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1. Introduction

The classical Schur’s theorem says that for any finite coloring of the set of natural numbers w =
C1U---UC;, there exist x, y, z having the same color (x, y, z € C; for some i <r) such that x+ y =z.
The natural question is “how many x’s there are in C; so that for each of these x there are many y’s
in C; so that x+ y is also in C;?” Of course, an answer depends on a definition of the notion “many”.
If we consider “many” as a set of positive density then this generalization of Schur’s theorem remains
valid.

Theorem 1.1. (See [7].) For any partition of w = C1 UCy U --- U C, there are § = 8(r) > 0 and i < r such that

d{{xew: d({y ew: x, y.x+yeCi}) > 68}) >6.
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Recall that Bergelson earlier pointed out the following density version of Schur’s theorem.

Theorem 1.2. (See [1].) For any partition of w = C; UCp U - - - U Cr, some C; having d(C;) > O satisfies for any
>0,

d{{xew: d({y e w: x,y,x+yeC}) > )’ — e})>o0.

An ideal on w (by @ we mean a set of all natural numbers) is a family Z C P(w) (where P(w)
denotes the power set of w) which is closed under taking subsets and finite unions. By Fin we denote
the ideal of all finite subsets of w. If not explicitly said we assume that all considered ideals are
proper (# P(w)) and contain all finite sets.

In this note we show that if the notion “many” means “not in an ideal of subsets of naturals” then
the analogous generalization of Schur’s theorem holds for a wide class of ideals.

In Section 3 we show that Theorem 1.1 holds for all analytic P-ideals (see definitions below). In
order to prove this, we show that an iterated version of Ramsey’s theorem holds for every analytic
P-ideal (which seems interesting in its own).

In Section 4 we characterize those analytic P-ideals for which the constant § in Theorem 1.1 does
not depend on a number r of cells of the partition.

In Section 5 we show that for another subclass of analytic P-ideals the generalization of Theo-
rem 1.2 holds.

In Section 6 we provide some examples of ideals for which theorems proved in previous sections
can be applied. For instance, we consider the class of Erdés-Ulam ideals. This class contains the ideal
of statistical density zero sets and the ideal of logarithmic density zero sets.

2. Preliminaries
2.1. Analytic P-ideals

By identifying sets of naturals with their characteristic functions, we equip P(w) with the Cantor-
space topology and therefore we can assign topological complexity to the ideals of sets of integers. In
particular, an ideal Z is F, (analytic) if it is an F, subset of the Cantor space (if it is a continuous
image of a G; subset of the Cantor space, respectively).

A map ¢ : P(w) — [0, o] is a submeasure on w if

9@ =0,
$(A) < P(AUB) <o (A) +¢(B),
for all A, B C w. It is lower semicontinuous if for all A C w we have
¢(A) = lim ¢(ANn).
n—-oo

For any lower semicontinuous submeasure on w, let || - |4 : P(w) — [0, o0] be the submeasure
defined by

Allg =limsupgp(A\n) = lim ¢(A\n),
n— 00 n—o0
where the second equality follows by the monotonicity of ¢. Let
Exh(¢) = {A C w: ||Allp =0},
Fin(¢) = {A C w: ¢(A) < oc}.

It is clear that Exh(¢) and Fin(¢) are ideals (not necessarily proper) for an arbitrary submeasure ¢.
An ideal 7 is a P-ideal if for every sequence (Ap)new Of sets from Z there is A € Z such that
Apn \ A €Fin for all n, i.e. Ay is almost contained in A for each n.
All analytic P-ideals are characterized by the following theorem of Solecki.
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Theorem 2.1. (See [12].) The following conditions are equivalent for an ideal Z on w.

(1) Z is an analytic P-ideal.
(2) Z = Exh(¢) for some lower semicontinuous submeasure ¢ on w.

Moreover, for F, ideals the following characterization holds.

Theorem 2.2. (See [11].) The following conditions are equivalent for an ideal 7 on w.

(1) Zis an F4 ideal.
(2) Z = Fin(¢) for some lower semicontinuous submeasure ¢ on w.

