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Abstract

Thek-Young latticeY ¥ is a partial order on partitions with no part larger ttaihis weak subposet
of the Young lattice originated (Duke Math. J. 116 (2003) 103-146) from the study &f8uohur

functionSsEk), symmetric functions that form a natural basis of the space spanned by homogeneous
functions indexed b¥-bounded partitions. The chains in the¥oung lattice are induced by a Pieri-

type rule experimentally satisfied by theSchur functions. Here, using a natural bijection between
k-bounded partitions an&l + 1-cores, we establish an algorithm for identifying chains in khe
Young lattice with certain tableaux dn+ 1 cores. This algorithm reveals that therfoung lattice

is isomorphic to the weak order on the quotient of the affine symmetric g?pyp by a maximal

parabolic subgroup. From this, the conjectureRieri rule implies that the-Kostka matrix connecting
the homogeneous bagis; }, .y« to {sﬁk)})yeyk may nhow be obtained by counting appropriate classes
oftableaux ork +1-cores. This suggests that the conjecturally postti&ehur expansion coefficients
for Macdonald polynomials (reducing &g t-Kostka polynomials for larg&) could be described by
agq, t-statistic on these tableaux, or equivalently on reduced words for affine permutations.
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1. Introduction
1.1. The k-Young lattice

Recall that/ is a successor of a partitignin the Young lattice whenl is obtained by
adding an addable corner towhere partitions are identified by their Ferrers diagrams,
with rows weakly decreasing from bottom-to-top. This relation, which we denote “2”,
occurs naturally in the classical Pieri rule

hlX1suX]1 = > s;[X], (1.2)
A p—> 2
and the partial order of the Young lattice may be defined as the transitive clogure of.
It was experimentally observed that tk&chur functiong9,11] satisfy the rule
miXlsPxr= Y sPx, (1.2)
2 H—k A

where ‘u —; A”is a certain subrelation ofi' — A”. This given, the partial order of the
k-Young latticeY* is defined as the transitive closureof—-; .
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The precise definition of the relatign —; 1 stems from another “Schur” property of
k-Schur functions. Computational evidence suggests that the wsinablution for sym-
metric functions acts ok-Schur functions according to the formula

k (k)

o5 01X] = 5,0, X1, (1.3)
where the map — u®* is an involution ork-bounded patrtitions called*conjugatiori
that generalizes partition conjugatign— 1. Then viewing the covering relations on the
Young lattice as

u— i <= |A=|u+1 and pc i and g <, (1.4)

we accordingly, in our previous worf@], definedu —; 1 in terms of the involution
p— uk by

U=k A &= |A=lu+1 and pu <A and u®* < A%, (1.5)

Thus only certain addable corners may be added to a partitiorobtain its successors in
thek-Young lattice. We shall call such corners thedddable cornersof u.

Here, we provide a direct characterizatiorkedddable corners. This characterization is

obtained by first constructing a bijection betwdehounded partitions ankl + 1-cores.

We then show that certain operators preserving the settof-cores act on thk-Young

lattice (through this bijection) by lowering or raising its elements according to the covering
relations. Passing from an element to its successor by means of these operators, we thus
obtain an algorithm for constructing any saturated chain inkieung lattice. Such a
construction leads us to a bijection between chains ifk{fleung lattice and a new family

of tableaux calledK-tableaux” that share properties of usual semi-standard tableaux.

On the other hand, the weak order on the quotient of the affine symmetric §iroupy a
maximal parabolic subgroup can be characterized using the previously mentioned operators
on cores. This enables us to show thatki¥oung lattice is isomorphic to the weak order
on this quotient. Consequences include a bijection between staktiaoteaux of a fixed
shape and reduced words for a fixed affine permutation, as well as a new bijection between
k-bounded partitions and affine permutations in the quotient.

To precisely summarize our results, first recall that-a 1-core is a partition with no
k + 1-hooks. For any + 1-corey, we then define

P(V) = (;"11 ey j~()7

where /; is the number of cells witlk-bounded hook length in rowof y. It turns out
thatp(y) is ak-bounded partition and that the correspondenee p(y) bijectively maps
k + 1-cores ontd-bounded partitions. With — ¢(1) denoting the inverse af, we define
thek-conjugation of &-bounded partitiori to be

A% = p(e(D)). (1.6)

That is, if y is the k + 1-core corresponding td, then 1% is the partition whose row
lengths equal the number ktbounded hooks in corresponding rows6fThis reveals that
k-conjugation, which originally emerged from the action of thénvolution onk-Schur
functions, is none other than tipeimage of ordinary conjugation @f+ 1-cores.



L. Lapointe, J. Morse / Journal of Combinatorial Theory, Series A 112 (2005) 44—-81 47

The p-bijection then leads us to a characterizationk@ddable corners that determine
successors in thke-Young lattice. By labeling every squatg ;) in the ith row andjth
column by its k + 1-residué, j — i modk + 1, we find

(Theorem 23). Let ¢ be any addable corner of a k-bounded partitioand ¢’ (of k + 1-
residue ) be the addable corner af2) in the same row as c. c is k-addable if and only if
¢’ is the highest addable corner af?) with k + 1-residue i

This characterization df-addability leads us to a notion of stand&rthbleaux which
we prove are in bijection with saturated chains in kh¥oung lattice.

(Definition 27). Lety be ak + 1-core andn be the number ok-bounded hooks of. A
standard-tableau of shapeis a filling of the cells ofy with the letters 12, . .., m which

is strictly increasing in rows and columns and such that the cells filled with the same letter
have the samé + 1-residue.

(Theorem 37). The saturated chains in the k-Young lattice joining the empty partitin
a given k-bounded partition are in bijection with the standard k-tableaux of shap#).

We then consider the affine symmetric grdfigp1 modulo a maximal parabolic subgroup
denoted byS;. 1. Bruhat order on the minimal coset representativeékmﬁ/SkH can be
defined by containment &f+ 1-core diagrams (this connection is stated by Las¢8Land
is equivalentto other characterizations such asin[1,15]). Fromthis, stronger relations among
k+1-core diagrams can be used to describe the weak order on such coset representatives. We
are thus able to prove that our new characterization okilfeung lattice chains implies
an isomorphism between theYoung lattice and the weak order on the minimal coset
representatives. Consequently, a bijection between the setabieaux of a given shape
¢() and the set of reduced decompositions for a certain affine permutatiorsy 1/ Sk 1
can be achieved by mappindgdableau to the reduced word:

Tvip---ip, i1, .7

wherei, is thek +1-residue of lettea.in the standaré-tableaur. A by-product of this result
is a simple bijection betwedrbounded partitions and affine permutationsjn /Sx+1:

¢l 0, (1.8)

whereg; corresponds to the reduced decomposition obtained by readikgtthheresidues

of A from right to left and from top to bottom. It is shown[ib3] that this bijection, although
algorithmically distinct, is equivalent to the one presented by Bjorner and Brenti [1] using a
notion of inversions on affine permutations. It follows from our results that Eq. (1.2) reduces
simply to

(k) _ (k)
hlXls 1X] = s X (1.9)

w

where the sum is over all permutations that cavér the weak order oﬁk+1/sk+1.
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As will be detailed in 8.2, Theorem 37 also plays a role in the theory of Macdonald
polynomials and the study & Schur functions, thus motivating a semi-standard extension
of Definition 27:

(Definition 59). Let m be the number ok-bounded hooks in & + 1-corey and leta =
(o1, ..., o) be a composition ofn. A semi-standard-tableau of shape and evaluation
o is a column strict filling ofy with the letters 12, ..., r such that the collection of cells
filled with letteri is labeled with exactly; distinctk 4+ 1-residues.

