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1. Introduction

Let G be either the symmetric group S2n or the symmetric group S2n+1, and H the 
hyperoctahedral group Bn = (Z/2)n�Sn, sitting naturally inside G (Bn ⊂ S2n ⊂ S2n+1) 
as the centralizer of a fixed point free involution w0 in S2n. In this paper, we take the 
symmetric group S2n as acting on the set {±1, ±2, · · · , ±n} of cardinality 2n, and the 
symmetric group S2n+1 as acting on the set {0, ±1, ±2, · · · , ±n} of cardinality 2n +1. We 
fix w0 = (1, −1)(2, −2) · · · (n, −n). The paper proves a character relationship between the 
irreducible representations of the groups G and Bn, closely related to character identities 
available between (finite dimensional, irreducible, algebraic) representations of the groups 
GL2n(C), or GL2n+1(C) which are self-dual, i.e., invariant under the involution g → tg−1, 
with (finite dimensional, irreducible, algebraic) representations of the groups SO2n+1(C), 
or Sp2n(C), for which we refer to [5]. These character identities are classically known 
as Shintani character identities, first observed between representations of GLn(Fq) and 
GLn(Fqd), cf. [11], although for the case at hand, it would be much closer to consider 
irreducible unipotent representations of say U2n(Fq) corresponding to an irreducible 
representation of the Weyl group Bn and the associated basechanged representation of 
GL2n(Fq2) associated to a representation of the Weyl group S2n, and which are related 
by a basechange character identity, cf. [4], [1].

Observe that in all the cases above, the group G comes equipped with an automor-
phism, call it j, of finite order (such as conjugation by w0 for symmetric groups), and H
is either the subgroup of fixed points of this automorphism, or is closely related to the 
subgroup of fixed points (through a dual group construction as in [5]), and the theory of 
basechange relates character theory of irreducible representations of H to the character 
theory of irreducible representations of G � 〈j〉 which remain irreducible when restricted 
to G. (If the automorphism j of G is an inner automorphism of G — as is the case in 
this paper, representation theory of G � 〈j〉 is the same as representation theory of G.) 
This is what this paper achieves for G the symmetric group S2n or the symmetric group 
S2n+1, and H the hyperoctahedral group Bn = (Z/2)n � Sn, in the theorem below.

Before proceeding further, we need to introduce some notation on partitions p :=
{p1 ≥ p2 ≥ · · · ≥ pr}. First, recall that the conjugacy class of an element w ∈ Sn is 
encoded by a partition μw of size |μw| = n. Indeed, μw is the collection of lengths of the 
cycles in the decomposition of w as a product of disjoint cycles.

For λ, a partition of n, a 2-hook in λ consists of two adjacent squares in the Young 
diagram of λ whose removal leaves the diagram of a partition of (n − 2). By repeatedly 
removing 2-hooks from λ, one obtains the 2-core of λ, denoted c2(λ). It is not obvious, 
but is well-known, that the 2-core of a partition is independent of the manner in which 



JID:YJCTA AID:105368 /FLA [m1L; v1.297] P.3 (1-20)
F. Lübeck, D. Prasad / Journal of Combinatorial Theory, Series A ••• (••••) •••••• 3
one removes the 2-hooks. The 2-core of a partition could be empty, denoted φ, else is 
the stair-case partition {k, k−1, · · · , 1}. One can also define a pair of partitions (λ0, λ1), 
called the 2-quotient of λ, cf. section 2. The association:

λ → (c2(λ), λ0, λ1),

gives a bijective correspondence between λ and triples of partitions (c2(λ), λ0, λ1) with

|λ| = |c2(λ)| + 2(|λ0| + |λ1|).

Next, recall that the irreducible complex representations of Sn are parameterized by 
partitions λ of n, to be denoted as πλ, with character Θλ : Sn → C. Similarly, the 
irreducible complex representations of Bn are parameterized by pairs of partitions λ0, λ1
with |λ0| + |λ1| = n, to be denoted as π(λ0,λ1), with character Θ(λ0,λ1) : Bn → C.

Let w be an element of Sn whose conjugacy class defines a partition μw of n. Let w̃ be 
any element of S2n whose conjugacy class defines the partition μw̃ = 2μw. In particular, 
w̃ ∈ S2n has no fixed points. We will use w̃ also for the element of S2n+1 under the 
natural embedding of S2n inside S2n+1.

The following is the main theorem of this work proving a character relationship:

Theorem 1.1. Let w be a conjugacy class in Sn treated as a conjugacy class in Bn =
(Z/2)n � Sn with w̃ the conjugacy classes in S2n, S2n+1 defined above. Let (λ0, λ1) be a 
pair of partitions with |λ0| + |λ1| = n, giving rise to a representation π(λ0,λ1) of Bn with 
character Θ(λ0,λ1) : Bn → C. The pair (λ0, λ1) gives rise to a partition λ of 2n (resp. of 
(2n +1)) with empty 2-core (resp. with 2-core 1) and with 2-quotient (λ0, λ1), and defines 
an irreducible representation πλ of S|λ| = S2n, S2n+1 with character Θλ : S|λ| → C. Then 
we have for an ε(λ) = ±1, the character identity:

Θ(λ0,λ1)(w) = ε(λ)Θλ(w̃).

In particular, we have

Θ(λ0,λ1)(1) = ε(λ)Θλ(w0),

determining ε(λ) = ±1. Further, an irreducible representation πλ of S|λ| takes nonzero 
character value at w0 if and only if the partition λ has empty 2-core if |λ| = 2n, and has 
2-core 1 if |λ| = 2n + 1.

After the completion of this work, Prof. G. Lusztig informed the authors that the 
special case of the theorem, viz. Θ(λ0,λ1)(1) = ε(λ)Θλ(w0), occurs on page 110 of his 
paper [8].

