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Abstract

We give a unified explanation of the geometric and algebraic properties of two well-known maps,
one from permutations to triangulations, and another from permutations to subsets. Furthermore we
give a broad generalization of the maps. Specifically, for any lattice congruence of the weak order
on a Coxeter group we construct a complete fan of convex cones with strong properties relative to
the corresponding lattice quotient of the weak order. We show that if a family of lattice congruences
on the symmetric groups satisfies certain compatibility conditions then the family defines a sub
Hopf algebra of the Malvenuto—Reutenauer Hopf algebra of permutations. Such a sub Hopf algebra
has a basis which is described by a type of pattern avoidance. Applying these results, we build the
Malvenuto—Reutenauer algebra as the limit of an infinite sequence of smaller algebras, where the
second algebra in the sequence is the Hopf algebra of non-commutative symmetric functions. We also
associate both a fan and a Hopf algebra to a set of permutations which appears to be equinumerous
with the Baxter permutations.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The results of this paper are motivated by the relationship between the permutohe-
dron, the associahedron and the cube, and the corresponding relationship between the
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Malvenuto—Reutenauer Hopf algelj8b] of permutations, the Hopf algebra of planar bi-
nary trees [33] and the Hopf algebra of non-commutative symmetric functions [24]. There
is a well-known [11,34,44,47] map from permutations to Catalan-objects, which has
interesting properties with respect to these polytopes and algebras. More precisely, sev-
eral maps have been studied, related by natural bijections on permutations such as the
inverse map, but for the purposes of this introduction, we call all of these maps “the map
n.” In [4], Billera and Sturmfels give a realization of the associahedron and the permu-
tohedron such that the normal fan of the permutohedron refines that of the associahe-
dron, andy is the inclusion map from maximal normal cones of the permutohedron to
maximal normal cones of the associahedron. The descent map, mapping a permutation
to its descent set, can be realized as the inclusion map from the maximal normal cones
of the permutohedron to the maximal normal cones of a combinatorial cube. This map
factors throughy, giving a triangle of maps relating the permutohedron to the cube, via
the associahedron. On the algebraic side, the dual maps to this triangle of maps give an
embedding of the Hopf algebra of non-commutative symmetric functions as a sub Hopf
algebra of the Hopf algebra of planar binary trees, and an embedding of the Hopf algebra of
planar binary trees as a sub Hopf algebra of the Malvenuto—Reutenauer Hopf
algebra [33].

The fact that these maps have such nice properties with respect both to polytopes and
to algebras demands a unified explanation. We provide a unified explanation using lattice
congruences. The key to the explanation is the observation thatlattice homomorphism
from the weak order orf, to the Tamari lattice, and that the descent map is a lattice
homomorphism frons, to a Boolean algebra. A generalization of this observation about
the Tamari lattice is proven in [42], although essentially all the ingredients for proving
it for the Tamari lattice were previously obtained in [11]. The fact that the descent map is a
lattice homomorphism is due to Le Conte de Poly—Barbut [31].

The symbolW denotes a finite Coxeter group equipped with the weak order,faid
the complete fan defined by a corresponding Coxeter arrangement. The combinatorics of
the weak order is closely connected to the geometryFofTo generalize this close
connection, we introduce fan posets and establish their basic propertifas poset
(F, P) is a partial orderP on the maximal cones of a complete f&in R?, with some
conditions relating the partial order to the structure of the fan. A completé& fdefines a
cellular sphereA. Not every fan is the normal fan of a polytope, but every complete fan
has a dual cellular sphefewhich plays the role of the polytope. (¥, P) is a fan poset,
then the Hasse diagram d@f is isomorphic as a graph to the 1-skeletonIofFacial
intervals of (F, P) are intervals/ in P such that, for some cong of F, the intervall
consists of all of the maximal cones &fcontainingF . The fan poset’, P) is homotopy
facial if all non-facial intervals are contractible and if, for every canghe facial interval
corresponding taf is homotopy equivalent to a sphere of dimensiba 2 — dim F. If
(F, P) is homotopy facial then in particular the M6bius function of a non-facial interval is
zero and the Mébius function of a facial interval corresponding to affdsg¢—1)4—2-4im 7
The fan posetF, P) is atomic-facialif the facial intervals are exactly the atomic intervals.

The definition ofbisimplicial fan posets is given in Section 3.

The main geometric result of this paper is a more general version of the following theorem,

in which W/® denotes the quotient mdél of the weak order ofiv.
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Theorem 1.1. If W is a Coxeter group with associated f&ithen for any lattice congruence
® on the weak order o there is a fanFg, refined byF, such that(Fg, W/0) is a fan
lattice. Furthermore (Fg, W/0) is homotopy facialatomic-facial and bisimplicial with
respect to any linear functional whose minimum on the unit sphere occurs in the interior
of the cone representing the identityWt Any linear extension d/® is a shelling order

on the facets of the associated sphare

The maximal cones afg are the unions ove®-classes of the maximal cones5f If
® and® are congruences such tlatrefinesd then the lattice homomorphism associated
to @ factors through the homomorphism associate®tdn this caseFy is refined byFg.
The main shortcoming of Theorehnl is that it gives no means of knowing wheg is the
normal fan of a polytope. It would be helpful to have a criterion for determining which of
these fans are normal fans, particularly if the criterion were decisive for the examples given
later in the introduction. The faffg is not necessarily simplicial, but we give necessary
and sufficient conditions o8 for Fg to be simplicial (Proposition 5.9).

The Malvenuto—Reutenauer algebrad$Ss.] := @n>0 K[S,] for a field <, with a
product which takes permutations= S, andv € S, to the sum of all shuffles of andv in
Sp+4- Loday and Ronco [34] pointed out that this product can be expressed as the sum of the
elements in a certain interval in weak order. Furthermore they showed that the products on
the algebra of planar binary trees and the algebra of non-commutative symmetric functions
can be expressed as sums over intervals in Tamari lattices and Boolean algebras respectively.
The maps in [34] relating these partial ordersaend the descent map.

These facts are explained and generalized using lattice congruences. A family of lattice
congruence®, on the weak order on the symmetric grospss calledtranslationaland/or
insertionalunder certain conditions defined in Sections 7 and 8. Given any fg@jly;, - o

of congruences, Ie{tZ,‘?} o be the family of lattice quotients, /®,,, and define a graded

nz
vector spacd<[Z2] := @), > o K[ZP]. Define a map : K[Z2] — K[Sw] by sending

each element ¢ Z,? to the sum of the elements of the corresponding congruence class in
S, We define a product oK[Z?O] using each partial ordéff) in a manner analogous to
Loday and Ronco’s order-theoretic characterization of the shuffle product. We also define a
coproduct ori<[Z2]. The main algebraic results of this paper are the following theorems.

Theorem 1.2.If {®,}, ¢ is a translational family then the mapembedsK[Z?o] as a
subalgebra of<[ S ].

Theorem 1.3.If {©,}, ¢ is an insertional family then the mapembedsK[Z?o] as a
subcoalgebra okK[ Sy ].

Atranslational and insertional family of congruences is calleH gamily, where the H”
indicates “Hopf,” in accordance with the following immediate corollary of Theoré&rfs
and 1.3.

Corollary 1.4. If {®,}, > ¢ is anH-family then the map embedsK[Z?o] as a sub Hopf
algebra of K[ Sy ].
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The antipode oK[Zg] is easily written in terms of the antipode K[S] (see Re-
mark 9.6). Given two#H-families {®,} and {®,} such that®,, refines®, for eachn,
K[Z2]is a sub Hopf algebra dk[Z2].

The Tamari lattice is the subposet (in fact sublatticef,ptonsisting of 312-avoiding
permutations or alternately 231-avoiding permutations [11]. The left descent m&jp on
is a projection down to permutations avoiding both 231 and 312, and it follows that the
descent map factors throughApplying Theorem 1.1 recovers the refinement relationships
on the associated fans. The congruences associated to these latticé¢-families, so
Theorem 1.4 can be applied.

The geometric results of this paper also apply to a broad generalization of the Tamari
lattices, defined in [42]. For any finite Coxeter gralpa family of Cambrian congruences
is defined on the weak order 8#i. The quotient oW by a Cambrian congruence is called
a Cambrian lattice The fans associated, via Theorem 1.1, to the Cambrian congruences
are conjectured to be combinatorially equivalent to the normal fans of the generalized
associahedra [21] and this conjecture is proven in types A and B.

For a generaf{-family, a basis for eacHK[Z,?] is characterized (Theorem 9.3) by a
variation on pattern avoidanée In the present paper, we exhibit several additional ex-
amples. One of these examples buildgS~] as the limit of a sequence of smaller Hopf
algebragK[S« ] where the first Hopf algebra in the sequence is a graded Hopf algebra
with one-dimensional graded pieces (the binomial Hopf alg8hiat [29, Section V.2]) and
the second is the Hopf algebra of non-commutative symmetric functions. Another example
builds the Hopf algebra of planar binary trees from a similar sequence.

A third example concerns thesisted Baxter permutationa set of permutations defined
similarly to, and apparently equinumerous with, the Baxter permutations of [16]. By The-
orem 9.3, the subposet of weak order$ynconsisting of the twisted Baxter permutations
is in fact the quotient of the weak order by a certain lattice congruence. This congruence
is identified as the meet of two congruences, one of which defines the Tamari lattice as the
231-avoiding permutations, while the other defines the Tamari lattice as the 312-avoiding
permutations. The family of congruences defining the twisted Baxter permutations is an
‘H-family, so Theorem 1.4 shows that there is a sub Hopf algeldrd 8f,] such that a basis
for thenth graded piece is indexed by the twisted Baxter permutatiofs.ifheorem 1.1,
besides proving several nice properties of the subposSt ebnsisting of twisted Bax-
ter permutations, also constructs a (non-simplicial) complete f&f it whose maximal
cones are indexed by the twisted Baxter permutations. It would be interesting to know if
this fan is the normal fan of some polytope.

This paper is the second in a series of papers beginning with [41] and continuing in [42].
Each paper relies on the results of the preceding papers and cites later papers only for
motivation or in the context of examples.

The organization of the remainder of this paper is as follows: In Section 2, we provide
background information on lattice congruences. Section 3 defines fan posets and exhibits
their basic properties. Section 4 defines the poset of regions of a central hyperplane ar-
rangement, and quotes results which show that this poset is a fan poset with particularly

1The pattern-avoidance description indicates Hpz ] can also be obtained via an elegant general construc-
tion, due to Duchamp, Hivert, Novelli and Thibon, of sub Hopf algebrds [~ ]. See Remar®.4.
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nice properties. In Sectidsy we prove a generalization of Theorem 1.1. Section 6 provides
background on the weak order 6h which is necessary for the exposition and proof of
Theorem 1.2 in Section 7 and Theorem 1.3 in Section 8. Section 9 presents the characteriza-
tion of H-families by pattern avoidance and remarks on computing the product, coproduct
and antipode irK[Zo@o]. The paper concludes with examples in Section 10.

2. Lattice congruences

In this section, we give background information on lattice congruences. A more detailed
exposition of lattice congruences can be found for example in [25]. The poset notation used
here is standard, and we assume basic poset and lattice terminology as for example in [44].
If x < yin P andthereisng € P with x < z < y, sayy coversx and writex < y. If P
is a poset with a unigue minimal element and a unigue maximal element (for exanfple if
is a finite lattice), then the minimal element is dendlethd the maximal elementis The
elements covering are called thatomsof P, and the elements covered byrecoatoms

Let P be a finite poset with an equivalence relat®ndefined on the elements &f.

Givena € P, let [a]g denote the equivalence classafThe equivalence relation is an
order congruencd:

(i) Every equivalence class is an interval.
(if) The projectionrt), : P — P, mapping each elemeatof P to the minimal elementin
[a]e, is order-preserving.
(iii) The projectionz® : P — P, mapping each elemeatof P to the maximal element
in [a]g, is order-preserving.

Define a partial order on the congruence classda Ry< [b]g if and only if there exists
x € [ale andy € [b]g such thatx < py. The set of equivalence classes under this partial
order isP/0®, thequotientof P with respect ta®. The quotientP /® is isomorphic to the
induced subposet, (P). The maprt’ mapsr | (P) isomorphically ontat’ (P). The inverse
is ;. For more information on order congruences and quotientg;15¢88].

Thejoin vX of a subseX € P is the unique minimal element, if it exists, of the set
{y € P:y>xforall x € X}. Dually themeetAa X is the unique maximal lower bound of
X. A finite posetL is called alattice if every subset of. has both a meet and a join. An
element in a finite latticeL is join-irreducible if and only if it covers exactly one element,
which we denote,. The subposet of consisting of join-irreducible elements is denoted
Irr(L). A lattice congruencés an equivalence relation on a lattice which respects joins and
meets. Specifically, iy = a2 andby = by thenag v by = a2 v bz and similarly for
meets. Whedl is a finite lattice, order congruences are exactly lattice congruences, and the
quotient construction described above corresponds to the algebraic notion of the quotient
of a lattice with respect to a congruence.

