edge of Γ and is equal to one at such a point. Moreover,
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since the blue edges remain blue and the orange edges e with d(e) = d0 become blue, the number of
components formed by blue edges in D ′′ is smaller than this number in D ′ .

We now find an alignment P ′ of the points of B(Γ ) ∪ supp D ′′ such that deg+(D ′′ − νP ′ ) =
deg+(D ′ − νP ). The existence of such an alignment P ′ would contradict our choice of D ′ . The align-
ment P ′ is defined as follows: The branching points of Γ are ordered as in P , and they precede all
the points of supp D ′′ \ B(Γ ). The points of supp D ′′ \ B(Γ ) are ordered arbitrarily. If v is a point of
B(Γ ) ∪ supp D ′′ that is not contained inside an orange edge, and that is not a branching point of V 1,
then D ′′(v) = D ′(v) and νP ′ (v) = νP (v). Hence, such points do not affect deg+(D ′′ − νP ′ ).

We now consider a branching point v of V 1. Let � be the number of edges incident with v that
are orange with respect to D ′ and blue with respect to D ′′ . Clearly, � is the number of orange edges
e incident with v such that d(e) = d0. By the choice of f , D ′′(v) = D ′(v) + �. In addition, since the
other branching points, incident with such edges, precede v in the order determined by P ′ , νP ′ (v) =
νP (v) + �. Hence, (D ′′ − νP ′ )(v) = (D ′ − νP )(v).

It remains to consider internal points of orange edges. Let v be such a point. If v is con-
tained in the interior of an orange edge e with respect to D ′ , then D ′(v) = 1 and νP (v) = 1,
i.e., (D ′ − νP )(v) = 0. If v is contained in the interior of an orange edge e with respect to D ′′ ,
then D ′′(v) = 1 and νP ′ (v) = 1, i.e., (D ′′ − νP ′ )(v) = 0. We conclude that such points do not affect
deg+(D ′′ − νP ′ ) at all. Consequently, deg+(D ′′ − νP ′ ) = deg+(D ′ − νP ), as desired. �
4. An algorithm for computing the rank

We now present the main algorithmic result of this paper. We describe an algorithm which, given
a metric graph Γ and a divisor D on it, computes its rank. It is not a priori clear that such an
algorithm has to exist.5 If the lengths of all the edges of D and all the distances of non-zero values of
D to the branching points are rational, then the problem is solvable on a Turing machine. However,
this need not be the case in general. As the input can contain irrational numbers, we assume real
arithmetic operations with infinite precision to be allowed in our computational model. The bound
on the running time of our algorithm can easily be read from its construction; it is a simple function
depending on the number of edges, number of vertices of Γ , the ratio between the longest and the
shortest edge in Γ , and the values of D . The running time is not more than exponential in any of
these parameters.

There are several papers dealing with algorithmic aspects of tropical geometry, as [5,9,19] for a
sample. Many of these papers rely on machinery of commutative algebra, while our algorithm utilizes
combinatorial properties of divisors on tropical curves which were developed in previous parts of the
paper.

Theorem 4.1. There exists an algorithm that for a divisor D on a metric graph Γ computes the rank of D.

As a tool for proving Theorem 4.1 we shall need the following auxiliary result of Gathmann and
Kerber [7, Lemma 1.8].

Lemma 4.2. Let a metric graph Γ and an integer p be given. Then there exists a computable integer U such
that any rational function f on Γ with deg+(div( f )) � p has slope at most U at every point.

Remark 4.3. It follows from the proof in [7] that U = (	 + p)m in Lemma 4.2 is a sufficient bound;
here 	 and m are the maximum degree and the number of edges of Γ , respectively.

We are now ready to prove Theorem 4.1.

5 Indeed, let us recall as a negative example in a similar setting that there exists no universal algorithm for solving Diophan-
tine equations, a result due to Matiyasevich [12].
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Proof of Theorem 4.1. To prove the theorem, it is enough to show that there are only finitely many
divisors equivalent to a given divisor D that satisfy the conditions in the statement of Lemma 3.5.

We write �e for the length of an edge e. Without loss of generality, we can assume that Γ is
loopless, and that supp D ⊆ B(Γ ) (introduce new branching points incident with only two edges
if needed). We can also assume that the length of each edge of Γ is at least one. Let n be the
number of branching points of Γ , m the number of edges of Γ , and M = maxv∈supp D |D(v)|. We
assume that n � 2 (and thus m � 1) since otherwise Γ is formed by a single point w0 and r(D) =
max{D(w0),−1}. Similarly, we can also assume that M � 1 since otherwise D is equal to zero at all
points and thus r(D) = 0. Finally, we let U be given by Lemma 4.2 for

p = 2n2M + 3mn � 1

2

(
3n2M + 3mn + m − n + 1

)
.

We first describe the algorithm and then verify its correctness. Fix an arbitrary vertex w ∈ B(Γ ).
The algorithm ranges through all spanning trees T of Γ (here, T is the set of edges of the tree, i.e.,
|T | = n − 1) and all functions F : T → {−U ,−U + 1, . . . , U − 1, U }.

The algorithm then constructs all rational functions f on Γ such that for every branching point
v ∈ B(Γ ) we have

f (v) =
k∑

i=1

F (ei)�ei ,

where e1, e2, . . . , ek are the edges of T on the path from w to v , f is linear on every edge of T , and
ordv( f ) 	= 0 for at most one point v on every edge not in T (and ordv( f ) = 1 for such a point v if it
exists).