The cardinality of a set X is denoted by |X|. We do not distinguish between natural number n and
the set {0,1,...,n—1}.
The ideal of sets of density 0

. |[ANn]|
Zg= 1A Cw: limsup , =0

n—oo

is an analytic P-ideal. If we denote

|ANn|
qbd(A):sup{ " : new},

then d(A) = ||All¢, and Zy = Exh(¢g).
The ideal

1

T1 =4A : —
% { Cw Zn<oo}

neA

is an F, P-ideal. If ¢ is a submeasure defined by the formula

1
PpA) =) -,
neA n
then Z1 =Fin(¢).

The ideal of arithmetic progressions free sets

W ={W C w: W does not contain arithmetic progressions of all lengths}

is an F, ideal which is not a P-ideal. The fact that VV is an ideal follows from the non-trivial theorem
of van der Waerden. This ideal was firstly considered by Kojman in [9].

We give some examples of ideals in Section 6. A lot more examples can be found in [6], and in
Farah’s book [4].

2.2. Bolzano-Weierstrass property

Let Z be an ideal on w, A C w and (xp)new be a sequence of reals. By (x;) | A we mean a sub-
sequence (Xp)nea. We say that (x,) [ A is Z-convergent to x € R if {n € A: |x, — x| > €} € Z for every
e >0.

An ideal Z on w is called:

(1) FinBW if for any bounded sequence (x;)nc Of reals there is A ¢ 7 such that (x;) | A is conver-
gent;
(2) BW if for any bounded sequence (x;)neq Of reals there is A ¢ 7 such that (x,) [ A is Z-convergent.
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In the first case we say that Z has the finite Bolzano-Weierstrass property, in the second case we say
that Z has the Bolzano-Weierstrass property.

By the well-known Bolzano-Weierstrass theorem, the ideal Fin has the FinBW property. For the
discussion and applications of these properties see [6], where we examine all BW-like properties. In
particular, it is known that the ideal Z; of sets of density 0 does not have BW, and every F, ideal
has FinBW.

In the sequel we will use the following characterization of BW-like properties among analytic
P-ideals.

Theorem 2.3. (See [6].) Let ¢ be a lower semicontinuous submeasure. The following conditions are equivalent.

(1) The ideal Exh(¢) is BW.
(2) The ideal Exh(¢) is FinBW.
(3) Thereis § > 0 such that for any partition A1, Az, ..., Ay of w there exists i <n with | Ajllg = 6.

2.3. Invariant submeasures

We say that an ideal 7 is invariant under translations if for each A € Z and n € Z (by Z we denote
the set of integers)

A+neZ whereA+n={a+n:acAlNow.

We say that a submeasure ¢ is invariant under translations if ¢ (A +n) = ¢ (A) for each A C w and
nez.

Remark. If || - || is invariant under translations then the ideal Exh(¢) is invariant under translations.

A submeasure ¢ fulfills a condition A if for every € >0, A C w and any N € w there exists a
measure ¢’ < ¢ such that ¢’ <1 and

¢’ (A+n) > ||Allp —e foreachne[—N,N].

(Throughout the paper, by a measure we mean a finitely additive measure.)

Proposition 2.4. Suppose that 7 = Exh(¢) is an analytic P-ideal, ¢ € A and || - || is invariant under transla-
tions. Then Z does not have the BW property.

Proof. For the sake of contradiction, suppose that Z = Exh(¢) has the BW property.
Foreverynew and i=0,1,...,2" —1 let

Al ={k e w: k=i (mod2")}.
Then w = AjU--- UAY,_, for every n € w and A} = Ajj +i for every i <2". Hence ||Ajll = |A}]l =
<o =|AS,_; |l =8y > O for every n € .
By Theorem 2.3 there is § > 0 such that &, > § for every n € w.
Let n € w be such that 2”% > 1. For ¢ = % A=Afj and N =2" let ¢’ <1 be a measure required
by condition A. Then
1> ¢/(0) =¢'(Ag) + /(A7) + -+ ¢'(A3n_4)
=¢'(Ag) + /(A + 1)+ +¢/(Ag+2" = 1) > 2" Ag| - 2"
8
22”8—2”8:2”5 >1,

a contradiction. O
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2.4. Idempotent ultrafilters

