Journal of Combinatorial Theory, Series A 175 (2020) 105278

Contents lists available at ScienceDirect

Journal of Combinatorial Theory,

Series A

F1.SEVIER www.elsevier.com/locate/jcta

Licci binomial edge ideals ™ =

Viviana Ene®*, Giancarlo Rinaldo ", Naoki Terai ¢

? Faculty of Mathematics and Computer Science, Ovidius University, Bd. Mamaia
124, 900527 Constanta, Romania

b Department of Mathematics, University of Trento, Via Sommarive, 14, 38123
Povo (Trento), Italy

¢ Department of Mathematics, Okayama University, 3-1-1, Tsushima-naka,
Kita-ku, Okayama, 700-8530, Japan

ARTICLE INFO ABSTRACT
Article history: We give a complete characterization of graphs whose binomial
Received 8 October 2019 edge ideal is licci. An important tool is a new general upper

Received in revised form 25 April
2020

Accepted 13 May 2020

Available online xxxx

bound for the regularity of binomial edge ideals.
© 2020 Elsevier Inc. All rights reserved.

Keywords:
Licci ideals
Binomial edge ideals
Regularity

0. Introduction

Binomial edge ideals associated to simple graphs have been intensively studied in
the last decade. Their algebraic and homological properties are intimately related to
the combinatorics of the underlying graph. A lot of effort has been dedicated to study
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the Cohen-Macaulay property of these ideals. As in the case of classical edge ideals, an
exhaustive classification of graphs whose binomial edge ideals are Cohen-Macaulay seems
to be a hopeless task. There are successful attempts to characterize graphs with specific
properties which have Cohen-Macaulay binomial edge ideals. For example, the Cohen-
Macaulay property of binomial edge ideals is known for block graphs which include the
trees [3] and for bipartite graphs [1]. We refer also to the papers [12,20-22] for other
classes of Cohen-Macaulay binomial edge ideals.

Let G be a simple graph (that is, undirected, with no loops, and no multiple edges) on
the vertex set [n] := {1,2,...,n} and S = K|[z1,...,%n,y1,...Yn] the polynomial ring
in 2n variables. The binomial edge ideal Jg C S of G is generated by all the binomials of
the form f;; = x;y; — x;y; where {i,j} is an edge of G. In other words, Jg is generated
Ty Ty ... Tp
Yyio Y2 .- Yn

by the 2-minors of the generic matrix X = ) which correspond to

the edges of G.

In this paper, we study binomial edge ideals which are in the linkage class of a complete
intersection. We call such ideals licci, in brief. Besides the Cohen-Macaulay property,
they satisfy some extra conditions which make possible a full characterization of graphs
whose binomial edge ideals are licci. Linkage theory has a rich history in commutative
algebra and algebraic geometry. Peskine and Szpiro [19] in 1974 reduced general linkage
to questions on ideals over commutative algebras and after then, a lot of work has been
done to develop this theory in commutative algebra and algebraic geometry. If I, J are
proper ideals in a local regular ring R, they are called directly linked and we write I ~ J
if there exists a regular sequence z = zi,...,%4 in I N J such that J = (z) : I and
I = (z) : J. One says that I and J belong to the same linkage class if there exists a
sequence of direct links

I=Iy~L~ - ~Iy=J

If J is a complete intersection ideal, then I is said to be licci. The ideals in the same
linkage class share several properties. For example, if I and J are linked, then I is Cohen-
Macaulay if and only if J is Cohen-Macaulay. In particular, it follows that a licci ideal
is Cohen-Macaulay.

The following natural question arises. May we give a full characterization of the graphs
G with the property that the associated binomial edge ideal is licci?

In this paper, we give a complete answer to this question. In [9] a necessary condition
for a Cohen-Macaulay homogeneous ideal in a polynomial ring to be licci is given. In
the case of binomial edge ideals, this condition implies that if (Jg)m C Sm (here m is
the maximal graded ideal of the ring S) is licci, then reg(S/Jg) > n — 2. This condition
turns to be also sufficient for Cohen-Macaulay binomial edge ideals as we are going to
show in this paper.
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The regularity of binomial edge ideals have been intensively studied in the last years.
In [15] it was proved that the regularity of S/Jg is upper bounded by n — 1 and it was
conjectured that this upper bound is attained if and only if G is a path graph. This
conjecture was later proved in [13]. Inspired by the paper [13], we prove a new upper
bound for reg(S/Jg) which is stronger than n — 1 and it plays an essential role in the
characterization of the graphs G whose binomial edge ideal is licci.

The structure of the paper is as follows. In Section 1, we recall the basic results on
licci and binomial edge ideals needed in the next sections. In Section 2, we prove that
if G is a connected graph, then reg(S/Jg) < n — dim A(G), where A(G) is the clique
complex of G (Theorem 2.1). We believe that this new general upper bound for the
regularity of binomial edge ideals will inspire new results on their resolution. In brief,
in Theorem 2.1, we prove that for every clique W C [n] of the connected graph G, we
have reg(S/Jg) < n— |W|+ 1. The proof is based on a double induction. First we make
induction on n — |W| and, secondly, on a combinatorial invariant of G.

The characterization of graphs whose binomial edge ideal is licci is given in Section 3.
In Theorem 3.5 we show that, for a connected graph G on n vertices, the following
statements are equivalent:

(1) (Jg)m C Swm is licci.
(ii) Jg is Cohen-Macaulay and n — 2 < reg(S/Jg) < n — 1.
(iii) G is a path graph or it is a triangle with possibly some paths attached to some of
its vertices.

The most technical part in the proof is to show that there is no indecomposable graph G
with n > 4 vertices with reg(S/Jg) = n — 2 and Jg Cohen-Macaulay. In order to make
this part easier to understand, we proved some preparatory lemmas. We can reformulate
the above statement by saying that the only indecomposable graphs G with Jg a Cohen-
Macaulay ideal and reg(S/Jg) = n—2 are the path with one edge and the triangle. Next
we combine this fact with Lemma 3.2 which shows that for any decomposable graph G
with reg(S/Jg) = n — 2, one of the components must be a path. In this way we derive
the combinatorial characterization from Theorem 3.5 (iii).

