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We show that the number of anti-lecture hall compositions of n
with the first entry not exceeding k − 2 equals the number of
overpartitions of n with non-overlined parts not congruent to 0,±1
modulo k. This identity can be considered as a finite version
of the anti-lecture hall theorem of Corteel and Savage. To prove
this result, we find two Rogers–Ramanujan type identities for
overpartitions which are analogous to the Rogers–Ramanujan type
identities due to Andrews. When k is odd, we give another proof
by using the bijections of Corteel and Savage for the anti-lecture
hall theorem and the generalized Rogers–Ramanujan identity also
due to Andrews.
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1. Introduction

The objective of this paper is to establish a connection between anti-lecture hall compositions with
an upper bound on the first entry and overpartitions under a congruence condition on non-overlined
parts.

Corteel and Savage [6] introduced the notion of anti-lecture hall compositions and obtained a
formula for the generating function by constructing a bijection. An anti-lecture hall composition of
length k is defined to be an integer sequence λ = (λ1, λ2, . . . , λk) such that

λ1

1
� λ2

2
� · · · � λk−1

k − 1
� λk

k
� 0.

The set of anti-lecture hall compositions of length k is denoted by Ak . Corteel and Savage have shown
that

∑
λ∈Ak

q|λ| =
k∏

i=1

1 + qi

1 − qi+1
. (1.1)
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Let A denote the set of anti-lecture hall compositions. Since any anti-lecture hall composition can be
written as an infinite vector ending with zeros, we have A = A∞ and

∑
λ∈A

q|λ| =
∞∏

i=1

1 + qi

1 − qi+1
. (1.2)

In view of the above generating function, one sees that anti-lecture hall compositions are con-
nected to overpartitions. An overpartition of n is defined as a non-increasing sequence of positive
integers whose sum is n in which the first occurrence of a part may be overlined, see, Corteel and
Lovejoy [7]. In the language of overpartitions, the right-hand side of (1.2) is the generating function
for overpartitions of n with non-overlined parts greater than 1.

We use the common notation on q-series. Let

(a)∞ = (a;q)∞ =
∞∏

i=0

(
1 − aqi),

and

(a1, . . . ,ak;q)∞ = (a1;q)∞ · · · (ak;q)∞.

We also write

(a)n = (a;q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).
The main result of this paper is the following refinement of the anti-lecture hall theorem of Corteel

and Savage [6]:

Theorem 1.1. For k � 3,

∑
λ∈A, λ1�k−2

q|λ| = (−q)∞
(q)∞

(
q,qk−1,qk;qk)

∞. (1.3)

We shall establish a connection between anti-lecture hall compositions and the overpartitions with
congruence restrictions. Let Fk(n) be the set of anti-lecture hall compositions λ = (λ1, λ2, . . .) of n
with λ1 � k. Let Hk(n) be the set of overpartitions of n for which the non-overlined parts are not
congruent to 0,±1 modulo k. Therefore, Theorem 1.1 can be stated in the following equivalent form.

Theorem 1.2. For k � 3 and any positive integer n, we have

∣∣Fk−2(n)
∣∣ = ∣∣Hk(n)

∣∣. (1.4)

To prove the above relation, we need to compute the generating functions of the anti-lecture
hall compositions λ with λ1 � k, depending on the parity of k. Moreover, we shall show that these
two generating functions of the anti-lecture hall compositions in F2k−2(n) and F2k−3(n) are equal
to the generating functions of overpartitions in H2k(n) and H2k−1(n) respectively. To this end, we
shall establish two Rogers–Ramanujan type identities (2.9) and (2.12) for overpartitions which are
analogous to the following Rogers–Ramanujan type identity obtained by Andrews [1,2]:

∑
N1�N2�···�Nk−1�0

qN2
1+···+N2

k−1+Na+···+Nk−1

(q)N1−N2(q)N2−N3 · · · (q)Nk−1

= (qa,q2k+1−a,q2k+1;q2k+1)∞
(q)∞

(1.5)

where 1 � a � k. For k = 2 and a = 1,2, (1.5) implies the classical Rogers–Ramanujan identities [8]:
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∞∑
n=0

qn2

(q)n
=

∞∏
n=0

(
1 − q5n+1)−1(

1 − q5n+4)−1
, (1.6)

∞∑
n=0

qn2+n

(q)n
=

∞∏
n=0

(
1 − q5n+2)−1(

1 − q5n+3)−1
. (1.7)

It is worth mentioning that Andrews’ multiple series transformation [2] can be employed to derive
the overpartition analogues of (1.5).

When the upper bound k is even, the weighted count of anti-lecture hall compositions leads to
the left-hand side of the first Rogers–Ramanujan type identity (2.9), whereas the generating func-
tion for the number of overpartitions equals the right-hand side of the first Rogers–Ramanujan type
identity (2.9). The case when k is odd can be dealt with in the same way.

