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We address the enumeration of p-valent planar maps equipped 
with a spanning forest, with a weight z per face and a weight u
per connected component of the forest. Equivalently, we count 
p-valent maps equipped with a spanning tree, with a weight z
per face and a weight μ := u +1 per internally active edge, in 
the sense of Tutte; or the (dual) p-angulations equipped with 
a recurrent sandpile configuration, with a weight z per vertex 
and a variable μ := u + 1 that keeps track of the level of the 
configuration. This enumeration problem also corresponds to 
the limit q → 0 of the q-state Potts model on p-angulations.
Our approach is purely combinatorial. The associated gener-
ating function, denoted F (z, u), is expressed in terms of a pair 
of series defined implicitly by a system involving doubly hy-
pergeometric series. We derive from this system that F (z, u)
is differentially algebraic in z, that is, satisfies a differential 
equation in z with polynomial coefficients in z and u. This 
has recently been proved to hold for the more general Potts 
model on 3-valent maps, but via a much more involved and 
less combinatorial proof.
For u ≥ −1, we study the singularities of F (z, u) and the 
corresponding asymptotic behaviour of its nth coefficient. For 
u > 0, we find the standard behaviour of planar maps, with 
a subexponential term in n−5/2. At u = 0 we witness a phase 
transition with a term n−3. When u ∈ [−1, 0), we obtain an 
extremely unusual behaviour in n−3(lnn)−2. To our knowl-
edge, this is a new “universality class” for planar maps. We 
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analyze the phase transition at u = 0 in terms of the sandpile 
model on large maps, and find it to be of infinite order.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A planar map is a proper embedding of a connected graph in the sphere. The enu-
meration of planar maps has received a continuous attention in the past 60 years, first 
in combinatorics with the pioneering work of Tutte [54], then in theoretical physics [24], 
where maps are considered as random surfaces modelling the effect of quantum gravity, 
and more recently in probability theory [42,44]. General planar maps have been stud-
ied, as well as sub-families obtained by imposing constraints of higher connectivity, or 
prescribing the degrees of vertices or faces (e.g., triangulations). Precise definitions are 
given below.

Several robust enumeration methods have been designed, from Tutte’s recursive ap-
proach (e.g. [53]), which leads to functional equations for the generating functions of 
maps, to the beautiful bijections initiated by Schaeffer [49], and further developed by 
physicists and combinatorics alike [11,21], via a powerful approach based on matrix 
integrals [32]. See for instance [18] for a more complete (though non-exhaustive) bibli-
ography.

Beyond the enumerative and asymptotic properties of planar maps, which are now 
well understood, the attention has also focused on two more general questions: maps on 
higher genus surfaces [6,26], and maps equipped with an additional structure. The latter 
question is particularly relevant in physics, where a surface on which nothing happens 
(“pure gravity”) is of little interest. For instance, one has studied maps equipped with 
a polymer [34], with an Ising model [21,40,17,20] or more generally a Potts model, with 
a proper colouring [55,56], with loop models [16,15], with a spanning tree [47], or perco-
lation on planar maps [2,10]. These articles parallel the analogous investigation, started 
in the 80s, of the same list of models on regular planar lattices (square, triangular...), 
based at the time on the techniques of conformal field theory (CFT).

In particular, several papers have been devoted in the past 20 years to the study of the 
Potts model on families of planar maps [4,14,31,35,39,58]. One motivation, mentioned 
by one of our referees, is that “the q-state Potts model (for 0 ≤ q ≤ 4) covers the 
full range of universality classes interpolating the discrete family of (p, p + 1) minimal 
CFT’s”. In combinatorial terms, solving this model means counting maps equipped with 
a vertex-colouring in q colours, according to the size (e.g., the number of edges) and the 
number of monochromatic edges (edges whose endpoints have the same colour). Up to a 
change of variables, this also means counting maps weighted by their Tutte polynomial, 
a bivariate combinatorial invariant which has numerous interesting specializations. By 
generalizing Tutte’s formidable solution of properly coloured triangulations (1973–1982), 
it has recently been proved that the Potts generating function is differentially algebraic, 
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that is, satisfies a (non-linear) differential equation1 with polynomial coefficients [9,8,18]. 
This holds at least for general planar maps and for triangulations (or dually, for cubic 
maps).

The nature of a generating function (rational/algebraic/D-finite2/D-algebraic) is mea-
sure of the complexity of the class of objects it counts, and is usually believed to reflect 
some of its combinatorial properties. In particular, it has been recognized since the six-
ties that most classes of planar maps (with no additional structure) have an algebraic 
generating function, and this is now understood combinatorially thanks to beautiful bi-
jections with trees (e.g. [49,22]). For the Potts model, it is known since 1967 that at least 
one specialization (maps with a spanning tree) is transcendental but D-finite [47]. The 
above references [8,18] show that the generating function is in full generality D-algebraic. 
However, the method that yields these differential equations is extremely involved, and 
does not shed much light on the structure of q-coloured maps. Moreover, one cannot 
a priori exclude the possibility that the generating function would belong to the smaller 
class of D-finite series. Let us also mention that the asymptotic behaviour of the number 
of coloured maps, as well as the location of phase transitions, remain unknown.

The aim of this paper is to remedy these problems — so far for a one-variable spe-
cialization of the Tutte polynomial. This specialization is obtained by setting one of the 
variables to 1, or by taking (in an adequate way) the limit q → 0 in the Potts model. Com-
binatorially, this corresponds to counting maps (in this paper, p-valent maps) equipped 
with a spanning forest. We call them forested maps. This problem has already been stud-
ied in [25] via a random matrix approach, but with no explicit solution. We use instead a 
simple combinatorial approach based on the contraction of trees, which appears already 
in [21, Appendix A] or [25, Section 4]. The generating function F (z, u) that we obtain 
keeps track of the size of the map (the number of faces; variable z) and of the number 
of trees in the forest (minus one; variable u). The specialization u = 0 thus counts maps 
equipped with a spanning tree and was determined a long time ago [47].

Here is an outline of the paper. We begin in Section 2 with general definitions on maps, 
and on the Tutte polynomial. We recall some of its combinatorial descriptions, and un-
derline in particular that the series F (z, μ − 1), once expanded in powers of z and μ, has 
non-negative coefficients and admits several combinatorial interpretations. This impor-
tant observation implies that the natural domain of the parameter u is [−1, +∞) rather 
than [0, +∞). In Section 3, we obtain in a purely combinatorial manner an expression 
of F (z, u) in terms of the solution of a system of two functional equations. In Section 4
we derive from this system that F (z, u) is differentially algebraic in z, and give explicit 
differential equations for cubic (p = 3) and 4-valent (p = 4) maps. Section 5 is a combi-
natorial interlude explaining why all series occurring in our equations, like F (z, u) itself, 
still have non-negative coefficients when u ∈ [−1, 0].

1 With respect to the size variable.
2 Solution of a linear o.d.e.
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The rest of the paper is devoted to asymptotic results, for p = 3 and p = 4: when 
u > 0, forested maps follow the standard asymptotic behaviour of planar maps (μnn−5/2) 
but then there is a phase transition at u = 0 (where one counts maps equipped with a 
spanning tree), and a very unusual asymptotic behaviour in μnn−3(lnn)−2 when u ∈
[−1, 0). To our knowledge, this is the first time a class of planar maps exhibits this 
asymptotic behaviour. This proves in particular that F (z, u) is not D-finite in z. This is 
in contrast with the case u = 0, since the generating function of maps equipped with a 
spanning forest is D-finite.

Our key tool in the asymptotic study is the singularity analysis of [36]: it relates 
the asymptotic behaviour of the coefficients of a series F (z) to the singular behaviour 
of F near its dominant singularities (i.e., singularities of minimal modulus). The first 
case we study (4-valent maps with u > 0) is simple: first, one of the two series involved 
in our system vanishes; the remaining one, denoted R, satisfies an inversion equation 
Ω(R(z)) = z for which the (unique) dominant singularity ρ of R is such that R(ρ) lies in 
the domain of analyticity of Ω. One obtains for R a standard square root singularity. This 
is well understood and almost routine. Two ingredients make the other cases significantly 
harder:

• when u < 0, R(ρ) is a singularity of Ω,
• when p = 3 (cubic maps) we have to deal with a system of two equations; the analysis 

of systems is delicate, even in the so-called positive case, which corresponds in our 
context to u > 0 (see [33,5]).

These difficulties, which culminate when p = 3 and u < 0, are addressed in Sections 6
and 7. Section 6 establishes general results on implicitly defined series. Section 7 focuses
on the inversion equation Ω(R(z)) = z in the case where (up to translation) Ω has a z ln z

singularity at 0. One then applies these results to the asymptotic analysis of forested 
maps in Sections 8 (4-valent maps) and 10 (cubic maps). Section 9 exploits the results of 
Section 8 to study some properties of large random maps equipped with a spanning forest 
or a spanning tree. In particular, we show that the phase transition at u = 0 is rather 
peculiar, having infinite order (see [13,29,38,50] for other examples in the literature).

We conclude in Section 11 with a few comments.
An extended abstract of this paper has appeared in the proceedings of FPSAC 

2013 [19].

2. Preliminaries

2.1. Planar maps

A planar map is a proper embedding of a connected graph (possibly with loops and 
multiple edges) in the oriented sphere, considered up to continuous deformation. All maps 
in this paper are planar, and we often omit the term “planar”. A face is a (topological) 
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Fig. 1. (a) A rooted planar map and its dual (rooted at the dual corner). (b) A 4-valent leaf-rooted tree.

connected component of the complement of the embedded graph. Each edge consists of 
two half-edges, each incident to an endpoint of the edge. A corner is an ordered pair 
(e1, e2) of half-edges incident to the same vertex, such that e2 immediately follows e1

in counterclockwise order. The degree of a vertex or a face is the number of corners 
incident to it. A vertex of degree p is called p-valent. One-valent vertices are also called 
leaves. A map is p-valent if all vertices are p-valent. A rooted map is a map with a 
marked corner (e1, e2), called the root and indicated by an arrow in our figures. The root 
vertex is the vertex incident to the root. The root half-edge is e2 and the root edge is the 
edge supporting e2. This way of rooting maps is equivalent to the more standard way 
where one marks the root edge and orients it from e2 to its other half-edge. All maps 
of the paper are rooted, and we often omit the term “rooted”. The dual of a map M , 
denoted M∗, is the map obtained by placing a vertex of M∗ in each face of M and an 
edge of M∗ across each edge of M ; we root it in a canonical way (see Fig. 1(a)). The 
dual of a p-valent map is a map with all faces of degree p, also called p-angulation.

A (plane) tree is a planar map with a unique face. A tree is p-valent if all non-leaf 
vertices have degree p. We consider the edges leading to the leaves as half-edges, as 
suggested by Fig. 1(b). A leaf-rooted tree (resp. corner-rooted) is a tree with a marked 
leaf (resp. corner). The number of p-valent leaf-rooted (resp. corner-rooted) trees with k
leaves is denoted by tk (resp. tck) (the notation should be tk,p and tck,p, but we consider p
as a fixed integer, p ≥ 3). These numbers are well-known [51, Thm. 5.3.10]: they are 0
unless k = (p − 2)� + 2 with � ≥ 1, and in this case,

tk = ((p− 1)�)!
�!((p− 2)� + 1)! and tck = p

((p− 1)�)!
(�− 1)!((p− 2)� + 2)! = tk

p�

(p− 2)� + 2 . (1)

Let M be a rooted planar map with vertex set V . A spanning forest of M is a graph 
F = (V, E) where E is a subset of edges of M forming no cycle. Each connected compo-
nent of F is a tree, and the root component is the tree containing the root vertex. We 
say that the pair (M, F ) is a forested map. We denote by F (z, u) the generating func-
tion of p-valent forested maps, counted by faces (variable z) and non-root components 
(variable u):

F (z, u) =
∑

M p-valent
zf(M)uc(F )−1, (2)
F spanning forest
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Fig. 2. The 10 forested cubic maps with 3 faces.

where f(.) denotes the number of faces and c(.) the number of components. When p = 3,

F (z, u) = (6 + 4u) z3 +
(
140 + 234u + 144u2 + 32u3) z4 + O(z5). (3)

The coefficient (6 + 4u) means that there are 10 trivalent (or cubic) forested maps with 
3 faces: 6 in which the forest is a tree, and 4 in which it has two components (Fig. 2).

2.2. Forest counting, the Tutte polynomial, and related models

Let G = (V, E) be a graph with vertex set V and edge set E. The Tutte polynomial
of G is the following polynomial in two indeterminates (see e.g. [12]):

TG(μ, ν) :=
∑
S⊆E

(μ− 1)c(S)−c(G)(ν − 1)e(S)+c(S)−v(G), (4)

where the sum is over all spanning subgraphs of G (equivalently, over all subsets S
of edges) and v(.), e(.) and c(.) denote respectively the number of vertices, edges and 
connected components. The quantity e(S) + c(S) − v(G) is the cyclomatic number of S, 
that is, the minimal number of edges one has to delete from S to obtain a forest.

When ν = 1, the only subgraphs that contribute to (4) are the forests. Hence the 
generating function of forested maps defined by (2) can be written as

F (z, u) =
∑

M p-valent
zf(M) TM (u + 1, 1). (5)

Note that we write TM although the value of the Tutte polynomial only depends on the 
underlying graph of M , not on the embedding.

Even though this is not clear from (4), the polynomial TG(μ, ν) has non-negative 
coefficients in μ and ν. This was proved combinatorially by Tutte [52], who showed 
that TG(μ, ν) counts spanning trees of G according to two parameters, called internal
and external activities. Other combinatorial descriptions of TG(μ, ν), in terms of other 
notions of activity, were given later. Let us present the one due to Bernardi, which is 
nicely related to maps [7]. Following Mullin [47], we call tree-rooted map, a map M
equipped with a spanning tree T . Walking around T in counter-clockwise order, starting 
from the root, defines a total order on the edges (those in T and not in T , altogether): 
the first edge that is met is the smallest one, and so on (Fig. 3). An edge e is internally 
active if it belongs to T and is minimal in its cocycle; that is, all the edges e′ �= e such 
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Fig. 3. The edges of a tree-rooted map are naturally order by walking around the tree. The active edges are 
those labelled 1, 3, 6 and 9.

that (T \ {e})∪{e′} is a tree are larger than e. It is externally active if it does not belong 
to T and is minimal in the cycle created by adding e to T . Denoting by int(M, T ) and 
ext(M, T ) the numbers of internally and externally edges, one has:

TM (μ, ν) =
∑

T spanning tree
μint(M,T )νext(M,T ).

A non-obvious property of this description is that it only depends on the underlying 
graph of M .

Returning to (5), we thus obtain a second description of F (z, u):

F (z, u) =
∑

M p-valent
T spanning tree

zf(M)(u + 1)int(M,T ). (6)

In particular, it makes sense combinatorially to write u = μ − 1 and take u ∈ [−1, ∞).
We now give four more descriptions of F (z, u) in terms of the dual p-angulations. For 

any planar map M , it is known that

TM∗(μ, ν) = TM (ν, μ).

Since

TM (1, ν) =
∑

S⊂E, S connected
(ν − 1)e(S)+c(S)−v(M),

we first derive from (5) that

F (z, u) =
∑

M p-angulation
zv(M) TM (1, u + 1)

=
∑

M p-angulation
zv(M)ue(S)+c(S)−v(M) (7)
S connected subgraph
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counts p-angulations M equipped with a connected (spanning) subgraph S, by the vertex 
number of M and the cyclomatic number of S. Also, the “dual” expression of (6) reads

F (z, u) =
∑

M p-angulation
T spanning tree

zv(M)(u + 1)ext(M,T ). (8)

Our next interpretation of F (z, u), which we will not entirely detail, relies on the con-
nection between TM (1, ν) and the recurrent (or: critical) configurations of the sandpile 
model on M . It is known [45,27] that

TM (1, ν) =
∑

C recurrent
ν�(C),

where the sum runs over all recurrent configurations C, and �(C) is the level of C. Hence

F (z, u) =
∑

M p-angulation
C recurrent

zv(M)(u + 1)�(C) (9)

also counts p-angulations M equipped with a recurrent configuration C of the sandpile 
model, by the vertex number of M and the level of C.