The following simple propertie? of lattice congruences do not hold in the generality of
poset congruences. L& be a congruence on a lattide Forx € L, let [x]g denote the
congruence class afmod ©.

2 Quite likely these are known but they have not, to the author’s knowledge, appeared in print.
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Lemma 2.1. If [x, y]isanintervalinL,then{[z]g : z € [x, y]}istheinterval[x]g, [V]o]
in L/0, and this interval is isomorphic tpr, y]/®, where® also denotes the restriction
of ® to [x, y].

Proof. If z € [x, y] then by definitionzle € [[x]e, [Y]lo]. If [zle € [[x]o, [y]le] then
in particulary >,z andx <n'z. Soy andr'z are both upper bounds anandrz and
thusx v m; z is below bothy andz'z. Thus we haver v n;z € [x,y] andx v 7z €
[nyz, 7'z] = [z]e, SOlzle = [x V T, zle € {[wle : w € [x, y1}.

Since the intervalx, y] is in particular a sublattice af, the restriction of® to [x, y]
is a lattice congruence and the join and meet operatioris,in] are inherited from_.
Therefore the join and meet operationgiron congruence classes intersectingy] are
the same as the join and meet of the restrictions of those congruence cldsseg.tdhus
[[x]e, [Y]le] and[x, y]/® are isomorphic as lattices. [J

Proposition 2.2. Let L be a finite lattice ® a congruence oi. andx € L. Then the map
y — [yle restricts to a one-to-one correspondence between elemehtsmfered byt x
and elements af /® covered byx]g.

Proof. First, we show that the restriction of the map— [y]g to elements covered by
7, x iS one-to-one. Suppose thaendy’ are both covered by x andy = y'. If y # y’
thenm x is a minimal upper bound for andy’, so it is in fact their join, and in particular
y = myx. This contradicts the fact that, x is the minimal element of its congruence class,
thus proving thay = y’. We now show thaltylg < [x]e if and only if there is some’ = y
such thaty’ < x in L.

Suppose thdtyle < [x]e. Thus in particularr;y < m)x, so lety’ be any element of
such thatr) y <y’ < mx. If y' # y then[ylg < [y']le < [x]e, Which is a contradiction.
Thus the element’ covered byr x has[y'le = [y]e-

Suppose that < m;x in L. We want to show thafy]e < [x]e in L/®. Sincenx is
minimalin[z x]g we havey # mx,s0[yle < [x]e. Supposethdblg < [z]le <[x]e for
somez and lety’ be the unique element pf]g covered byr| z whose existence was proved
in the previous paragraphs.ifz <y, thenn z <y, thus contradicting our supposition.
Sincer x is an upper bound foy andr z, we havey v n z<m x, and sincey />mz
andr x >y, we havey v m z = m x. Now, sincey = y’, we havey vz = y' vz,
or in other wordsr x = 7z, so that in particulajzlg = [xlg. U

Congruences o are, in particular, partitions of the elementsigfand CoriL) is the
set of congruences df partially ordered by refinement. The partial order Conis a
distributive latticg]23], and thus is uniquely determined by the subposé€n(L)). The
meetin CoriL) is intersection of the congruences as relation®11&nd®, are congruences
on L, with associated downward projectiofrs,); and(n} )2, let @1 v ©; have associated
downward projectiom . It follows immediately from [25, Theorem 1.3.9] thate L has
nyx = x if and only if both (n})1x = x and(n)2x = x. Thus the quotient of. mod
®; v O3 is isomorphic to the induced subposet )1 L) N ((})2L) of L.

If x<yandx = ymod®, we say® contractsthe edgex < y. For an elemeny, if
there exists an edge< y contracted by®, we say® contractsy. Thus® contracts a
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join-irreducibley if and only if y = y,.. A lattice congruence is determined by the set of
join-irreducibles it contracts (see for examp#2, Section 11.3]). Given a covering pair
x<yin L, let Cgx, y) be the smallest lattice congruence contracting that edge. Then
Cg(x, y) is a join-irreducible congruence. Given a join-irreduciplef L, write Cg(y) for
Cd(7,, 7). The map Cg: Irr(L) — Irr(Con(L)) is onto, but need not be one-to-one. A
lattice L is congruence unifornif Cg is a bijection and if a dual statement about meet-
irreducibles holds as well [17]. Wheh is a congruence uniform lattice, {€on(L)) can

be thought of as a partial order on the join-irreducible®Ifs a congruence on, then
Irr(Con(L/®)) is the order filter in IrtCon(L)) consisting of join-irreducibles of. not
contracted by®.

Given a congruenc®; on a latticeL1 and a congruenc®; on a latticeL», define an
equivalencé®; x ®2 on L1 x Ly by setting(x1, x2) = (y1, y2) mod®1 x O if and only
if x1 = yymod®; andxy = y, mod®.. It is an easy exercise to show thag x @ is
a congruence, and furthermore that any congruencgior L, has the form®; x O,
for some congruenc®; on L1 and some congruené®, on Lo. The join-irreducibles of
L1 x Ly are exactly the pairgy, 0) wherey, is a join-irreducible ofL, and the pairs
(0, y,) wherey, is a join-irreducible ofL5.

Given latticed.; andL, ahomomorphisnfrom Ly to Ly isamap : L1 — Lo such that
forall x andy in L1 we havej(x v y) = n(x) v#(y) and similarly for meets. Given a lattice
homomorphisny, the equivalence relation whose classes are the fibersafcongruence,
and conversely, given a congruen®eon L, the map from an element to its equivalence
class is a homomorphisih — (L/®). Alternately, the mapr, is a homomorphism from
Ltorn)L=L/O®.Ify,: L — Liandy,: L — Ly are lattice homomorphisms, we sgy
factors throughy if there is a lattice homomorphism: L1 — Ly such thatj, = n o #;.

If ®1 and®3 are the lattice congruences associateghtandsn, and®1 < @2 in Con(L)
thenn, factors throughy;.

Given a partially ordered sé, topological statements abaRtrefer to itsorder complex
the abstract simplicial complex whose faces arectiains(totally ordered subposets) of

P. Theproper partof a finite latticeL is L — {0, 1}. The following is a special case of the
Crosscut Theorem (see the explanation surrounding (10.8) of [7]).

Theorem 2.3. If L is a finite lattice with atoms\, then the proper part of. is homotopy
equivalent to the abstract simplicial complex consisting of subsetsafose join is nof.

For convenience here, we call this abstract simplicial complexithgscut complerf
L, although the usual definition of a crosscut complex is much more general.

Corollary 2.4. If L is a lattice and® is a congruence o such that no atom of is
congruent to0 and no coatom is congruent tg then the proper part of. is homotopy
equivalent to the proper part df/®.

Proof. Since no atom of. is congruent td, there is a one-to-one correspondence between
atoms ofL and atoms of./®. We useA to denote both sets of atoms. Since no coatom is

congruent tdl, the top element of./® is the equivalence clas{ﬁ}. For S C A the join
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of A in L/® is the equivalence class of the join 4fin L, so$ joins to1 in L if and only
if it joins to ii] in L/©. Thus the crosscut complex 6f/® is isomorphic to the crosscut
complex ofL. [

3. Fan posets

In this section, we define fan posets and prove some of their basic properties. We as-
sume the definitions of polytopes, cones, simplicial complexes, regular CW complexes,
combinatorial isomorphism and homotopy equivalence. For more information on regular
CW complexes, particularly as they relate to combinatorics|[gesnd Section 4.7 of [9].

We call the closed cells of a CW compléaces The 1-skeletorof a CW complex” is the
subcomplex consisting of the 0- and 1-dimensional facés Gfiven a regular CW complex

I" with face posefP, the posetP — {C)} is topologically equivalent td’, because the order

complex ofP — {0} is combinatorially isomorphic to tHearycentric subdivisionf I'. The
following theorem is due to Bjorner [6].

Theorem 3.1. A non-trivial posetP with a unique minimal elemeftis the face poset of
a regular CW complex if and only if every interv@l, x) is a sphere

A fanin R? is a family F of non-empty closed polyhedral cones with the following
properties:

(i) Every non-empty face of a cone jfiis also a cone iif.
(i) The intersection of two cones i is a face of both.

A complete farhas the additional property thatF = R?. SinceF is closed under inter-
sections and has a minimal elemerf, if one partially ordersF by inclusion and adjoins

a maximal element, one obtains a lattice, called tface latticeof . The intersection

NJF of all cones inF is a subspace, because otherwise it must have at least one proper
non-empty face. If for every maximal cor@ of F, the normals to the facets df are
linearly independent, thefi is asimplicial fan We need the following lemma.

Lemma 3.2. LetC be afinite set af-dimensional closed conesif with non-intersecting
interiors such that/C = R?, with the property that the intersection of any two cone€ in
is a face of each. Then the collectidhof cones consisting of arbitrary intersections of
cones irC, is afan

Proof. We first show thaf is exactly the set of faces of cone&lirLet F' be the intersection
of some subsef C C. We prove by induction onS| that F is a face of som& € S. The
base of the induction is the cag® = 1, or in other wordsF' € C, which is trivial. Let
S’ = S — {D} for someD € S. Then by inductionn$’ is a face of som& < §’. Since
C N D is aface ofC as well, the intersections is the intersection of two faces ¢f, and
thus is a face of.
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Conversely, leG be a face of some com@in C. ThenG can be written as the intersection
of some setV of facets ofC. SinceUC = R?, and the members &f intersect in faces,
each facef of C is the intersection of” with someCr € C. Theng is the intersection of
C with all of the Cr for F in M.

We have thus established condition (i) in the definition of a fan. Furthermore, since each
cone inF is the intersection of some set of conegirthe intersection of two conds and
G in Fis also the intersection of some set of cones,iand thusF' N G is the face of some
coneinC. SinceF andG are each faces of cones@nthe intersectiorf’ N G is a face of
each. [

Given a con& of F, we define the restrictiat| ¢ of F to C as follows. Let/ be an open
d-ball centered at a point in the relative interior of”, such thaty does not intersect any
cone not containing’. Then the intersection of with U gives a cellular decomposition
of U. We center a/-dimensional vector space atand extend this cellular decomposition
of U linearly to a cellular decomposition of the vector space. The resulting decomposition
is the fanF|c.

A complete fanF is essentialf NF is the origin. IfF is essential then the intersection of
F with the unit sphere defines a cellular decomposition of the sphere. Given a non-essential
fan F, a combinatorially isomorphic essential fafy (NF) is obtained by intersecting
with the orthogonal complemenF)+ of NF. We define thassociated spher of F to
be the CW sphere whose cellular structure is the decomposition of the unit sptresg)ih
induced byF/(NF). The upper intervdlC, 1] in the face lattice ofF is isomorphic to the
face lattice ofF|c. In particular,[C, 1] is spherical, and by Theoregl there is a regular
CW spherd” whose face poset, upon adjoining a maximal elenderig dual to the face
lattice of 7. We calll” thedual spherdo F.

If IT is a polytope andF is a face ofIl, the normal coneto F is the set of linear
functionals which are maximized at every point®nThenormal fanof IT is the collection
of normal cones to the faces bF. A fan is calledpolytopalif it is the normal fan of some
polytope.

A fan posets a pair(F, P) whereF is a complete fan iR’ andP is a finite poset whose
elements are the maximal conesfsubject to the following conditions:

(i) For every intervall of P, the union of the maximal cones inis a polyhedral cone.
(i) For every coneC of F, the set of maximal cones containiggis an interval inP.

The intervals arising as in (ii) are calléakcial intervals.

Say(F, P)ishomotopy faciaif the homotopy types of intervals are described as follows:
if [x,y] is a facial interval associated to a cone of dimendgipthen the open interval
(x, y) is homotopy equivalent to & — 2 — k)-sphere. If[x, y] is not a facial interval,
then(x, y) is contractible. By convention the complex containing only the empty set is a
(—1)-dimensional sphere, and the empty complex(s-2)-dimensional sphere. (fF, P)
is homotopy facial then in particular the face lattice/6fcan be determined from the
abstract partial ordeP. It is dual to the set of non-contractible intervals, partially ordered
by containment. The non-contractible intervalPirare exactly the intervals with non-zero
Mobius functions.

An interval I in a poset is calledtomicif the maximal element of is the join of the
set of atoms of. Call (¥, P) atomic-facialif the facial intervals are exactly the atomic
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intervals. If (F, P) is atomic facial, then the face lattice &fis dual to the set of atomic
intervals, partially ordered by containment.