As with the ordinary semi-standard tableaux, we show that there are no semi-standard
k-tableaux under conditions relating to dominance order on the shape and evaluation. An
analogue of Theorem 37 can then be used to show that this coincides with unitriangularity
of coefficients in thé-Schur expansion of homogeneous symmetric functions and suggests
that thek-tableaux should have statistics to combinatorially describé&-tBehur function
expansion of the Hall-Littlewood polynomials. The analogue of Theorem 37 relies on the
following definition: with the pair ok-bounded partitions, 1 defined to be f~admissiblé
if and only if A/u and1® /u®x are, respectively, horizontal and verticadtrips, we say a
sequence of partitions

G=70_,,0 L, _ . . _,,0

is o-admissible when®, 14~ is a«;-admissible pair foi = 1, ..., €. It turns out that
all «-admissible sequences are in fact chains inkfeung lattice and that TheoreBv
extends to

(Theorem 71). Let m be the number of k-bounded hooks ih-& 1-corey and leta be
a composition of m. The collection @fadmissible chains joining to p(y) is in bijection
with the semi-standard k-tableaux of shapend evaluation.

An affine permutation interpretation for theadmissible chains that generalizes our
w-bijection between semi-standaketableaux and reduced words is given in [13] along
with a more detailed discussion of the connection between theAyféne Weyl group
and thek-Schur functions. The reader is also referred to [12] for a study of principal order
ideals in thek-Young lattice along with further properties of the lattice such as the fact
that the covering relation is invariant under translation by rectangular shapes with hook-
length equal tk. This is the underlying mechanism in the proof that khdoung lattice
corresponds to a cone in a tiling Bf by permutahedrons [17].

As mentioned, the root of our work lies in the study of symmetric functions. We conclude
our introduction with a summary of these ideas.

1.2. Macdonald expansion coefficients

Thek-Young lattice emerged from the experimental Pieri rule (1.2) satisfiddSghur
functions. In turnk-Schur functions have arisen from a close study of Macdonald poly-
nomials. To appreciate the role of our findings in the theory of Macdonald polynomials
we shall briefly review this connection. To begin, we consider the Macdonald polynomial
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H;[X; q, t] obtained from the Macdonald integral fod¥] J;[X; g, ¢] by the plethystic
substitution

HulX;q,t] = Ju[ﬁ;q,t]. (1.10)

For it n, this yields the Schur function expansion

HulX;q,t] =) Kiulq, 0s;[X], (1.11)
Abn
wherek;,,(q, t) € N[g, t] are known as the, z-Kostka polynomials. Formuld (11), when
g =t =1, reduces to

1= fislXl, (1.12)

Akn

where f; is the number of standard tableaux of shap€his given, one of the outstanding
problems in algebraic combinatorics is to associate a pair of statisti@®), b,(T) on
standard tableaux to the partitigrso that

Kiulq.ny = Y q@Dio®, (1.13)
TeST(A)

where “ST (1)” denotes the collection of standard tableaux of shape
In previous work[9,11], we proposed a new approach to the study ofgtheKostka
polynomials. This approach is based on the discovery of a certain family of symmetric

functions{sik)[x; t1} ey« for each integek > 1, which we have shown [11] to be a basis for

the space\l(k) spanned by the Macdonald polynomiélg[X; ¢, ¢ ] indexed byk-bounded
partitions. This revealed a mechanism underlying the structure of the coeffikigiig, 7).
To be precise, fop, v € Y*, consider

HylX:q.t] =Y K§(g.0)s®x:e] and s®P[X:e] =Y () 50X
A

veYk
(1.14)
We then we have the factorization
Kinlg,0) = Ym0 K (g, 1) (1.15)

veyk
It was experimentally observed (and provenkos 2 in[10,11]) thatKS',j) (g,1) € N[q, t]
andr;,(t) € N[z]. This suggests that the problem of finding statisticskgj, (¢, t) may
be decomposed into two separate analogous problenﬁ\(,fg}(q, t) andmny, (). We also
have experimental evidence to support tat (¢, 1) — Kf,'[}(q, 1) € Nlg, t] which brings
about the fact thaiﬁk) [X; t ]-expansions are formally simpler.

These developments prompted a close study of the polynonﬁfiéﬂx; 1]1= sik)[X]. In
addition to (1.2), it was also conjectured that these polynomials satisfy the more
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general rule

k
hIX1sP1X) = > 01X, (1.16)
A/p=horizontalr-strip
2%k ] u®k =vertical r-strip

Iteration of (L.2) starting fromsg[X] = 1 yields

() {Wx
RIX] = Z K} s (1.17)
leyk

while iterating (L.16) for suitable choices ofgives thek-Schur function expansion of an
h-basis element indexed by akybounded partition: . That is,

hX1 =Y KN sPx. (1.18)

oS,
Jeyk

Sincesik)[X] = s5;[ X1 when all the hooks of arek-bounded, we see that.(L7) reduces to
(1.12) for a sufficiently larg&. For the same reason, the coeﬁicimjﬁ) in (1.18) reduces
to the classical Kostka numbéf;,, whenk is large enough. Our definition of teYoung

lattice Y* and admissible chains ir*, combined with the experimental Pieri rules (1.2)
and (1.16), yield the following corollary of Theorems 37 and 71:

On the validity of(1.16),the coefﬁuentK”‘)n is equal to the number of standard
k-tableaux of shape(l), or equivalently the number of reduced expressionssigr
and the coefficienKi';) is equal to the number of semi-standard k-tableaux of shape
¢(2) and evaluation.

Since (1.14) reducesto (1.17) wher= ¢ = 1, this suggests that the positivitymj_’;) (g, 1)
may be accounted for hy, t-counting standark-tableaux of shape(4), or reduced words
of ¢, according to a suitable statistic dependingioMore precisely, forT* (1) the set
of k-tableaux of shapgZ) andRed¢) the reduced words far,

k
HilX:iq.e1= Y [ >0 ¢@ @ | sPrx:r] (1.19)
A<k \TeTk\)

= Y ( > qaoww)z”«“(w)) ;")()[x;z]. (1.20)

gegk“/SHl weRed(0)

We should also mention that the relation lh18) was proven to be unitriangular [11]
with respect to the dominance partial order " as well as the-analog of this relation,
given by the Hall-Littlewood polynomials corresponding to the specializatienO of the
Macdonald polynomials:

(X001 = > K“"(:)J"’ X:t]. (1.21)

Jeyk
LB
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Our conjecture thaK)(f (g.1) € N[g, t] implies Kﬁ’;) (t) would also have positive integer
coefficients. Our work here then suggests that this positivity may be accounted for by
showing that thd(flk) (1) can be obtained blycounting semi-standaidtableaux according
to a suitablé&k-charge statistic.

