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1. Introduction

The classical Schur’s theorem says that for any finite coloring of the set of natural numbers ω =
C1 ∪ · · · ∪ Cr , there exist x, y, z having the same color (x, y, z ∈ Ci for some i � r) such that x + y = z.
The natural question is “how many x’s there are in Ci so that for each of these x there are many y’s
in Ci so that x + y is also in Ci ?” Of course, an answer depends on a definition of the notion “many”.
If we consider “many” as a set of positive density then this generalization of Schur’s theorem remains
valid.

Theorem 1.1. (See [7].) For any partition of ω = C1 ∪ C2 ∪ · · · ∪ Cr there are δ = δ(r) > 0 and i � r such that

d
({

x ∈ ω: d
({y ∈ ω: x, y, x + y ∈ Ci}

)
� δ

})
� δ.
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Recall that Bergelson earlier pointed out the following density version of Schur’s theorem.

Theorem 1.2. (See [1].) For any partition of ω = C1 ∪ C2 ∪ · · · ∪ Cr , some Ci having d(Ci) > 0 satisfies for any
ε > 0,

d
({

x ∈ ω: d
({y ∈ ω: x, y, x + y ∈ Ci}

)
� d(Ci)

2 − ε
})

> 0.

An ideal on ω (by ω we mean a set of all natural numbers) is a family I ⊂ P (ω) (where P (ω)

denotes the power set of ω) which is closed under taking subsets and finite unions. By Fin we denote
the ideal of all finite subsets of ω. If not explicitly said we assume that all considered ideals are
proper ( �= P (ω)) and contain all finite sets.

In this note we show that if the notion “many” means “not in an ideal of subsets of naturals” then
the analogous generalization of Schur’s theorem holds for a wide class of ideals.

In Section 3 we show that Theorem 1.1 holds for all analytic P-ideals (see definitions below). In
order to prove this, we show that an iterated version of Ramsey’s theorem holds for every analytic
P-ideal (which seems interesting in its own).

In Section 4 we characterize those analytic P-ideals for which the constant δ in Theorem 1.1 does
not depend on a number r of cells of the partition.

In Section 5 we show that for another subclass of analytic P-ideals the generalization of Theo-
rem 1.2 holds.

In Section 6 we provide some examples of ideals for which theorems proved in previous sections
can be applied. For instance, we consider the class of Erdős–Ulam ideals. This class contains the ideal
of statistical density zero sets and the ideal of logarithmic density zero sets.

2. Preliminaries

2.1. Analytic P-ideals

By identifying sets of naturals with their characteristic functions, we equip P (ω) with the Cantor-
space topology and therefore we can assign topological complexity to the ideals of sets of integers. In
particular, an ideal I is Fσ (analytic) if it is an Fσ subset of the Cantor space (if it is a continuous
image of a Gδ subset of the Cantor space, respectively).

A map φ : P (ω) → [0,∞] is a submeasure on ω if

φ(∅) = 0,

φ(A) � φ(A ∪ B) � φ(A) + φ(B),

for all A, B ⊂ ω. It is lower semicontinuous if for all A ⊂ ω we have

φ(A) = lim
n→∞φ(A ∩ n).

For any lower semicontinuous submeasure on ω, let ‖ · ‖φ : P (ω) → [0,∞] be the submeasure
defined by

‖A‖φ = lim sup
n→∞

φ(A \ n) = lim
n→∞φ(A \ n),

where the second equality follows by the monotonicity of φ. Let

Exh(φ) = {
A ⊂ ω: ‖A‖φ = 0

}
,

Fin(φ) = {
A ⊂ ω: φ(A) < ∞}

.

It is clear that Exh(φ) and Fin(φ) are ideals (not necessarily proper) for an arbitrary submeasure φ.
An ideal I is a P-ideal if for every sequence (An)n∈ω of sets from I there is A ∈ I such that

An \ A ∈ Fin for all n, i.e. An is almost contained in A for each n.
All analytic P-ideals are characterized by the following theorem of Solecki.
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Theorem 2.1. (See [12].) The following conditions are equivalent for an ideal I on ω.

(1) I is an analytic P-ideal.
(2) I = Exh(φ) for some lower semicontinuous submeasure φ on ω.

Moreover, for Fσ ideals the following characterization holds.

Theorem 2.2. (See [11].) The following conditions are equivalent for an ideal I on ω.

(1) I is an Fσ ideal.
(2) I = Fin(φ) for some lower semicontinuous submeasure φ on ω.

The cardinality of a set X is denoted by |X |. We do not distinguish between natural number n and
the set {0,1, . . . ,n − 1}.

The ideal of sets of density 0

Id =
{

A ⊂ ω: lim sup
n→∞

|A ∩ n|
n

= 0

}

is an analytic P-ideal. If we denote

φd(A) = sup

{ |A ∩ n|
n

: n ∈ ω

}
,

then d(A) = ‖A‖φd and Id = Exh(φd).
The ideal

I 1
n

=
{

A ⊂ ω:
∑
n∈A

1

n
< ∞

}

is an Fσ P-ideal. If φ is a submeasure defined by the formula

φ(A) =
∑
n∈A

1

n
,

then I 1
n

= Fin(φ).