A straightforward consequence of Theorem 3.5 is Corollary 3.7 which says that for a
connected bipartite graph G, the ideal (Jg)m C Sn is licci if and only if G is a path
graph. The case when G is a disconnected graph is treated in Proposition 3.8.

In the last section of the paper, we show that for chordal graphs, in the equivalent
statements of Theorem 3.5, we may replace the Cohen-Macaulay property with the
unmixedness of the ideal Jg (Theorem 4.2). For the proof we use a theorem of Dirac
which characterizes the chordal graphs in terms of their clique complex.

1. Preliminaries

We recall some notions and fundamental results needed in the later sections.
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1.1. Licci ideals

Let R be a regular local ring and I, J proper ideals of R. Then I and J are called
directly linked and we write I ~ J if there exists a regular sequence z = z1,...,24 in
I'NnJ such that J = (z): 1 and I = (z) : J. One says that I is linked to J or that I and
J belong to the same linkage class if there exists a sequence of direct links

I=Ig~Ti~-~ Iy =

If J is a complete intersection ideal, that is, it is generated by a regular sequence, then
I is said to be in the linkage class of a complete intersection (licci in brief).

Several properties are preserved in the same linkage class. For example, if [ is linked to
J, then R/I is Cohen-Macaulay if and only if R/J is Cohen-Macaulay [19]. In particular,
any licci ideal is Cohen-Macaulay. A necessary condition for a homogeneous ideal in a
polynomial ring to be licci is given in [9].

Theorem 1.1. [9, Corollary 5.13] Let I be a Cohen-Macaulay homogeneous ideal in a
standard graded polynomial ring S = Klx1,...,x,]| with the graded maximal ideal m. If
I, C R= Sy is licci, then

reg(S/I) > (height I — 1)(indeg I — 1) (1)
where indeg I is the initial degree of the ideal I, that is, indeg I = min{i : I; # 0}.

Although, in general, inequality (1) is not a sufficient condition, if I is the edge ideal
of a graph, then I, C R = Sy, is licci if and only if inequality (1) holds [14]. We will see
a similar behavior in Section 3 for binomial edge ideals.

1.2. Graphs and binomial edge ideals

Let G be a simple graph on the vertex set V(G) := [n] with the edge set E(G) and
S = Klx1,...,Zn,Y1,-..Yn] the polynomial ring in 2n variables over a field K. The
binomial edge ideal of the graph G is generated by the binomials f. := z;y; — z;y;
with e = {i,j} € E(G). In other words, Jg is generated by the 2-minors of the matrix

rT T2 ... X

X = " | which correspond to the edges of G. For example, if G is

Yyi Y2 ... Yn
the complete graph K, on n vertices, then Jg is the ideal I5(X) generated by all the
2-minors of X. Note that Jg, has a linear resolution by [7, Theorem 7.27]. On the other
hand, if G is the path graph P, on n vertices with edge set {{i,i +1}:1<i<mn—1},
then Jg is the ideal of all adjacent maximal minors of X. By [21, Theorem 2.2], if G
is a connected graph, Jg is a complete intersection, that is, it is generated by a regular
sequence if and only if G is a path graph.
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The binomial edge ideals were introduced independently in the papers [6] and [17]. In
the last decade, these ideals have been studied by many authors. The interested reader
may find a thorough introduction to this topic in the monograph [7]. Fundamental results
regarding the minimal free resolutions of binomial edge ideals are surveyed in [24].

In this paper, we need to recall the primary decomposition of binomial edge ideals
and some fundamental results on their regularity.

The minimal primary decomposition of a binomial edge ideal is strongly related to
the combinatorics of the underlying graph; see [6] or [7, Chapter 7]. Let S be a (possibly
empty) subset of [n] and let Gs be the restriction of G to the vertex subset [n] \ S. Let
G1,...,Gs) be the connected components of this restriction and, for every 1 <i < ¢(S),
let G; be the complete graph on V(G;). Then, the ideal

Ps(G) = ({zi,yi i €S} +Jg, +-+Jg

c(8S)

is a prime ideal in S which contains Jg, and by [6, Lemma 3.1] we have
height(Ps(G)) =n — ¢(S) + |S]. (2)
Theorem 1.2. [6] In the above notation, we have

Jo= () Ps(G).
SC[n]

In particular, Jg is a radical ideal and its minimal prime ideals are among Ps(G)
with & C [n]. The following proposition characterizes the sets S for which the prime
ideal Ps(G) is minimal.

Proposition 1.3. [6, Corollary 3.9] Ps(G) is a minimal prime ideal of Jg if and only if
either S =) or S is non-empty and for each i € S, ¢(S\ {i}) < ¢(S).

In graph theoretical terminology, for a connected graph G, Ps(G) is a minimal prime
ideal of Jg if and only if S is empty or S is non-empty and is a cut set of G, that is, i is a
cut vertex of the restriction G [\ s)uqi} for every i € S. We recall that a vertex v of the
graph H is a cut vertex of H if its removing breaks H into more connected components
than H has. Let C(G) be the set of all sets S C [n] such that Ps(G) is a minimal prime
ideal of Jg. Equality (2) implies then the following.

Corollary 1.4. Let G be a connected graph on the vertex set [n]. Then Jg is unmized
if and only if for every S € C(G), ¢(S) = |S| + 1. In this case, we have height Jg =
height Py(G) = |V (G)| — 1.

Proof. The ideal Jg is unmixed if and only if all its minimal prime ideals have the
same height. This is the case if and only if, for every & € C(G), height(Ps(G)) =
height(Py(G)) = n — 1. By (2), this is equivalent to ¢(S) = S|+ 1. O
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A general upper bound for the regularity of binomial edge ideals was first given in [15],
namely, reg(S/Jg) < n—1, and in the same paper it was conjectured that reg(S/Jg) =
n — 1 if and only if G is a path graph. This conjecture was proved in [13].