Recall that Bw, the Cech-Stone compactification of the set of natural numbers, is the set of
all ultrafilters on w. We consider Bw as the topological space with the basis consisting of all
{U e Bw: AelU} for A C w. One can define an addition operation on Bw, which extends the or-
dinary addition of natural numbers, in the following way. If ¢,V € Bw, then

U+V={ACw: {ncw: A—nel}eV}.
It is known that Bw with this addition is a left-topological semigroup. We say that U/ € fw is idem-
potent if U +U =U. (For more properties of addition on Sw see e.g. [13, Chapter II].)
3. Analytic P-ideals

In [7, Theorem 2.1], the authors proved an iterated version of Ramsey’s theorem for the ideal of
statistical density zero sets. We will need an analogous result for every analytic P-ideal. By [@w]* we
mean a family of all two-element subsets of w, i.e. [w]*> = {{x, y}: X,y € ®, x# y}.

Theorem 3.1. Let Z = Exh(¢) be an analytic P-ideal. Then for every coloring [w]2=C;UCyU---UC, there
exist 5 = §(r) and i < r with

l{xew: [{yew: [{zew: (x.y). (x.2). {y. 2 e Gi}||, = 8}, = 8}, > &.

Proof. Let S = w=<% (i.e. S is the family of all finite sequences of natural numbers) and S, = w<"

(i.e. Sy is the family of all sequences of natural numbers of length less or equal to n). If s =

(50,51, .-.,5n—1) € S then |s| =n (the length of s). By ¥ € S we denote the empty sequence.
Let M = ||w||,. We claim that there is a family of sets {An(s) Cw: n € w and s € Sp} and integers
{ine{1,...,r}: n€w} such that for alln >0 and s € Sy:

(1) 1An(S)llp = M/r" if s; € Ap—1(s [i) for every i < |s|, and

An(s) C Ap—1(s) if |s| <n;
2) {An(smAnfl(srn—n if s/ =n, 2"
(3) {sn—1,sn} € Gy, for each sg € Ap(¥), s1 € An({S0)), .- ., Sn € An({S0,51, ..., Sn—1))-

Note that from (2) it follows that:
(2) if m< |s| <n then Ay(s) C An(s [ m) for each 0<m < n.

We will build families {A,(s) Cw: n€ w and s € Sy}, and {i, € {1,...,r}: n € w} by induction on n.
Let Ap(¥) = w. Suppose we have found sets Ap(s) for each m <n and |s| < m such that conditions
(1), (2) and (3) hold.

We define sets A,(s) in 3 steps. At first we define A,(s) for |s| =n — 1. Then, using backward
induction on the length of s, we define A,(s) for |s| <n — 1. In the last step we define i, and A;(s)
for |s| =n.

Step 1. For every so € Ap—1(#),s1 € An—1({S0)), ..., Sn—2 € An—1({So, ..., Sn—3)) there are A,({So,...,
Sn—2)) C Ap—1({So, - - -, Sn—2)) and jn({So, .-, Sn—2)) € {1,...,1} such that

(1) l1An({s0, ---»Sn—2)ll, = M/r", and
(2) I{w € An—1({s0. - .. sn-2)): {Sn—1, W} € Cjy((sp.snan}l, = M/1" for every so € Ap_1(9).s51 €
Apn—1({s0))s ..., Sn—2 € An_1({S0, ..., Sn—3)) and sp_1 € Ap({So, .., Sn—2))-

Indeed, for every s = (sp, .. .,sn'_z), teAp—1(s) and j=1,...,r let A,’.;(t) = {w € Ap—1(s): {t,w}e
Cj}. Since Ap_1(s) \ {t} = J}_; A} (s) so there is j(t) € {1,...,r} such that ||A#‘>(t)||¢ > M/1". Let
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Al ={t € A1 () j(©) = j). Since An_1(5) = J}_; A} so there is j e {1,....r} such that [|A}]l, >

M/r". We put A(s) =A,{ and jp(s) =j.
We put A,(s) =0 for all se€ S (|s| =n — 1) such that there is i <n — 1 with s; ¢ Ap—1(s [ Q).