Let (F, P) be afan poset and létbe a linear functional oR?. For any covering relation
C1< Cz2in P, letv be the unit normal vector to the hyperplane separatingrom Co,
oriented to point fronCy to Co. Say that(F, P) is induced byp if for any suchC1 < C»
andv we haveb(v) > 0. For any maximal con€ of F, let N be the set of outward-facing
unit normalsy of C such thab(v) > 0 and letN_ be the set of outward-facing unit normals
for whichb(v) < 0. Say a maximal con€ is bisimplicial with respect t@ if both N, and
N_ are linearly independent sets. S&y, P) is bisimplicial with respect ta if it induced
by b and if each maximal cone ¢f is bisimplicial with respect t®.

A facial interval of a fan poset is itself a fan poset. That i€ i§ a cone ofF and/ is the
corresponding interval aP, then(F|c, I) is a fan poset. I{F, P) is polytopal, homotopy
facial, atomic-facial, induced, bisimplicial and/or simplicial, thef|c, I) enjoys those
properties as well.

The fan posetF, P) is defined to bgolytopaland/orsimplicial if F is. If (F, P) is
polytopal, then the polytope is combinatorially isomorphitt®o we refer to the polytope
asI'. If (F, P)isapolytopal fan poset induced by a linear functidnahen? is the partial
order induced by on the vertices of .

SupposeP is a partial order on the vertices of some CW spHeér&ay P orients the
1-skeletorof I" if the 1-skeleton of " is isomorphic as a graph to the Hasse diagrar® of
via the identification of elements d@f with vertices ofl".

Proposition 3.3. If (F, P) is a fan poset thenP orients thel-skeleton of the dual
spherel".

Proof. Edges inl" correspond to pairs of maximal conesZ&fintersecting in dimension
d — 1. Condition (ii) in the definition of a fan means in particular that the 1-skeletdn of
has no multiple edges. Thus showing graph isomorphism is equivalent to showing that two
maximal cones form a cover iA if and only if the maximal cones intersect in dimension
d—1.

SupposeC; and C, are maximal cones af such thatF := C1 N C2 has dimension
d — 1. Then{C1, C2} is the complete set of maximal cones containindy the definition
of a fan poset{C1, C>} is an interval inP, necessarily a cover relation.

Suppos&’1 < C2in P, sothatin particulafCy, C2} is an interval inP. By the definition
of fan poset,C1 U C2 is a polyhedral cone, so in particul@s and C2 must intersect in
dimensiond — 1. O

LetA be a CW complex all of whose facets have dimendidretd F denote the boundary
of aface (closed cellf of A. Alinear orderFy, F», ..., F, on the facets oA is ashelling
of Aif d = 0 or if d > 1 and the following conditions hold:

(i) oFy has a shelling. _
(if) For 2<j<t, the intersection®; N (Ui’;lle) is a pure CW complex of dimension
d—1.
(iii) For2<j<t, the boundary F; has a shelling in which the/ — 1)-dimensional faces
of F; N (U/Z} F;) appear first,
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Theboundary compleaf a convex polytope is the boundary of the polytope with a cellular
decomposition consisting of the relative interiors of the faces of the polytope. Bruggesser
and Mani[13] defined, for any linear function&lnot parallel to any facet hyperplane of the
polytope, a shelling of the boundary complex. Their shelling has the following property:
Every facet whose outward-facing normahasb(v) < 0O precedes every facet whose
outward-facing normat hasb(v) > 0.

Proposition 3.4. If (F, P) is a fan poset induced by a linear functional then any linear
extension ofP is a shelling order on the associated sphdre

Proof. Let A be thed’-dimensional sphere associated&oand letFy, F», ..., F; be a
linear order on the facets @ induced by some linear extension Bf For eachi let C;
be the maximal cone of containingF;. We first establish condition (i) in the definition
of shelling, independent of the hypothesis that P) is induced by a linear functional.
Suppose Xi < j<t. The maximal cones aF containingC; N C; form an interval in
P. Sincei < j, in particularC; is not the bottom element of the mterval so we can find a
maximal coneC; which is in the interval and is covered lg};. SinceCy, is covered byC;,
by the proof of PropositioB8.3 the intersectiod’; N Cy is a facet ofC;, and sinceCy is in
the interval, we have; N C; < Cy. Finally, sinceCy is belowC; in P, we havek < j.
Intersecting with the unit sphere (mF)*, we have the following statement aba\rtFor
every I<i < j <t there exists KXk < j such thatF; N F; € F, andF; N Fy is a facet
of F;. Thus every face of; N (U{;ll(SFj) is contained in dd’ — 1)-dimensional face of
O0F; N (U{;lléFj), implying condition (i) in the definition of shelling.

We can assumg is essential because if not, we repld€by F/(NF). SinceFy, ..., F;
is a linear extension oP, the setC; N (U{:—llcj) is exactly the union of the facets 6f;
which separat€; from maximal cones covered lay; in P. If (F, P) is induced by then
this set of facets is exactly the set of facets whose outward-facing novialeb(v) < 0.
IntersectingC; with an affine hyperplan& parallel tob so as to produce a convex polytope
of dimensiond — 1, the Bruggesser—Mani shelling with respeoﬂe ashelling ofC; N H

in which the(d — 2)-dimensional faces af ; N H N (U’,lC ) appear first. Sinc€; N H
is combinatorially isomorphic t@;, this satlsﬂes (iii). We can shefly in a similar manner,
using any linear functional not parallel to a facetraf [

Our proofis patterned after the proof, due to Bjorner and Ziegler, of a similar statement [9,
Proposition 4.3.2] due to Lawrence about the “big” face poset of an oriented matroid.

Any linear ordering of the facets of a simplex is a shelling order. Thus i§ a pure
simplicial complex, a total order on the facets®is a shelling if and only if it satisfies
condition (i) in the definition of shelling given above. In the proof of Proposition 3.4,
condition (ii) was established independent of the conditionatP) is induced. Thus we
have the following:

Proposition 3.5. If (F, P) is a simplicial fan posetthen any linear extension @t is a
shelling order onF.

One application of a shelling order on a simplicial complex is in determining the face
numbers of the simplicial spher® associated to a simplicial faf. The f-vector of
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a simplicial complexA of dimensiond — 1 is (f-1, fo, f1, ..., fu—1), where f; is the
number of simplices ofA of dimensioni and the empty simplex is by conventigs 1)-
dimensional. Theh-vector of A is (ho, h1,...,hs), defined by the polynomial
identity

d d
D fimale =D = hxt
i=0 i=0

For examplefg = h1 + d andhy is (—1)¢~1 times the reduced Euler characteristic of
A. When A is shellable, for each maximal simplgx; in the shelling order there is a

unique minimal fac& (F;) of F; among faces of’; not contained imJ{;llFi. Furthermore
S hixt = Yo xRUDI where|R(F;)| is the number of vertices 0R(F;). Equiva-

lently, |R(F;)| is the number of facets df; contained irU-l.’:_lF,-. For (F, P) a simplicial
fan poset( a maximal cone ofF and any linear extension &f, the quantityR(C)| is the
number of elements covered layin P. Thus fori = 0, 1, ..., d the number of elements
of P covering exactly elements ig; in the z-vector ofA. This is in keeping with the fact
that P is agood orientatiorof I" in the sense of KaldBO0].

The Dehn—-Sommerville equatiohs = hy_; fori = 0,1,...,d are satisfied by the
boundary complexes of simplicial polytopes(#, P) is a simplicial fan poset and i’ is
the dual partial order t@, then(F, P’) is a simplicial fan poset with the same associated
sphere. An element coveringlements inP coversd — i elements inP’. Since the:-vector
is a combinatorial invariant ok we have the following.

Proposition 3.6. If (F, P) is a simplicial fan poset then the associated simplicial sphere
satisfies the Dehn—Sommerville equations

For a coneC of F, thestarof C is the fan whose maximal cones are the maximal cones
of F which containC. The star ofC is convexif the union of the maximal cones of the
star is a convex set. A faf is locally convexf the star of every cone af is convex. The
following is immediate from the definition of a fan poset.

Proposition 3.7. If (F, P) is a fan poset therF is locally convex.
A simplicial complexA is flag if every minimal set of vertices not spanning a face of
A has cardinality 2. 1132] it is shown that, given a simplicial locally convex fan the

simplicial sphere\ is flag. Thus Proposition 3.7 implies the following.

Proposition 3.8. If (F, P) is a simplicial fan poset then the corresponding simplicial
sphere is flag

4. Posets of regions

In this section, we give background information on the poset of regions of a hyper-
plane arrangement, prove or quote basic results, and restate some known results in the
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language of fan posets. The poset of regions was defined by Ed¢lf@hand further
studied in [8,20,39,40].

A hyperplane arrangemem is a finite collection of codimension 1 linear subspaces in
R calledhyperplanesThe complement of the union of the hyperplanesiis disconnected, and
the closures of its connected components are cadigidns In general, one might consider
an arrangement of affine hyperplanes. Hyperplane arrangements consisting entirely of linear
subspaces are calleéntral and all hyperplane arrangements considered in this paper are
central. Therank of an arrangement is the dimension of the linear span of the normals to
the hyperplanes. A regioR of A is calledsimplicial if the normals to the facets @t are
linearly independent. A central hyperplane arrangement is csitiegdlicial if every region
is simplicial.

We fix once and for all a central hyperplane arrangemérnd a regionB of A. A
hyperplaneH is said toseparatetwo distinct pointsx; andx; in R? if the line segment
whose endpoints arg andx; intersectsH in exactly one point. For region®; andR», a
hyperplaned € A separatesRi from Ry if H separates any (or equivalendlyery pair of
points(x1, x2) with x1 in the interior ofR1 andx> in the interior ofR2.

For any regionR, define theseparating setS(R) of R to be the set of hyperplanes
separating? from B. Theposet of region$’ (A, B) is a partial order on the regions with
Ri1< Rz ifand only if S(R1) € S(R2). The regionB, called thebase regionis the unique
minimal element ofP (A, B). The map sending each regi@rto its antipodal regior-R is
an anti-automorphism and corresponds to complementation of separating sets. In particular,
P(A, B) has a unique maximal elementB. Given a regionR, call those facets oR by
which one moves up iP(A, B) upper facetof R, and call the other facets & lower
facets

Associated to4 there is a complete fan which we cdll consisting of the regions ol
together with all of their faces. Given a cof@ieof F, the set of regions containing is an
interval in P(A, B), isomorphic to the poset of regioA’, B"), where A’ is the set of
hyperplanes ofA containingC and B’ is the region of4’ containingB. Given an interval
[R1, R2] in P(A, B), the union of the corresponding regions is the closure of the set of
points separated frorB by every hyperplane ilS(R1) and separated from B by every
hyperplane inA — S(R2). This set is a polyhedral cone, and tHi5, P(A, B)) is a fan
poset. The definition 0P (A, B) by separating sets can be rephrased as the statement that
P(A, B) is the partial order induced on the maximal cones-dby any linear functional
b whose minimum on the unit sphere lies in the interioBofThe fanF is the normal fan
to a zonotope which is the Minkowski sum of the normal vectors to the hyperplanes. The
dimension of the zonotope is the rank of the arrangement. In parti¢tHa®? (A, B)) is
polytopal. Edelman and Walker [20, Theorem 2.2] determined the homotopy type of open
intervals inP (A, B). Inthe terminology of fan posets, their theorem is exactly the statement
that (F, P(A, B)) is homotopy facial.

Lemma 4.1. If R is the set of regions covering in P(A, B) thenvR = —B and any
proper subseS§CR has an upper bound strictly belowB.

Proof. ForanyR € R,thereissomél € AsuchthaS(R) = {H}andS(—R) = A—{H}.
Any element covered by B is — R for someR € R, and in particular, no element covered
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by — B is above every element &, sovR = —B. ForanyUCR, takeR € R — U, and
let H haveS(R) = {H}. ThenS(—R) = A — {H} in particular contains(R’) for every
R’ € U,so—R is an upper bound fay. [

If I is a facial interval of F, P(A, B)), then sincd is isomorphic to some other poset
of regions, by Lemmd.1 it is an atomic interval oP (A, B). If A is simplicial and/ is an
atomic interval, letR be the minimal element df, and letA be the set of atoms df Then
C := RN (NA) is a face ofR and thus a con&. Let A’ be the set of hyperplanes gf
containingC. The join of A is the region containing whose separating set$§R) U A,
and thud/ is the complete set of regions containifig

We summarize these facts in the following theorem:

Theorem 4.2. If A is a central hyperplane arrangemert is a region ofA and F is the
corresponding fan, then

(i) (F,P(A, B)) is afan poset
(i) (F,P(A, B)) is polytopal homotopy facigland induced by any linear functional
whose minimum on the unit sphere lies in the interioBof
(iii) Facial intervals are atomicand if A is simplicial then(F, P(A, B)) is atomic-facial

The following easy lemma will be useful in a later section.