The ideal of arithmetic progressions free sets

W = {W ⊂ ω: W does not contain arithmetic progressions of all lengths}
is an Fσ ideal which is not a P-ideal. The fact that W is an ideal follows from the non-trivial theorem
of van der Waerden. This ideal was firstly considered by Kojman in [9].

We give some examples of ideals in Section 6. A lot more examples can be found in [6], and in
Farah’s book [4].

2.2. Bolzano–Weierstrass property

Let I be an ideal on ω, A ⊂ ω and (xn)n∈ω be a sequence of reals. By (xn) � A we mean a sub-
sequence (xn)n∈A . We say that (xn) � A is I -convergent to x ∈ R if {n ∈ A: |xn − x| � ε} ∈ I for every
ε > 0.

An ideal I on ω is called:

(1) FinBW if for any bounded sequence (xn)n∈ω of reals there is A /∈ I such that (xn) � A is conver-
gent;

(2) BW if for any bounded sequence (xn)n∈ω of reals there is A /∈ I such that (xn) � A is I -convergent.
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In the first case we say that I has the finite Bolzano–Weierstrass property, in the second case we say
that I has the Bolzano–Weierstrass property.

By the well-known Bolzano–Weierstrass theorem, the ideal Fin has the FinBW property. For the
discussion and applications of these properties see [6], where we examine all BW-like properties. In
particular, it is known that the ideal Id of sets of density 0 does not have BW, and every Fσ ideal
has FinBW.

In the sequel we will use the following characterization of BW-like properties among analytic
P-ideals.

Theorem 2.3. (See [6].) Let φ be a lower semicontinuous submeasure. The following conditions are equivalent.

(1) The ideal Exh(φ) is BW.
(2) The ideal Exh(φ) is FinBW.
(3) There is δ > 0 such that for any partition A1, A2, . . . , An of ω there exists i � n with ‖Ai‖φ � δ.

2.3. Invariant submeasures

We say that an ideal I is invariant under translations if for each A ∈ I and n ∈ Z (by Z we denote
the set of integers)

A + n ∈ I where A + n = {a + n: a ∈ A} ∩ ω.

We say that a submeasure φ is invariant under translations if φ(A + n) = φ(A) for each A ⊂ ω and
n ∈ Z.

Remark. If ‖ · ‖φ is invariant under translations then the ideal Exh(φ) is invariant under translations.

A submeasure φ fulfills a condition � if for every ε > 0, A ⊂ ω and any N ∈ ω there exists a
measure φ′ � φ such that φ′ � 1 and

φ′(A + n) � ‖A‖φ − ε for each n ∈ [−N, N].
(Throughout the paper, by a measure we mean a finitely additive measure.)

Proposition 2.4. Suppose that I = Exh(φ) is an analytic P-ideal, φ ∈ � and ‖ · ‖φ is invariant under transla-
tions. Then I does not have the BW property.

Proof. For the sake of contradiction, suppose that I = Exh(φ) has the BW property.
For every n ∈ ω and i = 0,1, . . . ,2n − 1 let

An
i = {

k ∈ ω: k ≡ i
(
mod 2n)}.

Then ω = An
0 ∪ · · · ∪ An

2n−1 for every n ∈ ω and An
i = An

0 + i for every i < 2n . Hence ‖An
0‖ = ‖An

1‖ =
· · · = ‖An

2n−1‖ = δn > 0 for every n ∈ ω.
By Theorem 2.3 there is δ > 0 such that δn � δ for every n ∈ ω.
Let n ∈ ω be such that 2n δ

2 > 1. For ε = δ
2 , A = An

0 and N = 2n let φ′ � 1 be a measure required
by condition �. Then

1 � φ′(ω) = φ′(An
0

) + φ′(An
1

) + · · · + φ′(An
2n−1

)
= φ′(An

0

) + φ′(An
0 + 1

) + · · · + φ′(An
0 + 2n − 1

)
� 2n

∥∥An
0

∥∥ − 2nε

� 2nδ − 2nε = 2n δ

2
> 1,

a contradiction. �
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2.4. Idempotent ultrafilters

Recall that βω, the Čech–Stone compactification of the set of natural numbers, is the set of
all ultrafilters on ω. We consider βω as the topological space with the basis consisting of all
{U ∈ βω: A ∈ U } for A ⊂ ω. One can define an addition operation on βω, which extends the or-
dinary addition of natural numbers, in the following way. If U , V ∈ βω, then

U + V = {
A ⊂ ω: {n ∈ ω: A − n ∈ U } ∈ V

}
.

It is known that βω with this addition is a left-topological semigroup. We say that U ∈ βω is idem-
potent if U + U = U . (For more properties of addition on βω see e.g. [13, Chapter II].)