In conclusion, sincel(18) is obtained by iterating (1.16) and the resulting mqﬂtﬂ%‘j I
is unitriangular, the inversion of this matrix gives a well-defined family of functions that
are conjectured to be tHeSchur functions. This provides a relatively simple algorithm
for computing the k-Schur functions” (at = 1) for anyone who wishes to experiment. A
study of the k-Schur functions” obtained in this manner is carried out in [19] where it is
shown, in particular, that they satisfy thdPieri rule (1.2).

2. Definitions
2.1. Partitions

A partition A = (41, ..., 4,) IS a non-increasing sequence of positive integers. The
degree ofi is |A| = 21 + -+ + A, and the lengtit(1) is the number of parten. Each
partition A has an associated Ferrers diagram wijttattice squares in theth row, from the
bottom-to-top. For example,

= (4,2 = EBE (2.1)

Given a partition, its conjugate!’ is the diagram obtained by reflectingbout the diagonal.
A partition 4 is “k-boundedlif 11 <k. Any lattice square in the Ferrers diagram is called
a cell, where the celli, j) is in theith row andjth column of the diagram. We say that
/. € nwhen/; <y; foralli. The dominance order on partitions is defined by> u when
Ja+- + iz + -+ foralli, and|A| = |ul.

More generally, forp C v, the skew shape/p is identified with its diagrani(i, j) :
p; < j<vy;}. Lattice squares that do not lie-irip will be simply called ‘squares. We shall
say that any € p lies “below’ y/p. The *hooK of any lattice square € 7 is defined as
the collection of cells ofy/p that lie inside thd. with s as its corner. This is intended to
apply to alls € y including those below/p. In the example below the hook of= (1, 3)
is depicted by the framed cells

v/p = (5.5.4.1/(42) = EﬁEEa. (22)

K

We then leths(y/p) denote the number of cells in the hookfThus, from the example
above we havé 1.3)((5,5,4,1)/(4,2)) = 3 andh 2 ((5.5,4,1)/(4,2)) = 3. We shall
also say that the hook of a cell or a squark-iounded if its length is not larger th&n

Remark 1. It is important to note that when row and column lengths 4f weakly de-
crease from top-to-bottom and left-to-right, then the present notion of hook length satisfies
some of the standard inequalities of hook lengths. In particllaty/p) > s, (y/p) when



52 L. Lapointe, J. Morse / Journal of Combinatorial Theory, Series A 112 (2005) 44—-81

s1 = (i1, j1), s2 = (i2, j2) with i1 <ip andj1 < j2 and the inequality is strict when, s2 €
y/p Ors1 € pandsz € y/p.

Recall that ak + 1-core’ is a partition that does not contain aky- 1-hooks (se§7] for
more on cores and residues). Thet 1-residué of square(i, j) is j — i modk + 1. That
is, the integer in this square when squares are periodically labeled with.0, k, where
zeros lie on the main diagonal. The 5-residues associated to the §6cdr&, 1, 1, 1) are

1
2]3
3[4]0]1

SNENEEEN
= =1
o

N

-

Acell (i, j) of a partitiony with (i + 1, j + 1) ¢ yis called ‘extremal. An extremal cell
which is neither at the end of its row nor at the top of its column is calbedrier extremal
A “removablé corner of partitiony is a cell(i, j) € ywith (i,j +1),G +1,)) ¢ »
and an ‘addablé corner ofy is a squar€i, j) ¢ y with (i, j — 1), — 1, j) € 7. All
removable corners are extremal. We should notethat ), (£(y), 1) are removable corners
and(1, y; + 1), (¢(y) + 1, 1) are addable. In the figure below we have labeled all addable
corners witha, labeled extremal celle (with the corner extremals overlined), and framed
the removable corners.

a
ele

T (2.3)
; za

Given any two squarebsouth-east dd, “a Ab” will denote the square that is simultaneously
directly south ofa and directly west ob.

A compositionz of an integemis a vector of positive integers that sunmioA “tablead
T of shape/ is a filling of T with integers that is weakly increasing in rows and strictly
increasing in columns. TheeValuatiori of T is given by a composition whereg; is the
multiplicity of i in T.

2.2. Affine symmetric group

The affine symmetric groufy. 1 is generated by the+ 1 elementso, . . ., §; satisfying
the affine Coxeter relations:
§2=id, 55, =55 (—j#+1lmodk+1) and §8i115 = Sit18iSit1-
(2.4)

Here, and in what follows; is understood a§ modi+1 if i >k + 1. Elements ofS;.1 are
called affine permutations, or simply permutations. A were: i1is - - - i, in the alphabet
{0,1, ..., k} corresponds to the permutatiene Si.1 if ¢ = Siy -+ - 8, The “length
of ¢, denotedi (o), is the length of the shortest word corresponding téd\ny word for
o with £(o) letters is said to beréduced. We denote byRed (o) the set of all reduced
words ofg.
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The weak order o681 is defined through the following covering relations:
o<yt <= 1=3§cforsomei €{0,..., k}, andi(t) > £(o), (2.5)

while the Bruhat orderis such that<; tifthere existreduced wordgandu, corresponding
to ¢ andr, respectively, such that is a subword ofu.

The subgroup of.1 generated by the subst, ..., 5} is a maximal parabolic sub-
group that is isomorphic to the symmetric group. We thus denote this subgros§ip by
and shall consider the set of minimal coset representatives,af Si11. It is important to
note that ifs is not the identity, them € Sy1/Sk+1 if and only if everyw € Red (o) ends
in a zero. That is, the reduced expressions are all of the toemiy - - - i,,—1 0.

3. Bijection: k + 1-cores andk-bounded partitions

Let Cr+1 and Py, respectively, denote the collections of+ 1 cores andk-bounded
partitions. We start by showing that a bijection between these sets can be defined by the
map

pry— (A1, ..., A,

where/; is the number of cells with kbounded hook in rowof y. If p(y) is the partition
consisting only of the cells inwhose hook lengths exce&gthenp(y) = 4 is equivalently
defined by lettingl; denote the length of rowin the skew diagram/p(y). For example,
with k = 4

y= /() =E~ | P =H
Hr o h

Although it is not immediate that the codomainyois Py, we shall find that each diagram
y/p(y) can be uniquely associated to a skew diagram constructed from lsbimended
partition 1.

Definition 2. For any/. € P, the *k-skew diagram of.” is the diagrami/* where
(i) rowi has length; fori =1,...,¢(4),
(ii) no cell of A/* has hook-length exceeditg
(i) all squares belowi/* have hook-length exceeditg
We shall thus find thap is a bijection fromCy 1 to P with inversec defined:

Definition 3. For /. ak-bounded partition and/* = y/p, definec(2) = y.