Theorem 1.5. [13] Let G be a graph on n vertices which is not a path. Then reg(S/Jg) <
n— 2.

For a chordal graph G, in [23, Theorem 3.5] it was shown that the number ¢(G) of
maximal cliques of G is an upper bound for reg(S/Jg).

Recall that a subset C' C [n] is a clique of G if the induced subgraph of G on the vertex
set C'is a complete graph. The set of cliques of G forms a simplicial complex A(G) called
the clique complex of G. Its facets are the maximal cliques of G. By a famous theorem
of Dirac ([2] or [5, Section 9.2]), a connected graph G is chordal if and only if either G
is a complete graph or the facets of A(G) can be ordered as Fy, ..., F. such that, for all
i > 1, F; is a leaf of the simplicial complex generated by Fy,..., F;. A leaf of a simplicial
complex A is a facet of A which has a branch, that is, a facet G such that for all facets
F' of A with F/ # F, we have ' NF CGNF.

2. A new upper bound for the regularity of binomial edge ideals

In this section, we give a new general upper bound for the regularity of S/Jg.
Theorem 2.1. Let G be a connected graph on [n]. Then reg(S/Jg) < n —dim A(G).

When G is not connected, we derive the following upper bound for the regularity of
S/Ja.

Corollary 2.2. Let G be a graph on n vertices with the connected components Gy, ...,G..
Then

reg(S/Jg) <n— (dimA(Gy) + -+ - + dim A(G.)).

Let us make some short remarks before proving the above theorem. This new bound
will be an essential tool in proving Theorem 3.5. Moreover, it is a substantial improve-
ment of the upper bound given by Matsuda and Murai [15].

In what follows, we will need some notation and known results. If H is a graph and
e € E(H), we denote by H \ e the subgraph of H obtained by removing the edge e from
E(H) and if ey,...,e, € E(H), we write H \ {e1, ..., en} for the subgraph of H which
is obtained by removing the edges ej,...,ey. If e = {4, } where 7, j are vertices of H
and e ¢ F(G), then H U e is the graph with the same vertex set as H and edge set
E(H) U {e}, and H, is the graph with V(H.) = V(H) and E(H.) = E(H) U {{k, ¢} :
k¢ € N(i) or k, € N(j)} where N (i) denotes the set of all neighbors of i in H.
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The next proposition is a direct consequence of the behavior of the regularity with
respect to short exact sequences; see [18, Corollary 18.7].

Proposition 2.3. [13, Proposition 2.1] Let H be a graph on n wvertices and Jg C S its
binomial edge ideal. Let e = {i,j} be an edge of H and f. = x;y; — x;y;. Then, the
following inequalities hold:

(a) reg(Ju) < max{reg(Ju\c), reg(Jm\e : fe) + 1};
(b) reg(Jm\e) < max{reg(Ju),reg(Ju\e : fe) +2};
(c) reg(Jm\e : fe) + 2 < max{reg(Juy\.),reg(Ju) + 1}.

In the settings of the above proposition, we have the following.

Theorem 2.4. [16, Theorem 8.7]

Jrve t fe = Jme), + e

where I . is the monomial ideal generated by the set
{grtlm 4,01, .. ,is,] s a path between i and j and 0 <t < s}

and

G0 = Tiy  Tis Gt = Yiy *** Yir Tigy - Tiy, for 1 <t <s.

Proof of Theorem 2.1. Clearly, the statement of the theorem follows if we show that for
any clique W C [n], we have

reg(S/Jg) <n —|W|+1 or, equivalently, reg(Jg) < n—|W|+ 2. (3)

We prove this by induction on n — |W|. If n = |W|, then G is the complete graph on
n vertices and, as we have mentioned in Section 1, we have reg(S/Jg) = 1.

Let n — |W| > 0. We proceed with the inductive step. For the remaining part of
the proof, we need to define the following. For a vertex v € V(G), we set ag(v) =
(def ”) — |E(GN())|- Here, we used the usual notation Gy for the restriction of G to the
subset U of V(G). Obviously, ag(v) = 0 if and only if v is a simplicial vertex in G. Recall
that a vertex of a graph is called simplicial if it belongs to exactly one maximal clique.
In addition, for a subset W C V(G), we define ag(W) := min{ag(v) : v € V(G) \ W}.
Further on, we proceed by induction on ag(W).

Step 1. Let ag(W) = 0. Thus, there exists a simplicial vertex v € V(G) \ W. Now we
consider two cases, namely degv = 1 and degv > 2.
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Case 1. Let deg(v) = 1 and e = {v,w} € E(G). By Proposition 2.3 (a), we have

reg(Je) < max{reg(Ja\e), reg(Jee © fe) + 1}
Therefore, it is enough to show that
reg(Jeve) < n — [W[+2 (4)
and
res(ane  fo) <[]+ 1 5)
Since deg(v) = 1, the vertex v becomes isolated in the graph G\ e, thus reg(Ja\.) =

reg(J(g\e)\v) So, for showing inequality (4), we simply apply the inductive hypothesis
to the graph (G \ e) \ v. For showing inequality (5), we first apply Theorem 2.4 and get

reg(JG\e : fe) = I‘eg(J(G\e)e),

since, I, = (0) because the only path connecting v and w in G is the edge {v, w}. In
the graph (G \ e)., v is an isolated vertex, thus,

reg(Jia\e).) = reg(Jave)\w)-
Now we can apply again the inductive hypothesis for (G \ €). \ v and obtain
reg(Jig\e)o\w) < (n—=1) = [W|+2=n— W[+ 1.
Therefore, Case 1 is completed.

Case 2. Let v be a simplicial vertex of deg(v) = t > 2. Before discussing this case, we
prove the following.

Claim. Assume that there exists v € V(G) \ W a simplicial vertex with deg(v) > 2. Let
e be an edge of G which contains v. Then

reg(Jane : fe) <n—|[W|+ 1.