3. Analytic P-ideals

In [7, Theorem 2.1], the authors proved an iterated version of Ramsey’s theorem for the ideal of
statistical density zero sets. We will need an analogous result for every analytic P-ideal. By [ω]2 we
mean a family of all two-element subsets of ω, i.e. [ω]2 = {{x, y}: x, y ∈ ω, x �= y}.

Theorem 3.1. Let I = Exh(φ) be an analytic P-ideal. Then for every coloring [ω]2 = C1 ∪ C2 ∪ · · · ∪ Cr there
exist δ = δ(r) and i � r with∥∥{

x ∈ ω:
∥∥{

y ∈ ω:
∥∥{

z ∈ ω: {x, y}, {x, z}, {y, z} ∈ Ci
}∥∥

φ
� δ

}∥∥
φ

� δ
}∥∥

φ
� δ.

Proof. Let S = ω<ω (i.e. S is the family of all finite sequences of natural numbers) and Sn = ω�n

(i.e. Sn is the family of all sequences of natural numbers of length less or equal to n). If s =
〈s0, s1, . . . , sn−1〉 ∈ S then |s| = n (the length of s). By ∅ ∈ S we denote the empty sequence.

Let M = ‖ω‖φ . We claim that there is a family of sets {An(s) ⊂ ω: n ∈ ω and s ∈ Sn} and integers
{in ∈ {1, . . . , r}: n ∈ ω} such that for all n � 0 and s ∈ Sn:

(1) ‖An(s)‖φ � M/rn if si ∈ An−1(s � i) for every i < |s|, and

(2)

{
An(s) ⊂ An−1(s) if |s| < n;
An(s) ⊂ An−1(s � n − 1) if |s| = n,

and

(3) {sn−1, sn} ∈ Cin for each s0 ∈ An(∅), s1 ∈ An(〈s0〉), . . . , sn ∈ An(〈s0, s1, . . . , sn−1〉).

Note that from (2) it follows that:

(2′) if m � |s| � n then An(s) ⊂ Am(s � m) for each 0 � m � n.

We will build families {An(s) ⊂ ω: n ∈ ω and s ∈ Sn}, and {in ∈ {1, . . . , r}: n ∈ ω} by induction on n.
Let A0(∅) = ω. Suppose we have found sets Am(s) for each m < n and |s| � m such that conditions
(1), (2) and (3) hold.

We define sets An(s) in 3 steps. At first we define An(s) for |s| = n − 1. Then, using backward
induction on the length of s, we define An(s) for |s| < n − 1. In the last step we define in and An(s)
for |s| = n.

Step 1. For every s0 ∈ An−1(∅), s1 ∈ An−1(〈s0〉), . . . , sn−2 ∈ An−1(〈s0, . . . , sn−3〉) there are An(〈s0, . . . ,

sn−2〉) ⊂ An−1(〈s0, . . . , sn−2〉) and jn(〈s0, . . . , sn−2〉) ∈ {1, . . . , r} such that

(1) ‖An(〈s0, . . . , sn−2〉)‖φ � M/rn , and
(2) ‖{w ∈ An−1(〈s0, . . . , sn−2〉): {sn−1, w} ∈ C jn(〈s0,...,sn−2〉)}‖φ

� M/rn for every s0 ∈ An−1(∅), s1 ∈
An−1(〈s0〉), . . . , sn−2 ∈ An−1(〈s0, . . . , sn−3〉) and sn−1 ∈ An(〈s0, . . . , sn−2〉).

Indeed, for every s = 〈s0, . . . , sn−2〉, t ∈ An−1(s) and j = 1, . . . , r let A j
n(t) = {w ∈ An−1(s): {t, w} ∈

C j}. Since An−1(s) \ {t} = ⋃r
j=1 A j

n(s) so there is j(t) ∈ {1, . . . , r} such that ‖A j(t)
n (t)‖φ � M/rn . Let
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A j
n = {t ∈ An−1(s): j(t) = j}. Since An−1(s) = ⋃r

j=1 A j
n so there is j ∈ {1, . . . , r} such that ‖A j

n‖φ �
M/rn . We put An(s) = A j

n and jn(s) = j.
We put An(s) = ∅ for all s ∈ S (|s| = n − 1) such that there is i < n − 1 with si /∈ An−1(s � i).

Step 2 (inductive). Suppose that we have defined An(s) for m + 1 � |s| � n − 1.
Then for every s0 ∈ An−1(∅), s1 ∈ An−1(〈s0〉), . . . , sm−1 ∈ An−1(〈s0, . . . , sm−2〉) there are An(〈s0, . . . ,

sm−1〉) ⊂ An−1(〈s0, . . . , sm−1〉) and jn(〈s0, . . . , sm−1〉) ∈ {1, . . . , r} such that

(1) ‖An(〈s0, . . . , sm−1〉)‖φ � M/rn , and
(2) ‖{w ∈ An−1(〈s0, . . . , sn−2〉): {sn−1, w} ∈ C jn(〈s0,...,sm−1〉)}‖φ

� M/rn for every s0 ∈ An−1(∅), s1 ∈
An−1(〈s0〉), . . . , sm−1 ∈ An−1(〈s0, . . . , sm−2〉) and sm ∈ An(〈s0, . . . , sm−1〉), . . . , sn−1 ∈ An(〈s0, . . . ,

sn−2〉).