To this end, we start by characterizing the skew diagragtpéy) by the following lemma,
and consequently find thaty) € P;.
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Lemma 4. Letp C y be partitions. Then is ak + 1-core andp = p(y) if and only if the
skew partitiony/p has the following four properties

(i) the row lengths of/p weakly decrease from bottom-to-top
(ii) the column lengths agf/p weakly decrease from left-to-right
(iii) the hooks of the cells 9f p have at most k cells
(iv) the squares below/p have hook-lengths exceeding k

Proof. We shall prove that conditions (iii) and (iv) are sufficient. ket p. Condition (iv)
asserts that the hook ofn y/p contains at leagt+ 1 cells. Since the hook @fin y contains
at least these cells amdtself, 1.(y) > k 4+ 1. Moreover, (iii) assures that all cells pfp
have hook length< k. Thusy has nok + 1 hooks and therefore iska+ 1-core. Since all
the cells ofy whose hook length exceelidie in p, it follows thatp = p(y) as desired.

To show that conditions (i)—(iv) are necessary;lee ak + 1-core angh = p(y). Refer
below to a typical case of two successive rows,imvhereb is the cell at the end of row
i + 1, cis the cell at the end of row anda labels the cell at the top of column in 7. Thus

a A cis the cell(i, p;) in p (labeled with a ¢”). Let d be any cell of rowi + 1 that has at
leasty; — p; cells ofy to its right.

] (3.1)
[l 1 [T T Te]

The definition ofp(y) implies thath .. (y) >k + 2 sincey is ak + 1-core.

To show (i) we must prove thaf — p; >7;,1 — p; 11, Or equivalently that all sucii's are
in p. For this, we observe that the hook lengtidoh v is at least equal to the hook length
of a A ¢ minus one. Thudi,A.(y) >k + 2 implies that the hook length dfis at leask + 1
and thereforal belongs top. Next note that since the conjugate of & 1 core is also a
k + 1 core anth(y") = p(y)’, condition (ii) fory/p(y) follows from (i) for y’/p(y).

Condition (iii) is an immediate consequence of the definitiop@j. To prove (iv), con-
sidera Ac (the “e” in our figure) as a typical removable cornerg). Sinceli e (y) = k+2,
at leastk + 1 of these cells lie iry/p(y) implying hgac(7/p) =k + 1. Since every square
belowy/p(y) is weaklysouth—wesbf such aremovable cornerity), condition (iv) follows
Remarkl given (i) and (ii). O

We thus have thgt mapsCi+1 into P, since the parts of(y) are weakly increasing by
condition (i) and do not exceddby condition (iii). To show that this map is a bijection, we
will identify its inverse by considering the following auxiliary result:

Lemma 5. For any k-bounded partition = (41, 42, ..., 4,), there is a unique sequence
of skew diagrams "), 2"~k . 20k where")% = (4,) and 2“)¥ is obtained by
attaching a row of lengtH; to the bottom ofl“*1)* such that

(1) the hook lengths of)* do not exceed,k
(2) all the lattice squares below /¥ have hook lengths exceeding k



L. Lapointe, J. Morse / Journal of Combinatorial Theory, Series A 112 (2005) 44—-81 55

In particular, 1/f = 29k is the unique skew partitiopy p such that

(a) the row lengths of/p are the parts of.,
(b) yisak + 1-core andp = p(y).

Proof. To prove that conditions (1) and (2) uniquely determi@* from A+1/k | let

A =y /p with p = (g1, 9542 -2 7,) andp = (g1, Piyas -- -, p,). INductively
assume that all conditions have been met up to this point. By construction, we have
2k = 5/5 with

Y=(a+ A, Vis1: Vivor---» 7)) and p=(a, pii1, Piv2s -5 Py) (3.2)

for somea > p;, ;. We claim that conditions (1) and (2) uniquely determié&rom @.2)

we derive that the hook length of the first cell in the bottom row‘gf* (the leftmost framed
cellin the figure) ish, 11 + 4 whereb; is the length of thejth column of 201k,

H

et (3.3)

1]
ofejefeoX|X| R A A <

To satisfy (1) we must have
by +2; <k foralls>a+1. (3.4)
To satisfy (2), the squaregestof the added row must have hook length% + 1. That is,
by +;=>2k+1 foralls<a. (3.5)

Sinceb, + 1; > b, + Z;+1, the inductive hypothesis guarantees tt&5) will be true for

all a<p;,,. That is, the squares marked with & ‘in the figure will necessarily have
hook lengths exceeding It follows from these observations that to obtain a skew shape
that satisfies both (1) and (2), we are forced to takas the smallest integer such that
b, +2; <k.Inthis case, (3.5) is automatically satisfied. And (3.4) follows bechusé, 1

for all s>a + 1, given that when considering only the columnsi6f Y/ starting from
columna + 1, the diagrami.“*Y)* is that of a partition. This completes the induction.

Now let A% = /p. Our construction assures property (a). Also by construcion,
satisfies conditions (iii) and (iv) of Lemma 4, which were shown in the proof of that lemma
to be sufficient to guarantee thais ak + 1-core withp = p(y). Conversely, if a skew
diagramy/p satisfies (a) and (b) then (a) impligs= (y1, 5, . .. 7,) andp = (o1, o, - . . p,)
with y; — p; = ;. Moreover, property (b) assures that all the hook lengthg/pfdo not
exceedk and all the squares belowhave lengths exceedirig These two properties thus
necessarily hold for all the skew diagrams

L

=) _ = — _
/k = (3, Vitls - - )/ Ois Piv1s -+ Py) -

Thereforej/p = 2 by the uniqueness of such diagrams satisfying (1)—(2).
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Note that the proof of Lemma reveals thatJ* is the diagram obtained by attaching
the row of lengthy; to the bottom of.“ Y/ in the leftmost position so that no hook-lengths
exceedingk are created. This algorithm gives a convenient method for construiting

Example 6. Giveni = (4,3,2,2,1,1) andk = 4,

A= = )= E_ | revealing that(1) = |-

| [1
[ J—Lb:]j] [TTTT]

We are now in the position to prove our bijection:

Theorem 7. p is a bijection fromC1 onto Py with inversec.

Proof. For . e P, considery = ¢(1) € Cry1. Sinced/f = y/p by definition of ¢,
Lemmab(a) and (b) implies thai(y) = 4 and thusp (¢(1)) = A. Now considery € Ci41.
Lemma 4 implies thap(y) = (y1 — p(P)1, ..., 7, — p(Mn) € Pk, and thus by Lemma 5,

7/p() =p(»/~. (3.6)

Thereforeg (p(y)) = y by definition ofc. [

4. The k-lattice

The notion of &k-skew diagram gives rise to an involution #), wherel is sent to the
partition whose rows are obtained from the columns 6t

Definition 8. Foranyi € Py, the “k-conjugate” ofl denoted.”* is thek-bounded partition
given by the columns of /.

Equivalently, we may define theconjugate as the partition given by the numbek-of

bounded cells in the columns af’), or simplyA“* = p(c(1)’). This given, since = ¢ 1,
we see thak-conjugation is an involution by:

% = p([e(p(e)]') = w([e)] )= pleth)) = 4. (4.2)
Example 9. With 4 asin Exampl®, the columns af/4 give/i®* = (3,2,2,1,1, 1,1, 1, 1).

Remark 10. If h(1,1)(4) <k, all hooks ofZ arek-bounded and thus/* = 4. In this case,
),wk = ;L,/.