Our final interpretation is in terms of the Potts model. Take q ∈ N. A q-colouring of 
the vertices of G = (V, E) is a map c : V → {1, . . . , q}. An edge of G is monochromatic
if its endpoints share the same colour. Every loop is thus monochromatic. The number 
of monochromatic edges is denoted by m(c). The partition function of the Potts model
on G counts colourings by the number of monochromatic edges:

PG(q, ν) =
∑

c:V→{1,...,q}
νm(c).

The Potts model is a classical magnetism model in statistical physics, which includes (for 
q = 2) the famous Ising model (with no magnetic field) [57]. Of course, PG(q, 0) is the 
chromatic polynomial of G. More generally, it is not hard to see that PG(q, ν) is always 
a polynomial in q and ν, and a multiple of q. Let us define the reduced Potts polynomial
P̃G(q, ν) by

PG(q, ν) = q P̃G(q, ν).

Fortuin and Kasteleyn established the equivalence of P̃G with the Tutte polynomial [37]:

P̃G(q, ν) =
∑

S⊆E(G)

qc(S)−1(ν − 1)e(S) = (μ− 1)c(G)−1(ν − 1)v(G)−1 TG(μ, ν),

for q = (μ − 1)(ν − 1). Setting μ = 1, we obtain, for a connected graph G

P̃G(0, ν) = (ν − 1)v(G)−1 TG(1, ν).
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Returning to (7) finally gives

F (z, u) = u
∑

M p-angulation
(z/u)v(M) P̃M (0, u + 1). (10)

2.3. Formal power series

Let A = A(z) ∈ K[[z]] be a power series in one variable with coefficients in a field K. 
We say that A is D-finite if it satisfies a (non-trivial) linear differential equation with 
coefficients in K[z] (the ring of polynomials in z). More generally, it is D-algebraic if 
there exist a positive integer k and a non-trivial polynomial P ∈ K[z, x0, . . . , xk] such 

that P
(
z,A, ∂A

∂z , . . . ,
∂kA
∂zk

)
= 0.

A k-variate power series A = A(z1, . . . , zk) with coefficients in K is D-finite if its partial 
derivatives (of all orders) span a finite dimensional vector space over K(z1, . . . , zk).

3. Generating functions for forested maps

Fix p ≥ 3. We give here a system of equations that defines the generating function 
F (z, u) of p-valent forested maps, or, more precisely, the series zF ′

z(z, u) that counts 
forested maps with a marked face. We also give simpler systems for two variants of 
F (z, u), involving no derivative.

3.1. p-Valent maps

Theorem 3.1. Let θ, Φ1 and Φ2 be the following doubly hypergeometric series:

θ(x, y) =
∑
i≥0

∑
j≥0

tc2i+j

(
2i + j

i, i, j

)
xiyj ,

Φ1(x, y) =
∑
i≥1

∑
j≥0

t2i+j

(
2i + j − 1
i− 1, i, j

)
xiyj ,

Φ2(x, y) =
∑
i≥0

∑
j≥0

t2i+j+1

(
2i + j

i, i, j

)
xiyj , (11)

where tk and tck are given by (1) and 
(
a+b+c
a,b,c

)
denotes the trinomial coefficient (a + b +

c)!/(a!b!c!).
There exists a unique pair (R, S) of power series in z with constant term 0 and coef-

ficients in Q[u] that satisfies

R = z + uΦ1(R,S), (12)

S = uΦ2(R,S). (13)
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The generating function F (z, u) of p-valent forested maps is characterized by 
F (0, u) = 0 and

F ′
z(z, u) = θ(R,S). (14)

Remarks. 1. These equations allow us to compute the first terms in the expansion of 
F (z, u), for any fixed p ≥ 3. This is how we obtained (3).

2. When p is even, then t2i+1 = 0 for all i. In particular, all terms occurring in the 
definition (11) of Φ2 are multiples of y, so that S = 0. The simplified system reads:

F ′
z(z, u) = θ(R) and R = z + uΦ(R), (15)

with

θ(x) =
∑
i≥0

tc2i

(
2i
i

)
xi and Φ(x) =

∑
i≥1

t2i

(
2i− 1

i

)
xi.

3. When u = 0, an even more drastic simplification follows from (12)–(13): not only 
S = 0, but also R = z, so that (14) becomes an explicit expression of F ′

z:

F ′
z(z, 0) =

∑
i≥0

tc2i

(
2i
i

)
zi,

or equivalently,

F (z, 0) =
∑
i≥0

tc2i

(
2i
i

)
zi+1

i + 1 =
∑
�≥1

p((p− 1)�)!
(�− 1)!(1 + (p− 2)�/2)!(2 + (p− 2)�/2)!z

2+(p−2)�/2,

(16)

where we require � to be even if p is odd. This series counts p-valent maps equipped with 
a spanning tree, and this expression was already proved by Mullin [47].

4. The series θ and Φi are explicited when p = 4 and p = 3 in Sections 4.2 and 4.3, 
respectively.

In order to prove Theorem 3.1, we first relate F (z, u) to the generating function 
of planar maps counted by the distribution of their vertex degrees. More precisely, let 
M̄ ≡ M̄(z, u; g1, g2, . . . ; h1, h2, . . .) be the generating function of rooted planar maps, 
with a weight z per face, ugk per non-root vertex of degree k and hk if the root vertex 
has degree k.

Lemma 3.2. The series F (z, u) is related to M through:

F (z, u) = M̄(z, u; t1, t2, . . . ; tc1, tc2, . . .).
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Fig. 4. (a) A 4-valent forested map with 9 faces and 2 non-root components. (b) The same map, after 
contraction of the forest. (c) Assembling the 3 trees gives the original forested map.

Proof. The idea is to contract each tree of a spanning forest, incident to k half-edges, 
into a k-valent vertex. It is adapted from [21, Appendix A], where the authors study 
4-valent forested maps for which the root edge is not in the forest. It can also be seen 
as an extension of Mullin’s construction for maps equipped with a spanning tree [47]. 
Finally, it also appears in [25].

Let us now get into the details. First, let us recall that rooted maps have no sym-
metries: all vertices, edges and half-edges are distinguishable. In particular, one can fix, 
for every rooted planar map M ′ (with arbitrary valences) a total order on its half-edges. 
This order may have a combinatorial significance — a good choice is the order in which 
half-edges are visited when applying the construction of [22] — but can also be arbi-
trary.

We now describe a bijection Φ, illustrated in Fig. 4, between forested p-valent maps 
(M, F ) and pairs formed of a map M ′ and a collection (Tv, v ∈ V (M ′)) of p-valent trees 
associated with the vertices of M ′, such that the tree associated with the root vertex 
of M ′ is corner-rooted, the others are leaf-rooted, and the number of leaves of Tv is the 
degree of v in M ′.

The map M ′ is obtained by contracting all edges of the forest F (Fig. 4(b)). The arrow 
that marks the root corner remains at the same place. Now split into two half-edges each 
edge of M that is not in F : this gives a collection of p-valent trees, each of them being 
naturally associated with a vertex v of M ′. The half-edges of these trees form together the 
edges of M ′ (Fig. 4(c)). If v is the root vertex of M ′, then Tv inherits the corner-rooting 
of M . Otherwise, we root Tv at the smallest of its half-edges, for the total order on 
half-edges of M ′.

The following properties are readily checked:

• Tv has k leaves if v has degree k in M ′,
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• M and M ′ have the same number of faces,
• the number of vertices of M ′ is the number of components of F .

Let us now prove that Φ is bijective. To recover the forested map (M, F ) from the 
contracted map M ′ and the associated collection of trees, we inflate each vertex v of M ′

into the corresponding tree Tv. If v is the root vertex of M ′, the root corner of Tv must 
coincide with the root corner of M ′. Otherwise, the root half-edge of Tv is put on the 
smallest of the half-edges incident to v in M ′. This proves the injectivity of Φ. Since this 
reverse construction can be applied to any map M ′ with a corresponding collection of 
trees, Φ is also surjective. �
Proof of Theorem 3.1. In a recent paper, Bouttier and Guitter [23] have expressed the 
series M̄ via a system of equations, established bijectively.3 Their expression is actually 
fairly complicated [23, Eq. (1.4)], but the series zM̄ ′

z, which counts maps with a marked 
face, has a much simpler expression [23, Eq. (2.6)]:

M̄ ′
z =

∑
i≥0

∑
j≥0

h2i+j

(
2i + j

i, i, j

)
RiSj , (17)

where h0 = 0 and, by [23, Eq. (2.5)],

R = z + u
∑
i≥1

∑
j≥0

g2i+j

(
2i + j − 1
i− 1, i, j

)
RiSj , S = u

∑
i≥0

∑
j≥0

g2i+j+1

(
2i + j

i, i, j

)
RiSj . (18)

Theorem 3.1 follows by specialization, using Lemma 3.2.
It remains to check that (12)–(13) define a unique pair of series R and S in z with 

constant terms 0. This is readily proved by observing that (12) determines R up to 
order n if we know R and S up to order n − 1; and that (13) determines S up to order n
if we know R up to order n and S up to order n − 1. �
Remarks. 1. The expression of M̄ given in [23, Eq. (1.4)] leads to an explicit expression 
of F (z, u) in terms of R and S. However, this expression involves a triple sum (a double 
sum when p is even, see for instance (100)). This is why we prefer handling the above 
expression of F ′. We discuss this further in the final section.

2. The inflation of vertices into trees used in the proof of Lemma 3.2 is robust, and 
allows us to take more parameters into account in the enumeration of forested maps. In 
particular, we study in Section 8 the size (number of vertices) of the root component of 

3 Strictly speaking, they do not take the vertex or face number into account, but both are prescribed by 
the distribution of vertex degrees.
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Fig. 5. A quasi-cubic forested map with 6 faces and 4 non-root components.

the forest in a large random forested map. Taking this parameter into account with a 
new variable s, Lemma 3.2 becomes

F (z, u, s) = M̄(z, u; t1, t2, . . . ; tc1, . . . , s
k−2
p−2 tck, . . .)

since a p-valent tree with k = (p −2)� +2 leaves has � vertices (recall that tc1 is in fact 0). 
Thus Theorem 3.1 extends as follows:

s
2

p−2F ′
z(z, u, s) = θ

(
s

2
p−2R, s

1
p−2S

)
, (19)

where R, S and θ are unchanged.

3.2. Quasi-p-valent maps (p odd)

A map is said to be quasi-p-valent if all its vertices have degree p, apart from one 
vertex which is a leaf. Such maps exist only when p is odd. They are naturally rooted 
at their leaf: the root corner is the unique corner incident to the leaf and the root edge 
is the unique edge incident to the leaf. Let G(z, u) denote the generating function of 
quasi-p-valent forested maps counted by faces (z) and non-root components (u) (see 
Fig. 5). From this section on, the term 1/u often occurs, and we adopt the shortcut

ū := 1/u.

Proposition 3.3. The generating function of quasi-p-valent forested maps is

G(z, u) = (1 + ū)

⎛
⎝zS − u

∑
i≥2

∑
j≥0

t2i+j−1

(
2i + j − 2
i− 2, i, j

)
RiSj

⎞
⎠ , (20)

where the series R and S are defined by (12)–(13) and the numbers tk by (1). Also,

G′
z(z, u) = (1 + ū)S.

As in the previous subsection, the key of this result is to relate G(z, u) to a 
well-understood generating function of maps — here, the generating function Γ1 ≡
Γ1(z, u; g1, g2, . . .) that counts planar maps rooted at leaf, with a weight z per face 
and ugk per k-valent non-root vertex.
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Lemma 3.4. The following analogue of Lemma 3.2 holds for quasi-p-valent forested maps:

G(z, u) = (1 + ū) Γ1(z, u; t1, t2, . . .).

Proof. The bijection used in the proof of Lemma 3.2 shows that the series
Γ1(z, u; t1, t2, . . .) counts quasi-p-valent forested maps such that the root edge is not
in the forest. (With the notation used in that proof, the root vertex of M ′, of degree 1, 
remains a trivial tree during the inflation step.) To each such forested map, we can add 
the root edge to the forest. The resulting forested map has one less component, hence 
the factor ū = 1/u. �
Proof of Proposition 3.3. The series Γ1 has also been expressed by Bouttier et al. in 
terms of the series R and S of (18) (see [22, Eq. (2.6)]):

Γ1 = zS − u
∑
i≥2

∑
j≥0

g2i+j−1

(
2i + j − 2
i− 2, i, j

)
RiSj . (21)

This gives the first part of Proposition 3.3. For the second part, we observe that Γ1

is by definition the coefficient of h1 in the series M̄(z, u; g1, . . . ; h1, . . .) defined above 
Lemma 3.2. Hence it follows from (17) that Γ′

1 = S (this can also be derived combina-
torially from [22]). �
3.3. When the root edge is outside the forest

We now focus on forested maps such that the root edge is outside the forest. Let 
H(z, u) denote the associated generating function.

Proposition 3.5. The generating function of p-valent forested maps where the root edge 
is outside the forest is

H(z, u) = ūzR + ūzS2 − ūz2

− 2S
∑
i≥2

∑
j≥0

t2i+j−1

(
2i + j − 2
i− 2, i, j

)
RiSj −

∑
i≥3

∑
j≥0

t2i+j−2

(
2i + j − 3
i− 3, i, j

)
RiSj ,

(22)

where the series R and S are defined by (12)–(13) and the numbers tk by (1).
When p is even, then S = 0 and the first double sum disappears. In this case, we also 

have a very simple expression of H ′
z(z, u):

H ′
z(z, u) = 2ū(R− z). (23)
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Again, the key of this result is to relate H(z, u) to a well-understood generating 
function of maps — here, the generating function M ≡ M(z, u; g1, g2, . . .) that counts 
rooted planar maps with a weight z per face and ugk per vertex of degree k.

Lemma 3.6. The following analogue of Lemma 3.2 holds:

H(z, u) = ūM(z, u; t1, t2, . . .).

Proof. Let us consider again the bijection used in the proof of Lemma 3.2: the fact that 
the root edge of M is not in the forest F means that, in the corner-rooted tree associated 
with the root vertex of M ′, the root half-edge is a leaf. It is then equivalent to root this 
tree at this leaf. �
Proof of Proposition 3.5. The first part of the proposition follows from the known char-
acterization of M (see [22, Eq. (2.1)]):

M = Γ2
1 + Γ2

z
− z2,

where Γ1 is given by (21) and

Γ2 = z2R− uz
∑
i≥3

∑
j≥0

(
2i + j − 3
i− 3, i, j

)
RiSj − u2

⎛
⎝∑

i≥2

∑
j≥0

g2i+j−1

(
2i + j − 2
i− 2, i, j

)
RiSj

⎞
⎠

2

,

with R and S satisfying (18). This gives the first part of the proposition.
Observe that M(z, u; g1, g2, . . .) = uM̄(z, u; g1, g2, . . . ; g1, g2, . . .) where M̄ is defined 

just above Lemma 3.2. When p is even, the maps obtained by contracting forests 
have even degrees (g2k+1 = 0 for all k), the series S given by (18) vanishes, and the 
combination of (17) and (18) gives M̄ ′

z(z, u; g1, g2, . . . ; g1, g2, . . .) = 2ū(R − z). Thus 
H ′

z = ūM ′
z = M̄ ′

z = 2ū(R− z), as stated in (23). �
4. Differential equations

The equations established in the previous section imply that series counting regular 
forested maps are D-algebraic. We compute explicitly a few differential equations.4 Recall 
that the existence of a differential equation is already known in the case of cubic maps 
(and in fact for the more general Potts model on these maps); but the derivation of this 
equation is much more difficult [8,18].

4 Our asymptotic results will not rely on these equations, but on the functional equations of the previous 
section. We refer to [48] for an example of an asymptotic study based on a differential equation, also related 
to the Potts model (properly q-coloured triangulations).
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4.1. The general case

Theorem 4.1. The generating function F (z, u) of p-valent forested maps is D-algebraic 
(with respect to z). The same holds for the series G(z, u) and H(z, u) of Propositions 3.3
and 3.5.

Proof. We start from the expression (14) of F ′(z, u) (as we always differentiate with 
respect to z, we simply denote F ′(z, u) for F ′

z(z, u)). We first observe that the doubly 
hypergeometric series θ, Φ1, Φ2 are D-finite (this follows from the closure properties of 
D-finite power series [43]).

