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1. Preliminaries

Consider a convex polytope P ⊂ R
n . An extension [5,6] of P is a polytope Q ⊂ R

d such that P
can be obtained from Q as an image under a linear projection from R

d to R
n . An extended formula-

tion [6,10] of P is a description of Q by linear equations and linear inequalities (together with the
projection). The size [6,10] of the extended formulation is the number of facets of Q . The extension
complexity [6,10] of a polytope P is the smallest size of any extended formulation of P , that is, the
minimal possible number of inequalities in the description of Q . The number of facets of Q can
sometimes be significantly smaller [5] than that of P , and this phenomenon can be used to reduce
the complexity of linear programming problems useful for numerous applications [3,5,10].

An important result providing the linear algebraic characterization of extended formulations has
been obtained in 1991 by Yannakakis [13]. Let a polytope P (with v vertices and f facets) be defined
as the set of all points x ∈R

n satisfying the conditions ci(x) � βi and c j(x) = β j , for i ∈ {1, . . . , f } and
j ∈ { f + 1, . . . ,q}, where c1, . . . , cq are linear functionals on R

n . A slack matrix S = S(P ) of P is an
f -by-v matrix satisfying Sit = ci(pt) − βi , where p1, . . . , pv denote the vertices of P , and we note
that S is nonnegative. The following well-known result (see [6, Corollary 5] and also [8, Lemma 3.1])
characterizes the rank of S(P ) in terms of the dimension of P .

Proposition 1.1. A slack matrix of a polytope P has classical rank one greater than the dimension of P .
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The result by Yannakakis points out the connection between extension complexity and nonnegative
factorizations and can now be formulated as follows [6,10,13].

Theorem 1.2. The extension complexity of a polytope P is equal to the minimal k for which S(P ) can be written
as a product of f -by-k and k-by-v nonnegative matrices.

The smallest integer k for which there exists a factorization A = BC with B ∈R
n×k+ and C ∈R

k×m+ is
called the nonnegative rank of a nonnegative matrix A ∈ R

n×m+ . Nonnegative factorizations are widely
studied and used in data analysis, statistics, computational biology, clustering and numerous other
applications [2]. There are still many open questions on nonnegative rank that are interesting for
different applications, and a considerable number of them is related to providing bounds on the
nonnegative rank in terms of other matrix invariants [4,6,10].

It is easy to show that the nonnegative rank of a matrix equals the classical rank if one of them
is less than three [2]. However, even for rank-three m-by-n matrices, the only known upper bound is
min{m,n} which is trivial.

Problem 1.3. (See [1].) Assume n � 3. Does there exist a rank-three n-by-n nonnegative matrix with
nonnegative rank equal to n?

In view of Proposition 1.1 and Theorem 1.2, one can ask a related question: Does there exist a
convex n-gon with extension complexity equal to n, for every n? For n � 5, Problem 1.3 has been
solved in the affirmative in [6]. In [7] it was noted that a sufficiently irregular convex hexagon has
full extension complexity, providing an affirmative answer for n = 6. For n � 7, the problem has been
open.

Lin and Chu [11] claimed a positive resolution for Problem 1.3, but their argument has been shown
to contain a gap [6,9]. A negative answer for Problem 1.3 has been obtained in [6] for a special case
of so-called Euclidean distance matrices. The factorizations of those matrices have been studied sub-
sequently in [9], and the logarithmic upper bounds have been obtained in a number of important
special cases. A detailed investigation of extended formulations of convex polygons has been under-
taken in [5], but the question about an n-gon with extension complexity equal to n has also been left
open.

In our paper we solve Problem 1.3 and prove that for n > 6, the answer is negative. In fact, we
provide a nontrivial upper bound for the nonnegative rank and prove that an m-by-n rank-three
matrix cannot have nonnegative rank greater than �6 min{m,n}/7�. From our results it follows that
a convex n-gon has extension complexity at most �6n/7�. That is, we prove that any convex n-gon
admits a description with �6n/7� linear inequalities up to a projection.

The organization of the paper is as follows. In Section 2, we prove the main result in a special case
of slack matrices of convex heptagons, thus showing that any convex heptagon admits a description
with six linear inequalities. In Section 3, we use those results and prove the main results of our paper,
which include the upper bound for the extension complexity of a polygon and for the nonnegative
rank of a rank-three matrix.