Proof of the Claim. Let deg(v) = t, let Ng(v) = {v1,...,v:} be the set of neighbors
of v in G, and set e; = {v,v;} for 1 < ¢ < ¢. We may assume that e = e; and let us
consider the monomial ideal /g . from Theorem 2.4. Since v is a simplicial vertex, for any
1<t <t—1, v, v;,v is a path in G, thus z,,, yu, € Ig, for all 1 <i <t — 1. Moreover,
every path from v to v; must pass through some neighbor v; with 1 < ¢ <t — 1. This
implies that
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Ige= (Ty,,yp, : 1 <i<t—1).
By Theorem 2.4, we get
Jave t fe = Jiane). + (Topyyo, 11 <0 <t —1).
Set H := (G \ e).. Then
+ (T, Yo, 1 1 <0 <t —1),

Jave t Je = THp (o,

»»»»» Utfl}

because the binomial generators of H = J(g\¢), corresponding to the edges which contain
some v; with 1 <4 <t —1 are contained in I .. Since v becomes an isolated vertex in

H["]\{lemwt,l}y we get
JG\e : ,fe = JH["]\(v,vl ,,,,, vi_1} + (l‘vavi 1<i<t— 1)7
which implies that

reg(Jene 1 fe) = reg(JH["]\{U=”1 ----,vtfl})'

The graph Hin)\ {v,0,,...,0,_,} has n —t vertices and the clique W\ {v,vy,...,v;_1}, thus
we may apply the inductive hypothesis because

(n—1t) = W\{v,v1,..., 001} <n—t—|W|+t—-1=n—|W|-1.
Therefore, we get

reg(Jane : fe) = 1reg(J,v1r[n]\(M1 YYYYY Util}) <(n—t)—|W\{v,01,...,0e—1} +2
<n-—|W|+1,

and the claim is proved. 0O
We now go back to the discussion of Case 2. Let Ng(v) = {v1,...,v:} be the set of

the neighbors of v in G and e; = {v,v;} for 1 < i < t. By Proposition 2.3 and the Claim,
we have

reg(Jg) < max{reg(Jg\el), reg(J(;\e1 S fe) 1} < max{reg(Jg\el),n — W]+ 2}.
Applying the same argument to G \ e;, we obtain

reg(Jg) < max{reg(Je\{e,,e.}), 1 — [W]+2}.
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After t — 1 steps, we get

reg(Jg) < max{reg(Jg\{el7627”,)%71}),n — W] + 2}.
In the graph G \ {ei,es,...,et—1}, we have deg(v) = 1. Consequently, by Case 1, we
derive that reg(Jg) < n — |W| + 2 which completes the proof of Step 1.

Now we proceed to prove the inductive step on ag(W).

Step 2. Let ag(W) > 0. This implies that there exists a non-simplicial vertex v €
V(G) \ W such that ag(W) = ag(v). Moreover, since v is not simplicial, there exist
v1,V2 € Ng(v) such that e = {v1,v2} ¢ E(G). By Proposition 2.3 (b) where H = GUe,
it follows

reg(Je) < max{reg(Jaue),reg(Ja : fe) + 2} (6)

By the definition of ag(v), we have ague(v) = ag(v)—1, therefore agu. (W) < ag(W)—
1. By induction on ag (W), we then derive that

reg(Jaue) <n— |[W|+ 2.
In order to complete this last step, by using (6), it is enough to show that
reg(Jo : fo) +2<n—|W|+2. (7)
By Theorem 2.4, we have
Jo : fe=Ja, + Igue,e- (8)
Since v1, v, vo is a path, the variables x,,y, belong to Igue,. This implies that
Igue,e = (Tv, Yo) + L(G\v)Ue,e-
By replacing Igue,e in equality (8), we can rewrite it as
Ja : fe = Jia\w). + Lia\wuee + (To, Yo)-
This implies that
reg(Ja @ fe) = reg(Ja\v). + L(@\v)Ue,e)-
On the other hand, by Theorem 2.4 applied for G \ v, we get

reg(Jia\w). + Lc\v)ue,e) = 1€8(Je\w © fe),
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thus,

reg(Jg : fe) = reg(Jany : fe)-

Next, by Proposition 2.3, (¢) we have
reg(Javw : fe) +2 < max{reg(Je\,), reg(Jia\oyue) + 1}
By the inductive hypothesis on n — |W|, we have
reg(Javo) < (n—1) = [W[+2=n—[W[+1,
and
reg(Jig\vyue) +1 < (n—1) = [W[+3 =n—[W|+2.

Consequently, we proved inequality (7) and this completes Step 2 and the whole proof
of the theorem. O

3. Licci binomial edge ideals

As in the previous section, let G be a simple graph on the vertex set [n] and S =
Klx1,...,Zn, Y1, - -, Yn] the polynomial ring over a field K. Let m be the maximal graded
ideal of S and set R = Sp,.

We recall the notion of decomposable graphs from [8].

Definition 3.1. A connected graph G is called decomposable if there exists two subgraphs
G:1 and Gg of G such that G = G; U G2 with V(G1) N V(G2) = {v} where v is a
simplicial vertex in G; and Gs. In this case we say that GG is decomposable in the vertex
v. Otherwise, the graph G is called indecomposable.

As it was proved in [8], if G is decomposable, then reg(S/Jg) = regSi/Ja, +
reg So/Ji, where S; = K[{zj,y; : j € V(G;)}] for i = 1,2. Moreover, by [20, Theo-
rem 2.7], Jg is Cohen-Macaulay if and only if Jg, and Jg, are Cohen-Macaulay.

Before proving the main theorem of this section, we state some lemmas which are
useful in what follows.