Then, by differentiating (12) and (13) with respect to z, we obtain rational expressions 
of R′ and S′ in terms of u and the partial derivatives ∂Φ�/∂x and ∂Φ�/∂y, evaluated 
at (R, S), for � = 1, 2. (Indeed, differentiating (12) and (13) gives a linear system in R′

and S′. Its determinant is a power series in z with coefficients in Q[u]. It is non-zero, 
since it equals 1 at u = 0.)

Let K be the field Q(u). Using (14) and the previous point, it is now easy to prove by 
induction that for all k ≥ 1, there exists a rational expression of F (k)(z, u) in terms of

{
∂i+jΦ�

∂xi∂yj
(R,S), ∂i+jθ

∂xi∂yj
(R,S)

}
i≥0,j≥0,�∈{1,2}

with coefficients in K. But since θ, Φ1 and Φ2 are D-finite, the above set of series 
spans a vector space of finite dimension d over K(R, S). Therefore there exist d ele-
ments ϕ1, . . . , ϕd in this space, and rational functions Ak ∈ K(x, y, x1, . . . , xd), such that 
F (k)(z, u) = Ak(R, S, ϕ1, . . . , ϕd) for all k ≥ 1.

Since the transcendence degree [41, p. 254] of K(R, S, ϕ1, . . . , ϕd) over K is (at most) 
d + 2, the d + 3 series F (k)(z, u), for 1 ≤ k ≤ d + 3, are algebraically dependent, so that 
F ′ (and thus F ) is D-algebraic.

The proof is similar for the series G(z, u) and H(z, u), with θ replaced by the adequate 
D-finite series derived from (20) and (22). Moreover, since these two expressions involve z
explicitly, the field Q(u) used in the above argument must be replaced by Q(z, u). �
4.2. The 4-valent case

We specialize the above argument to the case p = 4. As explained in the second remark 
following Theorem 3.1, the series S vanishes and F ′(z, u) is given by the system (15), 
with

θ(x) = 4
∑ (3i− 3)!

(i− 2)!i!2x
i and Φ(x) =

∑ (3i− 3)!
(i− 1)!2i!x

i. (24)

i≥2 i≥2
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The series θ(x), Φ(x) and their derivatives lie in a 3-dimensional vector space over Q(x)
spanned (for instance) by 1, Φ(x) and Φ′(x). This follows from the following equations, 
which are easily checked:

x(27x− 1)Φ′′(x) + 6Φ(x) + 6x = 0, (25)

3θ(x) = 2(27x− 1)Φ′(x) − 42Φ(x) + 12x. (26)

By the argument described above, we can now express first R′, and then F ′ and all its 
derivatives as rational functions of u, R, Φ(R) and Φ′(R). But since R = z + uΦ(R), 
this means a rational function of u, z, R and Φ′(R). We compute the explicit expressions 
of F ′, F ′′ and F ′′′, eliminate R and Φ′(R) from these three equations, and this gives a 
differential equation of order 2 and degree 7 satisfied by F ′, the details of which are not 
particularly illuminating:

9F ′ 2F ′′ 5u6 + 36F ′ 2F ′′ 3F ′′′ u5z + 144F ′ 2F ′′ 4u5 − 12 (21 z − 1)F ′ F ′′ 5u5

+ 432F ′ 2F ′′ 2F ′′′ u4z − 48 (24 z − 1)F ′ F ′′ 3F ′′′ u4z + 864F ′ 2F ′′ 3u4

− 96 (27 z − 2)F ′ F ′′ 4u4 + 4 (27 z − 1) (15 z − 1)F ′′ 5u4 + 1728F ′ 2F ′′ F ′′′ u3z

− 288 (21 z − 2)F ′ F ′′ 2F ′′′ u3z + 10 368F ′ F ′′′ 2u2z3

+ 16 (27 z − 1) (21 z − 1)F ′′ 3F ′′′ u3z + 2304F ′ 2F ′′ 2u3 − 288 (31 z − 4)F ′ F ′′ 3u3

− 64
(
6uz − 162 z2 + 33 z − 1

)
F ′′ 4u3 + 2304F ′ 2F ′′′ u2z

− 2304 (6 z − 1)F ′ F ′′ F ′′′ u2z − 192
(
8uz − 54 z2 + 29 z − 1

)
F ′′ 2F ′′′ u2z

− 768 (2u + 189 z − 7)F ′′′ 2uz3 + 2304F ′ 2F ′′ u2 − 3072 (3 z − 1)F ′ F ′′ 2u2

− 192
(
24uz − 27 z2 + 55 z − 2

)
F ′′ 3u2 − 1536 (21 z − 2)F ′ F ′′′ uz

− 768
(
12uz + 81 z2 + 24 z − 1

)
F ′′ F ′′′ uz + 1536 (9 z + 2)F ′ F ′′ u

− 512
(
39uz + 81 z2 + 51 z − 2

)
F ′′ 2u + 36 864F ′ z

− 1024
(
12uz − 162 z2 + 33 z − 1

)
F ′′′ z − 1024 (36uz + 27 z − 1)F ′′ − 24 576 z = 0.

We argue in Section 11.2 that F does not satisfy a differential equation of order 2.
We have applied the same method to the series H of Proposition 3.5:

H(z, u) = ūzR− ūz2 − Λ(R)

where

Λ(x) =
∑
i≥3

(3i− 6)!
(i− 3)!(i− 2)!i!x

i

satisfies

30Λ(x) = x(27x− 1)Φ′(x) + (1 − 24x)Φ(x) + 3x2.
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This gives for H an equation of order 2 and degree 3:

3 (u + 1)u2H ′ 2H ′′ + 12u2zH ′H ′′ + 6 (u− 8)uH ′ 2 + 240H

+ 4 (6uz − 54 z + 1)H ′ + 4 (3uz2 + 30uH + 27 z2 − z)H ′′ + 24 z2 = 0.

One reason explaining this more modest size is the simplicity of the expression (23)
of H ′.

4.3. The cubic case

We start from the expression of F ′ given in Theorem 3.1. We now have to deal with 
series θ, Φ1 and Φ2 in two variables:

θ(x, y) = 3
∑
i≥0

∑
j≥0

2i+j≥3

(4 i + 2 j − 4)!
(2i + j − 3)! i!2j!x

iyj ,

Φ1(x, y) =
∑
i≥1

∑
j≥0

2i+j≥3

(4i + 2j − 4)!
(2i + j − 2)! (i− 1)! i! j!x

iyj , (27)

Φ2(x, y) =
∑
i≥0

∑
j≥0

2i+j≥2

(4i + 2j − 2)!
(2i + j − 1)!i!2j!x

iyj . (28)

Let us first observe that

θ(x, y) = −2Φ1(x, y) + (1 − y)Φ2(x, y) − 2x− y2.

Consequently, Theorem 3.1 gives:

F ′ = 2zū + ūS − (1 + ū)(2R + S2). (29)

Then, the summations over the variable j that occur in Φ1 and Φ2 can be performed 
explicitly, which gives to the cubic case a one-variable flavour. Indeed,

Φ1(x, y) = (1 − 4y)3/2 Ψ1(t) − x, (30)

Φ2(x, y) =
√

1 − 4yΨ2(t) + 1
4

(
1 −

√
1 − 4y

)2
, (31)

where t = x/(1 − 4y)2 and

Ψ1(z) =
∑
i≥1

(4 i− 4)!
(2 i− 2)! i! (i− 1)! z

i, Ψ2(z) =
∑
i≥1

(4 i− 2)!
(2 i− 1)! i!2 zi.

Our system thus reads:
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R = z + u (1 − 4S)3/2 Ψ1 (T ) − uR, (32)

S = u
√

1 − 4S Ψ2 (T ) + u

4

(
1 −

√
1 − 4S

)2
, (33)

with T = R/(1 − 4S)2.
The series Ψ1(z), Ψ2(z) and their derivatives lie in a 3-dimensional vector space over 

Q(z) spanned (for instance) by 1, Ψ1(z) and Ψ2(z). This follows from the following 
identities, which are easily checked:

(1 − 64z)Ψ′
1(z) + 48Ψ1(z) + 2Ψ2(z) = 1,

z(1 − 64z)Ψ′
2(z) + 6Ψ1(z) + 16zΨ2(z) = 8z. (34)

By the argument of Section 4.1, we can now express R′ and S′ as rational functions of 
u, R, S, Ψ1(T ) and Ψ2(T ). But Ψ1(T ) and Ψ2(T ) can be expressed rationally in terms 
of z, u, R and 

√
1 − 4S using (32) and (33). Hence we obtain rational expressions of R′

and S′ in u, z, R and 
√

1 − 4S. In fact no square root occurs:

R′ = R(48z − 1 + 16(u + 1)R + 2(3 + u)S − 8(u + 1)S2)
D

, (35)

S′ = 2(3z + (u− 3)R− 12zS + 4(u + 1)RS)
D

, (36)

with

D = 36z2 + (24z − 1 + 24uz)R + 4(u + 1)RS − 4(u + 1)2RS2 + 4(u + 1)2R2.

Combining these two equations with (29), one can now express F ′, F ′′ and F ′′′ in terms 
of u, z, R and S, and then eliminate R and S to obtain a differential equation of order 2 
satisfied by F ′ (of degree 17), which we do not report here. For the generating function 
G(z, u) of quasi-cubic forested maps (Proposition 3.3), we replace (29) by

10G = (1 + ū) (z −R + 6zS + 2(u + 1)RS) ,

and obtain a differential equation of order 2 and degree 5. It becomes a bit simpler when 
we rewrite G = (W + zū)/2:

0 =
(
3u4zW ′ 4 − u3(5Wu− uz + z)W ′ 3 + 4 (u + 1)(5Wu− uz + z)2

)
W ′′

− 48u2z(u + 1)W ′ 3 + 8u(u + 1)(5Wu− uz + z)W ′ 2

+ 4 (u2 − 1)(5Wu− uz + z)W ′.

Introducing the series W is natural in the solution of the Potts model presented in [8], 
where the above equation was first obtained.
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5. Combinatorics of forested trees

Eq. (5), and the positivity of the Tutte coefficients, show that the series F (z, u) that 
counts p-valent forested maps has non-negative coefficients when expanded in (1 + u). 
We say that it is (u +1)-positive. Section 2.2 presents several combinatorial descriptions 
of F (z, μ −1) (see (6), (8), (9), (10)). This will lead us to study the asymptotic behaviour 
of the coefficient of zn in F (z, u) not only for u ≥ 0, but for u ≥ −1. In this study, we 
will use the fact that several other series are also (u + 1)-positive. We prove this in this 
section thanks to a combinatorial argument that applies to certain classes of forested 
trees.

5.1. Positivity in (1 + u)

Let T be a tree having at least one edge, and F a set of spanning forests of T . We 
define a property of F that guarantees that the generating function AF(u) that counts 
forests of F by the number of components is (u + 1)-positive (after division by u).

Let F ∈ F, and let e be an edge of T . By flipping e in the forest F , we mean adding e

to F if it is not in F , and removing it from F otherwise. This gives a new forest F ′ of T . 
We say that e is flippable for F if F ′ still belongs to F. We say that F is stable if for each 
F ∈ F,

(i) every edge of T not belonging to F is flippable,
(ii) flipping a flippable edge gives a new forest with the same set of flippable edges.

We say that a set E of forested trees is stable if, for each tree T , the set of forests F such 
that (T, F ) ∈ E is stable. We consider below a generating function E(z, u) of E, where 
each forested tree (T, F ) is weighted by znuk, where n is the size of T (number of edges, 
of leaves...) and k the number of components of F , minus 1.

Lemma 5.1. With the above notation, assume F is stable. Then all elements of F have 
the same number, denoted by f , of flippable edges. The generating function of forests 
of F, counted by components, is AF(u) = u(1 + u)f . Consequently, if E is a stable set of 
forested trees, then E(z, u) is (u + 1)-positive.

Proof. Condition (i) implies that the forest Fmax consisting of all edges of T belongs 
to F. Moreover, we can obtain Fmax from any forest F of F by adding iteratively flip-
pable edges. By Condition (ii), this implies that any forest F of F has the same set of 
flippable edges as Fmax. It also implies that, to construct a forest F of F, it suffices to 
choose, for each flippable edge of Fmax, whether it belongs to F or not. Since Fmax has 
a unique component, and since deleting an edge from a forest increases by 1 the number 
of components, the expression of AF(u) follows. �
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Fig. 6. Left: The smallest enriched R-tree, and an enriched 5-valent R-tree having 10 leaves (white; charge +1) 
and 9 buds (black; charge −1). Right: A cubic enriched S̃-tree with a dangling half-edge incident to the 
root component.

5.2. Enriched blossoming trees

We now apply the above principle to establish (u + 1)-positivity properties for the 
series R and S given by (12)–(13), and for the series S̃ ≡ S̃(z, u) defined by

S̃(0, u) = 0, S̃ = uΦ2(z, S̃), (37)

where Φ2 is given by (11).
We consider plane trees rooted at a half-edge, which we draw hanging from their root 

as in Fig. 6. A vertex of degree d is thus seen as the parent of d − 1 children. A subtree
consists of a vertex v and all its descendants. It is naturally rooted at the half-edge 
incident to v and located just above it. A blossoming tree is a plane tree with two kinds 
of childless vertices: leaves, represented by white arrows, and buds, represented by black 
arrows. The edges that carry leaves and buds are considered as half-edges. Also, leaves 
and buds are not considered as nodes of the tree, and a spanning forest of a blossoming 
tree does not contain any of its half-edges. The root half-edge does not carry any leaf 
or bud. Each leaf is assigned a charge +1 while each bud is assigned a charge −1. The 
charge, of a blossoming tree is the difference between the number of leaves and buds that 
it contains. This definition is extended to subtrees.

Definition 5.2. Let p ≥ 3. A p-valent blossoming tree T equipped with a spanning forest F
is an enriched R- (resp. S-) tree if

(i) its charge is 1 (resp. 0),
(ii) any subtree rooted at an edge not in F has charge 0 or 1.

We also consider as an enriched R-tree a single root half-edge carrying a leaf.
The pair (T, F ) is an enriched S̃-tree if each component of F is incident to as many 

leaves as buds. In this case it is also an enriched S-tree.
An enriched tree (T, F ) is canonical if the spanning forest F is in fact a tree (and 

hence consists of all edges of T ).

Two enriched R-trees are shown in Fig. 6 (left). The readers who are familiar with 
the R- and S-trees of [22] will recognize that our enriched R- and S-trees are obtained 
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from them by inflating each vertex of degree k into a (leaf rooted) p-valent tree with k
leaves.

Proposition 5.3. Let p ≥ 3. The series R, S and S̃ defined by (12), (13) and (37) count 
respectively enriched R-, S- and S̃-trees, by the number of leaves (z) and the number of 
components in the forest (u).

Proof. The equations follow from a recursive decomposition of enriched trees. For in-
stance, an enriched R-tree is either reduced to a single leaf, with no forest at all (and 
contribution z), or contains a root node. This node belongs to a component of the forest. 
This component is incident to several half-edges (not belonging to the forest), one of 
them being the root half-edge. Each of the other incident half-edges can be a leaf, a 
bud, or the root of a non-trivial subtree. In this case, the definition of enriched R-trees 
implies that this subtree is itself an enriched R-tree (of charge 1) or an enriched S-tree (of 
charge 0). Since a single leaf is considered as an R-tree, we can say that every half-edge 
incident to the root component of the forest carries either a bud, or an R- or S-tree. If 
there are i attached R-trees, we must have i − 1 buds for the tree charge to be 1, and 
an arbitrary number j of S-trees. The root component of the forest is then a leaf-rooted 
tree with k = 2i + j leaves. This gives (12), where the multinomial coefficient occurring 
in Φ1 describes the order in which the i R-trees, the i − 1 buds and the j S-trees are 
attached from left to right.

The proof of (13) is similar, but now as many buds as R-trees must be attached to 
the root component of the forest in order to make the charge 0.

Finally, an S̃-tree is an S-tree in which all attached R-trees are actually leaves. This 
explains that (37) is obtained from (13) by replacing each occurrence of R by z. �

We now come back to (u + 1)-positivity.