Indeed, let s = 〈s0, s1, . . . , sm−1〉 be any sequence with s0 ∈ An−1(∅), s1 ∈ An−1(〈s0〉), . . . , sm−1 ∈
An−1(〈s0, s1, . . . , sm−1〉). For each t ∈ An−1(s) let j(t) = jn(〈s0, s1, . . . , sm−1, t〉). From our inductive
hypothesis we know that∥∥{

w ∈ An−1
(〈s0, . . . , sm−1, t, sm+1, . . . , sn−2〉

)
: {sn−1, w} ∈ C j(t)

}∥∥
φ

� M/rn

for every sm+1 ∈ An(〈s0, . . . , sm−1, t〉), . . . , sn−1 ∈ An(〈s0, . . . , sm−1, t, sm+1, . . . , sn−2〉). Put A j
n = {t ∈

An−1(s): j(t) = j}. Since ‖An−1(s)‖φ = M/rn−1 and An−1(s) = ⋃r
j=1 A j

n so there is j ∈ {1, . . . , r} such

that ‖A j
n‖φ � M/rn . We put An(s) = A j

n and jn(s) = j.
We put An(s) = ∅ for all s ∈ S (|s| = m) such that there is i < m with si /∈ An−1(s � i).

Step 3. Put in = j(∅) and An(〈s0, . . . , sn−1〉) = {t ∈ An−1(〈s0, . . . , sn−2〉): {sn−2, t} ∈ Cin }.
This finishes the construction of families {An(s) ⊂ ω: n ∈ ω and s ∈ Sn} and {in ∈ {1, . . . , r}: n ∈ ω}.
Now, suppose that {An(s) ⊂ ω: n ∈ ω and s ∈ Sn} and {in ∈ {1, . . . , r}: n ∈ ω} fulfill conditions

(1), (2′) and (3). Fix δ = M/rr+1. By the pigeonhole principle there are 1 � a < b � r + 1 with
ia = ib = i. For every s0 ∈ Ab(∅), s1 ∈ Ab(〈s0〉), . . . , sb ∈ Ab(〈s0, s1, . . . , sb−1〉) we have {sb−1, sb} ∈ Ci .
Since Ab(〈s0, s1, . . . , sb−2〉) ⊂ Aa(〈s0, s1, . . . , sa−1〉), {sa−1, sb−1} ∈ Ci . Since Ab(〈s0, s1, . . . , sb−1〉) ⊂
Aa(〈s0, s1, . . . , sa−1〉), {sa−1, sb} ∈ Ci . (The inclusions follow from (2′).) Since ‖Ab(s � m)‖φ � δ for each
m � b, we are done. �

As a corollary we get a strengthening of Theorem 1.1.

Theorem 3.2. Let I = Exh(φ) be an analytic P-ideal with ‖ · ‖φ invariant under translations. Then for every
coloring ω = C1 ∪ C2 ∪ · · · ∪ Cr there exist δ = δ(r) and i � r with∥∥{

x ∈ ω:
∥∥{y ∈ ω: x, y, x + y ∈ Ci}

∥∥
φ

� δ
}∥∥

φ
� δ.

Proof. Define a new coloring [ω]2 = D1 ∪ · · · ∪ Dr by {x, y} ∈ Di ⇔ |y − x| ∈ Ci . By Theorem 3.1 there
are δ = δ(r) and i � r such that∥∥{

x ∈ ω:
∥∥{

y ∈ ω:
∥∥{

z ∈ ω: |x − y|, |x − z|, |y − z| ∈ Ci
}∥∥

φ
� δ

}∥∥
φ

� δ
}∥∥

φ
� δ.

Take any x ∈ ω such that∥∥{
y ∈ ω:

∥∥{
z ∈ ω: |x − y|, |x − z|, |y − z| ∈ Ci

}∥∥
φ

� δ
}∥∥

φ
� δ.

Then ∥∥{
y > x:

∥∥{z > y: y − x, z − x, z − y ∈ Ci}
∥∥ � δ

}∥∥ � δ.

φ φ
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Since ‖ · ‖φ is invariant under translations, so∥∥{
y − x:

∥∥{z − y: y − x, z − x, z − y ∈ Ci}
∥∥

φ
� δ

}∥∥
φ

� δ

and this finishes the proof. �
Remark. In the classical version of Schur’s theorem nothing prevents the case x = y. Since for any
reasonably defined ideal I every set A /∈ I has at least two elements, from Corollary 4.3 we get that
for every finite coloring of ω there are x �= y with {x, y, x + y} monochromatic, which is Theorem 1
from [3]. (Clearly, it can be also deduced from Theorem 1.2.)

4. Analytic P-ideals with the Bolzano–Weierstrass property

The following lemma was formulated by Bergelson and Hindman for the ideal of statistical den-
sity 0 sets (see [2, Le. 1.1]).