Lemma 3.2. Let G be a decomposable graph as G = G1 U Gy with |V(G;)| = n; for
i=1,2 and let S; = K[{zj,y;} : j € V(G;)] fori =1,2. If reg(S/Ja) = n — 2, then
reg(S1/Jg,) = n1 — 2 and G is a path or reg(S2/Jg,) = ne — 2 and Gy is a path.
Proof. We have

n—2=reg(S/Ja) =reg(S1/Jc,) +reg(S2/Jg,) < (1 —1)+ (ng —1)=n—1.
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This implies that either reg(S1/Jg,) = n1—2 and reg(Sa/Jg,) = na—1, or reg(Se/Jg,) =
ny — 2 and reg(S1/Jg,) = n1 — 1. By Theorem 1.5, in the first case it follows that G5 is
a path, while in the second case, G is a path graph. O

Lemma 3.3. Let G be a connected graph on the vertex set [n]. Suppose that G has a cut
vertex v with degg(v) > 4. Then reg(S/Jg) < n — 3.

Proof. Since v is a cut vertex of G, by [17, Lemma 4.8], we get
Jo = Ja, N (Javw + (%0, Yv))
where G, is the graph on V(G,) = V(G) with the edge set
E(G,) = E(G) U {{u,w} : u,w € Ng(v)}.

Consequently, we have the following exact sequence

S
%
@ JG\U xm y'u) JGv\ﬂ + (mvayv)

0—>——> =0,

since Jg, + (Ja\w + (T, Y0)) = Ja,\o + (0, Yo). From this exact sequence we obtain

S reg S
J JG\v (%7%)7 JGv\v_'_(xvayv)

reg — < max{reg — +1}. (9)
Ja

By our assumption, v has at least 4 neighbors in G. Therefore, in GG, we have a maximal

clique with at least 5 vertices. By Theorem 2.1, we have reg(S/Jg,) < n — 4. The graph

G \ v has n — 1 vertices and at least two connected components, say Gi,...,G. with

¢ > 2, because v is a cut vertex of G. Let §" = K[{z;,y;} : j € [n]\ {v}]. Then

JG\ ng JG

where S; = K[{z;,y;}:j € V(G;)] for i =1...,c. This implies that

reg(S/Ja\w + (Tv, Y0)) = reg(S'/Javw) = Zreg(Si/JGi)
<Z|V Jl—=1)=(Mn-1)—c<n-3.

If v has at least 4 neighbors in G, then the graph G, \ v has a maximal clique with at
least 4 vertices, thus, by Theorem 2.1, we get

reg(S/Ja,\o + (Tv, Yo))) = reg(S//JGu\v) S(n-1)-3=n-4
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Fig. 1. 4 vertices.

Therefore, from inequality (9), we get reg(S/Jg) <n—3. O

Lemma 3.4. Let G be a connected indecomposable graph on n > 4 wvertices with the
following properties:

(a) Jg is unmized;
(b) G has a vertex v with exactly two neighbors uy,us and {ui,us} € E(G).

Then reg(S/Jg) <n — 3.

Proof. If n = 4, then there are only two graphs which satisfy the condition (b), namely
two triangles which share an edge and a triangle with an edge attached to one of its
vertices; see Fig. 1.

The first graph does not satisfy the condition (a), while the second graph is decom-
posable. Thus, we may consider n > 5.

Let us consider an indecomposable graph G with n > 5 vertices satisfying the condi-
tions (a) and (b). We claim that degu; > 4 or degus > 4. Let us assume that this is
not the case, thus degu; < 3 and deguy < 3. Since G is indecomposable, it follows that
degu; = 3, degug = 3, and there exists a path connecting u; and us different from the
edge {u1,u2} and the path uy,v,us. But, in this case, the set S = {uy,us} is a cut set
of G with ¢(S) = |S|, which is impossible since J is an unmixed ideal.

Without loss of generality, we may assume that degus > 4.

We set e = {uy,v}. By Proposition 2.3 (a), we have

S S S
regE < max {reg Ten ,reg o] —l—l}. (10)

In the graph G \ e, us is a cut vertex with at least 4 neighbors. Thus, by Lemma 3.3,
it follows that

<n-—3.

reg
G\e
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v

Fig. 2. The graph G when (G \ e). \ {uz2,v} is a path.

Now we look at Jg\c : fe. By applying Theorem 2.4, we obtain

Jave : fe = Ja\e). T (Tuyy Yuy)

since all the paths connecting u; and v pass trough us. Therefore, since v becomes an
isolated vertex in the graph (G \ e). \ ua, we get

reg 5 = reg 5 = reg Gl
Jave t fe Jane)e T (Tugs Yu,) J(a\e)e\ {uz,v}

where S" = K[{z;,y;} : j € [n] \ {ug,v}]. If the graph (G \ e)¢ \ {uz,v} is a path, as
degus > 4, the graph G looks like in Fig. 2, that is, there are some edges connecting
uz to some vertices of the path (G \ e). \ {uz,v} different from u;. But then Jg is not
unmixed since § = {uy, us} is a cut set of G with ¢(S) = |S|, a contradiction. Therefore,
the graph (G \ e). \ {u2,v} is not a path. Thus, by Theorem 1.5, we obtain

/
5 <(n—-2)—-2=n—4,

reg ———— =reg ———— <
Jane : fe J(G\e)e\fuz,0}

which implies that

reg 1<n—-3,

—
JG\e : fe

and the proof of the lemma is completed. O
We can now state the main result of this section.

Theorem 3.5. Let G be a connected graph on the vertex set [n]. Then the following state-
ments are equivalent:

(i) (Jg)m C R is licci.
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1"

"
€1

Fig. 3. Licci graphs.

(ii) Jg is Cohen-Macaulay and n — 2 <reg(S/Jg) <n — 1.

(iii) G is a path graph or it is isomorphic to one of the graphs depicted in Fig. 3 where
r, s, are non-negative integers. In other words, G is a triangle with possibly some
paths connected to some of its vertices.

Proof. (i) = (ii). Let (Jg)m C R be licci. By Theorem 1.1, it follows that reg(S/Jg) >
height(Jg) — 1. Since Jg is Cohen-Macaulay, thus unmixed, we have height(Jg) =
height Py(G) = n — 1, by (2). Therefore, if G is connected and (Jg)m is licci, then
Jg is Cohen-Macaulay and reg(S/Jg) > n—2. But we know from [15] that reg(S/Jg) <
n—1.