For the case of an odd upper bound, we provide an alternative proof based on a refined version
of a bijection of Corteel and Savage [6] for the anti-lecture hall theorem and the generalized Rogers–
Ramanujan identity (1.5) of Andrews.

This paper is organized as follows. In Section 2, we give two Rogers–Ramanujan type identities for
overpartitions. Section 3 is concerned with the case when the upper bound k is even. Two proofs for
the case when the upper bound is odd will be given in Section 4.

2. Rogers–Ramanujan type identities for overpartitions

In this section, we give two Rogers–Ramanujan type identities (2.9) and (2.12) for overpartitions. It
can be seen that the right-hand side of (2.9) is the generating function for overpartitions in H2k(n). In
the next section, we shall show that the left-hand side of (2.9) equals the generating function for anti-
lecture hall compositions in F2k−2(n). Similarly, the right-hand side of (2.12) equals the generating
function for overpartitions in H2k−1(n). In Section 4, we shall show that the left-hand side of (2.12)
equals the generating function for anti-lecture hall compositions in F2k−3(n).

Let us recall Andrews’ multiple series transformation [2]:

2k+4φ2k+3

[
a,q

√
a,−q

√
a,b1, c1,b2, c2, . . . ,bk, ck,q−N√

a,−√
a,aq/b1,aq/c1,aq/b2,aq/c2, . . . ,aq/bk,aq/ck,aqN+1 ;q,

akqk+N

b1 · · ·bkc1 · · · ck

]

= (aq)N (aq/bkck)N

(aq/bk)N(aq/ck)N

∑
m1,...,mk−1�0

(aq/b1c1)m1(aq/b2c2)m2 · · · (aq/bk−1ck−1)mk−1

(q)m1(q)m2 · · · (q)mk−1

· (b2)m1(c2)m1(b3)m1+m2(c3)m1+m2 · · · (bk)m1+···+mk−1

(aq/b1)m1(aq/c1)m1(aq/b2)m1+m2(aq/c2)m1+m2 · · · (aq/bk−1)m1+···+mk−1

· (ck)m1+···+mk−1

(aq/ck−1)m1+···+mk−1

· (q−N)m1+m2+···+mk−1

(bkckq−N/a)m1+m2+···+mk−1

· (aq)mk−2+2mk−3+···+(k−2)m1qm1+m2+···+mk−1

(b2c2)m1(b3c3)m1+m2 · · · (bk−1ck−1)
m1+m2+···+mk−2

. (2.8)

The following summation formula is a consequence of the above transformation formula. It can be
considered as a Rogers–Ramanujan type identity for overpartitions.

Theorem 2.1. For k � 2, we have

∑
N1�N2�···�Nk−1�0

qN1(N1+1)/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

= (−q)∞(q,q2k−1,q2k;q2k)∞
(q)∞

.

(2.9)
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Proof. Applying the above transformation formula by setting all variables to infinity except for ck , a
and q, we get

∑
N1�···�Nk−1�0

(ck)N1aN1+···+Nk−1 qN1(N1+1)/2+N2
2+···+N2

k−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−ck)
N1

= (aq/ck)∞
(a)∞

∑
n�0

(1 − aq2n)(a, ck;q)naknqkn2

(q,aq/ck;q)ncn
k

.

Setting a = q and ck = −q, we find that

∑
N1�···�Nk−1�0

qN1(N1+1)/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

= (−q)∞
(q)∞

∑
n�0

(−1)n(1 − q2n+1)qkn2+(k−1)n. (2.10)

Using Jacobi’s triple product identity, we get

(
q,q2k−1,q2k;q2k)

∞ =
∞∑

n=−∞
(−1)nqkn2+(k−1)n

=
∞∑

n=0

(−1)n(1 − q2n+1)qkn2+(k−1)n. (2.11)

In view of (2.10) and (2.11), we obtain (2.9). This completes the proof. �
The second Rogers–Ramanujan type identity for overpartitions can be stated as follows.

Theorem 2.2. For k � 2, we have

∑
N1�N2�···�Nk−1�0

qN1(N1+1)/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−q)Nk−1

= (−q)∞(q,q2k−2,q2k−1;q2k−1)∞
(q)∞

. (2.12)

Proof. Applying Andrews’ transformation formula by setting all variables except for a, c1, ck and q to
infinity, we find

∑
N1�···�Nk−1�0

(ck)N1aN1+···+Nk−1 qN1(N1+1)/2+N2
2+···+N2

k−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−ck)
N1(aq/c1)Nk−1

= (aq/ck)∞
(a)∞

∑
n�0

(−1)n(1 − aq2n)(a, ck;q)n(c1)naknqkn2−(n−1)n/2

(q,aq/ck;q)n(aq/c1)ncn
1cn

k

.