The above theorem was arrived at by computations done via the GAP software [3], and 
inspired by the hope that basechange character identities available in many situations 



JID:YJCTA AID:105368 /FLA [m1L; v1.297] P.4 (1-20)
4 F. Lübeck, D. Prasad / Journal of Combinatorial Theory, Series A ••• (••••) ••••••
involving reductive groups, also have an analogue for Weyl groups of these algebraic 
groups. We eventually found that it is a simple consequence of Theorem 4.6 due to 
Littlewood in [6] for even symmetric groups for which we provide a complete proof both 
for S2n as well as S2n+1. It is surprising that the desired character identity relating 
symmetric groups and hyperoctahedral group is proved via Frobenius character formula 
for symmetric groups which is a form of Schur-Weyl duality by a “factorization” of the 
character formula (i.e., Schur polynomials) for irreducible representations of GL2n(C)
on special elements discovered by the second author in [9], which is already there in [6]
written in 1940!

2. A lemma on 2-core and 2-quotient of partitions

A partition is called a 2-core partition if none of the hook lengths in its Young diagram 
is a multiple of 2. It is easy to see that a 2-core partition exists for a number n if and 
only if the number n is a triangular number:

n = d(d + 1)
2 ,

and in this case there is a unique 2-core partition which is the stair-case partition

{d, d− 1, d− 2, · · · , 2, 1}.

Every partition p has associated to it a 2-core partition, call it c2(p), and a pair of 
partitions (p0, p1) called the 2-quotient of p such that

|p| = |c2(p)| + 2(|p0| + |p1|).

We already recalled the definition of the 2-core of a partition in the introduction. 
We now recall the definition of the 2-quotient partitions of any partition p which is an 
ordered pair of partitions (p0, p1). (More generally there is the notion of a p-core and 
p-quotient of a partition due to Littlewood, cf. [7], which arose there in his study of 
modular representations of the symmetric group.)

Define the β-set associated to a partition p := {p1 ≥ p2 ≥ · · · ≥ pr} (we allow some 
of the pi to be zero) to be the collection of (now strictly decreasing) numbers

β(p) = {p1 + (r − 1) > p2 + (r − 2) > · · · > pr}.

For i = 0, 1, let βi(p) be those numbers in β(p) = {p1 + (r − 1), p2 + (r − 2), · · · , pr}
which are congruent to i mod 2. Define a new β-set βi(p) by subtracting i from each 
of the numbers in βi(p), and then dividing by 2. These β-sets βi(p) are associated to 
a partition pi, defining 2-quotient of p, an ordered pair of partitions (p0, p1). It can 
be seen that to any partition p, its 2-core c2(p), and 2-quotient (p0, p1), determine the 
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partition p uniquely, and conversely, any triple of partitions (c2(p), p0, p1) is associated 
to a partition p.

We will now construct the 2-quotient of a partition in some detail to prove a lemma 
needed for our work later.

Let p = {p1 ≥ p2 ≥ · · · ≥ pm} be a partition of |p| with associated β-set:

β(p) := {p1 + (m− 1) > p2 + (m− 2) > · · · > pm}.

Consider the even and odd parts of this β-set as:

β0(p) := pi1 + (m− i1) > pi2 + (m− i2) > · · · > pik + (m− ik).

β1(p) := pj1 + (m− j1) > pj2 + (m− j2) > · · · > pj� + (m− j�).

Divide the numbers appearing in β0(p) and β1(p) − 1 by 2 to obtain β0(p), β1(p):

β0(p) : pi1 + (m− i1)
2 >

pi2 + (m− i2)
2 > · · · > pik + (m− ik)

2 .

β1(p) : pj1 + (m− j1 − 1)
2 >

pj2 + (m− j2 − 1)
2 > · · · > pj� + (m− j� − 1)

2 .

These sequences of strictly decreasing numbers are β-sets for the partitions:

p0 : pi1 + (m− i1)
2 − (k − 1) ≥ pi2 + (m− i2)

2 − (k − 2) ≥ · · · ≥ pik + (m− ik)
2 .

p1 : pj1 + (m− j1 − 1)
2 − (�− 1) ≥ pj2 + (m− j2 − 1)

2 − (�− 2) ≥ · · ·

≥ pj� + (m− j� − 1)
2 .

Using that m = k + �, and the fact that the set of integers comprising of m − iα and 
m − jβ is a permutation of the set of integers 0, 1, 2, · · · , m − 1, it follows that:

|p| − 2(|p0| + |p1|) = 2(k − 1 + k − 2 + · · · + 1 + 0) + 2(�− 1 + �− 2 + · · · + 1 + 0)

−[(m− i1) + (m− i2) + · · · + (m− ik)]

−[(m− j1 − 1) + (m− j2 − 1) + · · · + (m− j� − 1)]

= k(k − 1) + �(�− 1) − m(m− 1)
2 + �

(�)= (k − �)(k − �− 1)
2 .

The following lemma is an easy consequence of (�).
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Lemma 2.1. A partition p has empty 2-core (thus necessarily with |p| even) if and only 
if k = �, or k = � + 1, i.e., in the β-set associated with p, either half of them are even 
and half of them are odd, or the even ones are one more than the odd ones.

A partition p has 2-core consisting of 1 (thus necessarily with |p| odd) if and only if 
k + 1 = �, or k = � + 2, i.e., in the β-set associated with p, the odd numbers are one 
more in cardinality than the even numbers, or the even ones are two more than the odd 
ones.

In particular, if |p| is even, and has an even number of parts, then p has empty 2-core 
if and only if in the β-set associated with p, half of them are even and half of them are 
odd; whereas if |p| is odd, and has an odd number of parts, then p has 2-core 1 if and 
only if in the β-set associated with p, the odd ones are one more than the even ones.