Lemma 4.1. Let I be an ideal which is invariant under translations. There exists an idempotent U ∈ βω with
U ∩ I = ∅.

Proof. Let A = {U ∈ βω: I ∩ U = ∅}. Then A is non-empty and closed, so compact in βω. Moreover,
if U , V ∈ A but U + V /∈ A then there is a B ∈ I such that{

n ∈ ω: (B − n) ∈ U
} ∈ V.

Since V is non-empty, there exists n ∈ ω with B − n ∈ U . But B ∈ I and I is invariant under
translations—a contradiction with U ∩ I = ∅. Thus A + A ⊂ A, and consequently A is a compact
left-topological semigroup. By Auslander–Ellis theorem (see e.g. [13, Section 15, Lemma 3]) there is
an idempotent U ∈ A. �
Remark. In fact in the proof of Lemma 4.1 (and consequently in Corollary 4.3) we use slightly weaker
assumption than invariance of I . We can assume, for example, that for each A ∈ I

{n ∈ ω: A + n /∈ I} ∈ I.

Lemma 4.2. Suppose that I is an ideal and there exists an idempotent U ∈ βω with U ∩ I = ∅. If ω =
C1 ∪ C2 ∪ · · · ∪ Cr then there is an i � r with{

n ∈ Ci: Ci ∩ (Ci − n) /∈ I
}

/∈ I.

Proof. This lemma follows from the standard argument. We recall it here for a completeness.
Let U ∈ βω be as required. Take i � r with Ci ∈ U = U + U . Then {n ∈ ω: Ci − n ∈ U } ∈ U , hence

{n ∈ ω: Ci ∩ (Ci − n) ∈ U } ∈ U . Finally {n ∈ Ci: Ci ∩ (Ci − n) ∈ U } ∈ U . �
From Lemmas 4.1 and 4.2 follows

Corollary 4.3. Let I be an ideal which is invariant under translations. If ω = C1 ∪ C2 ∪ · · · ∪ Cr then there is
an i � r with{

n ∈ Ci: Ci ∩ (Ci − n) /∈ I
}

/∈ I.

The following generalizations of Schur’s theorem hold for some subclasses of analytic ideals. Note
that in Theorems 4.4 and 4.5 the constant δ does not depend on r.
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Theorem 4.4. Let I = Fin(φ) be an Fσ ideal which is invariant under translations. If ω = C1 ∪ C2 ∪ · · · ∪ Cr
then there is an i � r with

φ
({

x ∈ ω: φ
({y ∈ ω: x, y, x + y ∈ Ci}

) = ∞}) = ∞.

Proof. Apply Corollary 4.3 and note that φ(A) = ∞ for every A /∈ I . �
Theorem 4.5. Let I = Exh(φ) be an analytic P-ideal such that ‖ · ‖φ is invariant under translations. Then
I has the BW property if and only if there exists δ > 0 such that for every r ∈ ω and every coloring ω =
C1 ∪ C2 ∪ · · · ∪ Cr there is i � r with∥∥{

x ∈ ω:
∥∥{y ∈ ω: x, y, x + y ∈ Ci}

∥∥
φ

� δ
}∥∥

φ
� δ.

Proof. (⇒). By Theorem 2.3(3), there is δ > 0 such that

Iδ = {
A ⊂ ω: there exists a partition A = A1 ∪ · · · ∪ An such that ‖Ai‖φ � δ for every i � n

}
is a proper ideal extending I . Now it is enough to apply Corollary 4.3 to the ideal Iδ (since ‖A‖φ � δ

for every A /∈ Iδ).
(⇐). Let ω = A1 ∪ · · · ∪ An . Then there is i � n with∥∥{

x ∈ ω:
∥∥{y ∈ ω: x, y, x + y ∈ Ai}

∥∥
φ

� δ
}∥∥

φ
� δ.

Hence ‖Ai‖φ � δ, so I has the BW property by Theorem 2.3. �
Remark. If U ∈ βω is idempotent then (U + U ) + U = U . Thus results of this section can be extended
to the case of sums of three elements. For instance,{

x ∈ ω:
{

y ∈ ω: {z ∈ ω: x, y, z, x + y, x + z, y + z, x + y + z ∈ Ci} /∈ I
}

/∈ I
}

/∈ I.

And by induction one can extend it to the case of sums of n-elements for every n ∈ ω.

Remark. It is possible to prove Theorem 4.5 using a variant of iterated version of Ramsey’s theorem
(result analogous to Theorem 3.1) with the constant δ independent of the number of colors. In [5], it
is proved that this kind of iterated version of Ramsey’s theorem holds for every analytic P-ideal with
the BW property.

5. Analytic P-ideals generated by submeasures with the � property

In this section we are interested in another generalization of a result from [2], which works also
for ideals without the Bolzano–Weierstrass property. First, we need a Khintchine recurrence theorem
for submeasures. We follow the proof from [14].