Moreover, setting a = q, ck = −q and c1 = −q yields

∑
N1�···�Nk−1�0

qN2+···+Nk−1 qN1(N1+1)/2+N2
2+···+N2

k−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−q)Nk−1

= (−q)∞
(q)∞

∑
n�0

(−1)n(1 − q2n+1)qkn2+kn−n2/2−3n/2. (2.13)
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Using Jacobi’s triple product identity, we have

(
q,q2k−2,q2k−1;q2k−1)

∞ =
∞∑

n=−∞
(−1)nqkn2+kn−n2/2−3n/2

=
∞∑

n=0

(−1)n(1 − q2n+1)qkn2+kn−n2/2−3n/2. (2.14)

Combining (2.13) and (2.14), we deduce (2.12). This completes the proof. �
3. The case of an even upper bound

In this section, we shall give a proof of Theorem 1.2 for an even upper bound 2k − 2. More pre-
cisely, we have the following relation.

Theorem 3.1. For k � 2 and n � 1, we have

∣∣F2k−2(n)
∣∣ = ∣∣H2k(n)

∣∣. (3.15)

Recall that the generating function for overpartitions in H2k(n) equals

∑
n�0

∣∣H2k(n)
∣∣qn = (−q)∞(q,q2k−1,q2k;q2k)∞

(q)∞
. (3.16)

Because of (2.9), Theorem 3.1 can be deduced from the following generating function for anti-
lecture hall compositions in F2k−2(n).

Theorem 3.2. The generating function for anti-lecture hall compositions in F2k−2(n) is given by

∞∑
n=0

∣∣F2k−2(n)
∣∣qn =

∑
N1�N2�···�Nk−1�0

qN1(N1+1)/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (3.17)

In order to prove Theorem 3.2, we introduce a triangular representation T (λ) = (ti, j)1�i� j of an
anti-lecture hall composition λ which is similar to the T-triangles introduced by Bousquet-Mélou and
Eriksson [5].

It should be noted that Corteel and Savage [6] used a representation of a composition λ as a
pair of vectors (l, r) = ((l1, l2, . . .), (r1, r2, . . .)), where λi = ili + ri , with 0 � ri � i − 1. Then l = �λ� =
(�λ1/1�, �λ2/2�, . . .). It can be checked that a composition λ is an anti-lecture hall composition if and
only if

(1) l1 � l2 � · · · � 0, and
(2) ri � ri+1 whenever li = li+1.

Definition 3.3. The A-triangular representation T (λ) = (ti, j)1�i� j of an anti-lecture hall composition
λ = (λ1, λ2, . . .) is defined to be a triangular array (ti, j)1�i� j of nonnegative integers satisfying the
following conditions:

(1) A diagonal entry t j, j in T (λ) equals l j = �λ j/ j�.
(2) The first r j entries of the j-th column are equal to t j, j + 1, while the other entries in the j-th

column are equal to t j, j .
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It is easily seen that the sum of all entries of T (λ) is equal to |λ| = λ1 + λ2 + · · · . It is also easy
to check that the A-triangular representation T (λ) of an anti-lecture hall composition possesses the
following properties:

(1) The diagonal entries of T are weakly decreasing, that is, t1,1 � t2,2 � · · · � 0.
(2) The entries in the j-th column are non-increasing, and they are equal to t j, j or t j, j + 1.
(3) If t j, j = t j+1, j+1, then ti, j � ti, j+1 for 1 � i � j.

Conversely, a triangular array satisfying the above conditions must be the A-triangular representa-
tion of an anti-lecture hall composition.

For example, let λ = (4,8,11,14,16,15,11,10,5,2). The A-triangular representation T (λ) of λ is
given below:

4 4 4 4 4 3 2 2 1 1
4 4 4 3 3 2 2 1 1

3 3 3 3 2 1 1 0
3 3 2 2 1 1 0

3 2 1 1 1 0
2 1 1 0 0

1 1 0 0
1 0 0

0 0
0

We are now ready to give a proof of Theorem 3.2 by using the A-triangular representation.

Proof of Theorem 3.2. Let λ be an anti-lecture hall composition with λ1 � 2k − 2, let T (λ) be the
A-triangular representation of λ, and let Ni denote the number of diagonal entries t j, j in T (λ) which
are greater than or equal to 2i − 1 for 1 � i � k − 1. Then we have N1 � N2 � · · · � Nk−1 � 0. Now
we use F2k−2(N1, . . . , Nk−1;n) to denote the set of anti-lecture hall compositions λ such that there
are Ni diagonal entries in T (λ) that are greater than or equal to 2i − 1 and λ1 � 2k − 2. We aim
to compute the generating function for the anti-lecture hall compositions in F2k−2(N1, . . . , Nk−1;n),
which can be summed up to derive the generating function for F2k−2(n).