3. Schur-Weyl theory and Frobenius character formula

Our main theorem about character values of representations of the symmetric group 
uses a theorem of Frobenius on characters of the symmetric group, as well as the Schur-
Weyl duality which turns theorems about character theory of GLn(C) to character theory 
for the symmetric group. In this section we recall the relationship between the two 
character theories: it is rather remarkable that they are the same, and give a proof of a 
form of the Frobenius theorem on characters of the symmetric group.

Let Rd be the representation ring of the symmetric group Sd, treated here only as an 
abelian group. Let R =

∑∞
d=0 Rd, together with the multiplication Rn ⊗Rm → Rn+m

which corresponds to induction of a representation (V1�V2) of Sn×Sm to Sn+m, turning 
R into a commutative and associative graded ring. It can be seen that as graded rings, 
R ∼= Z[H1, · · · , Hd, · · · ], the polynomial ring in infinitely many variables Hi, i ≥ 1, where 
each Hi is given weight i, and corresponds to the trivial representation of Si.

On the other hand, let

Λn = Z[X1, X2, · · · , Xn]Sn =
⊕
k≥0

Λk
n,

where Λk
n is the space of symmetric polynomials in Z[X1, X2, · · · , Xn] of degree k.

Define,

Λk = lim←−−Λk
n,

where the inverse limit is taken with respect to natural map of polynomial rings

Z[X1, X2, · · · , Xn+1]Sn+1 → Z[X1, X2, · · · , Xn]Sn

in which Xn+1 is sent to the zero element.
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Finally, define the graded ring

Λ =
⊕
k≥0

Λk.

The ring Λ, often by abuse of language (in which we too will indulge in) is called the ring 
of symmetric polynomials in infinitely many variables, comes equipped with surjective 
homomorphisms to Λn for all n ≥ 0, which is in fact an isomorphism restricted to Λk

onto Λk
n for k ≤ n.

As typical elements of the ring Λ, also of paramount importance, note the following 
symmetric functions of degree m in infinitely many variables X1, X2, X3, · · · :

(1) pm = Xm
1 + Xm

2 + · · · (an infinite sum),
(2) em =

∑
Xi1Xi2 · · ·Xim , where the sum is over all indices i1 < i2 < · · · < im,

(3) hm =
∑

Xi1Xi2 · · ·Xim , where the sum is over all indices i1 ≤ i2 ≤ · · · ≤ im.

Later, for any partition λ = {λ1 ≥ λ2 ≥ · · · ≥ λm} of k, we will have occasion to use 
the following symmetric functions (in infinite number of variables) of degree k:

(1) pλ = pλ1 · pλ2 · · · pλm
,

(2) eλ = eλ1 · eλ2 · · · eλm
,

(3) hλ = hλ1 · hλ2 · · ·hλm
.

As λ varies over all partitions of k, eλ form a basis of the space of symmetric polyno-
mials (in infinitely many variables) of degree k. Similarly, hλ form a basis of the space 
of symmetric polynomials of degree k, whereas pλ forms a basis after Z is replaced by 
Q as the coefficient ring.

Observe that the graded rings R =
∑∞

d=0 Rd and Λ =
∑∞

k=0 Λk are isomorphic under 
the map Ψ which sends Hm to hm. The map Ψ is usually called the characteristic map.

Note that the character of a polynomial representation of GLm(C) at the diagonal 
element (X1, X2, · · · , Xm) in GLm(C), is a symmetric polynomial in Z[X1, · · · , Xm]Sm . 
A nice fact about irreducible polynomial representations of GLm(C), say with highest 
weight λ1 ≥ λ2 ≥ · · · ≥ λm is that it makes sense to speak of “corresponding irreducible 
representations” of GLd(C) for all d ≥ m by extending the highest weight λ1 ≥ λ2 ≥
· · · ≥ λm by adding a few zeros after λm. The characters of these representations of 
GLd(C) for d ≥ m, which are symmetric polynomials in Z[X1, X2, · · ·Xd]Sd , correspond 
to each other under the maps: Z[X1, X2, · · · , Xd]Sd → Z[X1, X2, · · · , Xd′ ]Sd′ for d ≥ d′ ≥
m. Therefore, a polynomial representation of GLm(C) has as its character an element 
which can be considered to belong to Λ =

∑∞
k=0 Λk (and not only in Z[X1, · · · , Xm]Sm). 

For example, the character of the standard m-dimensional representation of GLm(C) is 
the infinite sum X1 + X2 + · · · .

So far, nothing non-obvious has been said. Now, here is a non-obvious fact, a form of 
the Schur-Weyl duality, that if λ = {λ1 ≥ λ2 ≥ · · · ≥ λm} is a partition of n, defining 
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an irreducible representation of Sn, say πλ, and defining at the same time an irreducible 
representation of GLd(C) with highest weight {λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 ≥ · · · ≥ 0} for 
all d ≥ m, with its character, the Schur function Sλ, then

Ψ(πλ) = Sλ.

(It is helpful to recall that under the Schur-Weyl duality, the trivial representation of 
Sm goes to the irreducible representation Symm(Cd) of GLd(C) corresponding to the 
partition {1, 1, · · · , 1} of m.)

The following proposition relates character theory of symmetric groups and GLn(C).

Proposition 3.1. For π any representation of a symmetric group Sn, and Ψ(π) the as-
sociated symmetric function of degree n in infinitely many variables arising through the 
isomorphism Ψ : R → Λ, we have the following identity between homogeneous polynomi-
als of degree n:

Ψ(π) =
∑
ρ

Θπ(cρ)
|Z(cρ)|

pρ, (1)

where ρ = (ρ1, ρ2, · · · ) is a partition of n, defining a conjugacy class cρ in Sn, whose 
centralizer in Sn is Z(cρ) of order |Z(cρ)|; the symmetric function pρ is the product of 
symmetric polynomials pρi

= Xρi

1 + Xρi

2 + Xρi

3 + · · · .