Step 2 (inductive). Suppose that we have defined A,(s) form+1<|s|<n—1.
Then for every sg € Ap—1(9),s1 € An—1({S0)), ..., Sm—1 € An—1({So0, ..., Sm—2)) there are A,({So, ...,
Sm—-1)) C An—1({So, ...,Sm—1)) and jn({(So,...,Sm—1)) € {1,...,r} such that

(1) lAn({s0, - -, Sm-1))llg = M/r", and

,,,,,

An—1({s0)), ..., Sm-1 € An—1((S0, ..., Sm—2)) and sm € An({So,...,Sm=1)),...,Sn—1 € An({S0, ...,

Spn—2)).

Indeed, let s = (sg, S1,...,Sm—1) be any sequence with sg € Ap_1(?),51 € An—1({S0)),...,Sm—1 €
An—1({S0,51,...,Sm—1)). For each t € Ap_1(s) let j(t) = jn({So,S1,...,Sm—1,t)). From our inductive

hypothesis we know that
I[{w € An-1({s0, - Sm—1, €, Sm1, - Sn-2)): {Sn-1, W} € Cjio }], = M/1"

for every smi1 € An({S0s---sSm—1-t)),...,Sn—1 € An((so,...,smq,t,smﬂ,...,sn,2>). Put A{l ={te
An—1(s): jt) = j}. Since [[An—1(5)ll, = M/~ and Ap_1(s) = U§:1 A} so there is je({1,...,r} such

that | A}ll, > M/r™. We put A(s) = A} and ja(s) = j.
We put A, (s) =0 for all s € S (|s| =m) such that there is i <m with s; ¢ Ap—1(s [ i).

Step 3. Put i, = j(¥) and Ap({So,...,Sn—1)) ={t € Au—1({So, ..., Sn=2)): {sn—2,t} € Ci,}.

This finishes the construction of families {A,(s) Cw: n€ w and s € Sy} and {i; € {1,...,1}: n€w}.

Now, suppose that {Ap(s) Cw: ne€ w and s € Sy} and {i, € {1,...,r}: n € w} fulfill conditions
(1), (2/) and (3). Fix § = M/r"*1. By the pigeonhole principle there are 1 <a <b <r+ 1 with
ig =ip = i. For every sg € Ap(¥),s1 € Ap({So)), ..., Sy € Ap({So, S1,...,Sp—1)) we have {sp_1,sp} € C;.
Since Ap({(S0,51,.--,5p—2)) C Aa({S0,S51s--->Sa—=1))s {Sa—1,Sp—1} € C;. Since Ap({S0,51,---,Sp—1)) C
Aq({50.51,.-.,8a—1)), {Sa—1, Sp} € Ci. (The inclusions follow from (2).) Since ||Ap(s [ m)||, > & for each
m < b, we are done. O

As a corollary we get a strengthening of Theorem 1.1.

Theorem 3.2. Let 7 = Exh(¢) be an analytic P-ideal with || - |4 invariant under translations. Then for every
coloring w =C1UCy U---UC; there exist § = §(r) and i < r with

[{x € w: |{y € w: x,y,x+yeC,-}||¢>8}||¢>8.

Proof. Define a new coloring [w]> = D;U---UD; by {x, y} € D; & |y — x| € C;. By Theorem 3.1 there
are § =4(r) and i <r such that

H{x€w: [{y ew: |{z€w: |x—y|,|x—z|,|y—z|eC,-}||¢>8}H¢>8}||¢>8.
Take any x € w such that

H{y ew: [{z€w: |x—y|,|x—z|,|y—z|eC,-}||¢2(S}||¢>(S.
Then

Iy >x tz>y y—xz-xz-yeci],>s}],>s.
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Since || - ||y is invariant under translations, so

H{y —x: [{z—y: y—x,z—x,z—yeC,-}||¢>S}||¢>(S

and this finishes the proof. O

Remark. In the classical version of Schur’s theorem nothing prevents the case x = y. Since for any
reasonably defined ideal Z every set A ¢ Z has at least two elements, from Corollary 4.3 we get that
for every finite coloring of w there are x # y with {x, y, x + y} monochromatic, which is Theorem 1
from [3]. (Clearly, it can be also deduced from Theorem 1.2.)