Let λ be an anti-lecture hall composition in F2k−2(N1, . . . , Nk−1;n), and let λ(1) = (λ1, . . . , λN1 ),
λ(2) = (λN1+1, . . . , λl). Since �λN1+1/(N1 + 1)� = · · · = �λl/l� = 0, we see that λl � · · · � λN1+1 � N1.
Evidently, λ(2) is a partition whose first part is less than N1 + 1, and the generating function for
possible choices of λ(2) equals 1/(q)N1 .

Examining the A-triangular representation of the composition λ(1) , we find that the triangular
array T (λ(1)) can be split into k triangular arrays so that we can compute the generating function for
possible choices of λ(1) .

Step 1. Let T (1) = T (λ(1)). Extract 1 from each entry in the first N1 columns of T (1) to form a triangular
array of size N1 with all entries equal to 1, denoted by R(N1,1).

Step 2. For 2 � i � k − 1, extract 2 from each entry in the first Ni columns of the remaining triangular
array T (1) to generate a triangular array of size Ni with all entries equal to 2, denoted by R(Ni,2).

Step 3. Let S denote the remaining triangular array T (1) .

After the above operations, T (λ(1)) is decomposed into k triangular arrays, including an A-triangle
R(N1,1) of size N1 with entries equal to 1, k − 2 A-triangular arrays R(Ni,2) of sizes N2, . . . , Nk−1
respectively with entries equal to 2 where i = 2, . . . ,k − 1, and a triangular array S = (si, j)1�i� j�N1

of size N1. It is easy to see that the generating function for triangular arrays in R(N1,1) is q(N1+1)N1/2

and the generating function for triangular arrays in R(Ni,2) is qN2
i +Ni .
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We give an example to illustrate the above decomposition. Let λ = (4,8,11,14,16,15,11,10,5,2)

as given before, let k = 3. Then λ(2) = (5,2), N1 = 8, N2 = 5. The decomposition of T (λ) is given
below:

4 4 4 4 4 3 2 2 1 1
4 4 4 3 3 2 2 1 1

3 3 3 3 2 1 1 0
3 3 2 2 1 1 0

3 2 1 1 1 0
2 1 1 0 0

1 1 0 0
1 0 0

0 0
0

−→

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1

+

2 2 2 2 2
2 2 2 2

2 2 2
2 2

2

T (λ) R(8,1) R(5,2)

+

1 1 1 1 1 2 1 1
1 1 1 0 2 1 1

0 0 0 2 1 0
0 0 1 1 0

0 1 0 0
1 0 0

0 0
0

+

0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0

0 0 0 0 1 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

S T
(
λ(2)

)
It can be checked that S possesses the following properties by the definition of the A-triangular

representation:

(1) The entries on the diagonal of S are equal to 1 or 0. Notice that S has N1 diagonal elements
s1,1, s2,2, . . . , sN1,N1 . These diagonal elements can be divided into k − 1 segments such that the
first segment contains n1 = N1 − N2 elements sN2+1,N2+1, . . . , sN1,N1 , the second segment con-
tains n2 = N2 − N3 elements sN3+1,N3+1, . . . , sN2,N2 , and so on, whereas the last segment contains
nk−1 = Nk−1 elements s1,1, . . . , sNk−1,Nk−1 . Moreover, the i-th segment contains some 1’s followed
by some 0’s. We define mi to be the number of 1’s contained in the i-th segment.

(2) The entries in the j-th column are non-increasing, and they are equal to s j, j or s j, j + 1.
(3) If s j, j = s j+1, j+1, then si, j � si, j+1 for 1 � i � j.

We denote the set of triangular arrays possessing the above three properties by S(N1, N2, . . . ,

Nk−1). Now we proceed to compute the generating function for triangular arrays in S(N1, N2, . . . ,

Nk−1). As the first step, we may partition a triangular array S ∈ S(N1, N2, . . . , Nk−1) into k − 1 blocks
of columns, where the i-th block consists of the (Ni+1 + 1)-th column to the Ni -th column of S .
We denote the i-th block by Si . According to the above three properties, we deduce that the first mi

diagonal entries of Si must be 1 and the entries in the first mi columns of Si are either 1 or 2.
To compute the generating function for Si , we shall split Si into three trapezoidal arrays S(1)

i , S(2)
i

and S(3)
i . First, we may form a trapezoidal array S(1)

i of the same size as Si and with the entries in
the first mi columns equal to 1 and the other entries equal to 0. Let S ′

i denote the trapezoidal array
obtained from Si by subtracting 1 from every entry in the first mi columns. Observe that every entry
in S ′

i is either 1 or 0, and S(1)
i can be regarded as the Ferrers diagram of the conjugate of the partition

α(1) = (Ni+1 + mi, Ni+1 + mi − 1, . . . , Ni+1 + 1).
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Furthermore, S ′
i satisfies the following conditions:

(1) All entries in S ′
i are equal to 0 or 1, but the diagonal entries must be 0.