Proof. Since the identity (1) is linear in the representation π, it suffices to check it on a 
set of linear generators (over Z, although it suffices to do it for generators over Q too) 
of the ring R. Our proof of identity (1) will therefore be accomplished in two steps.

(1) Prove that the identity (1) holds for the trivial representation Hn of Sn.
(2) If the identity (1) holds for a representation π1 of Sm and π2 of Sn, then it also 

holds good for the representation π1 × π2 of Sm+n induced from the representation 
π1 ⊗ π2 of Sm × Sn ⊂ Sm+n.

We begin by proving step 1, i.e. that the identity (1) holds for the trivial representation 
Hn of Sn.

For any integer m, let Vm = Cm be the m-dimensional vector space over C. By 
definition, hk is the character of the representation Symk(Vm) assuming that m ≥ k; 
in fact the integer m will play no role as long as it is large enough, preferably infinity! 
Thus,

∞∑
tnhn = 1

(1 − tX1)(1 − tX2) · · · (1 − tXm) .

n=0
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Taking logarithm on the two sides,

ln(
∞∑

n=0
tnhn) = −

m∑
i=1

ln(1 − tXi),

= t(
∑

Xi) + t2

2 (
∑

X2
i ) + t3

3 (
∑

X3
i ) + · · ·

Now taking exponential of the two sides:

∞∑
n=0

tnhn = expt(
∑

Xi) · exp t2
2 (

∑
X2

i ) · exp t3
3 (

∑
X3

i ) · · ·

= [1 + tp1 + (tp1)2

2! + · · · ][1 + t2p2/2 + (t2p2/2)2

2! + · · · ]

× [1 + t3p3/3 + (t3p3/3)2

2! + · · · ]

Therefore,

hn =
∑ pi11

i1!
(p2/2)i2

i2!
(p3/3)i3

i3!
· · ·

∗=
∑ pi11 · pi22 · pi33 · · ·

i1!2i2i2!3i3i3! · · ·

where the summation is taken over i1 +2i2 + · · · = n. This proves the identity (1) for the 
trivial representation Hn of Sn for which Θπ(cρ) is identically 1, and the denominators 
in the right hand side of the equality (∗) are the order of the centralizer of the conjugacy 
class cρ ∈ Sn.

Next, we prove that if the identity (1) holds for a representation π1 of Sm and π2

of Sn, then it also holds good for the representation π1 × π2 of Sm+n induced from the 
representation π1 ⊗ π2 of Sm × Sn.

For this, we slightly rewrite the identity (1) as:

Ψ(π) = 1
n!

∑
x∈Sn

Θπ(x)px, (2)

where π is a representation of the symmetric group Sn with Θπ(x) its character at an 
element x ∈ Sn, and px is what was earlier denoted as pρ(x) where ρ(x) denotes the 
partition of n associated to x.

Because

Ψ(π1 × π2) = Ψ(π1) · Ψ(π2),
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assuming that (2) holds for π1 and π2, to prove that it also holds for π1 × π2, we are 
reduced to proving:

1
(n + m)!

∑
g∈Sm+n

Θπ1×π2(g)pg = 1
m!n!

∑
(h1,h2)∈Sm×Sn

Θπ1(h1)Θπ2(h2)ph1ph2 . (3)

This will be a simple consequence of the character of the induced representation π1×π2

of Sm+n given by: π1 × π2 = IndSm+n

Sm×Sn
(π1 ⊗ π2), as we now show.

Note the well-known identity regarding the character f ′ of the induced representation 
IndG

H(U) of a representation U of H with character f (a class function on H, extended 
to a function on G by declaring it zero outside H) at an element s ∈ G:

f ′(s) = 1
|H|

∑
t∈G

f(t−1st).

It follows that for any class function λ(s) on G,

1
|G|

∑
s∈G

f ′(s)λ(s) = 1
|H|

∑
t∈H

f(t)λ(t). (4)

Now (3) follows from the identity (4) applied to the induced representation π1 × π2 =
IndSm+n

Sm×Sn
(π1 ⊗π2), and where λ(s) = ps for s ∈ Sm+n are the symmetric functions used 

before (products of Xi1
1 + Xi1

2 + Xi1
3 + · · · ). (We are thus applying the identity (4) for 

λ(s) not a scalar valued function on G, but rather with values in the ring of symmetric 
polynomials, which we leave to the reader to think about!)

We have thus completed the proof of the Proposition. �
For the statement of the following corollary, a form of the Frobenius character formula, 

see for example [2], Exercise 4.52(e).

Corollary 3.2. For λ = {λ1 ≥ λ2 ≥ · · · ≥ λm}, a partition of n, defining an irreducible 
representation πλ of Sn with character Θλ, and defining at the same time an irreducible 
representation of GLd(C) with highest weight {λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 ≥ · · · ≥ 0} for 
all d ≥ m, with its character, the Schur function Sλ, we have the following character 
identity between homogeneous polynomials of degree n:

Sλ =
∑
ρ

Θλ(cρ)
|Z(cρ)|

pρ, (1)

where ρ = (ρ1, ρ2, · · · ) is a partition of n, defining a conjugacy class cρ in Sn, whose 
centralizer in Sn is Z(cρ) of order |Z(cρ)|; the symmetric function pρ is the product of 
the symmetric polynomials pρi

= Xρi

1 + Xρi

2 + Xρi

3 + · · · .
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Proof. The proof of the corollary is a direct consequence of the Proposition 3.1 on noting 
the Schur-Weyl duality according to which the isomorphism of graded rings Ψ : R →
Λ which is defined by sending the trivial representation Hn of Sn to the symmetric 
polynomial hn (in infinitely many variables) takes the representation πλ to the Schur 
function Sλ. �
4. A theorem of Littlewood

This section aims to give a proof of a theorem due to Littlewood, see pages 143-146 
of [6], on character values for symmetric groups at exactly the same set of conjugacy 
classes that we have considered in this paper: product of disjoint even cycles without 
fixed points — Littlewood’s theorem covers only the case of S2n, which we prove also 
for S2n+1. Our main theorem proved in the next section is a simple consequence of the 
theorem of Littlewood (suitably extended to S2n+1). We have decided to include a proof 
of the theorem due to Littlewood since the proof (from 1940!) is hard to follow.