Proposition 5.4. The set of p-valent enriched R- (resp. S-, S̃-) trees having at least one 
edge is stable, in the sense of Section 5.1.

Proof. For enriched R- and S-trees, an edge is flippable if and only if the attached subtree 
has charge 0 or 1, and this condition is independent of the forest.

For enriched S̃-trees, an edge is flippable if and only if the attached subtree is incident 
to as many leaves as buds, and this condition is again independent of the forest. �

By combining this proposition with Lemma 5.1 and Proposition 5.3, we obtain:

Corollary 5.5. The series ū(R− z), ūS and ūS̃ are (u + 1)-positive. Setting u = μ − 1, 
they count respectively (non-empty) canonical enriched R-, S- and S̃-trees, by the number 
of leaves (z) and the number of flippable edges (μ).

When p = 3 for instance, we have, writing μ = u + 1,
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ū(R− z) = 2(2μ + 1)z2 + 4(10μ3 + 12μ2 + 9μ + 4)z3 + O(z4),

ūS = 2z + 6(2μ2 + 2μ + 1)z2 + 8(16μ4 + 28μ3 + 30μ2 + 22μ + 9)z3 + O(z4),

ūS̃ = 2z + 2(2μ2 + 8μ + 5)z2 + 8(2μ4 + 12μ3 + 33μ2 + 40μ + 18)z3 + O(z4).

We will also need the following variant of these results.

Lemma 5.6. Define Φ2 by (11) and S̃ by (37). The series ∂Φ2
∂y (z, S̃) is (u + 1)-positive.

Proof. Let us extend the definition of S̃-enriched trees to p-valent blossoming trees that, 
in addition to leaves and buds, contain also one dangling half-edge, having no charge 
(Fig. 6, right). Using the arguments of Proposition 5.3, one can prove that the series 
u∂Φ2

∂y (z, S̃) counts such S̃-enriched trees for which the half-edge is incident to the root 
component (as before, z counts leaves and u components).

The set of such trees is again stable: indeed, an edge is flippable if it is flippable in 
the S̃-sense, and is not on the path from the root to the dangling half-edge. �
6. Implicit functions: some general results

The singular behaviour of a series Y (z) defined by an implicit equation H(z, Y (z)) = 0
is well-understood when the singularities of Y occur at a point z such that H is analytic 
at (z, Y (z)), but H ′

y(z, Y (z)) = 0. A typical situation is the so-called smooth implicit 
schema of [36, Sec. VII.4], which leads to square root singularities in Y .

However, in our asymptotic analysis of 4-valent and cubic forested maps, we will have 
to deal with implicit functions Y that become singular at a point z such that H ceases to 
be analytic at (z, Y (z)). Our series Y have non-negative real coefficients, which implies 
that their radius is also a dominant singularity, and leads us to pay a special attention 
to the behaviour of Y along the positive real axis.

In this section, we thus examine how far a real series Y defined by an implicit equation 
can be extended along the positive real axis. We first establish a general result for 
equations of the form H(z, Y (z)) = 0 (Proposition 6.1), which will apply for instance to 
the series S̃ defined by (37). We then specialize this proposition to an inversion equation
of the form Ω(Y (z)) = z (Corollary 6.3). This corollary will apply in particular to the 
series R defined, in the 4-valent case, by R = z + uΦ(R) (see (15)).

Proposition 6.1. Let H(x, y) be a real bivariate power series, analytic in a neighbour-
hood of (0, 0), satisfying H(0, 0) = 0 and H ′

y(0, 0) > 0. Let Y ≡ Y (z) be the unique 
power series satisfying Y (0) = 0 and H(z, Y (z)) = 0. Then Y has a non-zero radius of 
convergence. Moreover, there exists ρ > 0 such that:

(a) Y has an analytic continuation, still denoted by Y , in a neighbourhood of [0, ρ], which 
is real valued,
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(b) H has an analytic continuation, still denoted by H, in a neighbourhood of 
{(z, Y (z)), z ∈ [0, ρ]},

(c) H(z, Y (z)) = 0 for z ∈ [0, ρ],
(d) H ′

y(z, Y (z)) > 0 for z ∈ [0, ρ].

Moreover, if ρ̃ is the supremum (in R ∪ {+∞}) of these values ρ, at least one of the 
following properties holds:

(i) ρ̃ = +∞,
(ii) lim infz→ρ̃− H ′

y(z, Y (z)) = 0,
(iii) for each y ∈ [lim infz→ρ̃− Y (z), lim supz→ρ̃− Y (z)], H is singular at (ρ̃, y),
(iv) lim supz→ρ̃− |Y (z)| = +∞.

We begin with a simple lemma.

Lemma 6.2. Let a < 0 < b and let Y be a function analytic in a neighbourhood of [a, b], 
whose Taylor expansion at 0 has real coefficients. Then Y takes real values on [a, b].

Proof. The functions z �→ Y (z) and z �→ Y (z̄) are analytic and coincide in the neighbour-
hood of 0 where Y (z) is given by its Taylor expansion. Hence they coincide everywhere, 
and Y (z) is real when z is real. �
Proof of Proposition 6.1. The uniqueness of Y comes from the fact that its coefficients 
can be computed by induction using the equation H(z, Y (z)) = 0 and the initial condi-
tion Y (0) = 0 (the assumption H ′

y(0, 0) �= 0 is crucial here). Note that these coefficients 
are real, so that Lemma 6.2 will apply. But let us first prove that Y has a positive radius of 
convergence. Since H ′

y(0, 0) > 0, the analytic implicit function theorem at z = 0 implies 
the existence of a locally analytic solution Ŷ to the implicit equation H(z, Ŷ (z)) = 0 sat-
isfying Ŷ (0) = 0. The expansion of Ŷ around 0 must satisfy this equation as well (in the 
world of formal power series), and thus coincides with Y . Hence Y has a positive radius.

Now consider the set

I = {ρ > 0 | ρ satisfies conditions (a), (b), (c), (d)} .

This is clearly an open interval of the form (0, ρ̃), and it is non-empty since (a), (b), (c) 
and (d) hold in the neighbourhood of 0. Assume that none of the properties (i), (ii), (iii) 
and (iv) hold at ρ̃. In particular, ρ̃ is finite. We will reach a contradiction by proving 
that ρ̃ ∈ I.

Since (iv) does not hold, Y is bounded on [0, ρ̃). By continuity, the set of accumula-
tion points of {Y (z), z ∈ [0, ρ̃)} is an interval, which coincides with [lim infz→ρ̃− Y (z),
lim supz→ρ̃− Y (z)]. For each y in this interval, the point (ρ̃, y) is in the closure of the set
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{(z, Y (z)), z ∈ [0, ρ̃)} where H is known to be analytic. Since (iii) does not hold, there 
exists an element ỹ in this interval such that H is analytic at (ρ̃, ỹ). In particular, it is 
continuous at this point, and (c) implies that H(ρ̃, ỹ) = 0. Finally, since (d) holds, but 
(ii) does not, H ′

y(ρ̃, ỹ) > 0.
These three properties allow us to apply the analytic implicit function theorem: there 

exists an analytic function Ỹ defined in a neighbourhood of ρ̃ such that H(z, Ỹ (z)) = 0
and Ỹ (ρ̃) = ỹ. We want to prove that Ỹ is an analytic continuation of Y at ρ̃, so 
that, in particular, the interval [lim infz→ρ̃− Y (z), lim supz→ρ̃− Y (z)] is reduced to the 
point ỹ.

Since H ′
y(ρ̃, ỹ) > 0, there exist δ > 0 and a complex neighbourhood V of (ρ̃, ỹ) such 

that for (x, y) and (x, y′) in V ,

|H(x, y) −H(x, y′)| ≥ δ|y − y′|.

We can also assume that Ỹ (x) is well-defined for (x, y) ∈ V .
Since (ρ̃, ỹ) is an accumulation point of {(z, Y (z)), z ∈ (0, ρ̃)}, and Y is continuous, 

there exists an interval [z0, z1] ⊂ (0, ρ̃) such that (z, Y (z)) ∈ V for z ∈ [z0, z1]. Then 
for z in this interval,

0 = |H(z, Y (z)) −H(z, Ỹ (z))| ≥ δ|Y (z) − Ỹ (z)|,

which shows that the analytic functions Y and Ỹ coincide on [z0, z1]. So they coincide 
where they are both defined, and Ỹ is an analytic continuation of Y at ρ̃. This tells us 
that (a) holds at ρ̃. Now (b) also holds by the choice of ỹ, (c) holds by construction of Ỹ , 
and (d) holds as well, as argued above. Thus ρ̃ belongs to I, which cannot be true since 
it is the supremum of the open interval I. Hence one of the properties (i), (ii), (iii) and 
(iv) must hold. �
Corollary 6.3. Let Ω(y) be a real power series such that Ω(0) = 0 and Ω′(0) > 0. Let 
ω ∈ (0, +∞] be the first singularity of Ω on the positive real axis, if it exists, and +∞
otherwise. Let Y ≡ Y (z) be the unique power series satisfying Y (0) = 0 and Ω(Y (z)) = z. 
Then Y has a non-zero radius of convergence. Moreover, there exists ρ ∈ (0, ∞] such 
that:

(1) Y has an analytic continuation, still denoted by Y , in a neighbourhood of [0, ρ), 
which is real valued,

(2) Y is increasing on [0, ρ),
(3) Y (z) ∈ [0, ω) for z ∈ [0, ρ),
(4) Ω(Y (z)) = z for z ∈ [0, ρ),
(5) limz→ρ− Y (z) = τ and limy→τ− Ω(y) = ρ,
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where

τ = min{y ∈ [0, ω) | Ω′(y) = 0}

if this set is non-empty, and τ = ω otherwise.

This result is stated as an existence result for ρ, but (5) actually determines the value 
of ρ.

Proof of Corollary 6.3. We specialize Proposition 6.1 to H(x, y) = Ω(y) − x. Clearly, H
is analytic around (0, 0), H(0, 0) = 0 and H ′

y(0, 0) = Ω′(0) > 0. We take for ρ the value ρ̃

of Proposition 6.1. Then (1) follows from (a). Conditions (b) and (c) tell us that Ω has 
an analytic continuation on {Y (z), z ∈ [0, ρ)}, such that Ω(Y (z)) = z for z ∈ [0, ρ). 
By differentiating this identity, we obtain Y ′(z)Ω′(Y (z)) = 1, so that (2) now follows 
from (d). Thus the existence of an analytic continuation of Ω on {Y (z), z ∈ [0, ρ)} now 
translates into (3). The monotonicity of Y also allows us to define Y (ρ) := limz→ρ− Y (z), 
which is not necessarily finite.

Let us now derive (5) from the second series of properties of Proposition 6.1. We have 
already seen (this is (3)) that Y (ρ) ≤ ω. By Condition (d) of Proposition 6.1, and by 
definition of τ , the value Y (ρ) is also less than or equal to τ . Assume Y (ρ) < τ . Then Ω
is analytic at Y (ρ), and by continuity of Ω and Y , ρ = Ω(Y (ρ)) < +∞, so that (i) cannot 
hold. By definition of τ , we cannot have (ii). It is easy to see that Conditions (iii) and 
(iv) do not hold either. So we have reached a contradiction, and Y (ρ) = τ . Returning 
to (4) gives ρ = Ω(Y (ρ)) = Ω(τ). �

7. Inversion of functions with a z ln z singularity

The inversion of a locally injective analytic function is a well-understood topic: if Ψ
is analytic in the disk Cs of radius s centred at 0 and Ψ(z) ∼ z as z → 0, then there 
exist ρ ∈ (0, s) and ρ′ > 0, and a function Υ analytic on Cρ′ , taking its values in Cρ, 
such that

∀(y, z) ∈ Cρ′ × Cρ, Ψ(z) = y ⇐⇒ z = Υ(y).

The aim of this section is to see to what extent this can be generalized to a function Ψ(z)
having a singularity in z ln z around 0. Of course we cannot consider disks anymore, and 
our local domains will be of the following form:

Dρ,α := {z = reiθ : r ∈ (0, ρ) and |θ| < α}.
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We think that the following theorem could have applications in the future to other 
combinatorial problems involving a singular inversion.5

Theorem 7.1 (Log-Inversion). Let Ψ be analytic on Ds,π for some s > 0. Assume that 
as z tends to 0 in this domain,

Ψ(z) ∼ −cz ln z

with c > 0. Then for each α ∈ (0, π), there exist ρ ∈ (0, s) and ρ′ > 0, and a function Υ
analytic in Dρ′,α, taking its values in Dρ,π, that satisfies

∀(y, z) ∈ Dρ′,α ×Dρ,π, Ψ(z) = y ⇐⇒ z = Υ(y).

Moreover, as y → 0 in Dρ′,α,

Υ(y) ∼ − y

c ln y
.

The proof is rather long. The most difficult part is to prove the existence of a unique 
preimage of y under Ψ in Dρ,π, for each y ∈ Dρ′,α (Lemma 7.5). This preimage is of 
course Υ(y). Proving the analyticity of Υ is then a simple application of the analytic 
implicit function theorem. In order to prove Lemma 7.5, we first study the injectivity 
and surjectivity of the function z �→ −z ln z around 0 (Section 7.1), before transferring 
them to the function Ψ (Section 7.2).

Note. As pointed out by one of our referees, the inverse function Υ of Theorem 7.1
is related to the Lambert W function when Ψ is exactly −z ln z. Indeed, the equation 
y = −z ln z can be inverted into z = exp(W (−y)) = Υ(y), where W is the (multivalued) 
Lambert function [28], defined by W (u) exp(W (u)) = u. We want W to be analytic in a 
neighbourhood of a real segment of the form (−ρ′, 0). By convention, the only branch of 
the Lambert function that satisfies this property is the principal determination W0. But 
W0(u) tends to 0 when u tends to 0, hence exp(W0(−y)) tends to 1 instead of 0 (as we 
want) when y tends to 0. What we need for W is a mixture of the branches W1 and W−1, 
which is analytic around (−1/e, 0) and has two cuts: for z ∈ C \ ((−∞,−1/e] ∪ [0,+∞)),

W (u) =
{
W−1(u) if Re(u) ≥ 0,
W1(u) otherwise.

Unfortunately, it seems that this connection with the Lambert function does not spare 
us to prove the results of the next subsection: first because of this mixture of branches, 
then because these results deal with very fine properties (see Proposition 7.4 for instance) 
that cannot be easily found in the literature.

5 Moreover, as noted by one of the referees, a simple change of variable allows us to study the inversion of 
a function that behaves like −zk ln z, with k ∈ N — but of course one must then select a branch, as when 
one inverts zk.
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7.1. The function z �→ −z ln z

Consider the following function

H : C \ R− → C

z �→ −z ln z,

where ln denotes the principal value of logarithm: if z = reiθ with r > 0 and θ ∈ (−π, π), 
then ln z = ln r + iθ. We also define Arg z := θ. Let us begin with a few elementary 
properties of H.

Lemma 7.2. The function H satisfies

H(z̄) = H(z). (38)

For z = reiθ with r > 0 and θ ∈ (−π, π),

|H(z)| = r
√

ln2 r + θ2. (39)

The arguments of z and − ln z have opposite signs. If in addition r < 1, then 
Arg(− ln z) ∈ (−π/2, π/2). Hence

ArgH(z) = Arg z + Arg(− ln z) = θ + arctan
(

θ

ln r

)
. (40)

If in addition r ≤ 1/
√
e, then

|ArgH(z)| ≤ |θ|. (41)

In particular, H(z) /∈ R−.

Proof. The first two identities are straightforward. The first part of (40) follows from the 
fact that the arguments of z and − ln z have opposite signs. The second part follows from 
Arg(− ln z) ∈ (−π/2, π/2). Let us now prove (41). Assume θ ≥ 0. Then Arg(− ln z) ≤ 0
and the first part of (40) gives ArgH(z) ≤ θ. Moreover, arctanx ≥ x if x ≤ 0, and thus 
by the second part of (40),

ArgH(z) ≥ θ + θ

ln r
≥

(
1 − 1

ln (1/
√
e)

)
θ = −θ.