(2) The entries in the same column must be non-increasing.
(3) The first mi entries in the j-th row must be non-increasing, and the remaining entries in the j-th

row are also non-increasing.

We continue to consider the trapezoidal array formed by the first mi columns of S ′
i , and denote

it by S(2)
i . Similarly, we see that S(2)

i can be regarded as the Ferrers diagram of the conjugate of a
partition α(2) , where

α
(2)
1 � Ni+1 and l

(
α(2)

)
� mi .

Define S(3)
i to be the trapezoidal array obtained from S ′

i by extracting from the (mi +1)-th column

to the (Ni − Ni+1)-th column. Again, S(3)
i can be regarded as the Ferrers diagram of the conjugate of

a partition α(3) , where

α
(3)
1 � Ni+1 + mi and l

(
α(3)

)
� Ni − Ni+1 − mi .

So the generating function for possible choices of the i-th block Si is given by

Ni−Ni+1∑
mi=0

qmi(2Ni+1+1+mi)/2 (q)Ni+1+mi

(q)mi (q)Ni+1

(q)Ni

(q)Ni+1+mi (q)Ni−Ni+1−mi

(3.18)

which equals

(q)Ni

(q)Ni+1(q)Ni−Ni+1

Ni−Ni+1∑
mi=0

qmi(2Ni+1+1+mi)/2 (q)Ni−Ni+1

(q)mi (q)Ni−Ni+1−mi

. (3.19)

Observe that the sum

Ni−Ni+1∑
mi=0

qmi(2Ni+1+1+mi)/2 (q)Ni−Ni+1

(q)mi (q)Ni−Ni+1−mi

is the generating function for partitions with distinct parts between Ni+1 + 1 and Ni . Therefore,

Ni−Ni+1∑
mi=0

qmi(2Ni+1+1+mi)/2 (q)Ni−Ni+1

(q)mi (q)Ni−Ni+1−mi

= (−qNi+1+1)
Ni−Ni+1

. (3.20)

By (3.20), the generating function (3.18) can be simplified to

(q)Ni

(q)Ni+1(q)Ni−Ni+1

(−qNi+1+1)
Ni−Ni+1

. (3.21)

Thus the generating function for triangular arrays in S can be written as

k−1∏
i=1

(q)Ni

(q)Ni+1(q)Ni−Ni+1

(−qNi+1+1)
Ni−Ni+1

= (q)N1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

.

Recall that the generating function for possible choices of T (λ(2)) equals 1/(q)N1 and the generat-

ing functions for R(N1,1), R(N2,2), . . . , R(Nk−1,2) are equal to q(N1+1)N1/2,qN2
2+N2 , . . . ,qN2

k−1+Nk−1

respectively. We also note that the generating function for anti-lecture hall compositions in
F2k−2(N1, . . . , Nk−1,n) is the product of the generating functions for T (λ(2)), R(N1,1), R(N2,2), . . . ,

R(Nk−1,2) and S , and hence it equals
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q(N1+1)N1/2+N2
2+···+N2

k−1+N2+···+Nk−1

(q)N1

(q)N1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

= q(N1+1)N1/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

.

Summing up the generating functions of anti-lecture hall compositions in F2k−2(N1, . . . , Nk−1,n),
we get the generating function for F2k−2(n),

∑
n�0

∣∣F2k−2(n)
∣∣qn =

∑
N1�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (3.22)

This completes the proof. �
4. The case of an odd upper bound

In this section, we provide two proofs of Theorem 1.2 for the case when the upper bound on the
first component of the compositions is an odd number 2k−3. The first proof is analogous to the proof
of the even case, whereas the second proof requires a Rogers–Ramanujan type identity of Andrews,
a bijection of Corteel and Savage, as well as a refined version of a bijection also due to Corteel and
Savage. However, the approach of the second proof does not seem to apply to the case when the
upper bound is an even number.

Theorem 4.1. For k � 2 and a positive integer n, we have
∣∣F2k−3(n)

∣∣ = ∣∣H2k−1(n)
∣∣. (4.23)

The first proof relies on the following formula for anti-lecture hall compositions in F2k−3(n).

Theorem 4.2. For k � 2,

∞∑
n=0

∣∣F2k−3(n)
∣∣qn =

∑
N1�N2�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−q)Nk−1

. (4.24)

Proof. Let λ be an anti-lecture hall composition with λ1 � 2k − 3. We consider the A-triangular
representation T (λ) of λ. For 1 � i � k − 1, let Ni be the number of diagonal entries t j, j in T (λ)

which are greater than or equal to 2i − 1. Thus we have N1 � N2 � · · · � Nk−1 � 0. We now use
F2k−3(N1, . . . , Nk−1;n) to denote the set of anti-lecture hall compositions λ with λ1 � 2k − 3 such
that there are Ni diagonal entries in T (λ) that are greater than or equal to 2i − 1.