Before proceeding further, we need to introduce a sign ε(p) associated to any partition 
with either empty 2-core or with 2-core 1.

Definition 4.1. (Sign of a partition) (a)Let p be a partition of an even number with 
even number of parts 2m (by adding a zero at the end if necessary) with β-set β(p) =
{β2m−1 > β2m−2 > · · · > β1 > β0} of which half are even and half are odd. Let 
X2m = {2m − 1, 2m − 2, · · · , 1, 0}, and let i(p) be the bijection from X2m to β(p)
sending i → βi. Let j(p) be the unique bijective map from β(p) to X2m taking even 
numbers to even numbers preserving their orders, and odd numbers to odd numbers 
preserving their orders. The permutation s(p) of X2m defined as the composition of the 

maps X2m
i(p)→ β(p) j(p)→ X2m will be called the shuffle permutation associated to p, and 

its sign (−1)s(p) will be denoted ε(p).
(b) Let p be a partition of an odd number with odd number of parts 2m +1 (by adding 

a zero at the end if necessary) with β-set β(p) = {β2m > β2m−1 > · · · > β1 > β0} in 
which there is one more odd number than even. Let X2m+1 = {2m + 1, 2m, · · · , 1}. 
Let i(p) be the bijection from X2m+1 to β(p) sending i → βi−1. Let j(p) be the unique 
bijective map from β(p) to X2m+1 taking even numbers to even numbers preserving their 
orders, and odd numbers to odd numbers preserving their orders. The permutation s(p)
on X2m+1 defined as the composition of the maps X2m+1

i(p)→ β(p) j(p)→ X2m will be called 
the shuffle permutation associated to p. Define, ε(p) = (−1)m(−1)s(p).

The following proposition gives another, much simpler, way to interpret the sign ε(p)
just defined. We owe the proof of this proposition to Arvind Ayyer.

Proposition 4.2. Let p = (p1, . . . , pn) be a partition of n, written as usual with p1 ≥ · · · ≥
pn with the β-set β(p) = (β1, . . . , βn) with βi = pi + n − i.
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(1) For p � 2n with empty 2-core, let 2k be the number of odd parts in p. Then ε(p) =
(−1)k.

(2) For p � 2n − 1 with 2-core equal to (1), let 2k − 1 be the number of odd parts in p. 
Then ε(p) = (−1)k+n−1.

Proof. We begin with the proof of case (1). By Lemma 2.1, exactly n of these βi’s are 
odd. Let the integers i such that βi is odd be labeled o1 < · · · < on, and the integers i
such that βi is even be labeled e1 < · · · < en.

Before computing the sign of the shuffle permutation, we first compute the sign ε1
of the permutation that moves o1 < · · · < on to 1 < · · · < n (preserving their order), 
and moves e1 < · · · < en to (n + 1) < · · · < 2n (preserving their order). This can be 
calculated by looking at the corresponding action on a vector space V of dimension 2n
with basis vectors {v1, v2, · · · , v2n}. Thus we find that ε1 is given by:

v1 ∧ v2 ∧ · · · ∧ vn ∧ vn+1 ∧ · · · ∧ v2n = ε1vo1 ∧ vo2 ∧ · · · ∧ von ∧ ve1 ∧ · · · ∧ ven ,

which means that ε1 has the parity of:

(n− e1 + 1) + (n− e2 + 2) + · · · + (n− en + n) = (o1 + · · · + on) − (1 + · · · + n).

By the computation just done, if ε2 is the sign of the permutation that moves all the odd 
integers 1 ≤ i ≤ (2n − 1) to positions 1, . . . , n (preserving their order), and even integers 
2 ≤ i ≤ 2n to positions n + 1, . . . , 2n (preserving their order), then ε2 is given by:

= (o1 + · · · + on) − (1 + · · · + n) = (1 + 3 + · · · + 2n− 1) − (1 + · · · + n).

Therefore, we find that ε(p) = ε1ε2 has the same parity as (o1 + · · ·+ on) + n. Thus, we 
have to prove that the parity of o1 + · · · + on + n is the same as that of k. Now, since 
βoi = poi + 2n − oi is odd, so is poi − oi. Thus, the parity of oi + 1 is the same as that of 
poi . As a result, we have to show that the parity of po1 + · · · + pon is the same as that 
of k. Among all poi ’s, those which are even clearly do not contribute to the parity, and 
those which are odd contribute a 1. We thus have to prove that the cardinality of the 
set S = {i | poi is odd} has the same parity as that of k.

We will prove something stronger, namely that |S| = k. Suppose that |S| = j. Par-
tition the set {1, . . . , 2n} = O ∪ E, where O = {o1, . . . , on}. By assumption, S ⊂ O are 
the positions where p takes odd values. For convenience, let δi = 2n − i for 1 ≤ i ≤ 2n
so that βi = pi + δi. There are exactly n even and n odd δ’s. Since βi for i ∈ O is odd, 
δi’s for i ∈ S are even and δi’s for i ∈ O \S are odd. Which means that there are j even 
and n − j odd δi’s for i ∈ O. Consequently, we must have n − j even and j odd δi’s for 
i ∈ E. Combining all this information, we infer that the number of odd parts in p is j
(from S) and j (from E, since βi’s for i ∈ E are even). But we had assumed that p has 
2k odd parts, and therefore j = k, proving first case of the Proposition.
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Now we consider the second case of the Proposition where the length of the partition 
p is 2n − 1. In this case, arguing just as in case (1), we have to prove that the parity of 
o1 + · · · + on is the same as that of k + 1.