The case where θ ≤ 0 now follows using (38). �
Observe that H is not injective on C: for instance, H(i) = π/2 = H(−i). However, H

is injective in a (slit) neighbourhood of 0 (Fig. 7).
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Fig. 7. Left: The domain De−1,π, with circles of radius 0.05, 0.1, 0.2 and 0.3. Right: The image of the previous 
picture under the map H. The cut along the negative real axis opens into the two thick curves to the left 
of the picture.

Proposition 7.3. The function H : z �→ −z ln z is injective on De−1,π.

Proof. Assume there exist z1 and z2 in De−1,π such that H(z1) = H(z2). By Lemma 7.2, 
the value H(z1) is not real and negative, and thus lnH(z1) = lnH(z2).

This lemma also implies that for z ∈ De−1,π, we have

lnH(z) = ln z + ln(− ln z). (42)

Hence

| ln z1 − ln z2| = | ln(− ln z1) − ln(− ln z2)|. (43)

Let κ = − max(ln |z1|, ln |z2|) > 1. Then − ln z1 and − ln z2 lie in {z | Re(z) ≥ κ}. This 
set is convex, so the (vectorial) mean value inequality gives

| ln(− ln z1) − ln(− ln z2)| ≤ | ln z1 − ln z2| sup
z∈[− ln z1,− ln z2]

| ln′(z)| ≤ 1
κ
| ln z1 − ln z2|.

Combining this with (43) gives | ln z1 − ln z2| = 0, so that z1 = z2. �
We now address the surjectivity of the map H.

Proposition 7.4. For 0 < α < π and ρ small enough (depending on α), we have

D− ρ ln ρ,α ⊂ H(Dρ,π).

Proof. We are going to prove that the inclusion holds for every ρ ∈ (0, 1/e) satisfying

arctan
(

π
)

≤ π − α. (44)
| ln ρ|
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Let us fix a complex number seiγ with 0 < s < −ρ ln ρ and |γ| < α. We want to prove 
the existence of r < ρ and θ ∈ (−π, π) such that H(reiθ) = seiγ . We proceed in two 
steps.

(1) There exists a continuous function θ : (0, ρ) → (−π,π) such that ∀r ∈ (0, ρ),

ArgH(r eiθ(r)) = γ.

Fix r ∈ (0, ρ). For θ ∈ (−π, π), Lemma 7.2 gives

f(r, θ) := ArgH(reiθ) = θ + arctan
(

θ

ln r

)
.

Differentiating with respect to θ gives

f ′
θ(r, θ) = 1 + 1(

1 + θ2

ln2 r

)
ln r

≥ 1 + 1
ln r

> 0.

Hence f(r, θ) is a continuous increasing function of θ, sending (−π, π) onto (−π −
arctan(π/ ln r), π + arctan(π/ ln r)). Since r < ρ and ρ satisfies (44), this interval con-
tains (−α, α), and thus the value γ. This proves the existence, and uniqueness (since f
increases), of θ(r).

Now in the neighbourhood of (r, θ(r)), we can apply the implicit function theorem to 
the equation f(r, θ) = γ, and this shows that θ is continuous on (0, ρ).

(2) There exists r ∈ (0, ρ) such that |H(r eiθ(r))| = s.
The function

r �→ |H(r eiθ(r))| = r

√
ln2 r + θ(r)2

is continuous on (0, ρ). It tends to 0 as r tends to 0, and to a value at least equal to 
−ρ ln ρ as r tends to ρ. Since α < −ρ ln ρ, the intermediate value theorem implies that 
there exists r ∈ (0, ρ) such that |H(reiθ(r))| = s.

This completes the proof of the proposition. �
7.2. The log-inversion theorem

By combining Propositions 7.3 and 7.4, we see that for α ∈ (0, π) and ρ small enough, 
every point of D−ρ ln ρ,α has a unique preimage under H in Dρ,π. We now want to adapt 
this result to functions Ψ that behave like H in the neighbourhood of the origin.

Lemma 7.5. Let Ψ be analytic on Ds,π for some s > 0. Assume that as z tends to 0 in 
this domain,

Ψ(z) ∼ H(z) = −z ln z.
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Fig. 8. The contour Γ(ε).

For all α ∈ (0, π), there exist ρ ∈ (0, s) and ρ′ > 0 such that every point of Dρ′,α has a 
unique preimage under Ψ in Dρ,π.

Proof. By assumption, Ψ(z) − H(z) = o(z ln z) = o(−|z| ln |z|) as z tends to 0. Let 
ρ ∈ (0, s) be small enough for every z ∈ Dρ,π to satisfy

|Ψ(z) −H(z)| < −min
(

1
2 , sin

(
π − α

4

))
|z| ln |z|, (45)

1 + 1
ln |z| >

1
2 + α

π + α
, (46)

|z ln z| ≤ −2|z| ln |z|, (47)

− ln |z|
8 ≤ −2 ln |z|, (48)

and assume moreover that ρ is also small enough for the following property to hold:

D− ρ
8 ln ρ

8 ,α
⊂ H(D ρ

8 ,π
). (49)

This inclusion is made possible by Proposition 7.4. Several of the above listed conditions 
can be described by an explicit upper bound on ρ (for instance, (48) just means that 
ρ ≤ 1/8), but we will use them in the above form and find convenient to write them so.

Now fix y0 ∈ Dρ′,α with ρ′ = −ρ
8 ln ρ

8 . We want to prove that y0 has a unique preimage 
under Ψ in Dρ,π. By (49) and Proposition 7.3, it has a unique preimage under H, denoted 
by z0, in Dρ,π (in fact, |z0| < ρ/8). We thus want to prove that the functions Ψ − y0
and H − y0 have the same number of roots in Dρ,π, and we will do so using Rouché’s 
theorem.

For ε ∈ (0, |z0|/8), let Γ ≡ Γ(ε) be the contour shown in Fig. 8. The interior of Γ
converges to Dρ,π as ε → 0. Hence for ε small enough, it contains the point z0, and we 
just need to prove that Ψ − y0 and H − y0 have the same number of roots inside Γ(ε) for 
every small enough ε.
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By Rouché’s theorem, it suffices to show that |Ψ − H| < |H − y0| on Γ. Let us 
decompose Γ into three (non-disjoint) parts:

Γ1 = Γ ∩ {z : |z| = ρ}, Γ2 = Γ ∩ {z : |z| = ε} and Γ3 = Γ ∩
{
z : |Arg z| > π + α

2

}
.

We will use in the study of Γ1 and Γ2 the following elementary result.

Lemma 7.6. If ρ ≥ |z| ≥ 8 |z′| with z, z′ ∈ C \ (−∞, 0], then

|z ln z − z′ ln z′| ≥ −1
2 |z| ln |z|.

Proof. We have the following lower bounds:

|z ln z − z′ ln z′| ≥ |z ln z| − |z′ ln z′|
≥ −|z| ln |z| + 2|z′| ln |z′| by (39) and (47),

≥ −|z| ln |z| + |z|
4 ln |z|

8 because |z′| ≤ |z|/8,

≥ −1
2 |z| ln |z| by (48). �

Since |z0| < ρ/8, we can apply this lemma to z ∈ Γ1 and z′ = z0. This gives, using (45):

|H(z) − y0| ≥ −1
2 |z| ln |z| > |Ψ(z) −H(z)|.

Since ε < |z0|/8, applying Lemma 7.6 to z0 and z ∈ Γ2 gives:

|y0 −H(z)| ≥ −1
2 |z0| ln |z0| ≥ −1

2 |z| ln |z| > |Ψ(z) −H(z)|.

We are left with the contour Γ3. If z ∈ Γ3, we claim that

|ArgH(z)| ≥ α + π − α

4 . (50)

By (38), it suffices to prove this when Arg z ≥ 0. In this case,

ArgH(z) = Arg z + arctan
(

Arg z
ln |z|

)
by (40),

≥
(

1 + 1
ln |z|

)
Arg z since arctan x ≥ x,

>

(
1
2 + α

π + α

)
Arg z by (46),

≥ α + π − α since Arg z ≥ π + α
.
4 2
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Hence (50) holds on Γ3. But since | ArgH(z0)| = | Arg y0| < α, we have

|ArgH(z) − ArgH(z0)| >
π − α

4 . (51)

We still need one more result to conclude.

Lemma 7.7. For β > 0 and complex numbers a and b in C \ (−∞, 0],

|Arg a− Arg b| ≥ β =⇒ |a− b| ≥ |a| sin β.

Proof. (1) If | Arg a − Arg b| ≤ π
2 , then

|a− b| =
∣∣∣|a|ei(Arg a−Arg b) − |b|

∣∣∣ ≥ ∣∣∣Im(
|a|ei(Arg a−Arg b)

)∣∣∣ ≥ |a| sin β.

(2) If | Arg a − Arg b| ≥ π
2 , then

|a− b| =
∣∣∣|a| − |b|ei(Arg b−Arg a)

∣∣∣ ≥ ∣∣∣Re
(
|a| − |b|ei(Arg b−Arg a)

)∣∣∣
= |a| − |b| cos (Arg b− Arg a) ≥ |a| ≥ |a| sin β. �

By applying this lemma to (51) with β = (π − α)/4, we obtain

|H(z) − y0| ≥ |H(z)| sin
(
π − α

4

)

≥ − sin
(
π − α

4

)
|z| ln |z| by (39)

> |Ψ(z) −H(z)| by (45).

We have finally proved that |Ψ(z) − H(z)| < |H(z) − y0| everywhere on the contour 
Γ ≡ Γ(ε), and we can now conclude that Ψ −y0 has, like H−y0, a unique root in Dρ,π. �

We are finally ready to prove the log-inversion theorem (Theorem 7.1).

Proof of Theorem 7.1. Upon writing Ψ = cΨ1 and Υ(y) = Υ1(y/c), we can assume 
without loss of generality that c = 1. We then choose ρ and ρ′ as in Lemma 7.5. For 
y0 ∈ Dρ′,α, we define Υ(y0) as the unique point z0 of Dρ,π such that Ψ(z0) = y0. 
We now apply the analytic implicit function theorem to the equation Ψ(Υ(y)) = y, in 
the neighbourhood of (y0, z0). The function Ψ is analytic at z0 and locally injective by 
Lemma 7.5. Therefore Ψ′(z0) �= 0, and there exists an analytic function Ῡ defined in the 
neighbourhood of y0 such that Ῡ(y0) = z0 and Ψ(Ῡ(y)) = y in this neighbourhood.

This forces Υ(y) and Ῡ(y) to coincide in a neighbourhood of y0, and implies that Υ
is analytic at y0 — and hence in the domain Dρ′,α.
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Let us conclude with the singular behaviour of Υ near 0. The equation Ψ(Υ(y)) = y, 
combined with Ψ(z) ∼ −z ln z, implies that Υ(y) → 0 as y → 0. Thus

y ∼ −Υ(y) ln(Υ(y))

as y → 0. Upon taking logarithms, and using (42), this gives

ln y ∼ ln(Υ(y)) + ln(− ln(Υ(y))) ∼ ln(Υ(y)).

Combining the last two equations finally gives Υ(y) ∼ −y/ ln y. �
8. Asymptotics for 4-valent forested maps

Let F (z, u) =
∑

n fn(u)zn be the generating function of 4-valent forested maps, given 
by Theorem 3.1. That is, fn(u) counts forested 4-valent maps with n faces by the number 
of non-root components. As recalled in Section 2.2, the polynomial fn(μ − 1) has several 
interesting combinatorial descriptions in terms of maps equipped with an additional 
structure, and we will study the asymptotic behaviour of fn(u) for any u ≥ −1.

Recall that F (z, u) is characterized by (15) where θ and Φ are given by (24). As 
discussed after Theorem 3.1, F (z, 0) is explicit and given by (16):

F (z, 0) =
∫

θ(z)dz = 4
∑
i≥2

(3i− 3)!
(i− 2)!i!(i + 1)!z

i+1,

which makes the case u = 0 of the following theorem a simple application of Stirling’s 
formula.

Theorem 8.1. Let p = 4, and take u ≥ −1. The radius of convergence of F (z, u) is

ρu = τ − uΦ(τ) (52)

where Φ is given by (24) and τ satisfies

{
τ = 1/27 if u ≤ 0,
1 − uΦ′(τ) = 0 if u > 0.

The latter condition determines a unique τ ≡ τu in (0, 1/27).
In particular, ρu is an affine function of u on [−1, 0]:

ρu = 1 − uΦ
(

1
)

= 1 + u − u

√
3
. (53)
27 27 27 12π
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Fig. 9. The radius ρu of F (z, u), as a function of u ≥ −1.

The function ρu is decreasing, real-analytic everywhere except at 0, where it is still in-
finitely differentiable: as u → 0+,

ρu = 1
27 − uΦ

(
1
27

)
+ O

(
exp

(
− 2π√

3u

))
. (54)

Let fn(u) be the coefficient of zn in F (z, u). There exists a positive constant cu, 
depending on u only, such that

fn(u) ∼

⎧⎨
⎩

cu ρ
−n
u n−3(lnn)−2 if u ∈ [−1, 0),

cu ρ
−n
u n−3 if u = 0,

cu ρ
−n
u n−5/2 if u > 0.

The constant cu is given explicitly in Propositions 8.3 (for u > 0) and 8.4 (for u < 0), 
and c0 = 2/(35√3π).

The exponent −5/2 found for u > 0 is standard for planar maps (see for instance 
Tables 1 and 2 in [3]). The behaviour for u < 0 is much more surprising, and, to our 
knowledge, it is the first time that it is observed in the world of maps.6 A plot of ρu
is shown in Fig. 9. Note that ρ−1 =

√
3/(12π), a transcendental radius for the series 

counting 4-valent maps equipped with an internally inactive spanning tree.
The proof of the theorem uses the singularity analysis of [36, Ch. VI]. We thus need 

to locate the dominant singularities of the series F ′ (that is, those of minimal modulus), 
and to find how F ′ behave in their vicinity. In order to do this, we begin with the 
series R, defined by R = z + uΦ(R), and then move to F ′ = θ(R). We will find that 
both series have the same radius ρu. Moreover, since F ′ and ū(R− z) have non-negative 

6 Since forested maps correspond to the limit q → 0 of the q-state Potts model (see (10)), one should 
expect a similar behaviour in the phase diagram of the Potts model discussed in [14] for general planar 
maps. However, the combinatorial relevance of the case u ∈ [−1, 0) (corresponding in [14] to J ∈ [−1, 0)) 
is not noted in that paper, so that this phase is not studied.
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Fig. 10. Plot of R(z, u), for z ∈ [0, ρu]. Left: when u = 1, and more generally u > 0, R does not reach 
the dominant singularity of Φ (which is 1/27) at ρu. Right: When u = −1/2, and more generally when 
u ∈ [−1, 0], we have R(ρu) = 1/27.

coefficients in z, this radius is a singularity of each (by Pringsheim’s theorem). We will 
prove that neither F ′ nor R have other dominant singularities, and obtain estimates of 
these functions near ρu (the same estimate, up to a multiplicative factor).

Now the location of ρu, and its nature as a singularity, depend on whether u > 0 or 
u < 0 (Fig. 10). For u > 0, the series R will be shown to satisfy the smooth implicit 
schema of [36, Sec. VII.4]. In brief, the dominant singularity ρu of R comes from the 
failure of the assumption uΦ′(R(z)) �= 1 in the implicit function theorem. The value 
R(ρu) lies in the analyticity domain of Φ and θ, and the singularities of these series play 
no role. Both R and F ′ will be proved to have a square root dominant singularity. If 
u < 0 however, the series R reaches at ρu the dominant singularity of Φ and θ, and the 
singular behaviours of R and F ′ at ρu depend on the singular behaviours of Φ and θ. In 
particular, we find that, around ρ ≡ ρu, the function F ′′(z, u) behaves like 1/ ln(1 −z/ρ), 
up to a multiplicative constant. Since this cannot be the singular behaviour of a D-finite 
series [36, pp. 520 and 582], we have the following corollary.

Corollary 8.2. For u ∈ [−1, 0), the generating function F (z, u) of 4-valent forested maps 
is not D-finite. The same holds when u is an indeterminate.

Recall that F (z, u) is, however, differentially algebraic (Theorem 4.1).