Lemma 4.3. For any two regionsQ and R of A, there is a sequence of regio® =
Ro, ..., R; = R such that for every the intersectionR; N R;_1 is (d — 1)-dimensional
andQ N R C R; for everyi.

Proof. We may as well takeg) = B. Then becausé is a fan poset, the set of regions
containingQ N R is an interval inP(A, Q), and the desired sequence is any unrefinable
chain fromQ to R in the interval. [

Bjorner et al[8] showed that if4 is simplicial, therP (A, B) is a lattice for any choice
of B. In[41]itis shown that whem is simplicial theri? (A, B) admits special congruences
calledparabolic congruencesvhich we now define. Lefl be simplicial and leB be the set
of facet hyperplanes a8, and for eact? € B let R(H) be the atom o (A, B) separated
from B by H. ForanyK C Bthe intersection of the hyperplaned®f K is a subspackg.
Let Ak be the set of hyperplanes containibg and letBx be theAdg -region containing3.
The arrangementl is simplicial. Let®k be the equivalence relation W A, B) setting
Ry = Ry if and only if R1 and R, are contained in the saméx -region. In other words,
the Ak regions are the unions ov€rg -classes of thel-regions. The equivalend®g is a
lattice congruence [41, Proposition 6.3]. The following is [41, Theorem 6.9].

Theorem 4.4([41, Theorem 6.9] Let.4 be simplicial and letk < B. Then®y is the
unique minimal lattice congruence with= R(H) for everyH € (B — K).

WhenA is a Coxeter arrangement, the homomorphism associated tis projection to
a parabolic subgroup.
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In the next section, for any congruen@eon a latticeP(A, B) we construct a fatFg
whose maximal cones are the unions ddeclasses of the maximal cones®Bf Supposed
is simplicial, K € B and ® is any congruence contracting atorR¢H) for H € K.
By Theorem4.4, ® is refined by®g, so that® can be thought of as a congruence on
P(Ak, Bg). Thus we can first pass to the fan associateBtd g, Bx) and form the fan
Feo by taking unions ofdg-regions. In particular, wheml is simplicial we can always
reduce to the case whef® contracts no atoms dP(A, B). Furthermore, we have the
following:

Proposition 4.5. Let A be simplicial and le® be a congruence 6R(A, B).If [B]lg # {B}
then(NF)C(NFg).

Proof. We havenF = NA. If [Blg # {B} then for some non-empti{ < B we have
R(H) = B foreveryH € K. Thus(NA)C(NAg) € (NFg). O

It follows easily from the definition of a lattice congruence thaie = {B} if and only
if [-Ble = {—B}.

5. Congruences and fan lattices

This section is devoted to proving a generalization of Thedtelvand other facts about
the fansFg.

Theorem 5.1. If A is a central hyperplane arrangement aBds a region ofA such that
P(A, B) is alattice then for any lattice congruend® onP(A, B) there is a complete fan
Fo, refined byF, with the following properties

(i) (Fe,P(A, B)/O)is afan lattice
(i) (Fe,P(A, B)/O) is induced by any linear functional whose minimum on the unit
sphere lies in the interior oB.
(iii) Any linear extension dP(A, B)/O is a shelling ofFg.
(iv) If Aissimplicial then(Fg, P(A, B)/®) is homotopy facialatomic-facial and bisim-
plicial with respect to any linear functional whose minimum on the unit sphere lies in
the interior of B.

If Ais a Coxeter arrangement thghis simplicial andP (A, B) is a lattice isomorphic
to the weak order on the associated Coxeter group. Thus Thebteis a special case
of Theorem 5.1. As mentioned in the introduction, wtigiy, P(A, B)/®) is homotopy
facial, the Mdbious function of a non-facial interval ™(A, B)/® is zero, and a facial
interval for a faceF’ has Mobius functiorj—1)4—2-dim £

To construct the faFg for P(A, B)/0, recall that each congruence classis an
interval inP(A, B), so the union of the corresponding maximal conegdas a convex
cone. LetC be the set of cones thus obtained from the congruence classes &gddetthe
collection of cones consisting of arbitrary intersections of the conés lihis convenient
to blur the distinction between cones&f and®-equivalence classes. We now proceed to
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prove Theorenb.1 by a series of propositions. Specifically, Proposition 5.2 verifiesfgat

is a complete fan refined bf. Propositions 5.3 and 5.4 establish (i) and (ii) respectively.
Assertion (iii) follows from (ii) by Proposition 3.4. Proposition 5.5 proves the claim of the
bisimplicial property whem is simplicial. Proposition 5.6 shows that non-facial intervals
are contractible and non-atomic, and Proposition 5.7 completes the proof of (iv) by showing
that whenA is simplicial, facial intervals are atomic and homotopy equivalent to spheres
of the correct dimensions.

Proposition 5.2. Fg is a complete fan which is refined 1.

Proof. We check the conditions of Lemn3a2. First, suppose thél;, C» € C intersect in
dimensiond — 1. Then since each is a finite union of regionsythere are regiong1 and
R», intersecting in dimensias — 1 with Ry € C1 andR2 C C». The intersection o1 and
R3 is contained in some hyperpla@of .4, and without loss of generalit®; > R». Also,
C1N H andC2 N H are(d — 1)-dimensional faces of'; andC» respectively. We claim
that in factC1 N H = C2 N H. To prove this, consider the st of .A-regions contained
in C1 which intersect in dimensiond — 1. Call two regionsQ and R in R adjacentif
O N RN H has dimensiod — 2. SinceCy N H is in particular a topological ball, any two
regions inR are connected via a sequence of adjacent elemerRs bét Q; be adjacent
to Ry in R and letQ» be the A-region whose intersection witf1 is Q1 N H, so that in
particularQ1 > Q». Let A’ be the set of hyperplanes containiRg N Q1. Then A’ is an
arrangement of rank two. Lét’ be theA’-region containings. If 01 andR; are unrelated
in P(A, B) thenQ1 A Ry is someA-region contained irB’, and in particularQ1 A Ry
is acrossH from bothQ1 andR1. But Q1 A Rj is congruent taR;, contradicting the fact
that H defines a facet of the union over the congruence clagg off Q1 < R; then since
S(R2) = S(R1) — {H} andS(Q2) = S(Q1) — {H}, we haveQ1 A R» = Q2. Thus the
fact thatQ; = Ry means thatD; A R = R1 A Ry, or in other words, Q> = Ro. If
01> Ry we argue similarly thaP» = R». Thus for every region ifk, the A-region whose
intersection withR is R N H is in C2, soC1 N H € Cz N H. By symmetry, we have
CiNH=CoNH.

Now let C, D € C intersect in dimensiok < d — 1. Then there arel-regionsQ and
R with 0 € C andR C D such thatQ N R has dimensiort. By Lemma 4.3, there is
a sequence of = Rg, R1, ..., R, = R of regions such that for evetythe intersection
R; N R;_1is (d — 1)-dimensional and) N R C R; for everyi. For eachr;, let C; be the
cone inC containingR;. Then,C = Co, C1, ..., C; = D is a sequence of cones@nsuch
that each cone contai® N R and for each we have eitheC; = C;_1 orC; N Ci_1 is
(d — 1)-dimensional.

Now we show by induction thato N C1 N --- N C; is a face ofC; for eachi. The base
case is trivial, and whe@;_1 # C;, the intersectiorC;_1 N C; is a(d — 1)-dimensional
face ofC;_1 and ofC;, soCon C1 N --- N C; is a face ofC;_1 N C;, and in particular a
face of C;. ThusCoNnC1 N ---NC; is a face ofD = C;, and sinceC N D has dimension
k and eaclC; contains thé&-dimensional seQ N P, we have thaCoNC1N---NCrisa
k-dimensional face ob. Becausea” and D are both convex sets, the intersectom D,
beingk-dimensional, cannot be any larger than khdimensional face ob it contains, so
C N D is aface ofD, and by symmetryC N D is a face ofC.
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We have shown that the intersection of two cone§ is a face of each. By Lemn&2,
Fo is afan. By constructionfg is refined byF. Since the union of the maximal cones of
Fo is equal to the union of the maximal cones of the completeAathe fanFg is also
complete. O

If ® and® are congruences such tit ® in Con(P (A, B)), thenFy is refined byFg.
Proposition 5.3. (Fg, P(A, B)/0®) is a fan lattice

Proof. If [[x]e, [yle] is an interval inP(A, B)/0, then the union of the corresponding
maximal cones aof-g is equal to the union of the maximal conesfin [r| x, n'y], which
is a polytopal cone by the fact th@f, P(A, B)) is a fan lattice.

EachC e Cp is the union over an equivalence class of region®i, B), and F
is the intersectiomccc, C. Since this is an intersection of finite unions, there is some
set of representativeiR¢ : C € Cr} whose intersection is full-dimensional ifi. Since
(F,P(A, B)) is a fan lattice, we can IdtR1, R»] be the interval infP(A, B) consisting
of all regions containingNcec, Rc. ANy Q € [R1, R2] is in some congruence clags
containing the full-dimensional subset<c, Rc of F, and thus containing'. Thus the set
Cristhesef{[Q]e : O € [R1, R2]}, which by Lemma&.1 is the interval[ R1]e, [R2]e] in
P(A, B)/O. O

Proposition 5.4. (Fg, P(A, B)/0®) isinduced by any linear functionalwhose minimum
on the unit sphere lies in the interior &f.

Proof. SupposeC1 < C2 in P(A, B)/0, and letR; € C1 andRz C C> be regions ofd
such thatR1 N Ry is (d — 1)-dimensional. Then in particula®; < R2, and since normal
vectors toC; N Co are exactly normal vectors t® N Ro, the result follows from the fact
thatP(A, B) isinduced byp. [

Proposition 5.5. If A is simplicial then(Fg, P(A, B)/0) is bisimplicial with respect to
any linear functionab whose minimum on the unit sphere lies in the interioBof

Proof. Let C be a maximal cone ofg, and N_(C) be the set of outward-facing unit
normalsv to facets ofC for which b(v) < 0. Then sincgFg, P(A, B)/0®) is induced
by b, the facets of” corresponding to normals iN_(C) are the facets separatidgfrom
maximal cones covered by in P(A, B)/®. Let R be the region ofA contained inC
such thatr) R = R. Proposition2.2 implies that the normaly’_(C) are in one-to-one
correspondence with the normalsih (R). SincerR is minimal among regions contained
in C, each facet corresponding to a nhormaNn(R) is contained in a facet corresponding
to a normal inN_(C), so thatN_(C) = N_(R). SinceA is simplicial, the setVN_(C)
is linearly independent. The dual argument proves tHatC) is linearly independent
aswell. O

This proof of Proposition 5.5 goes through under the weaker hypothesé&thiatA, B))
is bisimplicial with respect to any linear functionalwhose minimum on the unit sphere
lies in the interior ofB.
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Proposition 5.6. If [x, y] is a non-facial interval in(Fg, P(A, B)/®), then[x, y] is a
non-atomic interval andx, y) is contractible

Proof. Let[x, y] = [[R1]e, [R2]e] be a non-facial interval ifP (A, B)/®. Let R be max-
imal among regions ifR1]le which are belowr | Ry. Thus[[R1le, [R2]le] = [[Rle.
[n, R2]e], so by Lemma2.1, the interval[[R1le, [R2]e] is equal to the sef[Qle :
Q € [R,m R2]}. We first show that[R,n R>] is not a facial interval in
(F,P(A, B)).

Suppose for the sake of contradiction that there is a €owé F such thaf R, 7| R>]
is exactly the set of maximal cones #f containingC. Let D be minimal among cones
of F@ containingC, so that in particulaC intersects the relative interior dd. Thus a
maximal cone ofFg containsD if and only if it containsC. If Q € [R, m R>] then
[Qle containsC and therefore als®. Conversely iffQ]e containsD, then[Q]g con-
tainsC and therefore some regid® € [Q]e containsC, so thatR’ € [R, m| R2]. Thus
{[Q]@) 0 €[R, 7T¢R2]} is exactly the set of maximal cones 8§, containingD, contra-
dicting the fact thaf[R1]e, [R2]e] is a hon-facial interval.