Now, since βoi = poi +2n −1 −oi is odd, so is poi −oi−1. Thus, the parity of oi is the 
same as that of poi . As a result, we have to show that the parity of po1 + · · ·+ pon is the 
same as that of k + 1. Among all poi ’s, those which are even clearly do not contribute 
to the parity, and those which are odd contribute a 1. We thus have to prove that the 
cardinality of the set S = {i | poi is odd} has the same parity as that of k + 1.

We will again prove something stronger, namely that |S| = k+1. Suppose that |S| = j. 
Partition the set {1, . . . , 2n − 1} = O ∪ E, where O = {o1, . . . , on}. By assumption, 
S ⊂ O are the positions where p takes odd values. For convenience, let δi = 2n − 1 − i

for 1 ≤ i ≤ 2n − 1 so that βi = pi + δi. There are n even and n − 1 odd δi’s.
Since βi for i ∈ O is odd, δi’s for i ∈ S are even and δi’s for i ∈ O \ S are odd. Which 

means that there are j even and n − j odd δi’s for i ∈ O. Consequently, we must have 
n − j even and j−1 odd δi’s for i ∈ E. Combining all this information, we infer that the 
number of odd parts in p is j (from S) and j− 1 (from E, since βi’s for i ∈ E are even), 
giving a total of 2j − 1. But we had assumed that p has 2k + 1 odd parts, and therefore 
j = k + 1.

This completes the proof of both the cases of the Proposition. �
Remark 4.3. The sign defined here associated to a partition p with empty core or with 
core 1, has thus three different ways of looking at it:

(1) In Definition 4.1.
(2) Through Proposition 4.2.
(3) As a particular case of our main theorem as the sign of the character of the repre-

sentation πp of S|p| at the element w0 = (12)(34) · · · (2n − 1, 2n) — where it takes 
nonzero value — inside S2n or S2n+1.

Next, we recall the following theorem from [6] where it is contained in equations 7.3.1 
and 7.3.2 of page 132; it is also contained in [9] as Theorem 2. Both [6] as well as [9]
deal with a more general theorem involving GLmn(C). This theorem as well as the next 
theorem should be considered as the GLn(C) analogues of theorems on character values 
that we strive to prove here. It is in this theorem that the notion of p-core and p-quotients 
make their appearance (stated here only for p = 2, although stated more generally in 
[9]).

Theorem 4.4. Let λ = {λ1 ≥ λ2 ≥ · · · ≥ λ2m} be the highest weight of an irreducible 
polynomial representation Vλ of GL2m(C) with character Sλ. Let

X = (x1, x2, · · · , xm,−x1,−x2, · · · ,−xm) = (X,−X),
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be a diagonal matrix in GL2m(C) with xi ∈ C× arbitrary. Then if Sλ(X) is not identi-
cally zero, its 2-core c2(λ) must be empty, in which case, if {λ0, λ1} is the 2-quotient of 
λ, then,

Sλ(X) = ε(λ)Sλ0(X
2)Sλ1(X

2),

where Sλ0 and Sλ1 are the characters of the corresponding highest weight modules of 
GLm(C), X is the diagonal matrix (x1, x2, · · · , xm), and X2 its square.

Proof. For the sake of completeness, we give the proof. Write the matrix whose determi-
nant represents the numerator of the Weyl character formula as (where βi = λi+2m −i):

⎛
⎜⎜⎜⎜⎜⎝

xβ1
1 xβ1

2 · · · xβ1
m (−x1)β1 · · · (−xm)β1

xβ2
1 xβ2

2 · · · xβ2
m (−x1)β2 · · · (−xm)β2

· · · · · · · · · · ·
· · · · · · · · · · ·

xβ2m
1 xβ2m

2 · · · xβ2m
m (−x1)β2m · · · (−xm)β2m

⎞
⎟⎟⎟⎟⎟⎠

·

In this 2m × 2m-matrix, adding the first m columns of the matrix to the last m
columns, we find that all the rows of the last m columns with βi odd become zero, and 
those rows with βi even get multiplied by 2. In the new matrix, subtracting the half of 
last m columns to the first m columns, makes all rows in the first m columns with βi

even to be zero. Let d be the number of βi which are odd, and therefore 2m − d is the 
number of βi which are even. Thus we get a matrix in which in the first m columns, 
there are exactly d nonzero rows, and in the last m columns, there are exactly 2m − d

complementary rows which are nonzero.
The determinant of such a matrix is nonzero only for d = 2m − d, i.e., d = m. By 

Lemma 2.1, the condition d = m is equivalent to 2-core of λ being empty. Assuming 
which, by a permutation of rows, we come to a block diagonal matrix which looks like 
(where γk, δ� are the odd and even numbers among βi written in decreasing order):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xγ1
1 xγ1

2 · · · xγ1
m 0 0 · · · 0

xγ2
1 xγ2

2 · · · xγ2
m 0 0 · · · 0

· · · · · · · · · · · ·
xγm

1 xγm

2 · · · xγm
m 0 0 · · · 0

0 0 · · · 0 xδ1
1 xδ1

2 · · · xδ1
m

0 0 · · · 0 xδ2
1 xδ2

2 · · · xδ2
m

· · · · · · · · · · · ·
0 0 · · · 0 xδm

1 xδm
2 · · · xδm

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

The determinant of this matrix is the product of two Weyl numerators for GLm(C), 
in which δi being even, we write xδi

j as (x2
j )δi/2, and γi being odd, we write xγi

j as 
(x2

j )(γi−1)/2 · xj . We have a similar factorization of the Weyl denominator.
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Next we observe that the determinant of a matrix in which the rows have been shuffled 
using a permutation σ of the rows, changes by multiplication by the sign (−1)σ. This 
needs to be done both for the numerator which involves the ‘shuffle permutation’ intro-
duced earlier in Definition 4.1, and the denominator for which the shuffle permutation is 
identity matrix; to be more precise, the numerator needs the permutation s(p)s0, and the 
denominator needs s0 where s0 is the permutation of X2m = {2m − 1, 2m − 2, · · · , 1, 0}
sending odd numbers in X2m consecutively to {2m −1, 2m −2, · · · , m} and even numbers 
in X2m consecutively to {m − 1, · · · , 1, 0}.