8.1. The series Φ and θ

Recall the definition (24) of these series. The ith coefficient of θ is asymptotic to 
27i/i2, up to a multiplicative constant, and the same holds for Φ. Hence both series have 
radius of convergence 1/27, converge at this point, but their derivatives diverge.
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This is as much information as we need to obtain the asymptotic behaviour of fn(u)
when u > 0. When u < 0, we will need to know singular expansions of Φ and θ near 
1/27. Let us first observe that

Φ(x) = x

(
2F1

(
1
3 ,

2
3 ; 2; 27x

)
− 1

)
(55)

where 2F1(a, b; c; x) denotes the standard hypergeometric function with parameters a, b
and c:

2F1(a, b; c;x) =
∑
n≥0

(a)n(b)n
(c)n

xn

n! ,

with (a)n the rising factorial a(a + 1) · · · (a + n − 1). The series 2F1
( 1

3 ,
2
3 ; 2; 27x

)
can be 

analytically continued in C \ [1/27, +∞), and its behaviour as z approaches 1/27 in this 
domain is given by [1, Eq. (15.3.11)]. Translated in terms of Φ, this gives, as ε → 0,

Φ
(

1
27 − ε

)
=

( √
3

12π − 1
27

)
+

√
3

2π ε ln ε +
(

1 −
√

3
2π

)
ε + O(ε2 ln ε). (56)

One also has:

Φ′
(

1
27 − ε

)
= −

√
3

2π ln ε− 1 + O(ε ln ε). (57)

The series θ is related to Φ by (26). It has the same analyticity domain as Φ, with local 
expansion at 1/27:

θ

(
1
27 − ε

)
=

(
2
3 − 7

√
3

6π

)
+ 2

√
3

π
ε ln ε + 7

√
3

π
ε + O(ε2 ln ε). (58)

Also,

θ′
(

1
27 − ε

)
= −2

√
3

π
ln ε− 9

√
3

π
+ O(ε ln ε). (59)

8.2. When u > 0

As in [36, Def. VI.1, p. 389], we call Δ-domain of radius ρ any domain of the form

{z : |z| < r, z �= ρ and |Arg(z − ρ)| > φ}

for some r > ρ and φ ∈ (0, π/2).
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Proposition 8.3. Assume u > 0. Then the series R(z, u) is aperiodic and satisfies the 
smooth implicit schema of [36, Def. VII.4, p. 467]. Its radius is given by (52), and 
satisfies (54). The series R is analytic in a Δ-domain of radius ρ ≡ ρu, with a square 
root singularity at ρ:

R(z, u) = τ − γ
√

1 − z/ρ + O(1 − z/ρ), (60)

where τ is defined as in Theorem 8.1, and γ =
√

2ρ
uΦ′′(τ) with Φ given by (24).

The series F ′(z, u) is also analytic in a Δ-domain of radius ρ, with a square root 
singularity at ρ:

F ′(z, u) = θ(τ) − γθ′(τ)
√

1 − z/ρ + O(1 − z/ρ), (61)

where γ is given above and θ is defined by (24). Consequently, the nth coefficient of F
satisfies, as n → ∞,

fn(u) ∼ θ′(τ)

√
ρ3

2πuΦ′′(τ)ρ
−nn−5/2.

This proposition establishes the case u > 0 of Theorem 8.1.

Proof. The results that deal with R are a straightforward application of Definition VII.4 
and Theorem VII.3 of [36, pp. 467–468]. Using the notation of this book, G(z, w) =
z + uΦ(w) is analytic for (z, w) ∈ C × {|w| < 1/27}. The so-called characteristic system
holds at (ρ, τ) where τ is the unique element of (0, 1/27) such that Gw(ρ, τ) = uΦ′(τ) = 1, 
and ρ := τ − uΦ(τ). The existence and uniqueness of τ is guaranteed by the fact that 
Φ′(w) increases (strictly) from 0 to +∞ as w goes from 0 to 1/27. The aperiodicity of R
is obvious from the first terms of its expansion: R = z + 3z2u + 6u(3u + 5)z3 + O(z4).

We now move to F ′ = θ(R). Since R(ρ, u) = τ < 1/27, and R has non-negative coef-
ficients, there exists a Δ-domain of radius ρ in which R is analytic and strictly bounded 
(in modulus) by 1/27. Since θ has radius 1/27, the series F ′ = θ(R) is also analytic in 
this domain, and its singular behaviour around ρ follows from a Taylor expansion. One 
then applies the Transfer Theorem VI.4 from [36, p. 393] to obtain the behaviour of the 
nth coefficient of F ′, which is (n + 1)fn+1(u). The estimate of fn(u) follows.

It remains to find an estimate of ρu as u → 0+. Recall that uΦ′(τ) = 1. Thus τ ≡ τu
approaches 1/27 as u → 0, and (57) gives

ln(1/27 − τ) = −2π(1 + ū)√
3

+ o(1)

with ū = 1/u, so that

τ − 1
27 ∼ − exp

(
−2π(1 + ū)√

3

)
. (62)

Since ρ = τ − uΦ(τ), this gives (54) in view of the expansion (56) of Φ. �
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8.3. When u < 0

Proposition 8.4. Let u ∈ [−1, 0). The series R and F ′ have radius ρ ≡ ρu given by (53). 
They are analytic in a Δ-domain of radius ρ, and the following estimates hold in this 
domain, as z → ρ:

R(z) − 1
27 ∼ − 2πρ√

3u
1 − z/ρ

ln(1 − z/ρ) , (63)

F ′′(z) + 4ū ∼ 72
√

3πū2ρ

ln(1 − z/ρ) . (64)

Consequently, the nth coefficient of F satisfies, as n → ∞,

fn(u) ∼ 72
√

3πū2 ρ−n+3

n3 ln2 n
.

Since (64) cannot be the singular behaviour of a D-finite series [36, pp. 520 and 582], 
this proves Corollary 8.2. This proposition also establishes the case u < 0 of Theorem 8.1.

Proof of Proposition 8.4. We begin as before with the series R. The equation R =
z + uΦ(R) reads Ω(R) = z with Ω(y) = y − uΦ(y). Clearly Ω(0) = 0 and Ω′(0) = 1 > 0, 
so that we can apply Corollary 6.3, in which the role of Y is played by R. Let ω, τ and 
ρ be defined as in this corollary. It follows from Section 8.1 that ω = 1/27. Since u < 0, 
Ω′(y) = 1 −uΦ′(y) does not vanish on [0, 1/27). Hence τ = 1/27 as well. By Property (5) 
of Corollary 6.3,

ρ = Ω
(

1
27

)
= 1

27 − uΦ
(

1
27

)
,

which, combined with (56), gives (53).
Corollary 6.3 tells us that R has an analytic continuation along [0, ρ). Moreover, R(z)

increases from 0 to 1/27 on [0, ρ), and the equation

R = z + uΦ(R) (65)

holds in the whole interval [0, ρ).
By Corollary 5.5, the series ū(R − z) has non-negative coefficients. As R itself, it is 

analytic along [0, ρ). By Pringsheim’s theorem, its radius is at least ρ, and this holds 
for R as well. We will now study the behaviour of R in the neighbourhood of ρ, and 
prove that it is singular at this point, so that ρ is indeed the radius of R.

For z ∈ C \ R−, let us define

Ψ(z) := ρ + z − 1 + uΦ
(

1 − z
)
.
27 27



40 M. Bousquet-Mélou, J. Courtiel / J. Combin. Theory Ser. A 135 (2015) 1–59
As explained above, 1 − 27 R(ρ − y) increases from 0 to 1 as y goes from 0 to ρ, and the 
functional equation (65) satisfied by R reads, for y ∈ [0, ρ),

Ψ(1 − 27R(ρ− y)) = y. (66)

By (56), we have Ψ(z) ∼ −cz ln z where

c = −
√

3u
54π > 0.

Let us apply the log-inversion theorem (Theorem 7.1) to Ψ, with α = 3π/4 (we now 
denote by r and r′ the values ρ and ρ′ of Theorem 7.1): There exist r > 0 and 
r′ > 0, and a function Υ analytic on Dr′,α = {|z| < r′ and |Arg z| < 3π/4}, such that 
Ψ(Υ(y)) = y. Furthermore, Υ(y) is the only preimage of y under Ψ that can be found in 
Dr,π = {|z| < r and |Arg z| < π}. Comparing with (66) shows that for y small enough 
and positive, one has Υ(y) = 1 − 27 R(ρ − y). Returning to the original variables, this 
means that, for z real and close to ρ−,

R(z) = 1
27 (1 − Υ(ρ− z)) ,

so that R can be analytically continued on {|z − ρ| < r′ and |Arg(z − ρ) | > π/4}. More-
over, the final statement of Theorem 7.1 gives (63). This shows that R is singular at ρ, 
which is thus the radius of R.

In order to prove that R is analytic in a Δ-domain of radius ρ, we now have to prove 
that it has no singularity other than ρ on its circle of convergence. So let μ �= ρ have 
modulus ρ. Since R := ū(R− z) has positive coefficients and |R(ρ)| < +∞, the series R
converges at μ, and so does R. Recall that Φ is analytic in C \ [1/27, +∞). Hence (65), 
which holds in a neighbourhood of 0, will hold in the closed disk of centre ρ if we can 
prove the following lemma.

Lemma 8.5. For |z| ≤ ρ and z �= ρ, we have R(z) /∈ [1/27, +∞).

Proof. We have already seen that the property holds (since R is increasing) on the 
interval [0, ρ). On the interval [−ρ, 0], the function R is real (Lemma 6.2) and continuous. 
Hence, if R exits (−∞, 1/27) on this interval, there exists t ∈ [−ρ, 0] such that R(t) =
1/27. Let t be maximal for this property. Then R(z) ∈ C \ [1/27, +∞) on a complex 
neighbourhood of (t, 0], and (65) holds there. By differentiating it, we obtain

R′(z) = 1
1 − uΦ′(R(z)) �= 0. (67)

In particular, R′(0) = 1. But since R(t) = 1/27 > R(0) = 0, the function R′(z) must 
vanish in (t, 0), which is impossible in view of its expression above.
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Assume now that z is not real, and let us prove that R(z) is not real either. First,

| ImR(z)| = | Im(z + uR(z))| ≥ | Im z| + u | ImR(z)|. (68)

Then:

| ImR(z)| = | Im (R(z) − R(Re z)) | ≤ |R(z) − R(Re z)|
< |z − Re z| max

y∈[Re z,z]
|R′(y)| ≤ | Im z|max

|y|≤ρ
|R′(y)|.

(69)

The strict inequality comes from the fact that R′ is not constant over [Re z, z]. But R′

is a power series with positive coefficients, and thus for |y| ≤ ρ,

|R′(y)| ≤ R′(ρ) = ū (R′(ρ) − 1) = ū

(
lim
t→ρ

1
1 − uΦ′(R(t)) − 1

)
= −ū, (70)

because Φ′(z) tends to +∞ as z → 1/27. Returning to (69) gives | ImR(z)| < −ū| Im z|, 
and this inequality, combined with (68), gives | ImR(z)| > 0. �

So we now know that (65) holds everywhere in the disk of radius ρ, with R only 
reaching the critical value 1/27 at ρ. By differentiation, (67) holds as well. Let us return 
to our point μ �= ρ, of modulus ρ. We now want to apply the analytic implicit function 
theorem to (65) at the point (μ, R(μ)). We know that Φ is analytic around R(μ). Could 
it be that uΦ′(R(μ)) = 1? By (67), this would imply that |R′(z)|, and thus |R′(z)|, is not 
bounded as z approaches μ in the disk. However, R′ has non-negative coefficients and 
R′(ρ) has been shown to converge (see (70)). Thus R′(z) remains bounded in the disk of 
radius ρ, and in particular uΦ′(R(μ)) �= 1. The analytic implicit function theorem then 
implies that R is analytic at μ.

In conclusion, we have proved that there exists a Δ-domain of radius ρ where R is 
analytic and avoids the half-line [1/27, +∞).

Let us now turn our attention to F ′ = θ(R). Since θ is analytic in C \ [1/27, +∞), the 
series F ′ is analytic in the same Δ-domain as R. The estimate (63) of R, combined with 
the expansion (58) of θ, does not give immediately the singular behaviour of F ′, and it 
is more direct to work with F ′′. Indeed,

F ′′(z) = R′(z)θ′(R(z)) = θ′(R(z))
1 − uΦ′(R(z)) . (71)

By (57) and (59),

θ′(1/27 − ε)
1 − uΦ′(1/27 − ε) = −4ū− 2ū

(
9 − 4π(1 + ū)√

3

)
1

ln ε
+ O(1/ln2 ε)

= −4ū + 72
√

3πū2ρ + O(1/ln2 ε),
ln ε
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in view of (53). This, combined with (71) and the estimate (63) of R(z), gives (64). One 
finally applies the Transfer Theorem VI.4 from [36, p. 393] to obtain the behaviour of the 
nth coefficient of F ′′, which is (n + 2)(n + 1)fn+2(u). The estimate of fn(u) follows. �
9. Large random maps equipped with a forest or a tree

We still focus in this section on 4-valent maps, equipped either with a spanning forest 
or with a spanning tree. In each case, we define a Boltzmann probability distribution 
on maps of size n, which involves a parameter u and takes into account the number 
of components of the spanning forest, or the number of internally active edges of the 
spanning tree (equivalently, the level of a recurrent sandpile configuration, as explained 
in Section 2.2). We observe on several statistics of these models the effect of the phase 
transition found at u = 0 in the previous section.

9.1. Forested maps: Number and size of components

Fix n ∈ N and u ∈ [0, +∞). Consider the following probability distribution on 4-valent 
forested maps (M, F ) having n faces:

Pc(M,F ) = uc(F )−1

fn(u) ,

where c(F ) is the number of components of F , and fn(u) counts 4-valent forested maps 
by the number of non-root components. Under this distribution, let Cn be the number 
of components of F , and Sn the size (number of vertices) of the root component. When 
u = 0, only tree-rooted maps have a positive probability, Cn = 1 and Sn = n − 2, the 
total number of vertices in the map. Let us examine how this changes when u > 0.

Proposition 9.1. Assume u > 0. Under the distribution Pc, we have, as n → ∞:

Ec(Cn) ∼ uΦ(τ)
τ − uΦ(τ) n,

where Φ is given by (24) and τ ≡ τu is the unique solution in (0, 1/27) of uΦ′(y) = 1.
The size Sn of the root component admits a discrete limit law: for k ≥ 1,

lim
n→+∞

Pc(Sn = k) = 4 (3 k)!
(k − 1)! k! (k + 1)!

τk

θ′(τ) (72)

with θ defined by (24).

Proof. We have

Ec(Cn − 1) =
∑

(c(F ) − 1) u
c(F )−1

fn(u) = u
f ′
n(u)
fn(u) = u

[zn−1]F ′′
zu(z, u)

[zn−1]F ′
z(z, u) . (73)
(M,F )
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It follows from the definition (15) of R and F that

F ′′
zu(z, u) = Φ(R)θ′(R)

1 − uΦ′(R)
. (74)

We now use singularity analysis. The functions Φ and θ are analytic at τ = R(ρ, u), the 
value τ satisfies 1 = uΦ′(τ), and a singular estimate of R−τ is given by (60). This gives, 
as z → ρ,

F ′′
zu(z, u) ∼ Φ(τ)θ′(τ)

uΦ′′(τ)γ
√

1 − z/ρ

where γ is as in Proposition 8.3. An estimate of F ′
z(z, u) is given by (61). Our estimate 

of Ec(Cn) then follows from a transfer theorem, and the fact that ρ = τ − uΦ(τ).
To study Sn, we add to our generating function F (z, u) a weight s for each vertex 

belonging to the root component. As discussed at the end of Section 3.1, we now have, 
by specializing (19):

sF ′
z(z, u, s) = θ(sR),

where R = R(z, u) is as before. We can express Pc(Sn = k) in terms of F ′
z:

Pc(Sn = k) = [zn−1sk]F ′
z(z, u, s)

[zn−1]F ′
z(z, u, 1) = [zn−1sk+1]θ(sR)

[zn−1]θ(R) .