Let us prove that (ii) = (iii). Since, by Theorem 1.5, we have reg(S/Jg) = n — 1
if and only if G is a path graph, it remains to consider reg(S/Jg) = n — 2.
By using Lemma 3.2, we may reduce the problem to considering only the case
when G is indecomposable. Therefore, in order to get (iii), by taking into account
Lemma 3.2, it is enough to show that there is no indecomposable graph G with
|[V(G)| > 4 such that Jg is Cohen-Macaulay and reg(S/Jg) = n — 2. There is
no such graph among those with 4 vertices. Thus, we may consider n = |V(G)| >
5.

Let us assume that such a graph does exist. By [I, Remark 5.3], since Jg is
Cohen-Macaulay, the graph G must have a cut vertex, say v. Since G is inde-
composable, v has at least 3 neighbors in G. If v has at least 4 neighbors, by
Lemma 3.3, it follows that reg(S/Jg) < n — 3, a contradiction. Thus, v has ex-
actly 3 neighbors, say w,u;,us. Since G is indecomposable and v is a cut ver-
tex in G, it follows that none of the edges {ui,us},{u1,w}, {ug, w} belongs to
E(G). On the other hand, as Jg is unmixed, the graph G \ v has exactly two
connected components, say G; and G3. We may assume that uji,us are vertices
in G; and w is a vertex in Ga. Let e = {v,w}. By Proposition 2.3 (a), we
have
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S S S
n—2=reg — < max{re ,Te +15. 11
7 < e 8 e " Tane + 1. } ()

We observe that G \ e has two connected components, namely G’ with V(G') =
V(G1) U{v} and E(G') = E(G1) U {{u1,v},{us,v}} and G” = G;3. Obviously, G’
is not a path graph since GG; is connected, thus there exists at least one path con-
necting u; and wup in G which does not contain v and is not the edge {ui,us}.
On the other hand, if G5 does not consist only of the isolated vertex w, then Go
cannot be a path since the graph G is indecomposable. Let S’ = K[{z;,y;}
j € V(G)] and S” = K[{z;,y;} : j € V(G")]. Then, by Theorem 1.5, we
have

/ 1

S
reg — +reg
JG/ JG//

<(VE=2)+(IV(G")]-2) =n—4.

Therefore,

/ 1"

+ re
Jor %L

reg <n-—3.

= reg
JG\e

If G5 consist only of the isolated vertex w, then we get

!

reg

=re <|V(G)-2=n-3.
e < V(@)

Thus, in any case we have

reg <n-3. (12)

G\e

Now we look at the term reg(S/Jee : fe) of inequality (11). By Theorem 2.4, it
follows that Jg\. : fe = Jig\e). since there is no path in G connecting v and
w except the edge e = {v,w}. This is due to the fact that when we remove the
cut vertex v from G, we get two connected components by the unmixedness of Jg.
The graph (G \ e). consists as well of two connected components, say H; which
contains v and Hs which contains w. If Hs contains some other vertices together
with w, then Hs cannot be a path since G is indecomposable. The component H;
is not a path since it contains at least the triangle with vertices wu,us,v. There-
fore, if S; = K[{zj,y;} : j € V(H;)] for i = 1,2, by Theorem 1.5, we ob-
tain

L—regi Sl —|—reg SQ
Jene @ fe Jane). J, JH,

< (VH)[=2) + (V(H)| = 2) =n —4.

reg

= reg

This inequality and (12) contradicts inequality (11).
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It remains to analyze the case when Hy consists of the isolated vertex w. In this case
we have
Sh

S
— reg 21 13
reg T, reg g (13)

We claim that H; satisfies the conditions of Lemma 3.4. Clearly, H; satisfies the
condition (b). It remains to prove that Jy, is an unmixed ideal because if Hj is
decomposable in wu; or wug, then G is decomposable, and this is impossible by our
hypotheses on G. We first observe that any non-empty cut set of H; does not con-
tain the vertex v which is a simplicial vertex in H;. Let us assume that there ex-
ists a non-empty cut set S C V(Hp) such that cpy,(S) # |S| + 1. The set S is
obviously a cut set for the graph G as well. Moreover, if Hy,...,H., (s) are the
connected components of the restriction of H; to the vertex set V(H;) \ S, with
v € V(Hy), then the connected components of the restriction of G to V(G) \ S are
Hy U{v,w}, Ha, ..., H.,, (s)- Hence cg(S) = cn, (S) # [S| + 1, a contradiction to the
unmixedness of Jg. Since Hp is a graph on n — 1 vertices which satisfies the condi-
tions of Lemma 3.4, we get reg(S1/Jm,) < (n —1) —3 = n — 4. Thus, we have proved
that

S
:regilgn—ll.

S
reg ———— =Treg ———
Jane : fe Jiae). I,

This inequality together with (12) contradicts inequality (11) and the proof of (ii) =
(iii) is completed.

Finally, we prove the implication (iii) = (i).

As it was observed in the proof of [8, Proposition 3|, if G = G; U G is a decom-
posable graph, then we have Tor;(S/Jg,,S/Jg,) = 0 for all ¢ > 0. In particular,
it follows that Jg, and Jg, are transversal ideals in the sense of [10, Section 2].
Now, let G; be a triangle with the vertices vi,va,vs. Then Jg, is a Cohen-Macaulay
ideal of height 2, thus it is licci by [19]. If we attach a path Gz to G; in one of
its vertices, say v, the resulting graph G is decomposable in v; and Jg, is a com-
plete intersection ideal. According to [10, Theorem 2.6] or [11, Theorem 4.4], it follows
that (Jg)m is a licci ideal. We repeat this argument by attaching a path in the ver-
tex vy to G and, next another path in the vertex vs. In each step, we get a licci
ideal. O