In order to compute the generating function for F2k−3(N1, . . . , Nk−1;n), we split λ into two parts
depending on whether t j, j = 0. To this end, we set λ(1) = (λ1, . . . , λN1 ), λ(2) = (λN1+1, . . . , λl). It is
easily checked that λ(2) is a partition whose first part does not exceed N1. Hence the generating
function for possible choices of λ(2) equals 1/(q)N1 .

We now consider λ(1) and its A-triangular representation T (λ(1)). In this case, we can split T (λ(1))

into k triangular arrays so that we can compute the generating function for possible choices of λ(1) .

Step 1. Let T (1) = T (λ(1)). Extract 1 from each entry in the first N1 columns of T (1) to form a triangular
array of size N1 with all entries equal to 1, denoted by R(N1,1).

Step 2. For i = 2, . . . ,k − 1, extract 2 from each entry in the first Ni columns of the remaining array
T (1) to form a triangular array of size Ni with all entries equal to 2, denoted by R(Ni,2).

Step 3. Let S be the remaining triangular array T (1) .
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After the above procedures, T (λ(1)) is decomposed into k triangular arrays, including an A-triangle
R(N1,1) of size N1 with all entries being 1, (k − 2) A-triangles R(Ni,2) of sizes N2, . . . , Nk−1 respec-
tively with all entries being 2 and a triangular array S = (si, j) of size N1 possessing the following
properties:

(1) All the entries on the diagonal of S are equal to 1 or 0. Note that S has N1 diagonal elements
s1,1, s2,2, . . . , sN1,N1 . These diagonal elements can be divided into k − 1 segments such that the
first segment contains n1 = N1 − N2 elements sN2+1,N2+1, . . . , sN1,N1 , the second segment contains
n2 = N2 − N3 elements sN3+1,N3+1, . . . , sN2,N2 , and so on, while the last segment contains nk−1 =
Nk−1 elements s1,1, . . . , sNk−1,Nk−1 . Moreover, the i-th segment contains some 1’s followed by
some 0’s. We use mi to denote the number of 1’s in the i-th segment.

(2) The entries in the j-th column are non-increasing, and they are equal to either s j, j or s j, j + 1.
(3) If s j, j = s j+1, j+1, then si, j � si, j+1 for 1 � i � j.
(4) The entries in the first Nk−1 columns of S are equal to 0, that is, mk−1 = 0, since ti j = 2k − 3 for

1 � i � j � Nk−1.

For example, let μ = (5,10,14,17,18,20,18,15,12,3) and k = 4. We can decompose T (μ) into
the following triangular arrays

5 5 5 5 4 4 3 2 2 1
5 5 4 4 4 3 2 2 1

4 4 4 3 3 2 2 1
4 3 3 3 2 1 0

3 3 2 2 1 0
3 2 2 1 0

2 2 1 0
1 1 0

1 0
0

−→

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1
1 1 1 1

1 1 1
1 1

1

+

2 2 2 2 2 2
2 2 2 2 2

2 2 2 2
2 2 2

2 2
2 +

2 2
2

T (μ) R(9,1) R(6,2) R(2,2)

+

0 0 2 2 1 1 2 1 1
0 2 1 1 1 2 1 1

1 1 1 0 2 1 1
1 0 0 2 1 0

0 0 1 1 0
0 1 1 0

1 1 0
0 0

0

+

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

S μ(2)

Let us write S(N1, N2, . . . , Nk−1) for the set of triangular arrays possessing the above four proper-
ties. We proceed to compute the generating function for the triangular arrays in S(N1, N2, . . . , Nk−1).
We may partition a triangular array S ∈ S(N1, N2, . . . , Nk−1) into k − 1 blocks of columns, where the
i-th block starting from the (Ni+1 + 1)-th column and ending with the Ni-th column of S . We denote
the i-th block by Si . According to the above four properties, we infer that the first mi diagonal entries
of Si must be 1, and for i = 1, . . . ,k − 2, the entries in the first mi columns of Si are either 1 or 2.
Moreover, Sk−1 is a triangular array of size Nk−1 with all entries equal to 0.

We continue to split Si into three trapezoidal arrays S(1)
i , S(2)

i and S(3)
i for i = 1, . . . ,k−2. First, we

may form a trapezoidal array S(1)
i of the same size as Si and with the entries in the first mi columns

equal to 1 and the other entries equal to 0. Let S ′
i denote the trapezoidal array obtained from Si by

subtracting 1 from every entry in the first mi columns. It is easily seen that every entry in S ′
i is either

1 or 0, and that S(1)
i can be regarded as the Ferrers diagram of the conjugate of the partition

α(1) = (Ni+1 + mi, Ni+1 + mi − 1, . . . , Ni+1 + 1).