We now apply Proposition IX.1 from [36, p. 629]. Proposition 8.3 guarantees that its 
hypotheses are indeed satisfied, and this gives (72), using the expression (24) of θ. �
9.2. Tree-rooted maps: Number of internally active edges

Fix n ∈ N and u ∈ [−1, +∞). Consider the following probability distribution on 
4-valent tree-rooted maps (M, T ) having n faces:

Pi(M,T ) = (u + 1)i(M,T )

fn(u) ,

where i(M, T ) is the number of internally active edges in (M, T ). Eq. (6) shows that this 
is indeed a probability distribution. Under this distribution, let In denote the number of 
internally active edges. As shown by (9), In can also be described as the level �(C) of a 
recurrent sandpile configuration C of an n-vertex quadrangulation M , drawn according 
to the distribution

Ps(M,C) = (u + 1)�(C)

fn(u) .

We assume below that u > −1, otherwise In = 0.
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Proposition 9.2. The expected number of internally active edges undergoes a phase tran-
sition of infinite order at u = 0: as n → ∞,

Ei(In) ∼ κu n, (75)

with

κu = (1 + u)Φ(τ)
τ − uΦ(τ)

where Φ is given by (24) and τ ≡ τu is defined in Proposition 8.1. The function κu

is rational for u ≤ 0, real-analytic everywhere except at 0, where it is still infinitely 
differentiable: as u → 0+,

κu = (1 + u)Φ(1/27)
1/27 − uΦ(1/27) + O

(
exp

(
− 2π√

3u

))
.

Of course, this non-analytic behaviour originates in the similar behaviour of the func-
tion τu of Proposition 8.1. The convergence of Ei(In)/n was proved by Mullin when 
u = 0 for general planar maps having n edges (but the limit is not given explicitly) [46].

Proof of Proposition 9.2. We have

Ei(In) =
∑

(M,T )

i(M,T ) (u + 1)i(M,T )

fn(u) = (u + 1)f
′
n(u)
fn(u) = (u + 1)[zn−1]F ′′

zu(z, u)
[zn−1]F ′

z(z, u) . (76)

Comparing with (73), we see that for u > 0, we have Ei(In) = (1 + ū)Ec(Cn). Thus (75)
follows from Proposition 9.1 when u > 0. The expansion of κu near 0+ follows from the 
estimate (62) of τ and the expansion (56) of Φ.

Let us now take u ∈ [−1, 0). The series F ′′
zu is still given by (74), which can also be 

written Φ(R)F ′′
zz (by (71)), or ū(R− z)F ′′

zz. In view of the estimates (63) and (64) of R
and F ′′

zz, we find

[zn−1]F ′′
zu(z, u) ∼ ū(1/27 − ρ)[zn−1]F ′′

zz(z, u).

Returning to (76) gives (75) by singularity analysis, since ρ = 1/27 − uΦ(1/27).
When u = 0, we have R = z. Hence (74) reads F ′′

zu(z, 0) = Φ(z)θ′(z), while 
F ′
z(z, 0) = θ(z). As above, (75) follows from (76) by singularity analysis, using (56), 

(58) and (59). �
A limit law for In. As suggested by one of the referees, we could try to determine a limit 
law (rather than the limiting first moment) for the random variable In. Its probability 
generating function is given by

pn(v) :=
∑

Pi(In = k)vk = fn((u + 1)v − 1)
fn(u) .
k≥0
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When u ∈ (−1, ∞) \ {0} and v is real and close enough to 1, Theorem 8.1 implies that

pn(v) ∼
c(u+1)v−1

cu

(
ρu

ρ(u+1)v−1

)n

.

We expect this behaviour to be sufficiently uniform in v to meet the assumptions of the 
quasi-power theorem [36, Thm. IX.8, p. 645]. In particular, we expect (In − E(In))/

√
n

to converge to a centred Gaussian distribution. We have actually proved this for u > 0. 
Let us sketch our argument: first, we apply [33, Prop. 1] to prove that R(z, u) satisfies an 
“algebraic singularity schema”, in the sense of [36, Thm. IX.12, p. 676]. Using F ′

z = θ(R), 
we then establish the same property for F ′

z. We finally check that the assumptions of 
[36, Thm. IX.12, p. 676] hold and conclude.

The most interesting question may be whether this Gaussian behaviour persists at 
u = 0, even though the behaviour of pn(v) now depends on the sign of v − 1:

pn(v) ∼ cv−1

c0

(
ρ0

ρv−1

)n

×
{

(lnn)2 if v < 1,
n1/2 if v > 1.

For any k ≥ 0, the generating function

∑
M,T

f(M)zf(M)−1i(M,T )k

can be computed explicitly in terms of θ, Φ and their derivatives, by differentiating the 
system (15) several times with respect to u, and then setting u = 0. In this way, we have 
computed the first 9 limiting moments of (In − nμ)/(σ

√
n), with

μ = 9
√

3
4π − 1 and σ2 = 9

√
3

4π

(
9
√

3
4π − 1

)
.

We have found them to be those of a standard Gaussian law, namely 0, 1, 0, 3, 0, 15, 0,
105, 0, and we conjecture that the limit distribution of In remains Gaussian (after nor-
malization) when u = 0.

10. Asymptotics for cubic forested maps

We study in this section the singular behaviour of the series F (z, u) that counts cubic 
forested maps by the number of components, and the asymptotic behaviour of its nth 
coefficient fn(u). As expected, we observe a “universality” phenomenon: our results are 
qualitatively the same as for 4-valent maps (Theorem 8.1). However, the cubic case is 
more difficult since we now have to deal with a pair of equations:

R = z + uΦ1(R,S), S = uΦ2(R,S),
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where Φ1 and Φ2 are given by (27) and (28). Our results are less complete than in 
the 4-valent case: when u < 0, we only determine the singular behaviour of F ′(z, u) as 
z approaches the radius of F ′ on the real axis. We do not know if F ′ has dominant 
singularities other than its radius. Consequently, we have not obtained the asymptotic 
behaviour of fn(u) when u < 0. Our real analysis still provides a result on the asymptotic 
behaviour of a sum (related to the Cesàro mean) involving these numbers.

Theorem 10.1. Let p = 3, and take u ≥ −1. The radius of convergence of F (z, u) reads

ρu = τ − uΦ1(τ, σ)

where the pair (τ, σ) satisfies

σ = uΦ2(τ, σ)

and {
64τ = (1 − 4σ)2 if u ≤ 0,
(1 − uΦx

1(τ, σ)) (1 − uΦy
2(τ, σ)) = u2Φy

1(τ, σ)Φx
2(τ, σ) if u > 0.

The series Φ1 and Φ2 are given by (27) and (28), and Φx
i (resp. Φy

i ) denotes the derivative 
of Φi with respect to its first (resp. second) variable.

In particular, ρu is an algebraic function of u on [−1, 0]:

ρu =
3(1 − u2)2π4 + 96u2π2(1 − u2) + 512u4 + 16u

√
2
(
π2(1 − u2) + 8u2)3/2

192π4(1 + u)3 . (77)

Let fn(u) be the coefficient in zn in F (z, u). There exists a positive constant cu, depending 
on u only, such that

fn(u) ∼
{
cu ρ

−n
u n−3 if u = 0,

cu ρ
−n
u n−5/2 if u > 0.

For u ∈ [−1, 0), the series F ′(z) ≡ F ′(z, u) has the following singular expansion as 
z → ρ−u :

F ′(z) = F ′(ρu) + α(ρu − z) + β
ρu − z

ln(ρu − z) (1 + o(1)) , (78)

where

β =
4u− 3

√
2
√

π2(1 − u2) + 8u2

2u2 < 0.

Remarks. 1. We expect the singular expansion (78) to transfer to coefficients, so that

fn(u) ∼ −βρ−n+2
u n−3(lnn)−2. (79)
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Proving this would require more information on F ′ than we have (behaviour in a com-
plex neighbourhood of the radius, and around the other dominant singularities, if any). 
However, Tauberian theorems provide estimates of Cesàro means from real estimates of 
the function [36, Thm. VI.13], and by computing real estimates of F ′, F ′′ and F ′′′ we 
can conclude that

n∑
k=0

k3ρkufk(u) ∼ −βρ2
u n lnn−2,

in accordance with (79).
2. As in the 4-valent case, the singular behaviour of F ′ obtained when u < 0 is 

incompatible with D-finiteness [36, pp. 520 and 582].

Corollary 10.2. For u ∈ [−1, 0), the generating function F (z, u) of cubic forested maps 
is not D-finite. The same holds when u is an indeterminate.

3. The series F (z, 0) has a simple explicit expression given by (16):

F (z, 0) = 3
∑
�≥1

(4�)!
(2�− 1)!(� + 1)!(� + 2)!z

�+2.

The above theorem follows in this case from Stirling’s formula. One has σ = 0 and 
ρ0 = τ = 1/64. We will thus focus below on the cases u > 0 and u < 0.

4. At u = −1, one finds ρ−1 = π2/384, a beautiful transcendental radius of convergence 
for the series counting cubic maps equipped with an internally inactive spanning tree.

10.1. The series Φ1, Φ2, Ψ1 and Ψ2

We have performed in Section 4.3 a useful reduction by showing that the bivariate 
series Φ1(x, y) and Φ2(x, y) can be expressed in terms of the univariate hypergeometric 
series Ψ1 and Ψ2 (see (30)–(31)). The ith coefficient of Ψ1 is asymptotic to 64i/i2, up 
to a multiplicative constant, and the same holds for Ψ2. Hence both series have radius 
of convergence 1/64, converge at this point, but their derivatives diverge. In fact,

Ψ1(z)/z = 2F1(1/4, 3/4; 2; 64z),

so that Ψ1 can be analytically defined on C \ [1/64, +∞). The same holds for Ψ2(z) in 
view of (34). It follows from [1, Eq. (15.3.11)] that, as ε → 0 in C \ R−,

Ψ1

(
1 − ε

)
=

√
2 +

√
2
ε ln ε−

√
2
ε + O

(
ε2 ln ε

)
. (80)
64 24π 2π 2π
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Fig. 11. Left: The domain of absolute convergence of the series Φ1 and Φ2, in the real plane. Right: A domain 
where an analytic continuation exists. No analytic continuation exists at a point of the parabola 64x =
(1 − 4y)2.

By (34), we also have

Ψ2

(
1
64 − ε

)
=

(
1
2 −

√
2
π

)
+ 4

√
2

π
ε ln ε + 12

√
2

π
ε + O

(
ε2 ln ε

)
. (81)

Let us now return to Φ1 and Φ2. The series 
√

1 − 4y has radius 1/4, the series Ψ1 and 
Ψ2 have radius 1/64, and thus Φ1(x, y) and Φ2(x, y) converge absolutely for |y| < 1/4
and 64|x| < (1 − 4|y|)2 (Fig. 11, left). The expressions (30) and (31) show that Φ1 and 
Φ2 have an analytic continuation for y ∈ C \ [1/4, +∞) and x/(1 −4y)2 ∈ C \ [1/64, +∞)
(Fig. 11, right). As Ψ′

1(t) and Ψ′
2(t) tend to +∞ when t → 1/64, there is no way to 

extended analytically Φ1 or Φ2 at a point of the critical parabola {64x = (1 − 4y)2}.

10.2. When u > 0

Proposition 10.3. Assume u > 0. The series R, S and F ′ have the same radius of 
convergence, denoted ρu, which satisfies the conditions stated in Theorem 10.1. The three 
series are analytic in a Δ-domain of radius ρu, with a square root singularity at ρu. In 
particular,

fn(u) ∼ cuρ
−n
u n−5/2

for some positive constant cu.

Proof. Recall that these three series are defined by the system (29), (32), (33). The 
analysis of systems of functional equations can be a tricky exercise, even in the positive 
case7 and with 2 equations only. In particular, the connection between the location of the 
radius and the solution(s) of the so-called characteristic system is subtle (see [33,5]). In 

7 By this, we mean a system given by equations of the form Ri = Fi(R1, . . . , Rm) where the series Fi

have non-negative coefficients.
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our case however, the equation that defines S does not involve the variable z explicitly, 
and this allows us to proceed safely in two steps. As in Section 5.2, we first define 
S̃ ≡ S̃(z, u) as the unique power series in z satisfying S̃(0, u) = 0 and

S̃ = uΦ2(z, S̃) (82)

= u
√

1 − 4S̃ Ψ2

(
z

(1 − 4S̃)2

)
+ u

4

(
1 −

√
1 − 4S̃

)2
. (83)

We will first study S̃, and then move to R, which is now defined by the following equation:

R = z + uΦ1(R, S̃(R)) (84)

= z + u(1 − 4S̃(R))3/2Ψ1

(
R

(1 − 4S̃(R))2

)
− uR, (85)

where we have denoted for short S̃(z) = S̃(z, u). Of course, S = S̃(R).
So let us begin with S̃. One can prove that (82) fits in the smooth implicit function 

schema of [36, Def. VII.4], but we can actually content ourselves with an application 
of Proposition 6.1, where S̃ plays the role of Y . The series H(x, y) = y − uΦ2(x, y)
satisfies the assumptions of this proposition. Define ρ̃ as in the proposition. Since S̃ has 
non-negative coefficients, the points (z, S̃(z)) form, as z goes from 0 to ρ̃, an increasing 
curve starting from (0, 0) in the plane R2. Condition (b), together with the properties 
of Φ2 described in Section 10.1, implies that this curve cannot go beyond the parabola 
64x = (1 −4y)2. This rules out the possibilities (i) and (iv). Now H ′

y(x, y) = 1 −uΦ′
2(x, y)

approaches −∞ as (x, y) approach the parabola, and thus Condition (d) rules out the 
possibility (iii). The curve (z, S̃(z)) thus ends (at z = ρ̃) before reaching the parabola. 
Moreover (ii) holds: H ′

y(ρ̃, S̃(ρ̃)) = 0, or equivalently,

1 = u
∂Φ2

∂y
(ρ̃, S̃(ρ̃)). (86)

(The lim inf of (ii) becomes here a true limit because of the positivity of the coefficients 
of Φ2 and S̃.) By (a), the radius of S̃ is at least ρ̃. Finally, it follows from (82) that for 
z ∈ [0, ρ̃),

S̃′(z) = u
∂Φ2
∂x (z, S̃(z))

1 − u ∂Φ2
∂y (z, S̃(z))

. (87)

By (86), this derivative tends to +∞ as z → ρ̃. Hence S̃ has radius ρ̃. Fig. 12 (left) 
illustrates the behaviour of S̃ on [0, ρ̃].

Let us now consider Eq. (84) that defines R, and prove that it fits in the smooth 
implicit function schema of [36, Def. VII.4, pp. 467–468]. With the notation of this 
definition, G(z, w) = z+uΦ1(w, S̃(w)). The properties of S̃ established above show that 
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Fig. 12. Left: Plot of S̃(z) for u = 1 and z ∈ [0, ̃ρ]. The points (z, S̃(z)) remain below the parabola 64z =
(1 − 4S̃)2. The plot was obtained using the expansion of S̃(z) at order 80 (this is why the divergence of S̃′

at ρ̃ is not very clear on the picture), and the estimate ρ̃ � 0.01032. Right: Plot of (R(z), S(z)) for u = 1
and z ∈ [0, ρ], with ρ � 0.00980. This curve follows the plot of S̃, but stops at the point (R(ρ), S(ρ)), for 
which R(ρ) < ρ̃.

G is analytic in C × {w : |w| < ρ̃}. The characteristic equation 1 = G′
w(ρ, τ) does not 

involve ρ and reads

1 = u

(
∂Φ1

∂x
(τ, S̃(τ)) + S̃′(τ) ∂Φ1

∂y
(τ, S̃(τ))

)
. (88)

The right-hand side of this equation increases from 0 to +∞ as τ goes from 0 to r
(because, as observed above, S̃′(ρ̃) = +∞). Hence (88) determines a unique value of τ
in (0, ρ̃). The equation τ = G(ρ, τ) gives the value of ρ:

ρ = τ − uΦ1(τ, S̃(τ)). (89)

Let σ = S̃(τ). The combination of (89), (82), (88) and (87) proves the properties of ρ, τ
and σ stated in Theorem 10.1.

The rest of the argument is analogous to the end of the proof of Proposition 8.3. First, 
R is irreducible as shown by the first terms of its expansion at 0:

R = z + 2u(2u + 3)z2 + 4u(42u2 + 63u + 10u3 + 35)z3 + O(z4).