2. Factoring a slack matrix of a convex heptagon

The problem of constructing nonnegative factorizations is rather hard from the computational
point of view. Being NP-hard in general [12], this problem can be also difficult to solve even for
explicitly written matrices of relatively small size. In fact, the problem of computing the nonnegative
ranks of certain n-by-n rank-three matrices with algebraically independent entries remained open for
n = 7, see [5].

In this section we present a technique that will allow us to factor the matrices of a certain special
form, and we will then be able to prove that slack matrices of convex heptagons have nonnegative
ranks less than 7. The considerations of this section deal with matrices having not more than seven
rows and seven columns, and we adopt the following convention in order to make the presentation
more concise.
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Convention 2.1. Throughout this section, the row and column indices of the matrices considered are
to be understood as the elements of the ring Z/7Z. In particular, A3+6,6+1 will stand for the (2,7)th
entry of a matrix A. Also, we will use the letters i and j only for denoting such indices in the present
section, and we operate with i and j as with elements from Z/7Z, throughout the section.

Let us introduce a certain special form of matrices which will be important for the considerations
of the present section. By W [i, j,k] we denote the submatrix of W formed by the rows with indices
i, j, and k.

Notation 2.2. Given a tuple α = (a1,a2,a3,b1,b2,b3) of six real numbers. By W (α) we will denote
the 7-by-3 matrix

⎛
⎝

0 0 1 1 a1 a2 a3

1 0 0 1 1 1 1

1 1 0 0 b1 b2 b3

⎞
⎠

�

,

and by V(α) the 7-by-7 matrix with (i, j)th entry equal to det W [i − 1, j − 2, j − 1].

The following lemma points out a symmetry in the construction of V .

Lemma 2.3. Matrices V(a1,a2,a3,b1,b2,b3) and V(b3,b2,b1,a3,a2,a1) coincide up to relabeling the rows
and columns.

Proof. Perform the permutation (16)(25)(34) on the row indices and (17)(26)(35) on the column
indices of V(b3,b2,b1,a3,a2,a1). �

Let us present a useful special case when the nonnegative rank of V is not full.

Lemma 2.4. Given a tuple ψ = (a1,a2,a3,b1,b2,b3) for which the matrix V = V(ψ) satisfies V ij > 0 if
i /∈ { j − 1, j}. If a1 + b1 � a2 + b2 and a3 + b3 � a2 + b2 , then V has nonnegative rank less than 7.

Proof. One can check that V = F G , where

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 V 41 + V 47 V 61 0

0 0 0 1 a1 − a2 + b1 − b2 1

V 31 0 0 1 V 37 0

V 41 1 0 0 V 47 0

−a2 + a3 − b2 + b3 1 0 0 0 1

V 61 V 31 + V 37 1 0 0 0

0 V 31 1 V 47 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 V 32/V 31 0 0 0 0 0

0 V 21/V 31 1 0 0 0 0

0 0 V 13 1 V 65 0 0

0 0 0 0 1 V 57/V 47 0

0 0 0 0 0 V 65/V 47 1

V 72 0 0 1 0 0 V 57

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. �

Now we show how can one construct new full-rank matrices from a given vector ψ .
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Lemma 2.5. Given a tuple ψ = (a1,a2,a3,b1,b2,b3) for which the matrix V = V(ψ) satisfies V ij > 0 if
i /∈ { j −1, j}. Take α1 = (1−a3 −b3)/(1−b3), α2 = (a1 −a1b3 −a3 +a3b1)/(a1 −a1b3), α3 = (a2 −a2b3 −
a3 + a3b2)/(a2 − a2b3), β1 = a3 , β2 = a3/a1 , β3 = a3/a2 . Then the matrix U = V(α1,α2,α3, β1, β2, β3)

satisfies Uij > 0 if i /∈ { j, j + 1} and has nonnegative rank equal to that of V .

Proof. One can check that V = Q 1U Q 2, where

Q 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1/(1 − b3) 0 0 0

0 0 0 0 1/a3 0 0

0 0 0 0 0 1/a3 0

0 0 0 0 0 0 a1/a3

a2/a3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 a1a2(1−b3)
a3

a2(1 − b3) 0 0 0 0 0 0

0 a3(1 − b3) 0 0 0 0 0

0 0 a3 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1−b3
a3

0 0

0 0 0 0 0 a1(1−b3)
a3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the numbers 1 − b3 = V 42, a1 = V 63, a2 = V 73, and a3 = V 13 are positive, the result follows. �
The following six real sequences will be important in our considerations.