Now, we can consider a partial ordex™ on the collection ofk-bounded partitions
stemming fronk-conjugation.
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222 111111

Fig. 1. Hasse diagram of theYoung lattice in the case = 2.

Definition 11. The “k-Young lattice” < on partitions inP; is defined by the covering
relation

A—ru when ACu and A% C pu™* (4.2)

for u, A € Pr where|u| — |A| = 1. Fig.1 gives the cask = 2.

While this poset ork-bounded partitions originally arose in connection to a rule for
multiplying generalized Schur functions [9], we shall see in §8 that this poset turns out to
be isomorphic to the weak order on the quotient of the affine symmetric group by a maximal
parabolic subgroup. Consequently, th¥oung lattice is in fact a lattice [18] (see [17] for
a proof that follows from the identification of tHeYoung lattice as a cone in a tiling of
R* by permutahedrons).

Thek-Young lattice generalizes the Young lattice since:

Property 12. A<u reduces tol < p when/ and u are partitions such thak 1,1y (1) <k.
Proof. Sincel € u whenispu, h11)(w) <k implies thath 1 1)(4) <k. Remark10 then
implies thati”* = /' andu® = y/. Thus, the conditions that< yandi® < u®* reduce

toA C uandl €y, orsimplyi € u. O

Although the orderingg is defined by the covering relatior, the definition implies
that

Property 13. If A<u, theni € pandA®* C u®«.

It is important to notice that the converse of this statement does not hold. For example,
withk = 3,1 = (2,2 andu = (3,2,1,1, 1, 1), we havel” = 1 andu®* = p satisfying
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A C pandl® C u®, buti<{u. Thisis easily seen froffi2, Theorem 19] (sincé contains
the 3-rectangl€2, 2) while u does not), or can be more tediously verified by constructing
all chains using Theorem 23.

Similarly, althoughe(4) < ¢(u) does not necessarily imply< y, the converse is never-
theless true.

Property 14. 7 C pimpliesc(4) C ¢(p).

Proof. Lety, = ¢(4) andyﬂ = ¢(u). Assume by contradiction that there is some row of
7, that is strictly shorter than a row ¢f and let rowr be the highest such row. Lstbe
the last cell of rowr of p(y;) ands’ be the first cell of row of 7./P(7,). Sincey; hasi,
k-bounded hooks in rowandy, hasu, > 4,, the choice of forcess’ to be weakly to the
left of s. Now let¢ be the number of cells abogen y, and¢’ be the number of cells above
s"in 7, Since all rows ofy; above rowr are weakly smaller than the corresponding rows
of y, ands” is weakly to the left o, we must haveé’ > ¢. Thus the choice afands’ gives

k=hy() =€ + 1, >0+ 2 = hs(y;) = 1>k,

where the last inequality holds sinég(y;) > k andy, has nok + 1-hooks. The result
follows by contradiction. [J

In what follows, we shall develop an explicit description of the chains in this poset and
provide a bijection with certain tableaux. These tableaux will then play a central role in the
connection between theYoung lattice and the weak order, and will also be discussed in
our study of Macdonald polynomials (se&1§.

5. k+ 1-Cores

Since the set oft such thatx > 4 and|u| = |4| + 1 consists of all partitions obtained
by adding a corner ta, a subset of these partitions will be the elements that covéth
respect to<. The definition of<x implies that to determine which corners can be added
to give partitions that covet, we must find which corners can be added tso that the
resulting diagram haskaconjugate diagram that differs froA?* by only one box. Since a
k-conjugate diagram is given by the numbekdjounded cells in the columns ofat 1-
core, aclose study &f+1-cores will enable us to characterize the allowablekeaddablé,
corners.

We begin with a number of basic properties of cores that rely on their associated residues.
For the sake of completeness, we include all proofs although some may be known. For any
integerd, we shall consider the diagonals of a partitiény, = {(i, j) : j —i = d}. Note
that a fixedk + 1-residuer = 0,1, ...,k occurs in successive diagondls 1) for
any integer. A sequence of lattice cellg, c1, .. ., ¢, forms a 'k + 1-string” if the cells,
respectively, lie in the successive diagonals:

Dy ti+1)s Dr(i+1)(k+1)s Dri+2)(k+1)s - -+ » Dr(ibn) (k+1) -
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As such, all cells in & + 1-string have the sanie+ 1-residue. For any € r <k, we shall
also say that a squaréon the diagonab; ) k+1) IS a “k + 1-predecessdrof any square
on D,y «+1)k+1)- It IS important to notice that if celt’ is ak + 1-predecessor of a cedl
in a partition, thenh,.(1) = k + 2. This given, & + 1-string of cellscg, c1, ..., ¢, IS
simply a succession of cells whetgeis ak + 1-predecessor af ;1.

Our point of departure here is the following knoy&j basic result.

Property 15. Lety be ak + 1-core

(1) Let c andc’ be extremal cells of with the samek + 1-residue(c’ weakly north-west
of 0.
(a) If cis at the end of its ronthen so ig’.
(b) If c has a cell above jithen so doesg'.

(2) Let c andc’ be extremal cells of with the samé + 1-residue(¢’ weakly south-east
of ©).
(a) If cis at the top of its columrthen so is’.
(b) If c has a cell to its rightthen so does’.

(3) Let c be a corner extremal cell and be an extremal cell of the sanke+ 1-residue
asc
(a) If ¢’ is weakly south-east of thenc’ has a cell to its right
(b) If ¢’ is weakly north-west of,¢henc’ has a cell above it

Proof. 1(a) Given that there is no cell to the right afit suffices to prove that there is
no cellx to the right of the extremal celf that is ak + 1-predecessor af—by iteration
the property will follow for non-predecessars If x € y then the hook-length of the cell
determined by andcis k + 1 since no cell lies above(it is to the right of an extremal
cell). However, this contradicts thatis ak + 1-core implying that there is no cell to the
right of ¢’

ol [ 1]

2(a) follows from 1(a) since the transpose df & 1-core is & + 1-core. Further, 1(b) and
2(b) are simply the contrapositive of 2(a) and 1(a), respectively,avith ¢’. Finally, since

a corner extremal cell has a cell to its right and above it, 3(a) and (b) follow, respectively,
from 2(b) and 1(b). O

Remark 16. A k+ 1-corey never has both a removable corner and an addable corner of the
samek + 1-residue. This follows by assuming there is an addable caraesomek + 1-
residue and using Propert$5(3) with the corner extremal callimmediately south-west

of ¢. The proposition gives that all extremalsiof+ 1-residud either have a cell to their
right or above. Therefore they are not removable corners.
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Property 17. Lety be ak + 1-core

(i) If y has a removable corner @f + 1-residue j then the collection of all removable
corners ofy with £ 4+ 1-residue i forms & + 1-string.

(ii) If y has anaddable corner with+- 1-residue j then the collection of all addable corners
of y with k + 1-residue i forms & + 1-string.

Proof. Letcandc’ be the leftmost and rightmost removable cornerswith k + 1-residue
i and letc = co, c1, c2, ..., cm = ¢’ be the extremal cells (with; ak + 1-predecessor
of ¢j41) lying betweenc andc¢’. By Propertyl5(2a), each; lies at the top its column
since it is south-east @t and by (1a) lies at the end of its row since it is north-west,of
Therefore, each; is a removable corner.