Theorem 5.1. Let φ be a submeasure defined on a space S. Let Ai , i = 0,1, . . . , be an infinite sequence of sets
in S. Suppose also that m ∈ [0,1] is such that for every M ∈ ω there is a measure φ′ � 1 defined on an algebra
containing sets A0, . . . , AM with φ′ � φ and φ′(Ai) � m for all i � M. Then for any λ < 1 there exist i < j
such that

φ(Ai ∩ A j) � λm2.

Moreover, we can assume that i, j � N, where N = N(m, λ) depends only on m and λ.

Proof. First we claim that there are N = N(m,1/3) and two sets Ai and A j (i < j � N) such that

φ(Ai ∩ A j) � 1
m2.
3
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Suppose on the contrary that φ(Ai ∩ A j) < 1
3 m2 for every i < j. Let

F0 = A0 and Fi = Ai \
i−1⋃
k=0

(Ai ∩ Fk) for i > 0.

Clearly all sets Fi are pairwise disjoint and Fi ⊂ Ai for each i.
Fix M ∈ ω. There is a measure φ′ with

φ′(Fi) = φ′
(

Ai \
i−1⋃
k=0

Ai ∩ Fk

)
= φ′(Ai) − φ′

(
i−1⋃
k=0

Ai ∩ Fk

)

� m − φ

(
i−1⋃
k=0

Ai ∩ Fk

)
> m − i

1

3
m2

for each i � M . Thus

1 � φ′(S) �
M∑

i=0

φ′(Fi) > (M + 1)m − M(M + 1)

2

1

3
m2 = (M + 1)m

6
(6 − Mm).

On the other hand, if 3/m − 1 � M � 3/m then

(M + 1)m

6
(6 − Mm) � (M + 1)m

2
� 3

m

m

2
> 1,

a contradiction. This finishes the proof of our first claim (for N = N(m,1/3) = 3/m).
Consider the product space Sr (r ∈ ω) with submeasure φr defined by a formula

φr(U ) = inf

{
n∑

i=0

r−1∏
t=0

φ
(

Xt
i

)
: U ⊂

n⋃
i=0

X0
i × X1

i × · · · × Xr−1
i

}

for each U ⊂ Sr .
It is not difficult to check that the submeasure φr and a sequence of sets Ar

0, Ar
1, . . . satisfy the

hypotheses of the theorem (indeed, for mr ∈ [0,1] and M ∈ ω take φ′
r to be a product measure of r

measures φ′).
Applying the previous claim to the submeasure φr and the sequence Ar

k there are i < j <

N(mr,1/3) such that

1

3

(
mr)2

< φr
(

Ar
i ∩ Ar

j

) = φr
(
(Ai ∩ A j)

r) = (
φ(Ai ∩ A j)

)r
.

Thus φ(Ai ∩ A j) � ( 1
3 )1/rm2. To finish the proof it is enough to fix any r such that (1/3)1/r � λ. Then

N = N(m, λ) = N(mr,1/3). �
Corollary 5.2. Let φ ∈ �, ε > 0, A ⊂ ω and nk ∈ Z (k ∈ ω). Then

φ
(
(A + ni) ∩ (A + n j)

)
� ‖A‖2

φ − ε

for some i, j � K (where K = K (‖A‖φ, ε) depends only on the norm of a set A and ε).

Proof. We will apply Theorem 5.1 to the submeasure φ and a sequence Ak = A + nk (k ∈ ω).

Let m =
√

‖A‖2
φ − ε/2 and M ∈ ω. Since φ ∈ � so there is a measure φ′ � φ and φ′ � 1 such that

φ′(A + i) � ‖A‖φ − ε′
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for every |i| � N = max{|n0|, . . . , |nM |} and ε′ = ‖A‖φ −
√

‖A‖2
φ − ε/2. Hence φ′(Ak) � m for every

k � M . Thus we can apply Theorem 5.1.

Let λ = ‖A‖2
φ−ε

‖A‖2
φ−ε/2

. Then there are i < j < N(m, λ) with

φ(Ai ∩ A j) � λm2 = ‖A‖2
φ − ε.

Since m and λ depend only on ‖A‖φ and ε, so we put K (‖A‖φ, ε) = N(m, λ). �
Given a subset S ⊂ ω denote by D(S) the difference set

D(S) = {s1 − s2: s1 > s2 and s1, s2 ∈ S}.
The following lemma was formulated by Bergelson for the ideal of sets of statistical density 0

(see [1, Prop. 2.2]).

Lemma 5.3. Let S be an infinite subset of ω. Let I = Exh(φ) for a submeasure φ ∈ � with ‖ · ‖φ invariant
under translations. Then for any A ⊂ ω with A /∈ I and ε > 0 there exists n ∈ D(S) such that∥∥A ∩ (A − n)

∥∥
φ

� ‖A‖2
φ − ε.