Notation 2.6. Given a tuple ψ = (a1,a2,a3,b1,b2,b3) for which the matrix V = V(ψ) satisfies V ij > 0
if i /∈ { j − 1, j}. We will consider the six sequences α1(t), α2(t), α3(t), β1(t), β2(t), and β3(t) of reals
defined by α1(0) = a1, α2(0) = a2, α3(0) = a3, β1(0) = b1, β2(0) = b2, β3(0) = b3, and also

α1(t + 1) = 1 − α3(t) − β3(t)

1 − β3(t)
,

αχ+1(t + 1) = αχ(t) − αχ(t)β3(t) − α3(t) + α3(t)βχ (t)

αχ (t) − αχ(t)β3(t)
for χ ∈ {1,2},

β1(t + 1) = α3(t), β2(t + 1) = α3(t)/α1(t), β3(t + 1) = α3(t)/α2(t).

Remark 2.7. Lemma 2.5 shows that the sequences α1(t), α2(t), α3(t), β1(t), β2(t), and β3(t) are well
defined.

It turns out that the sequences introduced are in fact cyclic.

Lemma 2.8. Given a tuple ψ = (a1,a2,a3,b1,b2,b3) for which the matrix V = V(ψ) satisfies V ij > 0 if
i /∈ { j − 1, j}. Then α1(7) = a1 , α2(7) = a2 , α3(7) = a3 , β1(7) = b1 , β2(7) = b2 , β3(7) = b3 .

Proof. By routine computation. �
The following lemma gives a necessary condition for a matrix to be full-rank.
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Lemma 2.9. Given a tuple ψ = (a1,a2,a3,b1,b2,b3) for which the matrix V = V(ψ) satisfies V ij > 0 if
i /∈ { j − 1, j}. If α1(2) + β1(2) � α2(2) + β2(2), then α2(6) + β2(6) < α3(6) + β3(6).

Proof. A routine computation shows that

α2(2) + β2(2) − α1(2) − β1(2) = (−a3 + a2(1 − b3))V 32 V 21

V 31 V 73 V 42 V 52
,

so the sign of α2(2) + β2(2) − α1(2) − β1(2) equals that of −a3 + a2(1 − b3). Similarly,

α3(6) + β3(6) − α2(6) − β2(6) = V 46(−a3 + a1(1 − b3))

V 15 V 36
,

so the sign of α3(6) + β3(6) − α2(6) − β2(6) is that of −a3 + a1(1 − b3). It remains to note that
1 − b3 = V 42 > 0 and a1 − a2 = V 37 > 0. �

In fact, we can obtain a stronger condition that holds for full-rank matrices.

Lemma 2.10. Let ψ = (a1,a2,a3,b1,b2,b3) be a tuple for which the matrix V = V(ψ) has full nonnegative
rank and V ij > 0 if i /∈ { j − 1, j}. Then, either α1(t) + β1(t) < α2(t) + β2(t) < α3(t) + β3(t) for every t or
α1(t) + β1(t) > α2(t) + β2(t) > α3(t) + β3(t) for every t.

Proof. Assume that α1(t) + β1(t) � α2(t) + β2(t), for some t . Applying Lemma 2.9 to the tuple ψ ′ =
(α1(t + 5),α2(t + 5),α3(t + 5), β1(t + 5), β2(t + 5), β3(t + 5)) and taking into account Lemma 2.8,
we obtain that α2(t + 4) + β2(t + 4) < α3(t + 4) + β3(t + 4). Lemma 2.4 then shows that α1(t + 4) +
β1(t +4) < α2(t +4)+β2(t +4), and we conclude that α1(t +4k)+β1(t +4k) < α2(t +4k)+β2(t +4k) <

α3(t + 4k) + β3(t + 4k), for any positive integer k.
Now assume α1(t)+β1(t) > α2(t)+β2(t). By Lemma 2.4, we have α2(t)+β2(t) > α3(t)+β3(t), and

so by Lemma 2.9, α1(t + 3) + β1(t + 3) > α2(t + 3) + β2(t + 3). Finally, we conclude that α1(t + 3k) +
β1(t + 3k) > α2(t + 3k) + β2(t + 3k) > α3(t + 3k) + β3(t + 3k), for any positive k. �

Finally, let us show that a matrix V(ψ) cannot have full nonnegative rank.

Lemma 2.11. Given a tuple ψ = (a1,a2,a3,b1,b2,b3) for which the matrix V = V(ψ) satisfies V ij > 0 if
i /∈ { j − 1, j}. Then V has nonnegative rank less than 7.