By Theorem VII.3 of [36, p. 468], it has radius ρ, and is analytic in a Δ-domain of 
radius ρ. It takes the value τ at ρ, with a square root singularity there. By composition 
with the series S̃, which has radius ρ̃ > τ , the same properties hold for S = S̃(R), 
and finally for the series F ′ given by (14) (since θ(x, y) is analytic in R2 for 64x <
(1 − 4y)2).

The behaviour of R and S is illustrated in Fig. 12 (right). �
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Fig. 13. A cubic enriched S̃-tree with no flippable edge.

10.3. When u < 0

Proposition 10.4. Let u ∈ [−1, 0). The series R, S and F ′ have radius ρ ≡ ρu given 
by (77). As z → ρ−u , these three series admit an expansion of the form (78), with β > 0.

Proof. As a preliminary remark, recall that F (z, u) is (u + 1)-positive, with several 
combinatorial interpretations described in Section 2.2. By Pringsheim’s theorem, the 
radius of F is also its smallest real positive singularity. By Corollary 5.5, the same holds 
for R, S and S̃. This will be used frequently in the proof, without further reference to 
Pringsheim’s theorem.

As in the case u > 0, we proceed in two steps, and study first the series S̃ defined 
by (82), and then the series R defined by (84). Let us begin with S̃, and apply Proposi-
tion 6.1 with H(x, y) = y − uΦ2(x, y). Let us rule out the possibilities (i), (ii) and (iv).

(i) Could S̃ ≡ S̃(z, u) have an analytic continuation on (0, +∞)? That is, an infinite 
radius of convergence? Corollary 5.5 implies that the radius of S̃ is at most the radius of 
S̃(z, −1), which counts (by the number of leaves) enriched S̃-trees with no flippable edge. 
Since these trees can have arbitrary large size (Fig. 13), S̃(z, −1) is not a polynomial. Its 
coefficients are non-negative integers, and hence its radius is at most 1. The same thus 
holds for S̃(z, u).

(ii) By Lemma 5.6, the series ∂Φ2
∂y (z, S̃(z)) has non-negative coefficients. Since its 

constant term is 0, the function 1 − u∂Φ2
∂y (z, S̃(z)) is increasing on [0, ρ̃), with initial 

value 1: this rules out (ii).
(iv) By Corollary 5.5, S̃ is negative and decreases on [0, ρ̃). Assume that it tends 

to −∞. Since ρ̃ is finite, this implies that

lim
z→ρ̃−

Ψ2

(
z

(1 − 4 S̃(z))2

)
= Ψ2(0) = 0.

But then (83) gives

(1 + ū) S̃ = −u
√

1 − 4S̃/2 + o
(√

1 − 4S̃
)
,

which is impossible if S̃ → −∞.
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Fig. 14. A plot of S̃(z) for u = −1/2 and z ∈ [0, ̃ρ]. The curve reaches the parabola 64z = (1 −4S̃)2 at ρ̃. The 
plot was obtained using the expansion of S̃(z) up to order 25. Plotting the pairs (R(z), S(z)) for z ∈ [0, ρ)
gives the same curve.

We conclude that (iii) holds, so that Φ2 has no analytic continuation at (ρ̃, S̃(ρ̃)). 
Given the properties of Φ2 described in Section 10.1, this means that

64ρ̃ = (1 − 4S̃(ρ̃))2.

The radius of S̃ is at least ρ̃, the value of which we will determine explicitly later. Fig. 14
shows a plot of S̃ for u = −1/2. One can in fact prove that ρ̃ is the radius of S̃, but we 
will not use that.

Let us now consider Eq. (84) that defines R, and apply Corollary 6.3 with Ω(y) =
y−uΦ1(y, S̃(y)). We have just seen that, as y goes from 0 to ρ̃, the pair (y, S̃(y)) reaches 
for the first time the critical parabola at ρ̃. Hence, with the notation of Corollary 6.3, 
the first singularity of Ω on the positive real axis satisfies ω ≥ ρ̃. Let us define τ and ρ
as in Corollary 6.3.

Could it be that Ω′(τ) = 0? By Corollary 6.3, R(z) increases on (0, ρ) and Ω′(R(z)) =
1/R′(z) ≥ 0. So could it be that R′(z) tends to +∞ as z tends to ρ? No: by Corollary 5.5, 
ū(R′(z) − 1) has non-negative coefficients, and thus it is always larger than its value at 
z = 0, which is 0. Since u < 0, this gives R′(z) ≤ 1 on (0, ρ), and we conclude that 
Ω′(τ) > 0. Hence τ = ω ≥ ρ̃.

Since R(z) increases from 0 to ω on [0, ρ], there exists a unique ρ̂ such that R(ρ̂) = ρ̃. 
Since S̃ has radius at least ρ̃, the series S = S̃(R) has also radius at least ρ̂. The plot 
of the pairs (R(z), S(z)) for z ∈ [0, ρ̂] coincides with the plot of (z, S̃(z)) for z ∈ [0, ρ̃]
shown in Fig. 14.

We will now use the system (32)–(33) defining R and S to obtain expansions of R and 
S near ρ̂. These expansions will be found to be singular at ρ̂: this implies that ρ̂ = ρ is 
the radius of R and S.

We adopt the following notation: z = ρ̂− x, R(z) = ρ̃− r, S(z) = S(ρ̂) − s and

R(z)
2 = 1 − ε. (90)
(1 − 4S(z)) 64
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The quantities x, r, s and ε tend to 0 as z tends to ρ̂. Let us begin by expanding (33)
for z close to ρ̂. Using the expansion (81) of Ψ2 near 1/64, we obtain

a1 + b1s + c1ε ln ε + d1ε = O(ε2 ln ε) + O(s2) + O(s ε ln ε), (91)

with

a1 = 1 + u

4 δ2 − u
√

2
π

δ + u− 1
4 ,

b1 = −2u
√

2
πδ

+ 1 + u, c1 = 4
√

2
π

uδ, d1 = 3c1,

and δ =
√

1 − 4S̃(ρ̃). In particular, a1 must vanish, which gives the value of δ:

δ =
√

1 − 4S̃(ρ̃) =
2
√

2u +
√
π2(1 − u2) + 8u2

π(1 + u) . (92)

(The choice of a minus sign before a square root would give a negative value, which is 
impossible for δ =

√
1 − 4S̃(ρ̃).) Note that u has a rational expression in terms of δ:

u = − π(δ2 − 1)
πδ2 − 4

√
2δ + π

.

We will replace all occurrences of u by this expression, to avoid handling algebraic 
coefficients.

Let us now return to the expansion (91). Given that δ > 0, we have b1 > 0 for 
u ∈ [−1, 0). Hence s = O(ε ln ε), and (91) can be rewritten as

b1s + c1ε ln ε + d1ε = O(ε2 ln2 ε). (93)

Let us now move to (90). Using ρ̃ = δ4/64, it gives

b2s + d2ε + e2r = O(ε2 ln2 ε) (94)

with b2 = −8δ2, d2 = 64δ4, e2 = −64. Finally, Eq. (33) that defines R gives

a3 + b3s + c3ε ln ε + d3ε + e3r + f3x = O(ε2 ln2 ε), (95)

where, in particular,

a3 = 96(πδ2 − 4
√

2δ + π)ρ̂ + δ3(2
√

2δ2 − 3πδ + 4
√

2).

Since a3 must vanish, we obtain a rational expression of ρ̂ in terms of δ, and then, 
using (92), an explicit expression which coincides with (77). We do not give here the 
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expressions of b3, c3, d3, e3 and f3, which are rational in δ. They are easy to compute. 
Let us just mention that f3 �= 0.

Now, using (93), (94) and (95) in this order, we obtain for s, r and finally x expansions 
in ε of the form

s = c4 ε ln ε + d4 ε + O(ε2 ln2 ε), (96)

r = c5 ε ln ε + d5 ε + O(ε2 ln2 ε), (97)

x = c6 ε ln ε + d6 ε + O(ε2 ln2 ε). (98)

In particular, c6 �= 0 for u ∈ [−1, 0) and the latter equation gives x ∼ c6 ε ln ε, so that 
ln x ∼ ln ε and thus

ε = x

c6 ln x
(1 + o(1)) . (99)

To conclude, we use (98) to express ε ln ε as a linear combination of x and ε (plus O()
terms), and (99) to express ε in terms of x. This replaces (96) and (97) by

s = c4
c6

x + d4c6 − c4d6

c26

x

ln x
(1 + o(1)),

r = c5
c6

x + d5c6 − c5d6

c26

x

ln x
(1 + o(1)).

These equations, written explicitly, read

S(z) = 1 − δ2

4 + 4π
δ
√
π2(1 − u2) + 8u2

(ρ̂− z) − 2
√

2π
uδ

ρ̂− z

ln(ρ̂− z) (1 + o(1)) ,

R(z) = ρ̃− πδ

2
√

π2(1 − u2) + 8u2
(ρ̂− z) −

√
2πδ
4u

ρ̂− z

ln(ρ̂− z) (1 + o(1)) ,

as z → ρ̂. In particular, R and S are singular at ρ̂, so that ρ̂ = ρ is their common radius.
Using (29), we finally compute an expansion of F ′(z) near ρ, which gives (78). The 

coefficient β of (ρ − z)/ ln(ρ − z) does not vanish on [−1, 0), and F ′ has radius ρ as well. 
Note that we can also compute expansions of F ′′ and F ′′′ using (29), (35) and (36). This 
is how we obtain the result stated in the first remark below Theorem 10.1. �
The series R,S and F ′ in the complex plane. We have contented ourselves with a real 
study of R, S and F ′ near their common radius ρ. Going further with complex analysis 
would require, among other results, a better knowledge of the series S̃ beyond its disk 
of convergence (we expect R(z) to exit this disk for some z with |z| < ρ, in the same 
way it exits the disk of convergence of Φ in the 4-valent case for some z with |z| < ρ). 
We expect for S̃ at least a second singularity on the negative real axis, at which S̃
approaches 1/4 (this prediction comes from Eq. (83) which defines S̃, and from the fact 
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that Ψ2(y) diverges as y tends to −∞). These observations indicate that the complex 
analysis of F ′ is likely to be much more difficult (and longer) than the real analysis we 
have performed.

11. Final comments

11.1. Universality of the asymptotic behaviour

Our asymptotic results remain incomplete when p = 3, as we have not been able to 
obtain the asymptotic behaviour of fn(u) for negative values of u (but only the real 
singular behaviour of F ′(z, u)). We still predict fn(u) to behave like cuρ−n

u n−3(lnn)−2, 
as in the 4-valent case.

The second author has obtained complete results — and proved universality of the 
asymptotic behaviour — for all even values of p. As explained below Theorem 3.1, the 
series S vanishes in this case, so that we only deal with one equation (in R). When p = 6
for instance, it reads:

R = z + uΦ(R) = z + u
∑
�≥1

(5�)!
�!(4� + 1)!R

2�+1.

New difficulties arise from the periodicity of Φ and R. In particular, R and F have several 
singularities on their circle of convergence. The proof involves a difficult generalization 
of Section 5, proving that if p = 2q, the series (Rn − zn)/u are (u + 1)-positive for 
1 ≤ n ≤ q. These results will appear in a forthcoming paper; see also [30]. The same 
asymptotic results hold for general (non-regular) Eulerian forested maps [30].

11.2. A differential equation involving F , rather than F ′?

The two differential equations (DEs) obtained for the series F in Section 4, for the 
4-valent, and then for the cubic case, are in fact equations of order 2 satisfied by F ′. It 
is natural to ask if F itself satisfies a DE of order 2. Let us examine in detail the case 
p = 4.

Returning to Lemma 3.2, we first need an expression of M̄ . Since t2i+1 = tc2i+1 = 0
when p = 4, we can content ourselves with an expression of M̄ valid when g2i+1 = 0
for all i. Such an expression is easily obtained from the expression (17) of M̄ ′

z. Indeed, 
S = 0 in the even case, and Eqs. (17) and (18), written as

M̄ ′
z = θ̄(R), R = z + uΦ̄(R),

imply at once

M̄ = Ψ̄(R)
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where

Ψ̄(x) =
∫

θ̄(x)
(
1 − uΦ̄′(x)

)
dx

=
∑
i≥1

h2i

(
2i
i

)
xi+1

i + 1 − u
∑

i≥1,j≥0
h2ig2j+2(2j + 1)

(
2i
i

)(
2j
j

)
xi+j+1

i + j + 1 .

This should be compared to Eq. (1.4) in [23], which reads, in the even case,

M̄ =
∑
n≥1

h2n

(
2n
n

)
Rn+1

n + 1 − u
∑

n≥1,q≥0,k>q

h2ng2k

(
2n + 2q
n + q

)(
2k − 2q − 2
k − q − 1

)
Rn+k

n + q + 1 .

Our (simpler) expression is obtained by summing over q.
Hence for p = 4, Lemma 3.2 gives

F (z, u) = 4
∑
i≥2

(3i− 3)!
(i− 2)!i!2

Ri+1

i + 1 − u
∑

i≥2,j≥1

(3i− 3)!
(i− 2)!i!2

(3j)!
j!3

Ri+j+1

i + j + 1 = Ψ(R), (100)

where Ψ(x) = Ψ1(x) − uΨ2(x),

Ψ1(x) =
∫

θ(x) dx, Ψ2(x) =
∫

θ(x)Φ′(x) dx,

and now R is defined by R = z + uΦ(R), where Φ is given by (24).
Now assume that F is differentially algebraic of order 2: there exists a non-zero poly-

nomial P such that

P (F, F ′, F ′′, z, u) = 0.

Equivalently,

P (Ψ(R), θ(R), R′θ′(R), z, u) = 0.

Using z = R−uΦ(R), R′ = (1 −uΦ′(R))−1 and Eqs. (25) and (26) that relate θ, Φ, and 
their derivatives, we conclude that either Ψ(x) is algebraic over Q(x, u, Φ(x), Φ′(x)), or 
Φ(x) and Φ′(x) are algebraically related over Q(x). Let us examine these two possibilities.

1. Can Ψ(x) be algebraic over Q(x, u, Φ(x), Φ′(x))? Given that

15Ψ1(x) = 15
∫

θ(x) dx = 54x2 − 2(1 + 81x)Φ(x) + 8x(27x− 1)Φ′(x)

and
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3Ψ2(x) = 3
∫

θ(x)Φ′(x) dx

= 12xΦ(x) − 2(1 − 27x)Φ(x)Φ′(x) − 48Φ2(x) + 12
∫ Φ2(x)

x
dx,

this is equivalent to saying that 
∫

Φ(x)2/x dx is algebraic over Q(x, Φ(x), Φ′(x)). Or, 
using (55), that the hypergeometric function

f(x) = 2F1

(
1
3 ,

2
3 ; 2;x

)

is such that g(x) :=
∫
xf2(x) dx is algebraic over Q(x, f(x), f ′(x)) (here, we use the fact 

that

20
∫

xf(x) dx = 9x2f(x) + 9x2(1 − x)f ′(x)
)
.

A related question (apparently more restrictive) is whether g is a linear combination of 
f2, ff ′, (f ′)2. Given that

2f(x) + 18(x− 1)f ′(x) + 9(x− 1)f ′′(x) = 0,

the vector space spanned over Q(x) by these 3 series contains all products f (i)f (j) and 
is closed by differentiation. This would imply that g satisfies a linear DE of order 3 with 
coefficients in Q(x). Starting from the order 4 DE satisfied by g′,

−4g′(x) + 8x(x− 1)g′′(x) + 27x(x− 1)2g(3)(x) + 9x2(x− 1)2g(4)(x) = 0,

the Maple command ode_int_y tells us that g satisfies no linear DE of order 3. We 
have learnt from discussions with Alin Bostan, Bruno Salvy and Michael Singer that 
this implies that g is not algebraic over Q(x, f, f ′).

2. Now could it be that Φ and Φ′ are algebraically linked over Q(x), or, equivalently, 
that f and f ′ are algebraically linked over Q(x)? One can prove that this is not the case, 
by combining the fact that f ′(x) diverges at 1 like ln(1 − x), while f(1) =

√
3/(12π) is 

finite and transcendental.
These considerations imply that we have found in Section 4.2 the equation of minimal 

order satisfied by F .
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