Furthermore, we see that for i = 1, . . . ,k − 2, the trapezoidal array S ′
i possesses the following

properties:
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(1) All the entries in S ′
i equal 0 or 1, but the diagonal entries must be 0.

(2) The entries in the j-th column must be non-increasing.
(3) The first mi entries in the j-th row are non-increasing, and the remaining entries in the j-th row

are also non-increasing.

We now consider the trapezoidal array formed by the first mi columns of S ′
i , and denote it by S(2)

i .

Again, we see that S(2)
i can be regarded as the Ferrers diagram of the conjugate of a partition α(2) ,

where

α
(2)
1 � Ni+1 and l

(
α(2)

)
� mi .

Notice that there are still some columns left. Define S(3)
i to be the trapezoidal array as a block

of S ′
i starting with the (mi + 1)-th column and ending with the (Ni − Ni+1)-th column. Once more,

S(3)
i can be regarded as the Ferrers diagram of the conjugate of a partition α(3) , where

α
(3)
1 � Ni+1 + mi and l

(
α(3)

)
� Ni − Ni+1 − mi .

Based on the above analysis, for i = 1, . . . ,k − 2, the generating function for possible choices of the
i-th block Si equals

Ni−Ni+1∑
mi=0

qmi(2Ni+1+1+mi)/2 (q)Ni+1+mi

(q)mi (q)Ni+1

(q)Ni

(q)Ni+1+mi (q)Ni−Ni+1−mi

which can be rewritten as

(q)Ni

(q)Ni+1(q)Ni−Ni+1

Ni−Ni+1∑
mi=0

qmi(2Ni+1+1+mi)/2 (q)Ni−Ni+1

(q)mi (q)Ni−Ni+1−mi

.

Evidently, the sum in the above expression is the generating function for partitions with distinct parts
between Ni+1 + 1 and Ni . So we deduce that

Ni−Ni+1∑
mi=0

qmi(2Ni+1+1+mi)/2 (q)Ni−Ni+1

(q)mi (q)Ni−Ni+1−mi

= (−qNi+1+1)
Ni−Ni+1

.

Since the generating function for Sk−1 equals 1, the generating function for possible choices of S is
the product of the generating functions for Si for i = 1, . . . ,k − 2, that is,

k−2∏
i=1

(q)Ni

(q)Ni+1(q)Ni−Ni+1

(−qNi+1+1)
Ni−Ni+1

= (q)N1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−q)Nk−1

.

Recall that the generating function for possible choices of T (λ(2)) equals 1/(q)N1 and the generat-

ing functions for R(N1,1), R(N2,2), . . . , R(Nk−1,2) are equal to q(N1+1)N1/2,qN2
2+N2 , . . . ,qN2

k−1+Nk−1

respectively. We also observe that the generating function for anti-lecture hall compositions in
F2k−2(N1, . . . , Nk−1,n) is the product of the generating functions for T (λ(2)), R(N1,1), R(N2,2), . . . ,

R(Nk−1,2) and S . Hence it equals

q(N1+1)N1/2+N2
2+···+N2

k−1+N2+···+Nk−1

(q)N1

(q)N1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−q)Nk−1

= q(N1+1)N1/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q) · · · (q) (q) (−q)
.

N1−N2 Nk−2−Nk−1 Nk−1 Nk−1
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Summing up the generating functions for anti-lecture hall compositions in F2k−3(N1, . . . , Nk−1,n)

yields the generating function for F2k−3(n),

∑
n�0

∣∣F2k−3(n)
∣∣qn =

∑
N1�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1(−q)Nk−1

. (4.25)

This completes the proof. �
In virtue of (2.12), Theorem 4.1 immediately follows from Theorem 4.2, since the generating func-

tion for overpartitions in H2k−1(n) is given by

(−q)∞(q,q2k−2,q2k−1;q2k−1)∞
(q)∞

. (4.26)

We now turn to the second proof of Theorem 4.1. In their proof of the anti-lecture hall theorem,
Corteel and Savage [6] established two bijections. The first is a bijection between the set E(n) of anti-
lecture hall compositions μ of n such that �μi/i� is even and the set P (n) of partitions of n with each
part greater than one. The second bijection is between the set A(n) of anti-lecture hall compositions
of n and the set D × E(n) of pairs (λ,μ) such that |λ| + |μ| = n and λ ∈ D , μ ∈ E , where D is
the set of partitions into distinct parts. Then the anti-lecture hall theorem is a consequence of the
correspondence between A(n) and D × P (n).