This completes the proof of the theorem. �
We will also need the following variant of Theorem 4.4 which is proved as this theorem 

by manipulations with the explicit character formula for GL2m+1(C) as quotients of two 
determinants; we will not give a proof of this theorem.

Theorem 4.5. Let λ = {λ1 ≥ λ2 ≥ · · · ≥ λ2m+1} be the highest weight of an irreducible 
polynomial representation Vλ of GL2m+1(C) with character Sλ. Let

X = (x1, x2, · · · , xm,−x1,−x2, · · · ,−xm, x) = (X,−X,x),

be a diagonal matrix in GL2m+1(C) with xi, x ∈ C× arbitrary. Then, if Sλ(X) is not 
identically zero, the number of even entries and the number of odd entries in the β-
sequence β(λ) = {β1 = λ1 +2m > β2 = λ2 +2m −1 > · · · > λ2m+1}, differ by one. If the 
number of odd entries in the β-sequence is one more than the number of even entries, 
then its 2-core is {1}, whereas if the number of even entries in the β-sequence is one 
more than the number of odd entries, its 2-core is empty. In either case, let {λ0, λ1} be 
the 2-quotient of λ. Then,

Sλ(X) = ε(λ) · x · Sλ0(X
2)Sλ1(X

2, x2) (a)

if the number of odd entries in the β-sequence is one more than the number of even 
entries; whereas

Sλ(X) = ε(λ)Sλ1(X
2)Sλ0(X

2, x2) (b)

if the number of even entries in the β-sequence is one more than the number of odd 
entries. Here Sλ0 and Sλ1 are the characters of the corresponding highest weight modules 
of GLm(C), and GLm+1(C) in case (a), and of GLm+1(C), and GLm(C) in case (b).

The following theorem is due to Littlewood [6], pages 143-146, for even symmetric 
groups. Forms of this theorem seem to be available in the literature more generally for 
arbitrary wreath product (Z/p)n �Sn contained in Spn, such as in Theorem 4.56 of [10]
which also follows from Theorem 2 of [9] and the corresponding analogue of Theorem 4.5
for general p.
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Theorem 4.6. Let λ → πλ be the natural correspondence between the partitions of |λ| and 
the irreducible representations of the symmetric group S|λ| with Θλ, the character of πλ. 
Then, if the representation πλ is to have nonzero character value at some element w̃
in S|λ| which is a product of disjoint even cycles and with at most one fixed point, the 
2-core of λ must be empty if |λ| is even, and 2-core must be 1 if |λ| is odd, which we now 
assume is the case, and (λ0, λ1) is the 2-quotient of λ. Then, if w̃ = w̃1 · · · w̃d ∈ S|λ|, is 
a product of disjoint cycles w̃i of even lengths 2�i with at most one fixed point, we have 
the following character relationship:

Θλ(w̃) = ε(λ)Θλ0×λ1(w),

where w = w1 · · ·wd is an element in Sn, n = [|λ|/2] which is a product of disjoint cycles 
of length �i, and where Θλ0×λ1 is the character of the representation (usually reducible) 
of Sn

πλ0×λ1 = IndSn

S|λ0|×S|λ1|
(πλ0 � πλ1).

Proof. By Corollary 3.2,

Sλ =
∑
ρ

Θλ(cρ)
|Z(cρ)|

pρ, (1)

where ρ = (ρ1, ρ2, · · · ) is a partition of k, defining a conjugacy class cρ in Sk, whose 
centralizer in Sk is Z(cρ) of order |Z(cρ)|; the symmetric function pρ is the product of 
symmetric polynomials pρi

= Xρi

1 + Xρi

2 + Xρi

3 + · · ·
In the standard notation, if a conjugacy class c in Sk is (1i1 , 2i2 , · · · , kik), the order 

of the centralizer of any element in c is:

(i1)!2i2(i2)! · · · kik(ik)!.

For a partition ρ = (ρ1, ρ2, · · · ) of k, we will be using the notation 2ρ for the partition 
2ρ = (2ρ1, 2ρ2, · · · ) of 2k, defining a conjugacy class c2ρ in S2k for which the order of 
the centralizer of any element in c2ρ is:

2i1(i1)!4i2(i2)! · · · (2k)ik(ik)!,

therefore,

|Z(c2ρ)| = 2p|Z(cρ)|, (2)

where p = i1 + i2 + · · · + ik.
Now we split the proof of the theorem into two cases.

Case 1: |λ| = 2n.
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We will use the identity expressed by equation (1) at the diagonal matrices in 
GL2m(C) of the form X = (x1, x2, · · · , xm, −x1, −x2, · · · , −xm) = (X, −X). An im-
portant observation is that pρ which is the product of the symmetric polynomials 
pρi

= (Xρi

1 + Xρi

2 + Xρi

2 + · · · ) must be identically zero on such elements unless all 
the entries in ρ are even.

Using Theorem 4.4, we write equation (1) as:

ε(λ)Sλ0(X
2)Sλ1(X

2) =
∑
ρ

Θλ(c2ρ)
|Z(c2ρ)|

p2ρ(X).