Remark 3.6. One may prove the implication (iii)=-(i) by finding an explicit link of Jg to
a complete intersection for a graph G as in Fig. 3. However the proof involves repetitive
and technical calculations which we do not include here. Instead, we indicate the main
ingredient to derive the constructive proof. Set

ei = {vi,Vig1 }, fi = fe, = i¥ir1 — Yiviy (1=1,2,...,7),

e; = v i 1 fi = fo = i —yiziys (=1,2,.0.,8),
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" "no,n 7 "o "on .
e ={v, v} fi' = fe;’ =2y —yi i (=1,2,...,1),
where
Ti = Tu;»Yi = Yu; (7;:1,2,...,7“4-1),
/ ’ .
xi:q;v;’yi:yvlg (7,:1,27...,84-1),
o =yl =y (i=1,2,...,t+1).
We also set
_ _ / ’
f= f{'u1,v’1} = T1Y1 — Y12y,
/ o 7
= f{v’l,v’l’} = T1Y1 — Yi1dy,
" " "
f :f{v’l/,vl}:xlyl_ylxb
We put
/ ’ / ’ 7 1z 7 "
S:K[xla'-~7x’r+17y17"'7y7‘+17x17"'7x5+17y17"'7y5+17x17'"7xt+17y17"',yt+1]'

Then JG:(fvflvf//afla-'-af7'7f{a"-af;7 {/7'“7 tH)
Set

I:= (f+f/af”aflv'"7f7“af]/_7"~7f;>f{/a-~-7 t//)a
and
L:= (xl_xlllayl_yi,aflv"'7fraf{7~-~7f;7 {/a”-a t/,)

Then one can show that I, L are complete intersections with height » + s + ¢ + 2, and,
moreover, the equality L = I : Jg holds.

An immediate consequence of Theorem 3.5 is the following.

Corollary 3.7. Let G be a connected bipartite graph. Then the ideal (Jg)m C R = Sn s
licci if and only if G is a path graph, or equivalently, Jg is a complete intersection.

We now turn to the disconnected graphs.

Proposition 3.8. Let G be a graph with the connected components G, ..., G. where ¢ > 2.
Then (Jg)m C R = Sw is licci if and only if either all the connected components of G
are paths or one component of G is isomorphic to a graph of Fig. 3 and all the other
components are paths.
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Proof. We first remark that, by [10, Theorem 2.6] or [11, Theorem 4.4], if the components
of G satisfy the conditions of the proposition, then (Jg)n is licci since the ideals Jg, are
pairwise transversal by [4, Lemma 3.1].

For the converse, let (Jg)m be a licci ideal. Then Jg is Cohen-Macaulay which implies
that all the ideals Jg, are Cohen-Macaulay and

reg(S/Jg) > height(Jg) — 1 = height(Jg,) + - - + height(Jg,) —1=n—c— 1.

On the other hand, we have

reg(S/Ja) ZregS/JG Z G)l-1)=n-c

Here S; = K[{zj,y;} : j € V(G;)] for 1 < i < ¢. The above inequalities imply that
reg(S/Jg) = n—correg(S/Jg) = n—c—1. In the first case, it follows that reg(S;/Jq,) =
|[V(G;)| — 1 for all 4, which implies that all the connected components of G are path
graphs.

Let reg(S/Jsz) = n — ¢ — 1. This means that for one of the connected components,
say G, we have reg(S1/Jg,) = |V(G1)| — 2 and all the other components of G are path
graphs. Then, by Theorem 3.5, it follows that (7 is isomorphic to one of the graphs
displayed in Fig. 3. O

4. Licci binomial edge ideals of chordal graphs

In this section we show that if we restrict to chordal graphs, we may relax the condition
(ii) in Theorem 3.5, namely, we may ask that Jg is only unmixed instead of being Cohen-
Macaulay. Before proving the main theorem of this section, we need a preparatory result.
We first recall that for a graph G, ¢(G) denotes the number of maximal cliques of G,
that is, the number of facets of the clique complex A(G).

Lemma 4.1. Let G be a connected chordal graph with n vertices. Then ¢(G) =n — 2 if
and only if the following conditions hold:

(i) the maximal cliques of G have at most 3 vertices;

(ii) G has at least one mazimal clique with 3 vertices;

(iii) G has exactly one mazimal clique with 3 vertices or, for any two triangles Fy, Fy
of A(G), there is a sequence of triangles Fy = F;,, ..., F; = Fy such that for any
1<j<r—1, F; and F;,, share an edge.

Proof. Let ¢(G) = n — 2. Then (i) follows by [23, Proposition 3.1]. If G has no maximal

clique with 3 vertices, then G is a tree, thus ¢(G) = n — 1, contradiction. Therefore,

condition (ii) holds.
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We prove (iii) by induction on n. Since G is chordal, by Dirac’s theorem, we may order
the facets of A(G) as Fi,...,F. where ¢ = ¢(G) such that F; is a leaf of (F,..., F;)
for all 4. If F. is an edge, say F. = {v,w} with degw = 1, then the graph G \ w has
n — 1 vertices and n — 3 cliques, thus, by induction, it satisfies (iii), and, consequently,
G satisfies (iii) as well.

Let F. be a triangle with the vertices u,v,w and assume that F; with j < c is a
branch of F,. If F; N F, consists of just one vertex, say F; N F. = {v}, then the subgraph
G' = G\ {u,w} has n — 2 vertices and n — 3 maximal cliques, therefore G’ is a tree.
This implies that A(G) has exactly one facet with 3 elements, and condition (iii) is
automatically fulfilled. Let us now assume that the branch Fj intersects F; in the edge
{v, w}. We consider the graph G\ u. This is a graph on n— 1 vertices with n — 3 maximal
cliques, thus, by the inductive hypothesis, it satisfies (iii). Let us choose two triangles
F,F" in A(G). If they are facets in A(G \ u), then they satisfy (iii). Otherwise, we may
assume that F’ = F.. But then, by the inductive hypothesis on G \ u there is a sequence
of triangles F' = Fj,,..., F;, = Fj such that forany 1 < s <r —1, F; and F;
an edge. Then the sequence F' = F; ,...,F; = F}, F;
condition for G.