This contradiction shows th@R, | R>] is not a facial interval irP(A, B), so that the
proper part offR, m| R>] is contractible. Now sincer R, is minimal in its congruence
class andr is maximal in its congruence class among elemeqts, R, the restriction
of ® to [R, ) Ro] does not contract any atoms, nor does it set any coatoms equivalent to
7, Ro. By Lemma 2.1[[R1]e, [R2]e] isisomorphictdR, n| R2]/®, and by Corollary 2.4
the proper part ofR, m R2]/© is contractible as well. SinckR, | R>] is not a facial
interval inP(A, B), it is not atomic, and since the restriction ©fto [R, m R>] neither
contracts atoms, nor sets coatoms equivalent #®p, the interval R, =) R>]/® is also not
atomic. 0O

Proposition 5.7. If A is simplicial and[x, y] € (Fe, P(A, B)/0®) is a facial interval
associated to a con€ of dimensiork, then[x, y] is an atomic interval withi — k atoms
and(x, y) is homotopy equivalentto@ — 2 — k)-sphere

Proof. As in the proof of PropositioB.3, we letf{x, y] be[[R1]e, [R2]e], where[R1, R>]

is a facial interval inP(A, B) corresponding to a con® of F, such thatD is a full-
dimensional subset @. Since[R1, R»] is a facial interval ifP(A, B), (F|c, [R1, R2]) is

a simplicial homotopy facial and atomic-facial lattice fan, whéie: is the fan obtained
from F by restriction. To obtain the restriction, we have a choicg of the relative interior
of C and a ballU at p intersecting only cones which contath We can choosg in the
relative interior ofD, so we haveF| ¢ refining(Fg)|p. Thus we might as well assume that
[R1, R2] = P(A, B) and thus thaD = NF is a full-dimensional subset ¢f = NFg. But
since these are both subspaces, we avwe D. We apply Proposition 4.5 to show that
[Ble = {B} and equivalently thgt-Blg = {—B}.

The atoms of° (A, B)/® numberd —dim C and are in one-to-one correspondence with
the atoms ofP(A, B). Since the join of the atoms @(A, B) is —B, the join of the atoms
of P(A, B)/®is{—B}, so[x, y]is atomic and hag—dim C atoms. Also, by Corollary 2.4,
the proper part oP (A, B)/O is homotopy equivalent to the proper parf®fA, B), which
is homotopy equivalent to a sphere of the desired dimensionl
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Proposition 5.8. If [B]g = {B} then(NFg) = (NF).

Proof. For any® the inclusion(NF) C (NFg) follows immediately from the fact that
each maximal cone gfg is a union of maximal cones ¢f. Let C be the maximal cone
of Fg containingB. If B containsnFg then sincenFg is a subspace, it is contained in
every face ofB, includingNF, so that(NF) = (NFg). But C containsNFg. Thus if
(NF)S(NFe) we haveBCC and thugBle # {B}. U

The proof of Propositios.5 established, independent of the hypothesishiatsimpli-
cial, thatthe facets of the cone correspondin@y in (Fg, P(A, B)/®) arein one-to-one
correspondence with the elements either covered ®yor coveringr R in P(A, B). Thus
we have the following proposition. Recall thatis the dimension of the vector space in
which F is defined.

Proposition 5.9. Fg is simplicial if and only if for even|R]g the number of elements
covered byt R plus the number of elements coveringr is d — dim(NFg).

WhenA is simplicial, this condition is equivalent to requiring that the number of elements
covered byt R minus the number of elements coveredt\ is dim(NF) — dim(NFg),
which is equal to the number of atoms contractedhy

In the case wher&g is simplicial, Propositior3.5 allows thé:-vector of the correspond-
ing simplicial sphere to be determined directly frém®. In particular, the quantity is the
number of join-irreducible elements Bf(A, B)/®. These are exactly the join-irreducible
elements o (A, B) not contracted by. When® is a congruence which does not contract
any atoms fq is the number of atoms plus the number of uncontracted join-irreducibles. By
a slight abuse of terminology we call a cone in a completeffaray if its dimension is one
more than the dimension of the minimal conefinlf the minimal cone ofF is the origin
then this is the usual definition of a ray, and if not then we mod out by the minimalténe
to obtain a fan whose minimal cone is the origin. For a simplicialfathe quantityfo is
the number of vertices of the associated simplicial sphere, that is, the number of fays of
Thus the number of rays ofg is the number of atoms plus the number of uncontracted
join-irreducibles. By the previous paragraph, the join-irreducibles not contract@ddg
in bijection with join-irreducibles with 7ty = .

If we lift the requirement thaFg be simplicial, when® does not contract any atoms
the number of rays offg is still the number of atoms dP(A, B) plus the number of
join-irreduciblesy with 7'y = 7. We identify these rays explicitly.

Proposition 5.10. Suppose that is simplicial and thaf{Blg = {B}. Then the rays afg
are exactly the cones arising in one of the following two ways

(i) For a facet hyperplandf of B, let L be the subspace which is the intersection of the
other facet hyperplanes &. Then the cone consisting of pointdirweakly separated
from—B by H is a ray of Fg.

(i) Given a join-irreducibley of P(A, B) such thatz? (y) = y, let L be the intersection of
the upper facet hyperplanes-ofThe cone consisting of points inweakly separated
from B by the unique lower facet hyperplane)as a ray of F(®).
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Proof. Since[Ble = {B}, by Propositiorb.8 we havenF = NFg. By Proposition 5.7,
if [x, y] is a facial interval in(Fg, P(A, B)/®) associated to a rag, then[x, y] has
d — dim(NFg) — 1 atoms and is the quotient modulb of a facial intervallx’, y'] with
d — dim(NFg) — 1 atoms, associated to a rayin (F, P(A, B)). Furthermore no atoms
of [x’, y’] are contracted to’ by ®. EachD is a half-subspace, that is, the productof
with a ray (in the usual geometric sense}m¥)=. Similarly eachC is the product ohFg
with aray in(NFg)*. SinceD € C andNF = NFg, we haveD = C. Thus every interval
[x’, y'1of P(A, B) with d — dim(NF) — 1 atoms, none of which are contractedtpgives
rise to a distinct ray ofFg.

SinceA is simplicial, the atomic intervals @ (A, B) with d — dim(NF) — 1 atoms are
of two types. First[B, R] whereR is the join of a set containing all but one of the atoms
of P(A, B), and second, for each join-irreduciblethe intervaly, Q1, whereQ is the join
of the elements covering Since no atoms dP(A, B) are contracted b®, no atoms of
[B, R] are contracted. Requiring that no atomg,9fQ] are contracted tg is exactly the
requirement that™y = 7. It is now easily checked that these rays match the descriptions
in(i)and (i). O

6. Weak order on the symmetric group

For the remainder of this paper we will be concerned with a particular poset of regions,
which appears in the guise of the weak order on the symmetric group. In this section we
give a brief description of the weak order on the symmetric group, and quote some results
concerning its lattice congruences. Further information, in the more general context of
Coxeter groups, can be found in [12,28] and in Section 2 of [10].

Let S, be the symmetric group of permutationsfef := {1, 2, ..., rn} and write an
elementx € S, in one-line notationx1x> - - - x,,, meaning that; := x(i). Theinversion set
I(x)ofxis

I(x):= {(x,-,xj) CXp < Xj, 1> j}.

The length of a permutationis/(x) := |/ (x)|. Later, we consider permutationsSp with
n varying. Thesizeof a permutation: will denote then such thate € S,.

One definition of the right weak order is tha& y if and only if 7 (x) € I(y). Equiva-
lently, moving up by a cover relation in the right weak ordeSprrorresponds to switching
adjacent entries in a permutation so as to create an inversion. For the rest of the paper, the
phrase “weak order” means right weak order, and the sym§ygldenotes the symmetric
group as a poset under the weak order. This partial order is the poset of regions of a Coxeter
arrangement of type A, with the inversion getorresponding to the separating SefThe
arrangement is most easily constructeiin as the set of hyperplanes normal to the vectors
e; —e; for 1< j < i<n. The base regio® is most conveniently chosen to be the region
consisting of pointy = (p1, p2, ..., pn) With p1 < p2< -+ - < p,. The weak order o,
has a maximal elementy := n(n — 1) - - - 1. We denote the identity permutation 12n
by 1,.

Given a permutationr, sayx has aright descentati if x; > x;+1, and say theight
descent setf x is the subset ofn — 1] consisting of right descents of Theleft descent
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setof x is the set consisting of indicése [n — 1] such that + 1 occurs beforé in x.
Join-irreducible elements ¢f, are permutations with only one right descent. For any non-
empty subsed C [n], let A° := [n] — A and setn = min A and M = max A°. If y

is a join-irreducible element af,, with unique right descent, theny hasy; > 7, , but

7; < 741 for every otherj € [n — 1]. Let A := {;,4,7;42. ..., 7, }. This is a bijection
between join-irreducibles af,, and nonempty subsets pf] with M > m. The inverse
map takesA to the permutation whose one-line notation consists of the elements$iof
increasing order followed by the elements4in increasing order.

The weak order on the symmetric group (or more generally on any finite Coxeter group)
is a congruence uniform lattidd4,39]. In [41], the poset of irreducibles of C@y) is
determined explicitly as a partial order on the join-irreducibles,pfThe following are
[41, Theorems 8.1 and 8.2].

Theorem 6.1([41, Theorem 8.1)] The posetrr(Con(S,)) is the transitive closure of the
directed graph in whicly; — 7, if and only if the corresponding subsets and A, satisfy
one of the following

() A1N[1, M1) = A>N[1, Mq1) and Mo > M1, or
(i) A1N(m1,n] = AN (m1,n] andmsy < mj.

Theorem 6.2([41, Theorem 8.2] Lety and}’ be join-irreducibles with corresponding
subsetsA and A’ and letm and M be associated td as described above. Thercovers)’
in Irr (Con(S,)) if and only if A is one of the following

A—{M+1} for M < n,
(A—{M+1Hu{M} for M <n,
AU{m — 1} for 1 < m, or

(AUu{im—1}) —{m} forl < m.

GivenaseK C [n—1],theparabolic subgrougs, )k of S, is the subgroup generated by
the transposition§(i, i + 1) : i € K}. Any x € S, has a unique factorization= xg - Kx
which maximizes/(xx) subject to the constraints thatrg) + [(Kx) = I(x) and that
xg € (S»)k. The set’s, := {Kx : x € §,}, called theleft quotientof S, with respect to
(S»)k, is alower interval in weak order, with maximal elemé&nig. There is an analogous
factorizationx = xX . xg, and(S,)X is theright quotient A parabolic subgrougs,)x
is also a lower interval in the weak order §p, and the projection +— xg is a lattice
homomorphism. The corresponding congruence is a parabolic congruence in the sense of
Sectiond. The parabolic subgrou$, ) for (p) := [p + g — 1] — {p} is isomorphic
to the direct producs, x S,, and the map frons,, x S, is (u, v) = u x v, where

u; if 1<i<p,

(”X”)":{pwip if p+1<i<p+q.

The upper intervalS, ) (p) - {P)wp) is also isomorphic td, x S;, and isomorphism is
(u, v) = uxv, where

p+uv if 1<i<gq,

(uxv); = {uiq if g +1<i<p+gq.
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We haver x v <uxvin weak order, and the congruence classes of the parabolic congruence
associated tgp) are the interval$u x v, uxv]. The join-irreducibles ofS,,) ) are the
elements of the form x 1, for y ajoin-irreducible ofS,, and 1, x y for y a join-irreducible

of S,. The upward projection associated to the parabolic congruenceisw,, - P} (wp),

which restricts to an isomorphism frot 1) (p) t0 (Sp+4)(p) - 7’ (wo). The following is

a specialization of41, Lemma 6.4].

Lemma 6.3. For a congruencé® on S, ,, the restriction of® to (S,+,)(,) corresponds
by the mapw ) > w(p) - P’ (wo), to the restriction 0fd to (S,+4)(p) - P(wo).

Define thesupportsuppgx) of a permutationt to be the minimalk such thatx is in
(S»)k, and let the degree af be |suppx)|. The degree of a join-irreduciblein S, is the
magnitude of its unique descent. That isy,if> y;,,, then the degree ofis y; — y,,;.
The poset Ir¢Con(S,,)) is dually ranked by the degree. In a more general contepdlih
it is shown that ify; <y, in Irr(Con(S,)), then suppy,) < supfy,). A congruenced on
P(A, B) is homogeneous of degrédf it is generated by contracting join-irreducibles of
degreek.

We conclude the section with an observation that allows us to reconstruct a congruence
on S, explicitly from the set of join-irreducibles contracted. Given a permutatioa
X1X2 - -+ X, With x; > x;41 define

Al i) = {xj 1 1<j<i,xj > xi U fxj1i +1<j<n, x; > xia}.

ThenA(x, i) hasM = x; andm = x;11 < M, SOA(x, i) is associated to a join-irreducible
which we denotel(x, i). The permutatiori(x, i) consists of all elements of“(x, i) in
increasing order followed by all elements4€x, i) in increasing order.

Proposition 6.4. If x >y in the weak order and this covering relation corresponds to
transposingy; and x; 1, then a congruenc® contracts the edge > y if and only if it
contracts the join-irreduciblé.(x, 7).