To prove (ii), now letc andc’ be leftmost and rightmost addable corners withl-residue
i, and lete ande¢’ be the extremal cells immediately south-east aindc¢’, respectively.
With e = eg, e1, e2, ..., e, = €' the extremal cells (witlz; a k 4+ 1-predecessor of
ej+1) lying betweere ande’, we claim that each; is corner extremal. This follows from
Property 15(3). Indeed, eaefy must have a cell to its right because it is south-east of
and must have a cell above because it is north-west @his forces the squakg that is
immediately north-east af; to be an addable corner pfSince eacle; hask + 1-residue
i and is ak + 1-predecessor af; 1 it follows thatc = co, c1, c2, ..., ¢, = ¢’ forms a
k + 1-string with heaa: and tail¢’. O

Armed with these special properties bf+ 1-cores, we turn to the study of certain
operators that help us characterizektadable corners in theorder, and that enable us to
identify thek-Young lattice with the weak order cft1/Si+1. Operators that add a corner
of given residue to partitions arose in [2,15], and coincide with those introduced in [16].
In the case of & + 1-core, since there is never both a removable and addable corner with
the same + 1-residue by Remark 16, we consider the operator [8] that deletes or adds all
such corners from elements@p,.1. That is,

Definition 18. The “operatos;” acts on a + 1-core by

(a) removing all removable corners witht- 1-residud if there is at least one removable
corner ofk + 1-residud,

(b) adding all addable corners with+ 1-residuei if there is at least one addable corner
with k 4 1-residud,

(c) leaving it invariant when there are no addable or removable cornérs dfresidud.

We now give a number of properties that concernstheperators, beginning with the
observation that they preserve the 8gt1. Note, some properties given here are implied
in [8], but we shall include all proofs for the sake of completeness.

Property 19. Lety be ak + 1-core

(i) If y has an addable corner @f+ 1-residue j thens; (y) is ak + 1-core whose shape is
obtained by adding all addable cornersioft 1-residue i toy.
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(ii) If y has a removable corner @éf+ 1-residue j thens; (y) is ak + 1-core obtained by
deleting all removable corners &f+ 1-residue i fromy.

Proof. Let c1, ..., ¢, denote the collection of addable cornersyafvith k + 1-residue

i wherec; is ak + 1-predecessor af;; for j = 1,...,n — 1. By Definition 18, the
diagram ofs;(y) is obtained by adding;, ..., ¢, to 7. Sincey is ak + 1 core and no
hook ofy is affected by the action af unless it corresponds to a cell that lies in a column
or row containing some;, it suffices to check that there are ke 1-hooks in the rows
of 5;(y) containingc; (the columns will have nd& + 1-hooks by the transpose of our
argument).

[]b a
.

ol [T 1]

First, there can only be/a+ 1-hook in the row of; (y) containinges if y has ak-hook in
this row. Assume by contradiction that a celh the row withc1 has ak-hook iny (see the
figure). Leta ¢ 7 denote the lowest square at the top of the column contaii&incea
is not an addable corneeq(is the highest addable corner loft 1-residue), no cell lies
in the squard to the left ofa. Thus, the hook ob A ¢1 is k + 1 contradicting thap is a
k 4 1-core. Therefore is not ak-hook. For rows corresponding tg for j > 1, the cells
x = cj_1 A cj have hook-lengtlk in y by Propertyl7 while cells to the right (left) ok
are strictly smaller (larger) thdoby Remark 1. However, singg(y) is obtained by adding
cj—1 andc; to y, the hook ofx is k + 2 in s; (y) while the hooks to the right and left af
increase by one and are thus kot 1.

The proof when there is a removable cornek &f 1-residud in y follows similarly. O

Property 20. If y € Ciy1 thens?(y) = yforall i € {0, ..., k}.

Proof. When there are no removable or addable corneksioll-residud, s; is clearly an
involution. If y has at least one removable cornekaf 1-residud then by Propertyt 9(ii),

si(y) = ¢ is thek + 1-core where all removable cornets, ..., ¢, of kK + 1-residuei

have been removed from Since Remark 16 implies that there can be no addable corners
of k + 1-residuei in y, c1, ..., ¢, are exactly the addable cornersdoénds; (5) = y by
Property 19(i). Similar reasoning proves thaits an involution ify has at least one addable
corner ofk + 1-residue. O

In fact, thes; operators satisfy the affine Coxeter relations (see §8). We now conclude
this section with one last property.

Property 21. Foranyi =0, ..., k andk + 1-corey, s;(y) is ak + 1-core such that

@) If c1,...,c, is thek + 1-string of removable corners with + 1-residue i iny, then
the cellsc1 A co, ..., ch—1 A ¢, are the only cells whose hook exceeds k fout is
k-bounded ir; ().
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(iiy If c1,...,c, isthek + 1-string of addable corners with + 1-residue i iny, then the
cellsci Aca, ..., ch_1 Acy, are the only cells whose hook is k-boundegdamd exceeds
kin Si ()/)

Proof. Inthe case (ii) that has addable corners, ..., ¢, of k + 1-residud, let A denote
the set of cells with hooks exceeditign y and letB denote such cells is; (y). Thus,

s € B — A satisfiesh(y) <k andhy (s; (7)) > k. However, since; (y) is ak + 1-core by
Property19 and thus has no+ 1-hooks, we havé, (y) <k andh,(s; (7)) > k + 1. Since
s; () is obtained fronmy by adding corners;, the hook of any celk in s; (y) has two more
cells than the hook afin y only if x = c¢; A ¢, for somej and{. However, of these, only
c1 Aca,...,cn—1 A ¢y have ak-bounded hook iry since thec; are separated by hooks
o; length¢(k + 1) + k. This proves (ii) and (i) follows by replacing <> s;(y) and using
sf=id. 0

6. k-Young lattice and k 4+ 1-cores

Recall that the set of elements coveredilwith respect tes is a subset of the partitions
obtained by removing a corner box fromThese partitions must also satisfy an additional
condition that concerns the numberlebounded hooks in the(2). Equipped with the
previous discussion of cores and their properties, we are now in the position to precisely
understand how the numberlebounded hooks in &+ 1-core changes under the action of
s;. Thisthen enables us to characterizektaeldable corners and consequently, the saturated
chains in the&k-Young lattice.