Let us observe that there is only one rational function f satisfying the above constraints. Indeed,
the function f is uniquely defined on edges of T as it should be linear on such edges. Consider
now an edge e between branching points v1 and v2 that is not contained in T . By symmetry, we
can assume that f (v1) � f (v2). Then e contains a point v either with ordv( f ) = 1 or v = v2 such
that f is linear on e everywhere except for v . The average slope of f from v1 to v2 along e is
( f (v1) − f (v2))/�e . Therefore, we must have a slope of �( f (v1) − f (v2))/�e
 from v1 to v and a
slope of �( f (v1) − f (v2))/�e
 + 1 from v to v2. This determines the position of v on e as well. We
conclude that there are only finitely many rational functions f that satisfy conditions described in
the previous paragraph.

The algorithm now computes the divisor D ′ = D + div( f ), and then ranges through all alignments
P of the points B(Γ )∪ supp D ′ . For each such alignment, the value of deg+(D ′ − νP )− 1 is computed
and the minimum of all such values over all the choices of T , F (and thus f ) and P is output as the
rank of D . Since the number of choices of T , F and P is finite, the algorithm eventually finishes and
outputs the rank of D .

We have to verify that the above algorithm is correct. By Corollary 2.5, the output value is greater
than or equal to the rank of D . Hence, we have to show that the algorithm at some point of its
execution considers D ′ ∈ Div(Γ ) and P ∈P(Γ ) such that deg+(D ′ −νP )− 1 = r(D). Consider now the
divisor D ′ and the alignment P as in Lemma 3.5. Since supp P = B(Γ ) ∪ supp D ′ , and the algorithm
ranges through all alignments P of B(Γ ) ∪ supp D ′ for every constructed divisor D ′ , it is enough to
show that the algorithm constructs a rational function f such that D ′ = D + div( f ).

Consider the step when the algorithm ranges through T as in Lemma 3.5 and let f0 be the rational
function given by the lemma. We can assume without loss of generality that f0(w) = 0.

We establish that there exists a function F : T → {−U , . . . , U } such that f0 can be constructed
(as described above) from F . The existence of such a function F will yield the correctness of the
presented algorithm. In order to establish the existence of F , it is enough to show that absolute value
of the slope of f0 is bounded by U on every edge of T . Due to the relation between U and p it
suffices to prove that

deg+(
div( f0)

)
� p. (7)

We devote the rest of the proof to establishing (7).
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It can be inferred from the definition of the rank that r(D) � deg(D). Hence, r(D) � nM . We
now show that |D ′(v)| � 2(nM + m) for every v ∈ B(Γ ). If there exists a branching point v0 with
D ′(v0) > 2(nM + m), then

nM � r(D) = deg+(
D ′ − νP

) − 1

� D ′(v0) − νP (v0) − 1 > 2(nM + m) − m − 1 � 2nM,

which is impossible. On the other hand, if there exists a branching point v0 with D ′(v0) �
−2(nM + m), then D ′(v0) − νP (v0) � −2(nM + m) + 1 < 0 and thus deg+(D ′ − νP ) = deg+(D ′′),
where D ′′(v0) = 0 and D ′′(v) = (D ′ − νP )(v) for v 	= v0. Observe that

deg
(

D ′′) = deg
(

D ′ − νP
) − (

D ′(v0) − νP (v0)
)

� deg
(

D ′) − deg(νP ) + 2(nM + m) − 1

� −nM − (m − n) + 2(nM + m) − 1 = nM + m + n − 1

� r(D) + m + 1.

We therefore have

deg+(
D ′ − νP

) = deg+(
D ′′) � deg

(
D ′′) > nM + m � r(D) + m + 1,

which contradicts our choice of D ′ and P . We conclude that |D ′(v)| � 2(nM + m), and that∣∣ordv( f0)
∣∣ � M + ∣∣D ′(v)

∣∣ � 3(nM + m), (8)

for every v ∈ B(Γ ).
We express

deg+(
div( f0)

) = 1

2

∑
v∈Γ

∣∣ordv( f0)
∣∣ = 1

2

( ∑
v∈B(Γ )

∣∣ordv( f0)
∣∣ +

∑
v∈Γ \B(Γ )

∣∣ordv( f0)
∣∣).

The first sum on the right-hand side has n summands, each can be bounded using (8). The second
sum has at most m − (n − 1) non-zero summands, each of them equal to one. Plugging in these
bounds we establish (7). �

Proposition 1.6 and Theorem 4.1 now imply the existence of an algorithm for computing the rank
of a divisor on tropical curves.

Corollary 4.4. There exists an algorithm that for a divisor D on a tropical curve Γ computes the rank of D.

The algorithm which we presented is finite, i.e., it terminates for every input, however, its running
time is exponential (as can be seen by plugging the bound from Remark 4.3 into Theorem 4.1) in
the size of the input. It seems natural to ask whether it is possible to design a polynomial-time
algorithm for computing the rank of divisors. In the case of graphs the question was posed by Hendrik
Lenstra [10], and, to the best of our knowledge, is still open. Tardos [18] presented an algorithm which
decides whether a divisor D on a graph has a non-negative rank. His algorithm is weakly polynomial,
i.e., the running time is bounded by a polynomial in the size of the graph and deg+(D) (note that
Tardos was using a different language to state the result). It is possible to modify his algorithm in
such a way that the running time becomes polynomial in the size of the graph and log(deg+(D)), i.e.,
to obtain a truly polynomial-time algorithm for deciding whether a given divisor on a graph has a
non-negative rank. We omit further details.
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