To give a proof of Theorem 4.1, we shall present a bijection between a subset of P (n) and a
subset of E(n). To be more specific, let Q k(n) be the subset of E(n) consisting of anti-lecture hall
compositions λ such that λ1 � k and let Rk(n) be the subset of P (n) consisting of partitions having
at most k − 1 successive N × (N + 1) Durfee rectangles such that there are no parts below the last
Durfee rectangle. Then we have the following correspondence, which can be considered as a refined
version of the first bijection of Corteel and Savage.

Theorem 4.3. There is a bijection between the set Rk(n) and the set Q 2k−2(n).

Proof. We proceed to give a bijection θ from Rk(n) to Q 2k−2(n). Consider the A-triangular representa-
tion T (μ) of an anti-lecture hall composition μ of n such that �μi

i � are even for all i and μ1 � 2k −2.
By definition, we have t1,1 � 2k − 2 and all the diagonal entries of T (μ) are even.

Now we define the map θ from a partition λ in P with exactly k − 1 successive Durfee rectangles
to an anti-lecture hall composition μ of n.

Step 1. We break the Ferrers diagram of λ into k − 1 blocks such that the i-th block contains the i-th
Durfee rectangle and the dots on the right of the i-th Durfee rectangle.

Step 2. Change the i-th Durfee rectangle in the i-th block into a triangular array with all entries equal
to 2, and change the rest of the dots in the i-th block into entries equal to 1. So these k − 1 blocks
become k − 1 A-triangles with all the diagonal entries equal to 0 or 2.

Step 3. Put the k − 1 A-triangles obtained in Step 2 together to form an A-triangle T .

The resulting A-triangle corresponds to an anti-lecture hall composition μ such that μ1 = 2k − 2
and �λi/i� are even for all i. It is easy to check that the map θ is reversible. This completes the
proof. �

For example, let

λ = (10,10,9,8,7,7,7,7,5,4,3)

be a partition in R4(77). Then the corresponding anti-lecture hall composition in Q 6(77) equals

μ = (6,12,13,11,12,14,4,3,2).
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The successive Durfee rectangles of λ are given below, where the zeros in the arrays are omitted.

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦ →

2 2 2 2 2 2 1 1 1
2 2 2 2 2 1 1 1

2 2 2 2 1 1
2 2 2 1

2 2
2

→

6 6 5 3 3 3 1 1 1
6 4 3 3 3 1 1 1

4 3 2 2 1 1
2 2 2 1

2 2
2

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦
◦

2 2 2 1 1 1
2 2 1 1 1

2 1

◦ ◦ ◦
◦ ◦ ◦

◦ 2 2 1
2

Second Proof of Theorem 4.1. Examining Corteel and Savage’s second bijection γ from A to D × E ,
we see that it maps an anti-lecture hall composition λ of n in A to a pair (α,β) in D × E . If λ1
is odd, then β1 = λ1 − 1; otherwise β1 = λ1. So it can be checked that γ maps an anti-lecture hall
composition of n in A with the first part not exceeding 2k − 1 to a pair (α,β) in D × E such that β is
an anti-lecture hall composition in E with the first part β1 not exceeding 2k − 2 and the sum of parts
of α and β equals n. On the other hand if λ = γ −1(α,β), then it can be checked that λ1 � β1 + 1.
That is to say, γ is a bijection between F2k−1 and D × Q 2k−2. Together with Theorem 4.3, we are led
to a bijection between F2k−1 and D × Rk .

Recall that there is a combinatorial interpretation of the left-hand side of (1.5) in terms of the Dur-
fee dissection, or the Durfee square dissection, to be precise, of a partition, as given by Andrews [3],
see also, Andrews and Eriksson [4]. We observe that the idea of Andrews easily extends to the Durfee
rectangle dissection of a partition. In this way, we find that the generating function for partitions
in Rk(n) is given by

∞∑
n=0

∣∣Rk(n)
∣∣qn =

∑
N1�N2�···�Nk−1�0

qN2
1+···+N2

k−1+N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (4.27)

Setting a = 1 in the generalization of the Rogers–Ramanujan identity (1.5) gives

∑
N1�N2�···�Nk−1�0

qN2
1+···+N2

k−1+N1+···+Nk−1

(q)N1−N2 . . . (q)Nk−2−Nk−1(q)Nk−1

= (q,q2k,q2k+1;q2k+1)∞
(q)∞

.

Hence the generating function for partitions in Rk(n) can be expressed as follows

∞∑
n=0

∣∣Rk(n)
∣∣qn = (q,q2k,q2k+1;q2k+1)∞

(q)∞
. (4.28)

By the bijection between F2k−1(n) and D × Rk(n) we conclude that

∞∑
n=0

∣∣F2k−1(n)
∣∣qn = (−q)∞(q,q2k,q2k+1;q2k+1)∞

(q)∞
. (4.29)

It is easy to see that the right-hand side of the above identity is the generating function for overpar-
titions in H2k+1(n). This completes the proof. �
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