4. Analytic P-ideals with the Bolzano-Weierstrass property

The following lemma was formulated by Bergelson and Hindman for the ideal of statistical den-
sity O sets (see [2, Le. 1.1]).

Lemma 4.1. Let 7 be an ideal which is invariant under translations. There exists an idempotent U € Sw with
Unz=u.

Proof. Let A={U € Bw: ZNU =}. Then A is non-empty and closed, so compact in Bw. Moreover,
ifUU, Ve Abutld +V ¢ A then there is a B € Z such that

[new: B—n)eu}ev.

Since V is non-empty, there exists n € @ with B —n € U. But B € Z and Z is invariant under
translations—a contradiction with &/ NZ = ¢. Thus A + A C A, and consequently A is a compact
left-topological semigroup. By Auslander-Ellis theorem (see e.g. [13, Section 15, Lemma 3]) there is
an idempotent U/ € A. O

Remark. In fact in the proof of Lemma 4.1 (and consequently in Corollary 4.3) we use slightly weaker
assumption than invariance of Z. We can assume, for example, that for each A €7

fnew: A+n¢I}el.

Lemma 4.2. Suppose that Z is an ideal and there exists an idempotent U € Bow withU NZ =0. If w =
C1UCyU---UC; then thereis ani < r with

[nec:Gin(Ci—n)¢I}¢T.
Proof. This lemma follows from the standard argument. We recall it here for a completeness.
Let U € Bw be as required. Take i <r with C; el =U +U. Then {n € w: C; —n eU} €U, hence
fnew: C;N(C;—n)eU}el. Finally {neCi: CGGN(Ci—n)eU}el. O

From Lemmas 4.1 and 4.2 follows

Corollary 4.3. Let Z be an ideal which is invariant under translations. If = C1 U Co U - - - U C; then there is
ani < r with

[neci:Gin(Ci—n)¢T}¢T.

The following generalizations of Schur’s theorem hold for some subclasses of analytic ideals. Note
that in Theorems 4.4 and 4.5 the constant § does not depend on r.
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Theorem 4.4. Let 7 = Fin(¢) be an F ideal which is invariant under translations. If o =Cqy UCa U --- U C;
then there is an i < r with

d({xcw: p({y cw: X, y,x+y € C}) = o0}) = 00.
Proof. Apply Corollary 4.3 and note that ¢(A) = oo for every A¢Z. O

Theorem 4.5. Let 7 = Exh(¢) be an analytic P-ideal such that || - || is invariant under translations. Then
7 has the BW property if and only if there exists § > 0 such that for every r € w and every coloring w =
CiUCU---UC, thereisi < r with

[{x € w: |{y € w: x,y,x+yeCi}||¢>5}||¢>5.

Proof. (=). By Theorem 2.3(3), there is § > 0 such that

Zs = {A C w: there exists a partition A= Ay U--- U A, such that ||A;ly < & for every i <n}

n
is a proper ideal extending Z. Now it is enough to apply Corollary 4.3 to the ideal Zs (since ||All4 > &
for every A ¢ Is).

(«). Let o =A1U---U Ap. Then there is i <n with

[{x € w: |{y € w: x,y,x+yeA,-}||¢28}||¢26.

Hence | Ailly > 8, so T has the BW property by Theorem 2.3. O

Remark. If I/ € Bw is idempotent then (U +U) +U =U. Thus results of this section can be extended
to the case of sums of three elements. For instance,

[xew: {yew: zew: x,y,z,x+y,x+2,y+2,x+y+2€C} ¢TI} ¢TI} ¢T.
And by induction one can extend it to the case of sums of n-elements for every n € w.
Remark. It is possible to prove Theorem 4.5 using a variant of iterated version of Ramsey’s theorem
(result analogous to Theorem 3.1) with the constant § independent of the number of colors. In [5], it

is proved that this kind of iterated version of Ramsey’s theorem holds for every analytic P-ideal with
the BW property.