.41 Share

w1 = P satisfies the required

For the converse, let us assume that G is a connected chordal graph with n vertices
which satisfies the three conditions of the statement. By condition (ii) and [23, Proposi-
tion 3.1], it follows that ¢(G) < n — 2.

Let us assume that there exists a connected chordal graph G satisfying conditions
(i)—(iii) and such that ¢(G) < n—2 and choose one with the minimal number of vertices.
We consider again the leaf order Fi, ..., F, on the facets of A(G) and take F; with j < ¢
a branch of F.. If F, is an edge, F. = {v,w} with degw = 1, then the graph G \ w has
n — 1 vertices and satisfies conditions (i)—(iii), thus, by our assumption on G we have
¢(G\ w) =n — 3, which implies that ¢(G) = n — 2, contradiction.

If F. is a triangle, F. = {u,v,w}, and Fj intersects F. in just one vertex, say v, then
we have the following cases.

Case 1. The facet F. is the only triangle in A(G). Then, the subgraph G \ {u,w} is a
tree on n — 2 vertices, thus A(G \ {u, w}) has n — 3 maximal cliques, which implies that
¢(G@) = n — 2, contradiction.

Case 2. There exists a triangle F' € A(G \ {u,w}). Then, as G satisfies condition (iii),
there exists a triangle F’ # F, which intersects F. along an edge. But this is impossible
since the branch F} intersects F. in one vertex.

Finally, we have to consider that F; shares an edge with F,, say F; N F; = {v,w}.
Since Fj is a branch of F¢, there is no other facet F' of A(G) with F N F, = {u,w}
or FNF, = {u,v}. Then the graph G \ u obviously satisfies conditions (i)—(iii) and
has n — 1 vertices. By the choice of G, we have ¢(G \ u) = n — 3, thus ¢(G) = n — 2,
contradiction. 0O
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Theorem 4.2. Let G be a connected chordal graph on the vertex set [n]. Then the following
statements are equivalent:

(i
(ii

(iii

) (Ja)m C R is licci.

) Jg is Cohen-Macaulay and n — 2 <reg(S/Jg) <n — 1.

) Jg is unmized and n — 2 < reg(S/Jg) <n—1.

(iv) G is a path graph or it is isomorphic to a graph depicted in Fig. 3.

Proof. We have to prove only the implication (iii) = (iv). Let Jg be unmixed and let
reg(S/Ja) = n — 1. Then, by Theorem 1.5, G is a path graph. Let us now discuss the
case when reg(S/Jg) = n — 2. By [23, Theorem 3.5], we have reg(S/Jg) < ¢(G). Thus,
we get ¢(G) > n — 2. If ¢(G) = n — 1, then G is a tree, but since Jg is unmixed, by [3,
Corollary 1.2], it follows that G is a path graph.

As in the proof of Theorem 3.5, it is enough to show that there is no indecompos-
able chordal graph with n > 4 vertices which satisfies the conditions Jg unmixed and
reg(S/Jg) = ¢(G) = n — 2. Let us assume that such a graph G does exists.

By Theorem 2.1, it follows that the maximal cliques of G have at most three vertices.
As G is a chordal graph, by Dirac’s theorem, it follows that the facets of the clique
complex A(G) of G have a leaf order, say Fy,..., F,_s. In particular, this means that
F,_5 has a branch. Let F; with j <n — 3 be a branch of F;,_,.

Case 1. Assume that the intersection F; N F;,_o consists of only one vertex of G, say F;N
F,_o = {v}. If F,,_5 has only the branch Fj, then G is decomposable which contradicts
our assumption on G. Thus F,_5 has ¢ > 2 branches, say Fj,,..., F; . Then, as Jg is
unmixed, it follows that the induced subgraph of G \ v on the vertex set |JI_, F}, \ v
is connected. This implies that all the facets Fj,, ..., F} are triangles. If F;,_» is also a
triangle, we get a contradiction to Lemma 4.1. Thus, F;,_o must be an edge and then v
is a cut vertex of G with degs(v) > 4. By Lemma 3.3, it follows that reg(S/Jg) < n—3,
a contradiction.

Case 2. Assume that the intersection F; N F,_» consists of two vertices of G, say F; N
F,_2 = {v,w}. In this case, F,,_o is a triangle with the vertices u,v,w. Since Jg is
unmixed, there must be other facets of A(G) whose intersection with F,_» is contained
in {v,w} or equal to {v,w}. Let Fj,..., F; with ¢ > 2 and j, = j be the facets of A(G)
with Fj, N F,—o € {v,w} for 1 < s < ¢. As v is not a simplicial vertex in G, we may
apply again [17, Lemma 4.8] and get

Ja=Ja,N (JG\U + (Tv, Yv))-
We use the following exact sequence of S—modules:

S
0 % _—— = —
@ JG\U mva y'u) JG,,\v + (:L'znyv)

— 0,
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to derive that

S
,Teg
JG\’U+ (T0, Yo) JGv\'u+ (T, Yo)

reg To < max{reg —,reg +1}. (14)

Ja,

By [23, Lemma 3.4], it follows that ¢(G,) < ¢(G) — ¢, hence, by our assumption on g,
we get ¢(Gy) < n—4. On the other hand, by [23, Lemma 3.3], we have ¢(G, \v) < ¢(G,),
thus ¢(G, \ v) < n — 4. In particular, it follows that

reg(S/Ja,) <n—4and reg(S/Jg \v + (v, 40)) <n —4. (15)

Therefore, by (14), we must have

S S’

=reg >n—2,
JG\v + (xu, yv) JG\v

reg

where 8" = K[{z;,y;} : j € [n]\{v}]. As G\v has n—1 vertices, it follows by Theorem 1.5
that G \ v is a path graph. But in this case, S = {v,w} is a cut set of G because G is
indecomposable. In addition, the restriction of G to the vertex set [n] \ {v,w} has two
connected components, which is a contradiction to the unmixedness of Jg. O
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