Proof. Arrange elements of S in an increasing sequence {sk: k ∈ ω}. Let Al
k = (A \ l) − sk for every

k, l ∈ ω.
Let K = K (‖A‖φ, ε) be as in Corollary 5.2. Then by Corollary 5.2

φ
(

Al
il

∩ Al
jl

)
� ‖A \ l‖2

φ − ε = ‖A‖2
φ − ε

for some il, jl � K (‖A \ l‖φ, ε) = K and every l ∈ ω.
Since there are only finitely many pairs il < jl � K and l can be arbitrarily large, there are i′ <

j′ � K with i′ = il and j′ = jl for infinitely many l. Then

φ
((

(A − si′) ∩ (A − s j′)
) \ l

)
� φ

(((
A \ (l + sK )

) − si′
) ∩ ((

A \ (l + sK )
) − s j′

))
= φ

(
Al+sK

i′ ∩ Al+sK
j′

)
� ‖A‖2

φ − ε

for infinitely many l. Thus∥∥(A − si′) ∩ (A − s j′)
∥∥

φ
� ‖A‖2

φ − ε.

Since ‖ · ‖φ is invariant under translations,

‖A‖2
φ − ε �

∥∥(A − si′) ∩ (A − s j′)
∥∥

φ
= ∥∥A ∩ (

A − (s j′ − si′)
)∥∥

φ
,

which finishes the proof. �
Lemma 5.4 is essentially the same as Bergelson’s and Hindman’s Lemma 2.1 from [2]. In the orig-

inal paper it was formulated for the ideal of sets of statistical density 0. We provide a proof of our
slightly modified version for the completeness.

Lemma 5.4. Let I = Exh(φ) for a submeasure φ ∈ � with ‖ · ‖φ invariant under translations. Let U ∈ βω be
idempotent with U ∩ I = ∅. Let A ∈ U and ε > 0. Then

{
x ∈ A: A − x ∈ U and

∥∥A ∩ (A − x)
∥∥

φ
� ‖A‖2

φ − ε
} ∈ U .
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Proof. For any S ⊂ ω define

FS(S) =
{∑

F : F is a finite non-empty subset of S
}
.

It is well known that for any U ∈ βω with U + U = U and B ∈ U there exists an infinite C ⊂ B such
that FS(C) ⊂ B (see e.g. [13, Section 15, Lemma 4].)

Let

B = {
x ∈ ω:

∥∥A ∩ (A − x)
∥∥

φ
� ‖A‖2

φ − ε
}
.

Since A ∈ U and U + U = U , {x ∈ ω: A − x ∈ U } ∈ U . So, it is enough to show that B ∈ U (then
A ∩ B ∩ {x ∈ ω: A − x ∈ U } ∈ U is as required).

Suppose that B /∈ U . Then ω \ B ∈ U , so there exists C ⊂ ω \ B with FS(C) ⊂ ω \ B . Fix such
C = {xn: n ∈ ω}, where xn is increasing. Let S = {∑n

k=0 xk: n ∈ ω}.
By Lemma 5.3 there are y < z in S such that z − y ∈ B . On the other hand, y = ∑n

k=0 xk and
z = ∑m

k=0 xk for some n < m, so

z − y =
m∑

k=n+1

xk ∈ FS(C) ⊂ ω \ B,

a contradiction. �
By Lemmas 4.1 and 5.4 the following generalization of Theorem 1.2 holds.

Theorem 5.5. Suppose that I = Exh(φ) is an analytic P-ideal, φ ∈ � and ‖ ·‖φ is invariant under translations.
For any partition of ω = C1 ∪ C2 ∪ · · · ∪ Cr , some Ci having ‖Ci‖φ > 0 satisfies for any ε > 0,∥∥{

x ∈ ω:
∥∥{y ∈ ω: x, y, x + y ∈ Ci}

∥∥
φ

� ‖Ci‖2
φ − ε

}∥∥
φ

> 0.

6. Examples

6.1. Erdős–Ulam ideals

Let f : ω → [0,+∞) be such that

∞∑
i=0

f (i) = +∞ and lim
n→∞

f (n)∑
i∈n f (i)

= 0,

then

E U f =
{

A ⊂ ω: lim
n→∞

∑
i∈A∩n f (i)∑

i∈n f (i)
= 0

}

is called an Erdős–Ulam ideal [8]. The ideal Id , of statistical density zero sets, is an Erdős–Ulam ideal
(generated by any constant positive function f ). The ideal Ilog of logarithmic density zero sets also is
an Erdős–Ulam ideal, where

Ilog =
{

A ⊂ ω: lim
n→∞

∑
i∈A∩n

1
i∑

i∈n
1
i

= 0

}
=

{
A ⊂ ω: lim

n→∞

∑
i∈A∩n

1
i

log n
= 0

}
.

Every Erdős–Ulam ideal E U f is an analytic P-ideal of the form Exh(φ f ), where

φ f (A) = sup
n∈ω

∑
i∈A∩n f (i)∑

f (i)
and ‖A‖φ f = lim sup

n→∞

∑
i∈A∩n f (i)∑

f (i)
.

i∈n i∈n



954 R. Filipów, P. Szuca / Journal of Combinatorial Theory, Series A 117 (2010) 943–956
There are Erdős–Ulam ideals which are not invariant under translations (hence their norms are
not invariant under translations), and do not have the � property, e.g. E U f generated by f (n) =
(−1)n + 1. The next proposition gives a sufficient condition for a function f to define a norm ‖ · ‖φ f

which is invariant under translations and has the � property.