Proposition 22. Given any k-bounded partitiohandy = ¢(4),

¢(1 —e,) wherer is the highest row of containing a removable
corner of residue,
si (y) = { ¢«(A+e¢,) wherer is the highest row of containing an addable  (6.1)
corner of residue,
Y wheny has no removable or addable corner of residue

Further, whens; does not act as the identjtyacts ony by removing/adding corners so that
every row and column gfands; (y) has the same number of k-bounded cells except in one
row (and columiwheres; (y) has one fewer/more k-bounded cell themn particular, the

total number of k-bounded cellssp(y) is exactly one more/fewer than-iwheny contains

an addable/removable corner bft+ 1-residue i

Proof. Letcs, ..., c, be thek + 1-string of removable corners with+ 1-residue in y.
Property21(i) reveals that tha k-bounded cellgy, ..., ¢, in y are notk-bounded ins; ()
while then — 1 cellscy A ca, ..., ch—1 A ¢, arek-bounded irs; () but not iny. Therefore,
s; acts ony by decreasing the numberlebounded cells only in the row containiag and
in the column containing, sincec; A cj;1 andc;41 lie in the same row while; A cji1
andc; lie in the same column far= 1, ..., n — 1. Therefore, sinceé = ¢ 1(y) indicates
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the number ok-bounded hooks in rows gf we havel — e, = ¢~ 1(s; (7)) wherer is the
highest row ofy containing a removable cornenj of k 4+ 1-residud.

Replacingy < s;(y) and usingsl.2 = id proves the case withy, ..., ¢, the addable
corners. [J

This given, we can characterize tkaddable corners.
Theorem 23. The order< can be characterized by the covering relation
A—=p b <= A=u—e (6.2)

where r is any row of(u) with a removable corner whoge+ 1-residue i does not occur
in a higher removable cornem which case; (c(,u)) = ¢(4). Equivalently r can be char-
acterized as a row of(4) with an addable corner whose+ 1-residue i does not occur in
a higher addable corner

Example 24. Withk =4 andi = (4,2,1, 1),

«(4,2,1,1) = (6.3)

NN

4
0]1
1]2[3]4]0]1

and thus the partitions that are coveredigre(4, 1, 1, 1), and(4, 2, 1), while those that
coveritare(4,2,1,1,1) and(4, 2,2, 1).

Proof. Assume that is a row ofc¢(u) with a removable cornex of k + 1-residud. If no
removable corner af(u) with k + 1-residué lies higher tham, then Propositio22 implies
5i(c(w) = c(u— e,), and that the number dfbounded cells of (i — ¢,) differs frome(u)
in only one column where itis shorter by one. Therefore, by the definitiGrcohjugation,
(1 — )™ S p™, implying u — er — p.

On the other hand, assume there is a removable cbrogk + 1-residud higher than
a. To prove(p — e,)Zu®* (implying by definition thatu — e, /4« w), it suffices to
assumd is ak + 1-predecessor @fsince Property 17 implies the removable corners form
ak + 1-string. Now we shall show that a columnof© is shorter than the same column of
(u—ey)/*. The diagrams afi/* and(u—e,)/* coincide strictly above rowby the recursive
method of constructing kskew diagram presented in Lemma 5 (i.e. Example 6). In row
r, the square = b A a (see (6.4)) must satisfy < h, (/%) <k + 1 (orhy(u/*) = k + 1)
sinceb is ak + 1-predecessor @i, both removable corners. Therefore, deleting a cell in
rowr allowsx € (u — e,)/* without producing a hook exceedikgThus the column with
Xin u — e, is longer than the corresponding columnyf.

EE no R E a (6-4)

Finally, r can be equivalently characterized as the highest rowinwith an addable
corner of giverk + 1-residue since the addable corners@f are exactly the removable
corners ofc(u), given thate(x) = s;(c(4)). O

Thus, we combine this result with Propositid® to derive the following consequences:
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Corollary 25. Given k-bounded partitionsand u,
A= p = «(A) Cc(w) and s;(c(A)) = c(u) for somei € {0, ..., k}.  (6.5)

This given, we are now able to provide a core-characterization of the saturated chains
from the empty partition (hereaft@r= /1(0)) to anyk-bounded partitiori |- n:

Dk = {(N,M, L Z gy 0 N“)} . (6.6)

Corollary 26. The saturated chains to the verték n in the k-lattice are given by
Dk = {(x@, D Z gy (A9 ¢ (2UD) and

AUy = (c(}ff))> for somei} .

7. Standard k-tableaux

Motivated by the proposed role d&flattice chains in the study of certain Macdonald
polynomial expansion coefficients, we pursue a tableaux interpretation for these chains. In
this section, we shall provide a bijection between the set of cli2fiis) and a new family
of tableaux defined on cores. Following our discussior8io&he connection between the
k-lattice and weak order on affine permutations, a bijection from these tableaux to certain
reduced expressions will also be revealed.

7.1. Definition

Definition 27. A k-tableauT of shapey € Ciy+1 with n k-bounded hooks is a filling of
with integers{1, ..., n} such that

(i) rows and columns are strictly increasing,
(i) repeated letters have the saie- 1-residue.

The set of alk-tableaux of shape(2) is denoted byr*(4).

Example 28. 73(3, 2, 1, 1), or the set of 3-tableaux of shap@ 3, 1, 1), is

- (7.1)

6|7
2[4[5]6[7]

[7] [7] [7] [7]
5 6 4 4
4 4 3 2
1 1 1 1

6]7] 5[7] 6[7]
2[3[4]6]7] 2[3]4]5[7] 3[4[5]6]7]

Our first task is to show that deleting all occurrences of the largest letter from a given
k-tableau produces a nekvtableau. For this we shall need yet another property about
cores.
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Property 29. Lety andd bek + 1-cores. Ify C 9, then the number of k-bounded hooks of
7 is smaller than that 0.

Proof. Letn, andns denote the number d¢bounded hooks of the + 1-coresy andé
respectively. If|§| = 1 theny = ¢ and we haver; = 1 whilen, = 0. Now, assume the
result holds for alk 4+ 1-coreso with ns < N, and consider a pair df + 1-coresy and
o such thatzs = N andy C d. Fori thek + 1-residue of a removable corner &fs; (J)
is ak + 1-core whose number éfbounded hooks is less thahsinceng, sy = ns — 1 by
Proposition22. Thus, ify C s;(d) thenn, < ny (5 < N by induction. Further, if = s; ()
thenn, = ng,5) < N. Finally, in the case that ¢ s;(9), we haves; (y) C s;() since any
cell of y notins; (8) is a removable corner gfof k 4 1-residud. However,sl.2 =id implies
thats; (y) C s;(6) and thus by inductiomy, ;) < ny, (5 = ny < ngs by Proposition 22. [J

Definition 30. Forany partitior, let#(v) denote the smallest number such that there exists
ak + 1-corey with #(v) k-bounded hooks andC 7.

Lemma 31. For any partitionv, #(v) is the smallest number of letters needed to fill the
shapey in such a way that

(i) rows and columns are strictly increasing
(ii) repeated letters have the same- 1-residue

Proof. Lety be ak 4+ 1-core with #v) k-bounded hooks such thatC y and letn be the
smallest number of letters needed tofiffroperly (i.e. satisfying conditions (i) and (ii)).

To show that <#(v), it suffices to find a proper filling of using #v) letters. Fori; the
k + 1-residue of a removable cornergfput letterN = #(v) in all removable corners of
with residueiy. Foris thek + 1-residue of a removable cornersdn(y), put letterN — 1
in all cells ofy corresponding to corners sf (y) with residuei,. By iteration, we obtain a
proper filling ofy (and consequently of its subshapevith N letters since Propositio?2
implies that each; decreases the numberlebounded hooks by one.