Proof. Assume the converse and apply the results of Lemma 2.3 and Lemma 2.10. We can assume
without a loss of generality that α1(t) + β1(t) < α2(t) + β2(t) < α3(t) + β3(t), for any nonnegative
integer t . Note that α3(0) + β3(0) − α1(0) − β1(0) = a3 + b3 − a1 − b1, and routine computations also
allow us to check that

α2(1) + β2(1) − α1(1) − β1(1) = V 13(b1 + (a1 − 1)b3)

V 63 V 42
,

α2(2) + β2(2) − α1(2) − β1(2) = V 13 V 21(a2(1 − b3) − a3)

V 73 V 31 V 42 V 52
.

Noting that also 1 − b3 = V 42 > 0 and V 37 = a1 − a2 > 0, we obtain

b3(1 − a1) < b1, a3 < a2(1 − b3), a3 + b3 > a1 + b1, b3 < 1, and a1 > a2.

(2.1)

Now let us check that (2.1) is a contradiction. In fact, the first of these inequalities implies a1 +b1 >

a1 + b3 − b3a1, taking into an account the third we obtain a3 + b3 > a1 + b3 − b3a1. Thus we have
a3 > a1(1 − b3), which implies a3 > a2(1 − b3) because of the last two inequalities. �
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Let us now check that 7-by-7 matrices of a more general form have nonnegative rank at most 6
as well. By U [r1, r2, r3|c1, c2, c3] we denote the submatrix of U formed by the rows with indices r1,
r2, r3 and columns with c1, c2, c3.

Lemma 2.12. Assume that a 7-by-7 matrix U has classical rank 3 and satisfies Uij = 0 if i ∈ { j − 1, j} and
Uij > 0 otherwise. Then U has nonnegative rank less than 7.

Proof. Denote by U ′ the matrix obtained from U by multiplying the third column by U54/U53, the
fifth column by U24/U25, the third row by U25

U24U35
, the fourth row by U53

U43U54
, the i′th row by 1/Ui′4

(for i′ from 1,2,5,6,7). So we have

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a3 1 b3 U ′
16 U ′

17

U ′
21 0 0 1 1 U ′

26 U ′
27

U ′
31 U ′

32 0 0 1 U ′
36 U ′

37

U ′
41 U ′

42 1 0 0 U ′
46 U ′

47

U ′
51 U ′

52 1 1 0 0 U ′
57

U ′
61 U ′

62 a1 1 b1 0 0

0 U ′
72 a2 1 b2 U ′

76 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since U ′ has classical rank 3, there are certain real constants c1, . . . , c7 such that U ′
i j = c j det U ′[i, j−1,

j|3,4,5], for any i and j. Therefore, we obtain U ′
i j = c j V i j for any i and j, where V is the matrix

V(a1,a2,a3,b1,b2,b3) from Notation 2.2. Since V 13 = V 32 and V 72 = V 21, the numbers c1, c2, and
c3 are of the same sign. Similarly, V 65 = V 46 and V 76 = V 57, so that the numbers c5, c6, and c7 are
of the same sign as well. Further, since V 24 = V 25 = V 43 = 1, we obtain c3 = c4 = c5 = 1, and the
numbers c1, . . . , c7 are thus all positive. So we can conclude that U and V coincide up to multiplying
the rows and columns by positive numbers, and the result then follows from Lemma 2.11. �

Now we can prove the main result of the present section.

Theorem 2.13. A slack matrix of a convex heptagon has nonnegative rank at most 6.

Proof. Proposition 1.1 shows that the slack matrix S of a convex heptagon has classical rank
equal to 3. Therefore, S satisfies the assumptions of Lemma 2.12 up to renumbering the rows and
columns. �
3. Main results

In this section we prove the main results of our paper. Let us start with a corollary of Theorem 2.13
which gives a solution for Problem 1.3 in the case n = 7.

Theorem 3.1. Let A be a nonnegative 7-by-n matrix with classical rank equal to 3. Then the nonnegative rank
of A does not exceed 6.

Proof. Consider the standard simplex � consisting of points (x1, . . . , x7) with nonnegative coordinates
satisfying

∑7
i=1 xi = 1. Since � contains 7 facets, the intersection of � with the column space of A

is a polygon I with k vertices, and k � 7. Form a matrix S of column coordinate vectors of vertices
of I , then every column of A belongs to the convex hull of the columns of S up to scaling. Thus we
have A = S B with B nonnegative, so the result of the theorem is immediate if k < 7. If k = 7, then by
Theorem 2.13, S has nonnegative rank less than 7 being a slack matrix for I . �

Now we can provide a nontrivial upper bound for the nonnegative rank of matrices with classical
rank equal to 3, thus providing a solution for Problem 1.3 in the case n � 7.