Proposition 6.1. Let I = Exh(φ f ) be an Erdős–Ulam ideal. If

lim
n→∞

∑
i∈n | f (i + k) − f (i)|∑

i∈n f (i)
= 0 for every k ∈ Z (
)

then ‖ · ‖φ f is invariant under translations, and φ f ∈ �. (We assume that f (i) = 0 for any i < 0.)

Proof. The fact that ‖ · ‖φ f is invariant under translations follows from an easy calculation. We show
below that φ f ∈ �.

Fix ε > 0, A ⊂ ω and M ∈ ω. By (
) it is possible to find an N ∈ ω such that∑
i∈n | f (i + k) − f (i)|∑

i∈n f (i)
<

ε

3
and

∑n−1
i=n−k f (i)∑n−1

i=0 f (i)
<

ε

3

for each k ∈ [−M, M] and n � N .
There exists n′ � N with∑

i∈A∩n′ f (i)∑
i∈n′ f (i)

� ‖A‖φ f − ε

3
.

Then the measure φ′
f given by a formula

φ′
f (B) =

∑
i∈B∩n′ f (i)∑

i∈n′ f (i)

is such that φ′ � φ and for each k ∈ [0, M]

φ′
f (A + k) =

∑
i∈A∩(n′−k) f (i + k)∑

i∈n′ f (i)

=
∑

i∈A∩(n′−k)( f (i + k) − f (i)) − ∑
i∈A∩[n′−k,...,n′−1] f (i) + ∑

i∈A∩n′ f (i)∑
i∈n′ f (i)

� −ε

3
− ε

3
+

∑
i∈A∩n′ f (i)∑

i∈n′ f (i)
� ‖A‖φ f − ε,

and

φ′
f (A − k) =

∑
i∈A∩[k,...,n′+k−1] f (i − k)∑

i∈n′ f (i)
=

∑
i∈A∩(n′+k) f (i − k)∑

i∈n′ f (i)

=
∑

i∈A∩n′( f (i − k) − f (i)) + ∑
i∈A∩[n′,...,n′+k−1] f (i − k) + ∑

A∩n′ f (i)∑
i∈n′ f (i)

� −ε

3
+ 0 +

∑
i∈A∩n′ f (i)∑

i∈n′ f (i)
� ‖A‖φ f − ε.

Thus φ f ∈ �. �
Remark. If I = Exh(φ f ) is an Erdős–Ulam ideal and f is monotone then f fulfills the condition (
).

By the above proposition, every Erdős–Ulam ideal with the property (
) satisfies the hypotheses
of Theorems 5.1 and 5.5. In particular, Theorems 5.1 and 5.5 hold for the ideal Id of statistical density
zero sets, and for the ideal Ilog of logarithmic density zero sets.
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6.2. Louveau–Veličković ideals

Let {ni}i∈ω be an increasing sequence of natural numbers. Let Ii be pairwise disjoint intervals on
ω such that |Ii| = 2ni . Let φi be a submeasure on Ii given by

φi(A) = log2(|A ∩ Ii | + 1)

ni
.

Then φ = supi φi is a lower semicontinuous submeasure and L V {ni} = Exh(φ) is called the Louveau–
Veličković ideal [10].

Proposition 6.2. Let L V {ni} = Exh(φ) be a Louveau–Veličković ideal. Then ‖ · ‖φ is invariant under transla-
tions.

Proof. Let A ⊂ ω. It is not difficult to see that ‖A‖φ = limn→∞ supi>n φi(A). Hence there is a subse-
quence (im)m∈ω such that ‖A‖φ = limm→∞ φim (A).

Let k ∈ Z. Then

log2(|A ∩ Iim | + 1 − k)

nim

� φim(A + k) � log2(|A ∩ Iim | + 1 + k)

nim

for every m ∈ ω. Since

lim
m→∞

log2(|A ∩ Iim | + 1 ± k)

nim

= lim
m→∞φim(A),

so ‖A + k‖φ � ‖A‖φ . Moreover, ‖A‖φ = ‖(A + k) − k‖φ � ‖A + k‖φ . Thus ‖A + k‖φ = ‖A‖φ . �
In [6], the authors showed that Louveau–Veličković ideals have the BW property. Hence these

ideals satisfy the hypotheses of Theorem 4.5.

6.3. Summable ideals

For f : ω → R
+ such that

∑
n∈ω f (n) = +∞ we define the summable ideal [11] by

I f =
{

A ⊂ ω:
∑
n∈A

f (n) < ∞
}
.

It is not difficult to see that every summable ideal is Fσ . Moreover, an easy calculation shows that
if f fulfills the condition (

):∑

i∈ω

∣∣ f (i + k) − f (i)
∣∣ < +∞ for every k ∈ Z, (

)

then I f is invariant under translations. Thus, for example, every summable ideal I f with f monotone
satisfies the hypotheses of Theorem 4.4.
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