5. Analytic P-ideals generated by submeasures with the A property

In this section we are interested in another generalization of a result from [2], which works also
for ideals without the Bolzano-Weierstrass property. First, we need a Khintchine recurrence theorem
for submeasures. We follow the proof from [14].

Theorem 5.1. Let ¢ be a submeasure defined on a space S. Let A;, i =0, 1, ..., be an infinite sequence of sets
in S. Suppose also that m € [0, 1] is such that for every M € w there is a measure ¢’ < 1 defined on an algebra
containing sets Ao, ..., Ay with ¢’ < ¢ and ¢'(A;) > m for all i < M. Then for any A < 1 there exist i < j
such that

¢ (AiNAj) = rm?.
Moreover, we can assume that i, j < N, where N = N(m, A) depends only on m and A.

Proof. First we claim that there are N =N(m, 1/3) and two sets A; and A; (i < j < N) such that

P(AiNAj) > -m?.

W =
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Suppose on the contrary that ¢(A; N Aj) < %mz for every i < j. Let
i—1
Fo=Ag and Fi=A;\| J(AinFy fori>0.
k=0

Clearly all sets F; are pairwise disjoint and F; C A; for each i.
Fix M € w. There is a measure ¢’ with

i—-1 i—1
wmhw<m\UAwwo=wwn—dOJmma>
k=0

k=0

i1
1
>m—¢<UAiﬂFk> >m—i§m2

k=0
for each i < M. Thus

M

MM+1)1 (M+1m
12¢/(S)> '(F; M+1m— ———m?>=-——""(6— Mm).
¢'(S) Z%¢(o>( +1) 3 = )

On the other hand, if 3/m — 1< M < 3/m then
M+ 1)m M+1m _ 3m
u(G_Mm)> M+ Dm >0
6 2 m 2
a contradiction. This finishes the proof of our first claim (for N= N(m, 1/3) =3/m).
Consider the product space S" (r € w) with submeasure ¢, defined by a formula

n r—1 n
¢,(U)=inf{2]_[¢(x§): UcJXPx X! x-x x{—‘}

i=0 t=0 i=0

>1,

for each U C S".

It is not difficult to check that the submeasure ¢, and a sequence of sets AT, Aq,... satisfy the
hypotheses of the theorem (indeed, for m" € [0, 1] and M € w take ¢, to be a product measure of r
measures ¢’).

Applying the previous claim to the submeasure ¢ and the sequence Aj there are i < j <
N(m", 1/3) such that

1 2 r

g(mf) <or(ATNA}) =¢r((AINADT) = (p(AiNA)) .
Thus ¢(A; N Aj) > (3)/"m?. To finish the proof it is enough to fix any r such that (1/3)!/" > . Then
N=N@m,»)=N@m",1/3). O
Corollary 5.2. Let p € A, & >0, A C w and ny, € Z (k € w). Then

((A+n)N(A+n)) > |Al5—¢

forsomei, j < K (where K = K(||Allg, &) depends only on the norm of a set A and ¢).

Proof. We will apply Theorem 5.1 to the submeasure ¢ and a sequence Ay = A +n (k € w).
Let m= /||A||q2§ —e¢&/2 and M € w. Since ¢ € A so there is a measure ¢’ < ¢ and ¢’ <1 such that

¢'(A+i)=>|Ally — &’
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for every |i| < N =max{|ngl, ..., nm|} and &' = ||Ally — /||A||é —¢&/2. Hence ¢'(Ay) > m for every
k < M. Thus we can apply Theorem 5.1.

Lot 3 — Al
IAIZ=¢/2"

Then there are i < j < N(m, A) with

P(AiNAj) >am* = || Al — €.

Since m and A depend only on [|A|ls and &, so we put K([|All¢,&) =N(m,1). O

Given a subset S C w denote by D(S) the difference set

D(S) ={s1 —s2: 51 > sy and s1, S € S}.

The following lemma was formulated by Bergelson for the ideal of sets of statistical density O
(see [1, Prop. 2.2]).

Lemma 5.3. Let S be an infinite subset of w. Let 7 = Exh(¢) for a submeasure ¢ € A with || - || invariant
under translations. Then for any A C w with A ¢ Z and ¢ > 0 there exists n € D(S) such that

[An@A—=m], > 11415 —e.