132 Y. Shitov / Journal of Combinatorial Theory, Series A 122 (2014) 126–132
Theorem 3.2. The nonnegative rank of a rank-three matrix A ∈R
m×n+ does not exceed �6 min{m,n}/7�.

Proof. By Theorem 3.1, any seven rows of A can be expressed as linear combinations with non-
negative coefficients of certain six nonnegative rows, so the nonnegative rank of A does not exceed
�6m/7�. The nonnegative rank is invariant under transpositions, so the result follows. �

Together with the result from [7], where it was noted that a sufficiently irregular convex hexagon
has full extension complexity, Theorem 3.2 provides a full answer for Problem 1.3. Namely, the fol-
lowing result is true.

Corollary 3.3. If n � 7, then the nonnegative rank of any rank-three m-by-n nonnegative matrix is less than n.
For k ∈ {3,4,5,6}, there are k-by-k rank-three matrices with nonnegative rank equal to k.

Finally, we can prove an upper bound for the extension complexity of convex polygons.

Corollary 3.4. The extension complexity of any convex n-gon does not exceed �6n/7�.

Proof. By Proposition 1.1 and Theorem 3.2, the nonnegative rank of a slack matrix does not exceed
�6n/7�, so the result follows from Theorem 1.2. �
Acknowledgments

The author is grateful to the participants of the workshop on Communication complexity, Linear
optimization, and Lower bounds for the nonnegative rank of matrices held at Schloss Dagstuhl in
February, 2013, for enlightening discussions on the topic.

References

[1] L.B. Beasley, T.J. Laffey, Real rank versus nonnegative rank, Linear Algebra Appl. 431 (2009) 2330–2335.
[2] J.E. Cohen, U.G. Rothblum, Nonnegative ranks, decompositions, and factorizations of nonnegative matrices, Linear Algebra

Appl. 190 (1993) 149–168.
[3] M. Conforti, G. Cornuejols, G. Zambelli, Extended formulations in combinatorial optimization, 4OR 8 (1) (2010) 1–48.
[4] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R. de Wolf, Linear vs. semidefinite extended formulations: exponential separa-

tion and strong lower bounds, in: Proc. 44th Symp. on Th. of Comp., ACM, 2012, pp. 95–106.
[5] S. Fiorini, T. Rothvoß, H.R. Tiwary, Extended formulations for polygons, Discrete Comput. Geom. 48 (3) (2012) 1–11.
[6] N. Gillis, F. Glineur, On the geometric interpretation of the nonnegative rank, Linear Algebra Appl. 437 (2012) 2685–2712.
[7] J. Gouveia, P.A. Parillo, R.R. Thomas, Lifts of convex sets and cone factorizations, Math. Oper. Res. 38 (2013) 248–264.
[8] J. Gouveia, R.Z. Robinson, R.R. Thomas, Polytopes of minimum positive semidefinite rank, preprint, arXiv:1205.5306.
[9] P. Hrubeš, On the nonnegative rank of distance matrices, Inform. Process. Lett. 112 (11) (2012) 457–461.

[10] V. Kaibel, Extended formulations in combinatorial optimization, Optima 85 (2011) 2–7.
[11] M.M. Lin, M.T. Chu, On the nonnegative rank of Euclidean distance matrices, Linear Algebra Appl. 433 (2010) 681–689.
[12] S.A. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. Optim. 20 (3) (2009) 1364–1377.
[13] M. Yannakakis, Expressing combinatorial optimization problems by linear programs, J. Comput. System Sci. 43 (1991)

441–466.

http://refhub.elsevier.com/S0097-3165(13)00163-5/bib424Cs1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib4352s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib4352s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib43435As1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib464D50546457s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib464D50546457s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib465254s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib4747s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib475054s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib475254s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib4872s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib4B6169s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib4C43s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib566176s1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib59616Es1
http://refhub.elsevier.com/S0097-3165(13)00163-5/bib59616Es1

	An upper bound for nonnegative rank
	1 Preliminaries
	2 Factoring a slack matrix of a convex heptagon
	3 Main results
	Acknowledgments
	References