Proof. If two entriesa > b are inverted in.(x, i), thenb € A(x,i) anda € A°(x,i). If
a < x;41 then so ish, contradicting the fact thdt € A(x, 7). Thereforeg = x; <x; for
some XK j<i. Sincea <x;, we haveb <x; as well, so the fact thdt € A(x, i) implies
thatb = x; for somei + 1<k <n. In particulara andb are inverted inx as well and we
have shown that(x, i) <x in weak order. The unique element(x, i) covered by.(x, i) is
obtained by undoing the inversion;, x;+1), S04, (x, i) <y.We havex A A(x, i) = A(x, i),
VYAMx, i) = Ae(x,0), y V Alx, i) = x andy V A.(x,i) = y. Applying the definition of
lattice congruence to these four equations shows@aintracts the edge > y if and only
if it contracts the edgé(x, i) > A.(x,i). O

7. Translational families of congruences

In this section, we define translational families of congruences and prove Théd@em
which relates translational families to subalgebras of the Malvenuto—Reutenauer algebra.
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We also give a combinatorial characterization of translational families in terms of sets of
contracted join-irreducibles.

Let K be a fixed field. For >0, let K[S,] be the vector space ovéf spanned by the
elements ofS,, and letK[Sx] := EB@O K[S,]. Foru € S, andv € S,, Malvenuto and
Reutenauef35] defined theshuffle produck es v € S, to be the sum of all shuffles af
andv. This is a graded associative productlénS~,]. Loday and Ronco [34] pointed out
that the shuffle product can be expressed as

Uegv = Z w.

we[uxv,uXv]

and readers not familiar with shuffles may take this as a definition. The partial order here
is the weak order. In fact, Loday and Ronco used the left weak order, so our product is in
fact the dual product used for examplg2}.

The product ‘eg " can be rewritten in terms of parabolic subgroups:

Uegv = Z X,

)CESI,+,]
X(p)ZLlXU

wherex,, refers to the factorization = x,,) - "’x. Note thatx(,y = u x v if and only if
X[p-1) = 4 ANAX[p+1,piq-1] = V-

For eachn >0, let ®, be a lattice congruence oy, and let(n;), and ("), be the
associated downward and upward projections respectively. As the subssiptpically
given by the context, we refer to all of these projections simply gand='. Let Z,? =
Su/®,. Sincez® =, (S,) we will think of Z® as the subposet, (S,) C S,. Define a
graded vector spadE[Z?o] =D,>0 K[Z,?]. We often suppress the supersci@iand
write IK[Z.]. Define a product ofK[Z] by setting, fo € Z, andv € Z,,

ueyv = Z X, Q)

XEZp+q
X(py=UXV

that is, we sum over all shuffles afandv which are the minimal elements of congruence
classes 0B, ,. Define a map : K[Z] — K[Sx] by sending each elemente Z, to
the sum of the elements of the congruence classiofS,. The mapc is one-to-one and
the inverse map, defined ore(K[Z]), is the map which fixes if 7 x = x and maps
to zero otherwise. The namesndr for these maps indicate “class” and “representative”
respectively. We can write the definition @, concisely astez v = r(uegv) foru, v
K[ Zoso].

Foreveryp, g >0, the congruend®, x®, onS, x S, induces acongruence 08, ;) ()
via the map(u, v) — u x v. Call the family{®,}, - ¢ of congruencesranslationalif for
everyp, ¢ >0, this induced congruence 06, ) p) is equal to the restriction @, , to

(Sp+q ) (p)-

Theorem 1.2.If {®,}, ¢ is a translational family then the mapembedSK_[Z?O] as a
subalgebra of<[ Sy ].
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Proof. Suppose tha®,}, > o is a translational family of congruences. The nrapspects
the vector-space structure and the grading and is one-to-one. We check that it respects the
products ofK[Z] and K[ S ]

Letu € Z, andv € Z,. Then

cueyv) = Z c(x) = Z x.

XEZIH,q XGSP‘H]

X(py=uxv () x) (py=uxv

On the other hand,

c(u) o5 c(v) = Z Z x.

yimyy=u X€Spiq
ZMYZ=V X(p)y=yXZ

Definel := {x € Sy4q : (myx)(p) = u x v}. DefineJ to be the set of elementse S,
such that, writinge(,) = y x z forsomey € S, andz € S, we haver|y = u andn z = v.
Thenc(u oz v) is the sum of the elements dfandc(u) eg c(v) is the sum of the elements
of J, and we complete the proof by showing thiat J.

Supposexr € I and writex(,, = y x z for somey € S, andz € S,. We havex > x )
and thereforer| x > m| (y x z). By the order-preserving projectiont8, ) ) this implies
uxvz(m (y x 2)p), butsincey x z € (Sy4+4)(p), Which is a lower interval irS, .,

T (Y X 2) € Spig, SO(my(y X 2))(p) = 7y (y X 2). Thusu x v=m (y x z). On the other
hand,x > x, so by the order-preserving projection(®,,,)p) we havey x z>u x v
and thereforer (y x z) > (u x v). Since{®,} is a translational family we have

uxvz(myy) X (myz) = (mpu) x (T v) =u X v,

son,y = u andnyz = v. Thusx € J and we have shown thatc J.

Supposer € J. Sincex = (y x z) - Plx we have(y x z) <x <(y x z) - Pwg. We now
apply 7 to the inequality. Becaus®, } is a translational familyg (y x z) = (7w y) x
(myz) =u xv. Let (nl) be the downward projection associated to the restrictid® pf,

10 (Sp1q)(p) - Pwo. By Lemmab.3,
@I x 2) - Phogl = 1y (y x 2) - Phwg = (u x v) - Phug.
We haver  [(y x 2) - Phwol < ())[(y x 2) - Phwo], s0

ux v<myx<my[(y x 2) - Phyol < (u x v) - Pl

To this inequality we apply the order-preserving projection dowista )y, thus obtain-
ingu x v<(myx)(py <u x v, sox € I. We have shownthat=J. [

There is a more constructive definition of a translational family. #qw:, y € S; and
x € S,, sayx is atranslateof y if x is 1, x y x 1, for somep >0 andg > 0. In this case is
join-irreducible inS,, if and only if y is join-irreducible inS . Also, since " is associative
and 1, = 1; x-- - x 13, anarbitrary translation can be obtained as a sequence of translations,
each of which increases length by 1. Callintranslatedf there is no permutation such
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thatx is a translate of, or equivalently ifx; > 1 andx,, < n. For any permutation there

is a unique untranslated permutatiprsuch thatx is a translate of). Say a permutation
y € Sk has acliff at j if y; = k andy;;1 = 1. A join-irreducibley in S, is untranslated

if and only if it has a cliff. This is equivalent to saying the degree) @ n — 1, which,
since Ir(Con(S,)) is dually ranked by degree, is equivalent to saying thiatminimal in
Irr(Con(S,)). LetC be a set of join-irreducible permutations of various sizes, each of which
is untranslated. (Recall that the size of a permutatigthen such thatc € S,,.) For each

n >0, denote by T¢C),, the smallest congruence ¢h contracting every join-irreducible
of S, which is a translate of some element@fThe family of congruences each of which
has a single congruence clasg1s(21),}, and the family of congruences for which each
congruence class is a singletoq1$(%),,}.

Proposition 7.1. A family of congruences is translational if and only if it has the form
{Tr(C)n}n >0, WhereC is a set of join-irreducible permutations of various sizeach of
which is untranslated

Proof. Lety be a join-irreducible irS,,. Theny is contained in some parabolic subgroup
(Sn)(py With p + g = n if and only if eithery = " x 1, for some join-irreducibley’

in S, ory =1, x »” for some join-irreducible/” € S,. If y is not in any parabolic
subgroup, then in particular it is untranslated. Since congruences are determined by the
set of join-irreducibles they contract, the requirement {l&gt} is a translational family is
equivalent to the requirement that a join-irreducible is contracted if and only if all of its
translates are. Therefore a translational family i&y,, whereC is the set of untranslated
join-irreducibles of various sizes contracted by the family.J]

The proof of Propositior7.1 construct€ as the set of all contracted untranslated join-
irreducibles. However, in many examples we takeo be a finite generating set. The
following lemmas are easily checked by reducing to the gaseq = 1 and applying
Theorem 6.1.

Lemma 7.2. Lety, andy, be join-irreducibles inS;. Theny; <y, in Irr(Con(Sy)) if and
onlyifl, x y; x 1, <1, x yo x 15 inlrr(Con(S 1 x4¢))-

Lemma 7.3. If y;>1, x y, x 1, inlrr(Con(S,)) theny; = 1, x ] x 1, for somey;.

Refinements of congruences give rise to further subalgebra relationships. Specifically, let
{®,} and{®,} be two translational families such thh} refines®,, for eachn. Alternately,
we cgn think of®,, as a congruence on the lattig/®,,. ThenK[Zf?o] is a subalgebra of
K[z2].

This restriction of the refinement order on families to translational families is a dis-
tributive lattice. Specifically, the join of two translational familigg (C1)} and{Tr(C2)}
is {Tr(C1 U C2)}. If C1 is the complete set of untranslated join-irreducibles contracted by
{Tr(C1)} and similarly forCo then{Tr(C1 N C2)} is the meet of Tr(C1)} and{Tr(C2)}.
We wish to define a partial order Jfr on untranslated join-irreducibles such that the
possible sets” of all contracted untranslated join-irreducibles for a translational fam-
ily are exactly the order ideals in Jx A priori, this means defining Tt as the
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transitive closure of the relation setting >y, whenever some translate of is above
some translate ofy, in Irr(Con(S,)) for somen. However, this definition can be
simplified.

Proposition 7.4. Lety, andy, be untranslated join-irreduciblesuch thaty, € Sx. Then
71 > 72 In Tro if and only if some translatg; of y; coversy, inIrr (Con(Sy)). Furthermore
71 is eitherly x y; or y; x 13.

Proof. Supposey; >y, in Tro, so that in particular some translatg of y, is above

1, x 7, x 1, inlrr(Con(S,4x+4)). Thenby Lemmd.3,7; = 1, x ] x 1, for somey]. By
Lemma 7.2 we have] > y, in Irr(Con(Sy)). Buty, is untranslated, ang] is not minimal
inlrr(Con(Sy)), so itis a translate. Thug # 77, soy] is a translate of;. If there is some

7z such thaty > y3 > 7, in Irr(Con(Sy)), then there is some untranslated join-irreducible
75 such thaty; is a translate ofj, andy; > y5 > 7, in Tro, contradicting the hypothesis
thaty, > 7,. Thusy] > y, in Irr(Con(S)).

Suppose conversely that some translgfecovers y, in Irr(Con(S,)). Recall that
Irr (Con(S,,)) is dually ranked by degree, and that the degree of a join-irreducible is the
magnitude of its unique descent. Singéhas degreg — 1, the translatg} has degree — 2.
Thus the unique descent gf consists either of the entkyfollowed by 2 ork — 1 followed
by 1, so that] is either 4 x y; ory; x 1;. We havey, > 7, in Tr. If there is somey;
such thaty; > y3 > 7, in Try, then by the previous paragraph there would have to be a
translate ofy; coveringys and a translate of; greater thary,. But this is impossible since
Y1 € Sk—1 andy, € §,. O

To explicitly describe the cover relations inJiwe introduce an operation call@tser-
tion. Let y be a join-irreducible inS,, with associated subsdt and leti € [n + 1]. Then
the left insertionof i in y is a join-irreducible L(y) in S,+1 whose associated subset is
(AN[Li—-1puU{j+1:j € AnTi,n]}. Therightinsertionofi in y is a join-irreducible
R;(y) in S, 11 whose associated subsetisN[1,i — 1)U {i}U{j+1:je AN[i,n]}.
Wheny is writteny,y, - - - y,,, it consists of the elements @ in increasing order on the
left, followed by the elements of in increasing order on the right. The effect of these
insertions is to increase each entyy by 1 and then insert into either the left increas-
ing sequence or the right increasing sequence. Note #{@ &= 11 x y and R11(y) =
y x 13.

Proposition 7.5. Lety be an untranslated join-irreducible i6j,. Then the set of elements
covered by in Tro is {R1(y), L2(9), R, (9), L,+1(y)}. These elements are not necessarily
distinct

Proof. We apply Propositiory.4. Using Theorem 6.2, it is easily checked that the two
elements covered by;1x y are R1(y) and L(y), and that the two elements covered by
7 x lyareR,(y) andL,+1(y). O

The poset Ty, is dually ranked by size. The top four ranks of.Jrare pictured in
Fig. 1. Reflecting this picture through a vertical line is the symmetry gf Which cor-
responds to applying to each (@on(S,)) the antipodal symmetry defined in
[41, Section 6].
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21

231 312

/IXIN

2341 3412 2413 4123

23451 34512 23514 24513 35124 45123 25134 51234

Fig. 1. The top four ranks of Tg.