Proof. Arrange elements of S in an increasing sequence {si: k € w}. Let Al = (A \ ) — s; for every
k,lew.
Let K = K(||All4, €) be as in Corollary 5.2. Then by Corollary 5.2

DAL NAL) > IANIE — s = 11413 ¢
for some iy, ji < K([[A\Ill4,€) =K and every | € w.

Since there are only finitely many pairs i; < j; < K and [ can be arbitrarily large, there are i’ <
j' < K with i’ =i; and j' = j; for infinitely many [. Then

d((A=si)NA=s)\D) = d(((A\A+sK) —si) N ((A\ A +5K)) —s7))
= (AN ATH) > A% e
for infinitely many I. Thus

JA=s)na—sp)

2
o> A% —¢.
Since || - |l¢ is invariant under translations,

1Al — &< [(A=si) N (A—sj)

s =IAN(A= sy —s0)|

®
which finishes the proof. O

Lemma 5.4 is essentially the same as Bergelson’s and Hindman’s Lemma 2.1 from [2]. In the orig-
inal paper it was formulated for the ideal of sets of statistical density 0. We provide a proof of our
slightly modified version for the completeness.

Lemma 5.4. Let T = Exh(¢) for a submeasure ¢ € A with | - ||4 invariant under translations. Let U € Bw be
idempotent withid NZ = (). Let A € U and ¢ > 0. Then

[xeA: A—xelUand ”Aﬂ(A—x)Hd)>||A||é—8}eu.
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Proof. For any S C w define
FS(S) = [Z F: F is a finite non-empty subset of S].

It is well known that for any ¢/ € Sw with U/ +U =U and B € U there exists an infinite C C B such
that FS(C) C B (see e.g. [13, Section 15, Lemma 4].)
Let

B={xecw: \]Am(A—x)y\¢> IAl5 — &}

Since Aeld and U +U =U, {xe w: A—xel}el. So, it is enough to show that B € U (then
ANBN{xew: A—xel} el is as required).

Suppose that B ¢ U. Then w \ B € U, so there exists C C w \ B with FS(C) C w \ B. Fix such
C = {xn: n € w}, where x, is increasing. Let S = {ZZZO Xk: n € w}.

By Lemma 5.3 there are y <z in S such that z— y € B. On the other hand, y = ZZ:O X, and
z=> }Loxx for some n <m, so

m
z—y= ) x€eFS(C)Cw\B,
k=n+1

a contradiction. 0O
By Lemmas 4.1 and 5.4 the following generalization of Theorem 1.2 holds.

Theorem 5.5. Suppose that T = Exh(¢) is an analytic P-ideal, ¢ € A and | - || is invariant under translations.
For any partition of w = C; U C2 U - - - U Gy, some C; having ||Ci|| > O satisfies for any & > 0,

[{x € w: |{y € w: x,y,x+yeC,'}||¢> ||Ci||é—6‘}“¢>0.

6. Examples
6.1. Erdés-Ulam ideals

Let f:w — [0, +00) be such that

= .. . foy
;f(l)_—i—oo and nll)n;o 42@ o =0,

then

_ R ZieAﬂn f(l) _ }
EUs= {Acw. lim S =0

is called an Erdés-Ulam ideal [8]. The ideal Z,, of statistical density zero sets, is an Erdos-Ulam ideal
(generated by any constant positive function f). The ideal Zjog of logarithmic density zero sets also is
an Erd6és-Ulam ideal, where

1

Tiog = {A Cw: lim L'Em" i
n— 00 1

ien i

1
:0}: {Acw: lim M:o}.
n—oo logn

Every Erdés-Ulam ideal EU is an analytic P-ideal of the form Exh(¢y), where

ZieAﬁn f(l) : ZieAﬂn f(l)
A) = _ d A =1 _
bl =sup > ray 4 Ml =lmsip e
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There are Erdos-Ulam ideals which are not invariant under translations (hence their norms are
not invariant under translations), and do not have the A property, e.g. £U generated by f(n) =
(=1)™ + 1. The next proposition gives a sufficient condition for a function f to define a norm || - o,
which is invariant under translations and has the A property.