Since p2ρ(X) = 2ppρ(X2), where p = i1 + i2 + · · ·+ in, we can rewrite this equation using 
(2) as:

ε(λ)Sλ0(X)Sλ1(X) =
∑
ρ

Θλ(c2ρ)
|Z(cρ)|

pρ(X). (3)

Since Ψ : R → Λ is an isomorphism of rings, the element Sλ0(X)Sλ1(X) of Λ arises 
from the image under Ψ of the representation πλ0×λ1 of Sn, therefore by Proposition 3.1, 
we have,

ε(λ)
∑
ρ

Θλ0×λ1(cρ)
|Z(cρ)|

pρ(X) =
∑
ρ

Θλ(c2ρ)
|Z(cρ)|

pρ(X). (4)

Since the polynomials pρ(X) are linearly independent, we can equate the coefficients 
of pρ(X) on the two sides of equation (4) to prove the theorem when |λ| is even. By 
Theorem 4.4, if λ has non-empty 2-core, then Sλ is identically zero on the set of diagonal 
elements of the form X = (x1, x2, · · · , xm, −x1, −x2, · · · , −xm) = (X, −X). By the 
linear independence of the polynomials pρ(X), we deduce that Θλ(c2ρ) ≡ 0.

Case 2: |λ| = 2n + 1.

In this case, we will use Frobenius character relationship contained in Corollary 3.2:

Sλ =
∑
ρ

Θλ(cρ)
|Z(cρ)|

pρ, (5)

at diagonal elements of GL2m+1(C) of the form:

X = (x1, x2, · · · , xm,−x1,−x2, · · · ,−xm, x) = (X,−X,x),

with xi, x ∈ C× arbitrary. Observe that if � is an odd integer, then for X as above, 
p�(X) = x�, whereas for � an even integer p�(X) = 2p�(X) + x�. It follows that for any 
conjugacy class ρ in S2n+1, pρ, and hence each term in the right hand side of equation 
(5) is divisible by x, and all terms except those which correspond to those ρ which are 
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product of disjoint even cycles together with exactly one fixed point, contribute a term 
which is divisible by x and no higher power, and all the other terms are divisible by 
higher powers of x. Furthermore, in the case |λ| = 2n +1, each of the term pρ(X)/x is an 
even function of x, hence by equation (5), Sλ(X) as a function of x is an odd polynomial 
function of x. Thus, if Sλ(X) is nonzero, we must be in case (a) of Theorem 4.5 (since 
in case (b) Sλ(X) is an even function of x), therefore if Sλ(X) is a nonzero function of 
x, λ must have 2-core {1}.

By Theorem 4.5, the left hand side of the equation (5) is also divisible by x which 
after dividing by x gives, ε(λ)Sλ0(X

2)Sλ1(X
2, x2).

Thus after dividing both the sides of the Frobenius character relationship in equation 
(5) by x, and then putting x = 0, we are in exactly the same situation as in the proof of 
the theorem for S2n, for which we do not need to repeat the previous argument. �
5. The theorem

The following theorem is the main result of this paper (recalled from the Introduction 
for reader’s convenience) and is a simple consequence of Theorem 4.6 of the last section.

Theorem 5.1. Let w be a conjugacy class in Sn treated as a conjugacy class in Bn =
(Z/2)n�Sn with w̃ the conjugacy classes in S2n, S2n+1 defined on page 2. Let (λ0, λ1) be 
a pair of partitions with |λ0| +|λ1| = n, giving rise to a representation π(λ0,λ1) of Bn. The 
pair (λ0, λ1) gives rise to a partition λ of 2n (resp. of (2n +1)) with empty 2-core (resp. 
with 2-core 1) and with 2-quotient (λ0, λ1), and defines an irreducible representation πλ

of S|λ| = S2n, S2n+1. Then we have for an ε(λ) = ±1, the character identity:

Θ(λ0,λ1)(w) = ε(λ)Θλ(w̃).

In particular, we have

Θ(λ0,λ1)(1) = ε(λ)Θλ(w0),

determining ε(λ) = ±1. Further, an irreducible representation πλ of S|λ| takes nonzero 
character value at w0 if and only if the partition λ has empty 2-core if |λ| = 2n, and has 
2-core 1 if |λ| = 2n + 1.

Proof. Recall that we have used the notation πλ0 × πλ1 for the representation

πλ0 × πλ1 = IndSn

S|λ0|×S|λ1|
(πλ0 � πλ1).

Of course the representation πλ0 ×πλ1 of Sn is a complicated sum of irreducible repre-
sentations for which there is the Littlewood-Richardson rule. However, this complication 
has no role to play for us since instead of Sn we are dealing with the larger group, 
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Bn = (Z/2)n � Sn and the representation πλ0 × πλ1 of Sn is the restriction to Sn of an 
irreducible representation of Bn that we are denoting by π(λ0,λ1) as we now show.

Observe that the representation π(λ0,λ1) of Bn = (Z/2)n � Sn is

IndBn

A (V ),

where A is the subgroup of Bn which is A = (Z/2)n � (S|λ0| × S|λ1|), and V is the 
representation of A on which

(Z/2)n = (Z/2)|λ0|+|λ1| = (Z/2)|λ0| × (Z/2)|λ1|

acts by the trivial character on the first factor (Z/2)|λ0|, and by the non-trivial character 
on each of the Z/2 factors in (Z/2)|λ1|; the subgroup S|λ0| × S|λ1| acts by πλ0 � πλ1 .

By standard application of Mackey theory (restriction to Sn of an induced represen-
tation of Bn), we find that

ResSn
(IndBn

A (V )) = IndSn

S|λ0|×S|λ1|
(πλ0 � πλ1) = πλ0 × πλ1 ,

therefore Theorem 4.6 of the last section proves the theorem. �
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