8. Insertional families of congruences

In this section, we define insertional families of congruences and prove TheoBm
which relates insertional families to subcoalgebras of the Malvenuto—Reutenauer Hopf
algebra. We also give a combinatorial characterization of insertional families in terms of
sets of contracted join-irreducibles.

Let K[ X~ ] be a vector space graded by the non-negative integers, sucttiead basis
for the n-graded component. £graded) coproducon K[X ] is @ mapA : K[Xs] —
K[Xw] ® K[X~] such that the image of the restriction Afto IK[X,] is contained in
@P+(1=n K[X,]1® K[X,]. The coproducA is coassociativéf (AQ I)oA = (I @A) oA,
wherel is the identity. Iff Xo| = 1 and the orthogonal projectian K[ X ] — K[Xo] =K
satisfiese @ o A=1® I and(I ® &) o A = I ® 1, where “1” is the map whose image
is {1} c K, thenlK[X] is called agraded, connected coalgebr subcoalgebrad<[Y]
of K[X ] is a graded subspace such that the image of the restrittiaf A to K[Y] is
contained iNK[Ys] ® K[Yxo].

Let K[X] be a graded, connected coalgebra with coproducthere is a standard
construction of a coproduct dd[X ] ® K[ X ], induced byA, which makesK[X ] ®
K[X] a graded, connected coalgebraklfX ] is also an algebra whose produet™is
a coalgebra homomorphisii[ X ] ® K[Xoo] = K[Xo] then(K[Xs], @, A) is called
agraded, connected Hopf algebrgor the rest of the paper, the term “Hopf algebra” will
mean a graded, connected Hopf algebra.

SupposeK[X ], @, A) is a Hopf algebra and[Y.,] is both a subcoalgebra and a
subalgebra of<[X ], with |Xo| = |Yo| = 1. Then(K[Yx], ey, Ay) is a Hopf alge-
bra, and in particular graded sub Hopf algebraf (K[X], e, A), where “ey " is the
restriction of “e” to K[Y]. For more information on Hopf algebras,
see [36,45].

Malvenuto and Reutenauer [35] defined a coproducbn [K[Sy ] such that(K[Ss],
o5, Ag)isaHopfalgebra. To any sequer(ag, ay, .. ., a,) of distinctintegers, we associate
astandard permutatiost(as, az, .. ., ap). Thisis the permutatiom € S, such that for each
i, j € [plwehavey; < u;ifandonlyifa; < a;. So for example $7359) = 42351. The
standard permutation of the empty sequence is the empty permutafignmine coproduct
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of an elementk € S, is
n
Ag(x) =) st(x1, ..., xp) @ St0xpia, ..., Xn).
p=0

For convenience, I€15,) o) and(S, ) ,) both denotes, whichis, in a trivial sense, a parabolic
subgroup of itself. We should think 68),) ) asSo x S, and(S,,) (»y asS, x So. As discussed

in Sectiong, for p e [n—1], the productS,, x S, is isomorphic to the parabolic subgroup
(Sn)(py by the map(u, v) — u x v. The following formula forAg is useful in the proof of
Theorem 1.3 despite the fact that the second and third sums are each sums of a single term.

As(x)zz Z Z uQu.

p=0 weS,Sm UES),,VES,—p

w-(UXv)=x

To avoid confusion, we stress the fact tﬁéﬁ) is the right quotient of5,, with respect to
() (py rather than the left quotient which was used to define the proelyct
For {®,}, >0 with 7, and n' be as before, we define a coproduct on K[ZS’O].

Given a sequencey, xo, ..., x,, of distinct positive integers, let (x1, x2, .. L Xp) =
st(x1, x2, ..., xp) € K[Z2]if 7y (St(x1, x2, ..., X)) = St(x1, x2, .. ., x,), and otherwise
let s (x1, x2, ..., xp) =0.Forx € Z,,letAz = (r ®r) o As o ¢, wherec andr are the
maps defined in Sectioh That is:
n
Az(x) = Z Z St®(x1, LX) ® St®(x,,+1, ey Xn). (2)
ves, P=0
T, y=xX

We can rearrange the sum to read

AZ(X)ZZ Z Z uv.

=0 esiP) UEZp vEZy—p

7y (w-(uxv))=x

Each left coset of a parabolic subgrougsinis an interval in the weak order isomorphic
to the weak order on the parabolic subgroup. For any >0 and anyw € Sﬁ,’fﬁq, the
productS, x S, is isomorphic tow - (Sp+4)(py by the map(u, v) — w - (u x v). The
congruenced, x O, on S, x S, induces a congruence an - (S,44)(p) Via the map
(u,v) = w- (u x v). Call the family{©®,}, > o of congruencesnsertionalif for every
p,q=0and everyw € Sl(,’fﬁq, the congruence induced an- (S,44)(p) by ©, x O, is
a refinement of the restriction @, to w - (Sy44)(p). The term “insertional” will be
justified later by PropositioB.1.

Theorem 1.3.If {©,},>¢ is an insertional family then the mapembedsK[ZS’o] as a
subcoalgebra oK[Sy].
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Proof. We check that respects the coproducts. Let Z, and think ofx as usual as an
element ofS,, with 7y x = x. Then

C€®)BzN =) > Yo cw®c).

P=0 esiP UEZ Yy VEZy—p

w-(uxv)e[x,nTx]

On the other hand,

Asc@) = Y Y, u®w

P=0 yes?  ues,.ves,

w-(ttxv)e[x,nTx]

Foreachw € S,<,P>, the map(u, v) — w- (1 x v) maps eacki®, x ©,)-classinS, x S, to
anintervalinw - (S,44)(p)- If {®,} is an insertional family, then for eachthis interval is
either entirely contained i - (S,44) () N[x, ©'x] or disjoint fromw - (Sp44) () Nlx, ' x].
Thus these two sums are equall]

Proposition 8.1. A family of congruences is insertional if and only if for every join-
irreducibley contracted by®, with associated subset andm = min A, M = maxA¢,
the following two conditions hold

(i) ©,.41 contracts the right insertioR; (y) for everyi € [m + 1, M + 1].
(i) ©,41 contracts the left insertioh; (y) for everyi € [m, M].

Proof. Let y be a join-irreducible inS,. Let A be the subset correspondingjt@nd let
the unique descent of be between the entrigg = M andy,,; = m. The choice of

w e S,i’_lzl amounts to choosing an elemént [n + 1] so that the one-line notation far
consists of the entries ¢ + 1] — {i} in increasing order followed by the entryChoose
i € [m+1, M +1] and letx be the permutatiom - (y x 1), so that stx1, x2, ..., x;) = ).
Lety = w- (y, x 11), so thaty agrees withx except that the entries in positiohsndk + 1
are transposed. We have

V; if j<n+landy; <i,
xj=17y;+1 if j<n+landy;>i, or
[ if j=n+1

Consider the join-irreduciblé.(x, k) defined in connection with Propositidh4. Since
i > m, Ax, k) is constructed from by moving the entry into a position to the right of
positionk such that the entries in positiokst+ 1 ton + 1 are increasing. In other words,
Alx, k) is R; (). By Proposition 6.4, the edge - (y x 11) > w - (y, x 11) is contracted by
®,,+1 if and only if the join-irreducibler; (y) is contracted byd,, ;1.

Choosingw € Sﬁl amounts to choosing a@ne [n + 1] so that the one-line notation for
w consists of the entryfollowed by the entries ifw: + 1] — {i} in increasing order. Choose
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somei € [m, M], letx = w - (11 x y) and lety = w - (11 x 7y,). We have
i if j=1,
xj=17j-1 if j>1andy; <i, or
7j-1+1 if j>1andy; =i

Sincei < M, we have l.(y) = A(x, k) which, by Propositior6.4 is contracted if and only
if the edgew - (11 x y) > w - (11 x y,) is contracted.

If {®,} is insertional then for any join-irreduciblee §,, contracted by®,,, the edges
w-(xl)>w-(y, x 1) andw - (11 x y) > w - (11 x y,) are contracted b, 1. By
the previous two paragraphs this implies (i) and (ii).

Since congruences are determined by the set of join-irreducibles they contract, the defini-
tion of an insertional family can be rewritten as the following requirements for gagh: 0

(p)
andw € S,

(i") If a join-irreducibley € S, is contracted by®,, then®,,, contracts the edge
w-(yx1l)>w-(p, x1).

(i") If a join-irreducibley € S, is contracted by®, then®,,, contracts the edge -
Ay x ) >w- 1y X7,

Now suppose conditions (i) and (ii) in the statement of the proposition hold arnydlet
a join-irreducible inS,, contracted by®, with A, m, M andk as above. For fixegh and

q, the choice ofw € Sﬁ,’qu corresponds to choosing some sub@etf [p + ¢] with ¢
elements. Letiya, - - - a), be the unique permutation of the $pt+ ¢] — O whose standard
permutation ig. Letx := w - (y x 1), so thatx consists of the entriag, - - - a,, followed
by the elements of) in increasing order. Léis, ..., b, be the elements af N [1, ax+1]
in increasing order, lety, ..., ¢; be the elements ad N [ax1 + 1, ax + 1] in increasing

order, and let/, . .., d; be the elements a® N [a; + 2, n + 1] in increasing order. Then
Ax, k) =Ry, - Ry (Rey - Rey (L -+ - Ly ().

For any join-irreducible with corresponding: andM, if j < m we have L;(y) = L,,(y) so
that, by condition (ii), s, - - - L, () is contracted. By condition (i), R - - Re; (L, - - - Ly, (7))

is contracted. For any join-irreducibjewith correspondingz andM, if j > M + 1 we
have R (y) = Ray+1(p), so by condition (ii),A(x, k) is contracted. Thus by Propositi6r#,
w-(yx 1) > w-(y, x 1) is contracted. We have verified that conditions (i) and (ii) imply
condition(i’). The proof for(ii’) is similar. [

9. Sub Hopf algebras

Recall that art{-familyis a translational and insertional family of congruences, and that
Corollary 1.4 states that {®,},, > o is anH-family then the map embedsK[Z?o] asasub
Hopf algebra of<[ S ]. In this section we stud§{-families.

Proposition 9.1. Let C be a set of untranslated join-irreducibles of various sizes. Then
is the complete set of untranslated join-irreducibles contracted byt damily if and only
C is closed under insertions which are not translations



N. Reading / Journal of Combinatorial Theory, Series A 110 (2005) 237-273 267

In other words, for every € C N §,, the requirement is thdR;(y) : i € [1,n]} C C
and{L;(y):i e[2,n+ 1]} CC.

Proof. By Propositior?.5,C is the complete set of untranslated join-irreducibles contracted
by a translational family if and only if for everye C N S,, we have{R1(y), L2(), R, (),
L,+1(y)} C C. If the family is insertional as well, by Proposition 8.1, the join-irreducibles
Ri(y) fori € [2,n+ 1] and L;(y) fori € [1, n] are contracted as well. Note that R (y) =

y x 13 and Ly (y) = 131 x 7, but that all of these other insertions yield untranslated join-
irreducibles. ThugR;(y) : i € [1,n]} C Cand{L;(y) :i € [2,n+ 1]} C C.

Conversely, letC have{R;(y) :i € [L,n]} € C and{L;(y) :i € [2,n+ 1]} C C for
everyn and everyy € C N S,. Lety be a join-irreducible contracted Iy, with associated
subsetA, letm = min A and letM = max A¢. Theny = 1,,_1 x ¥/ x 1,_ for some
untranslated join-irreduciblg. If i € [m, M + 1], then R(y) = 1,1 x Ri_n11(Y) X
Lioy,and L(y) = 1,1 x Li_me1(y) x 1,_p, so these conditions on untranslated join-
irreducibles imply conditions (i) and (ii) of Proposition 8.1. [

We define a partial ordet ., in analogy to Tg,, such that the possible sefs of
contracted untranslated join-irreducibles for Hrfamily are exactly the order ideals in
Hoo. In particular, the set oH-families is a distributive lattice. Proposition 9.1 can be
interpreted as a description of the cover relationg4in, keeping in mind that the set
{Ri(p) :i e [L,n]} U{L;(y) :i € [2,n+ 1]} does not necessarily contain Bistinct ele-
ments. The posét ., is an extension of T, in the sense that the underlying sets coincide
and every order relationin Iyis an order relation it oo . Like Try, the poset . is dually
ranked by size. In Fig. 1, one adds in the cover relations 2324513 and 4123 35124
to obtain a diagram of the top four ranksHf..