Proposition 6.1. Let 7 = Exh(¢) be an Erdés-Ulam ideal. If

1
s Y f(D)

then || - ||, is invariant under translations, and ¢¢ € A. (We assume that f (i) = 0 forany i <0.)

=0 foreverykeZ (%)

Proof. The fact that | - [|¢, is invariant under translations follows from an easy calculation. We show
below that ¢ € A.
Fix € >0, ACw and M € w. By (») it is possible to find an N € w such that

Sialfitb - fOl _e o XSO _«
Zien f(l) 3 Z?:_(} f(l) 3
for each k e [-M, M] and n > N.
There exists n’ > N with

ZieAﬂn’ f@ > Allg, — f
Siew S 73
Then the measure ¢’f given by a formula
¢/ (B) = ZieBﬂn’ f(l)
d Yiew F()

is such that ¢’ < ¢ and for each k € [0, M]
Yicanm—ky FA+K)

"(A+k) =
¢f( - <) Zien’ f(l)
_ ZieAﬁ(n’—k) (f(l + k) - f(l)) - ZieAﬂ[n/—k,...,n/—l] f(l) + ZieAﬂn/ f(l)
- Zien’ f(l)
_f _ f ZieAﬁn’ f(l) .
SRR R VY TG
and
/ Yicantk..tk-1 A=K Dicanmi fE—K)
A _l = — =
Pr(A—k) ST S
— Dicarw (fE—K) = f(@) + ZieAﬁ[n’,...,n’Jrkfl] fG=K)+ X pnm fOD
- Zien’ f(l)
€ Yicann @)
> -+ 0+ 55— > Al — e
3 +0+ > O lAllg; — ¢

Thus ¢p € A. O
Remark. If 7 =Exh(¢y) is an Erdés-Ulam ideal and f is monotone then f fulfills the condition (»).
By the above proposition, every Erdds-Ulam ideal with the property (x) satisfies the hypotheses

of Theorems 5.1 and 5.5. In particular, Theorems 5.1 and 5.5 hold for the ideal Z; of statistical density
zero sets, and for the ideal Zjog of logarithmic density zero sets.
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6.2. Louveau-Velickovic ideals

Let {n;}ice be an increasing sequence of natural numbers. Let I; be pairwise disjoint intervals on
w such that |I;| =2". Let ¢; be a submeasure on I; given by

logy(IAN ;| + 1)

1

di(A) =

Then ¢ = sup; ¢; is a lower semicontinuous submeasure and L£LV,;; = Exh(¢) is called the Louveau-
Velickovic ideal [10].

Proposition 6.2. Let LV,;) = Exh(¢) be a Louveau-Veli¢kovi¢ ideal. Then | - || is invariant under transla-
tions.

Proof. Let A C w. It is not difficult to see that [|All4 = lim;— o SUp;-, ¢i(A). Hence there is a subse-
quence (im)mew such that [|Ally = limy— oo @iy, (A).

Let k € Z. Then
log,(JANT; |+1—k log,(JANT; | +1+k
22 ( n{ml )<¢>im(A+k)< (| nzml )
i i

m m

for every m € w. Since

I ANI; 1+k
lim 0g (] im| + )=

m— oo n

lim ¢, (A),
m—00

m

so [[A+klly = [|Allg. Moreover, [|Allg = [I(A+k) —klly > |A+kll4. Thus |A+klgy=IAllp. O

In [6], the authors showed that Louveau-Velickovi¢ ideals have the BW property. Hence these
ideals satisfy the hypotheses of Theorem 4.5.

6.3. Summable ideals

For f:w— RY such that }",_, f(n) =+oo we define the summable ideal [11] by

Ifz{Acw: > fmy <oo}.

neA

It is not difficult to see that every summable ideal is F,. Moreover, an easy calculation shows that
if f fulfills the condition (%):

ZU(i +k) — f(i)| <4oo foreveryk€Z, (x%)
iew
then Zy is invariant under translations. Thus, for example, every summable ideal Z;y with f monotone
satisfies the hypotheses of Theorem 4.4.
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