Given permutationy = yiy2---yx € Sy andx = x1x2---x, € S,, say that the
patterny occursin x if there are integers 4i1 < i2 < --- < iy <n such that for all
1<p < g<kwehavey, <y, ifandonlyifx;, < x; . Otherwise, say thatavoidsy. For
more information on patterns in permutations, see [49]. We extend the definition of pattern
avoidance in order to descrii¢-families. Recall that a permutatione Sy has a cliff atj
if y; = kandy;;1 = 1. If y has a cliff atj, sayy occurs inx with adjacent cliffif there
iS some occurrence, x;, - - - x;, of y inx suchthat; 1 =i; + 1. Otherwise say avoids
cliff-adjacent instancesf y. For an untranslated join-irreducibjee S; with a cliff at j,
thatisy; = k andy; ., = 1, ascrambleof y is any permutatiom with o; =k, 641 =1
and{g; :i € [j — 11} = {y; : i € [j — 11}. Notice that every scramble phas a cliff at;.

Let C be a set of join-irreducible permutations of various sizes, each of which is un-
translated, and defingH(C),} to be the smallest-family of congruences contracting
each element of . Thus the complete set of untranslated join-irreducibles contracted by
{H(C),} is the smallest order ideal @i, containingC.

Proposition 9.2. A join-irreducibley’ € S, is contracted by (C),, if and only if there is
somey € C which occurs as a pattern ipl.

Proof. Since?-families correspond to order idealsHy,, we may as well tak€ = {y}
for some untranslated join-irreducibjee S;. Other order ideals are obtained as unions
of these principal order ideals. Also, we can reduce to the case whiereintranslated.



268 N. Reading / Journal of Combinatorial Theory, Series A 110 (2005) 237-273

Otherwise, write’ = 1, x 7" x 1, for somep andg and some untranslated join-irreducible
1. BecausdH (C),} is in particular a translational family, is contracted if and only if”

is contracted. Furthermor¢, contains the untranslated join-irreduciblé@ and only if y”
containsy. Now it is easily proven by induction anthaty’ is contracted by (y), if and
only if y occursiny’. [

Theorem 9.3. A permutationt € S, is contracted by (C), if and only for some € C
there is a scramble of y which occurs inv with adjacent cliff

Proof. Again we reduce to the case whefe= {y} for somey € S, because when
|C| > 1, the permutation is contracted by{(C), if and only if it is contracted by (y),
for somey € C. Recall that is contracted if and only if some edge> y is contracted. Let
x; > x;1+1, and lety be obtained fronx by transposing; andx;;1. Proposition6.4 says
that#(y), contracts the edge > y if and only if it contracts the join-irreduciblé(x, i).
By Proposition 9.24(x, i) is contracted if and only if it contains the patternSince the
unigue descent in(x, i) consists of the element followed by the element;; and since
yis untranslatedi(x, i) containsy if and only if there is an occurrence pfn A(x, i) which
includes the entries; andx; 1. Also, in the definition ofl(x, i), note that all entries of
A(x, i) with values weakly between; 1 andx; are on the same side of the paif, x;11)
in x asinA(x, i). Thusy occurs inA(x, i) if and only if there is some scrambdeof 4 which
occurs inx such that the cliff ol occurs in positiong andi + 1 of x. Lettingi vary over
all descents of, we have thak is contracted if and only if there is some scramblef 4
which occurs inc with adjacent cliff. [

Remark 9.4. We now describe hovK[Z?o] can be obtained via a construction due to
Duchamp, Hivert, Novelli and Thibon (s§E8, Proposition 3.12], [26] and [27, Proposition
18]). This construction begins with the free monaidon an infinite alphabet and realizes
K[S~] as a Hopf algebra by associating each permutatimrthe sum of all elements af
whose “standardization” is. Given a monoid congruence @ generated by relations of
the formw = w’, wherew’ is obtained fromw by transposing two adjacent letters, one
obtains an equivalence on permutations whenever the congruenge isncompatible
with standardization. This equivalence defines a sub Hopf algetiq%f ] whenever the
congruence oM is compatible with “restriction to intervals.”

Starting with ar#{-family {®, } and guided by Theorem 9.3, one can construct a congru-
ence onM which is compatible with standardization and restriction to intervals and which
recovers the congruencé,. Thus the construction via monoid congruences produces a
strictly larger class of sub Hopf algebras. (The example in [18, Proposition 3.12], for exam-
ple, does not correspond to a family of lattice congruences.) However, there is no immediate
way to tell from this construction which sub Hopf algebras can even be described in terms
of partial orders, much less which of them arise from lattice congruences. Thus, while each
K[Zg] arises as a special case of the construction by monoid congruences, itis not apparent
how one would arrive at the appropriate congruencesfowithout the analysis given in
the present paper.

Remark 9.5. Computing products iM[Z?O] via Eqg. @) involves only identifying permu-
tations withm x = x, wherer is the downward projection associated to the congruence
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H(C),. This means checking the pattern avoidance condition imposed by Th&Bem
However, to compute coproducts by Eg. (2) one needs to knowfor everyx € S,. The
proof of Theorem 9.3 indicates how to computex inductively. Suppose for somee C
with cliff at j that there is a scramble pfoccurring as the subsequengey;, - - - x;, of x,
with i;y1 = i; + 1. Thenx » y andx = y, wherey is obtained fromx by transposing
the entrieSxij andxij+1. Sincen,x = m,y we continue inductively until we reach an
uncontracted permutation.

Remark 9.6. The definition of a (not-necessarily graded) Hopf algebra requires the exis-
tence of a ma called theantipode However, wherK [ X ] is a graded, connected Hopf
algebra, as defined above, it always possesses an antipode.

Let K[X~o] andK[Y~ ] be graded connected Hopf algebras whose antipodes;aaad
Sy. Suppose embeddK[Y] as a graded sub Hopf algebralef X ]. It is known that
Sy = roSx oc, wherer is the inverse map, defined on the image.dh the case o[ S ]
and K[ZS’O], the maps andr were defined in Section and we have

Sz=roSgoc. 3)

In[Ag-So, Theorem 5.4], Aguiar and Sottile give a formula$gr This formula and Eq. (3),
along with Remark 9.5, allows computation$ for any®.

Remark 9.7. If K[Sx] is given the structure of @embinatorialHopf algebra in the sense
of[1], thenrthis structure can be pulled baclkﬁbzg)o]. One defines a multiplicative character
{7 = {goc,wherelg is the chosen multiplicative characterl§fS.. ], so that by definition

¢ is a morphism of combinatorial Hopf algebras. By [1, Proposition 5.8(f)], sinte
injective, the odd (respectively even) subalgebrmﬁg] is the image under of the odd
(respectively even) subalgebraldf Soo .

10. Examples

We conclude by discussing some examples, which by no means exhaust the possibilities.
The examples given in the introduction defiefamilies of congruences. Specifically,
the Tamari lattice is known [11] to be the sublattice $f consisting of 312-avoiding
permutations. The permutation 312 is an untranslated join-irreducible and the only scramble
of 312 is 312 itself. It is easy to check that the pattern 312 occurs in a permutdfiand
onlyifitoccurs inx with adjacent cliff. One can specialize [42, Theorems 6.2 and 6.4] to state
that the Tamari lattice iS,, mod the congruenck (312),,, or alternatelyH(231),,. The fibers
of the (left) descent map, in the caseyf are the congruence classesHf{231, 312}),,.

Thus we recover the setup described in the introduction.

For a second example, we construct an infinite sequ{aﬂ'{c[:ﬁoo k } , of graded Hopf
algebras, each included in its successor, limitint{{§.], such that the first Hopf algebra
consists of one-dimensional graded pieces, and the second Hopf algebra is the Hopf algebra
of non-commutative symmetric functions. Sirilg, is graded by size, for eadh>1 we
define ani-family {A, }n>0 = {H(C)n}, >0 by letting Cy be the set of untranslated
join-irreducibles of S|zek + 1. The congruencd,, x is homogeneous of degréeand by



270 N. Reading / Journal of Combinatorial Theory, Series A 110 (2005) 237-273

Theoremd.3,A,, x contracts every permutatiancontaining adjacent elementsandx; 11
with x; — x;4+1>k. Notice thatA, 1 is the congruence oS, with a single equivalence
class, and<[S 1] is the binomial Hopf algebr&; of [29, Section V.2]. AlsoA, 2 is the
congruence associated to the descent map. WWBen, the congruencd,, ; consists of
congruence classes which are all singletons.

Let S, « be the quotient of5, with respect toA, x, and as usual identifi§, x as the
induced subposet (S,), wherer is the downward projection correspondingAq ;.
Specifically,S, « is the subposet of,, consisting of permutations with no right descents of
magnitudek or larger. Applying Theorem 1.2, we obtain an infinite sequeREg,, ] of
graded Hopf algebras, each included as a sub Hopf algebra of its successor, limiting to the
Malvenuto—Reutenauer Hopf algeli#dSo .

By a simple argument involving induction @nwe have

n
1Skl = [ [ mind. ).

i=1

Thinking of S,, as a poset of regions as explained in Sec@ame see thaf\, ; contracts
every coverRy < R2 such thatR1 and R, are separated by a hyperplane norma¢te-

ep for a — b>k. Thus eachS, ; is obtained fromsS, by deleting hyperplanes, s§, «

is a lattice of regions, or in other words, ; is obtained by directing the 1-skeleton of
a zonotope.

A related construction yields a sequence of graded Hopf algebras limiting to the Hopf
algebra of planar binary trees. For edch 1, letC; be the set containing the two permu-
tations 231 andk + 1)123- .-k and define ari{-family {q’"~k}n>o = {H(C,/()n}wo.

For eachk the family {q)"~k}n>o is the meet, in the distributive lattice of order ideals of
Hoo, OF {A"~k}n>o and{#(231),}, > o. ConstructP, ; and[ P ] from {®, } exactly

ass, r andK[Sx ] were constructed frorfA,, « }. We obtain an infinite sequence of Hopf
algebras, each included as a sub Hopf algebra of its successor, limiting to the Hopf alge-
bra of planar binary trees. Alsé[ P« 1] is a sub Hopf algebra dk[S« «] for eachk. For

k =1, 2we haveK[ P k] = K[Sxo ] @and a simple argument shows that the dimensions of
the graded pieces &€[ P 3] satisfy the defining recurrence of the Pell numbers, sequence
A000129 in [43].

Our final example is af{-family such that the congruence classes appear to be equinu-
merous with the Baxter permutations. Say a permutatimmatwisted Baxter permutation
if and only if the following two conditions hold:

(i) For any 2413-pattern in, the “4” and the “1” are not adjacent in
(i) For any 3412-pattern im, the “4” and the “1” are not adjacent in

For the definition of the usual Baxter permutations, see for exafhf]eWest [48] showed

that the Baxter permutations are the permutatiomssich that if 2413 occurs in then it
occurs as a subpattern of some 25314 patten) and if 3142 occurs, then it occurs as a
subpattern of some 41352. This is easily checked to be the set of permutations satisfying
(i) above andii”) below.

(ii"y For any 3142-pattern im, the “1” and the “4” are not adjacent in
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Computer calculations show that fo 15 the twisted Baxter permutationsSyare equinu-
merous with the Baxter permutationsSp.

The congruences associated to the Tamari lattice and the descent map are both homo-
geneous of degree two, and these are the @ffamilies of homogeneous degree-two
congruences. Specifying &#-family of homogeneous degree-three congruences amounts
to choosing a non-empty subset{@B41, 3412 2413 4123. The following theorem is an
immediate corollary of Theore®.3.

Theorem 10.1. The quotient of5, mod# (3412 2413, is isomorphic to the subposet of
S, induced by the twisted Baxter permutations

Thus by Theoreni.4, the twisted Baxter permutations are the basis of a Hopf algebra
which can be embedded as a sub Hopf algebra of the Malvenuto—Reutenauer Hopf algebra.

Proposition 10.2. The congruence{ (3412 2413, is the mee#{ (231, A H(312), of the
two congruences defining the Tamari lattices.

The weaker statement, tH&{ (3412 2413, } isthe meet, amorgg-families, of{#(231),,}
and{#(312),} is immediate by inspection ¢ .
Proof. By Theorem9.3, a join-irreducible is contracted By(231), if and only if it con-
tains a 231-pattern, and similarly f8£(312),. Thus the join-irreducibles contracted by
H(23D), A H(312), are exactly the join-irreducibles containing both a 231- and a 312-
pattern. Since 2413 and 3412 each contain a 231- and a 312-pattern, by Theorem 9.3, every
join-irreducible contracted b¥{ (3412 2413, is also contracted b¥{ (231, A H(312),,.
Conversely, ify is a join-irreducible contracted % (231, A H(312),, let A be the asso-
ciated subset. Singecontains 231, there is an element A¢ withm < ¢ < M, and since
y contains 312, there is an elemént A withm < b < M. If b < c thencMmb is a
3412-pattern iry, and ifb > ¢ thencMmb is a 2413-pattern in. Thusy is also contracted
by H(2413 3412,. O
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