To prove that: > N, let T be a proper filling of the shape= v*D and consider the
tableaux of shape’) obtained by deleting the letters .., n fromT (fori = n, ..., 1). The
lemma will follow by showing that #®) >#((*D) — 1. That is, starting with é) = N,
this would imply that #/) > N — 1 and then #”~1) > N — 2, and by iteration that the
empty partitionv® satisfies #1) > N — n. Therefore, > N — n.

Letay, ..., a, denote the positions of the lettein v and lety be the partitionv minus
these cells. It remains to show thaiv#>#(v) — 1. Lety andy denotek + 1-cores with
#(v) and #v) k-bounded hooks, respectively, and where 7 andv C y. Note that since
ai, ..., a, are removable corners of sorhe- 1-residud in v, they are addable corners of
v. Thus, these are either addable cornerg of lie iny. If all a1, ...,a, € ythenv C %
implies #(V) >#(v) by definition of #v). Otherwise, giver; is an addable corner gf
the number ok-bounded hook of s; () is #(v) + 1 by Proposition 22. However, since
v C 5;(y), M >#(v) and we reach our claim.

Proposition 32. Deleting all cells filled with the letten = || from T € T*(2) gives a
k-tableauT e T*(u), wherec(u) = s;(c(2)) for i the k + 1-residue of the cells containing
the letter n
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Proof. Lety be the shape dF, and letl beT without lettem. To prove thaf is ak-tableau,

it suffices to show that the shapef T is that of ak + 1-core. Ifi is thek + 1-residue of
some removable corner containing the lettén T, thens; (y) is ak + 1-core withn — 1
k-bounded hooks by Propositid?? ands;(y) < v. If we assume by contradiction that
v is not ak + 1-core thens;(y) C v. Thus, anyk + 1-cored containingv also satisfies
si(y) C . Therefore, Property 29 implies th&has morek-bounded hooks than(y) and
thus, #v) > n — 1 by definition. Lemma 31 then leads to the contradiction sayingfttuit
shaper cannot be properly filled with — 1 letters. Finally, sinceis ak + 1-core, it cannot
have a removable and addable corner of the Jamd.-residue by Remark 16. Therefore,
given thati is thek + 1-residue of a removable cornerjircontainingn (thus an addable
corner inv), everyremovable corner of residuen y containsn, implyingv = s;(y). O

7.2. Bijection: k-tableaux and saturated chains

We now introduce two maps that lead to our bijection between chafis) in the
k-lattice andk-tableaux7(1).

Definition 33. For any path? = (A9, ..., 1) e D¥(4), let I'(P) be the tableau con-
structed by putting letter j in positions.)) /c(AY Py for j =1,...,n.

GivenT € T*(), letT(T) = A©, ..., 2™) wherec(2") is the shape of the tableau
obtained by deleting letters+ 1, ..., n fromT.

To compute the action df on a path, we view the action efas a composition of maps
on a partition—first skew the diagram and then add the squares below the skew to obtain a
core.

Example 34. With k = 3:

(g’D’ED’ H miimm "HH

]

]

]
~—
=1 )
NINEN

6[7]
2[3]4[6]7]

i m !
¢,0, 3, 17, 01, | 11

<>

The example suggests tHat* = T". This will indeed follow from the following lemmas:

Lemma 35. If P € D¥(J), then['(P) € T*(2).

Proof. Since the only path i®* () is P = (%,[J), andI'(P) =@ e 7*(), we proceed
by induction orj|. Assume thal’ sends any path of lengih- 1 to ak-tableau om — 1 letters
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and letP = (A9, ..., /™) e Dk(J). The definition ofl" implies thatl’(P) is obtained
by adding lettento 771 = T2 ©, ..., 2%~y in positionsc (A(")) /¢ (i(”‘l)). Since

¢ (ﬁ’”) = (c(),("‘l))) for somei by Corollary26, these positions are the addable corners

of (A=) with k + 1-residud. Therefore, the lettensin I'(P) all have the samé + 1-
residue and no two can occur in the same row or column. Tt is ak-tableau of shape
¢(A™) given that the subtabledti’ ! is ak-tableau by induction. OJ

Lemma 36. If T € T*(1), thenT(T) € D*(J).

Proof. Considel € T*(2) andletl (T) = (A ©, ..., 2™).Forallj,if c2Y) c ¢(2VU+D)
ands; (c(AY ) = (1)) for somei, thenl (T)) € D (1) by Corollary26. The definition
of T implies thatc(1") is the shape oF, and further that(1""~Y) is the shape of minus
all occurrences af. Clearlyc(AY)) ¢ ¢(2Y*Y), and furthes; (¢(A™)) = ¢(A~V) where
i is thek + 1-residue of the cells containimgoy Proposition 32. Thus, the codomainiof
is DX (/) by iteration. [

We are now set to prove thétis a bijection between saturated chains kitdbleaux.
Theorem 37. T is a bijection betwee®* (1) and 7% (1) with T~ = T..

Proof. From Lemmas35 and 36, it suffices to prove thEtandT are inverses. We start
by showing thal T'(P) = P. GivenT'(\ ¥, ..., 2™ = T, we must show that if (T) =
W@, ..., 1™y thenc(u®) = (A1) for ¢ = 0, ..., n. The definition ofl" implies that
shapeT) = ¢(2™) and that the letten lies in ¢(A®) /c(2" V). At the same time, the
definition of T implies that shap@’) = ¢(u™) andc(u®~D) is the shape of the tableau
obtained by deleting all occurrences of the lettéom T. Thereforeg(u 1) = c(A=D)y,
By iteration,[T'(P) = P.

On the other hand, givaR(T) = (1?0, ..., 2®), we must show that F(1©, ..., 1)
= T thenT = T. The definition ofl” implies thatT is the tableau obtained by filling the
cells of (AU +Y) /¢(2)) with letter j + 1. However, by definition of, ¢(1) is the shape
obtained by deleting the lettejs+ 1, ..., N from T, and¢(2Y ") is the shape obtained
by deletingj + 2, ..., N from T. Therefore, the cells(AY+Y)/¢(AY)) in T are filled with
letterj +1. ThusT = 7. O

8. Thek-Young lattice and the weak order on§k+1/Sk+1

In this section, we shall see how thet 1-core characterization of theYoung lattice
covering relations given in Corollary 25 leads to the identification ofktiYeung lattice
as the weak order ok 1/S:+1. A by-product of this result is a simple bijection between
reduced words arldtableaux and one betwekibounded partitions and affine permutations
in Skt1/Sk+1-
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8.1. The isomorphism

To establish that thk-Young lattice is isomorphic to weak order on the set of minimal
coset representatives §f, 1/Sx 1, we rely foremost on the faf#] that thes; operators sat-
isfy the affine Coxeter relations (2.4), and thus provide a realization of the affine symmetric
group onk + 1-cores.

Property 38. Thes; operators satisfy

sf=id, sisj =sjs; (i —j #E1Imodk +1) and s;si418 = Si418iSi+1-
(8.1)

The following map is then well defined:

Definition 39. Foro € S‘k+1, lets sendo to ak + 1-core by
S:0=Si S, WV, (8.2)

whereis - - - iy is any reduced word far and¢ is the emptyk + 1-core.

A characterization for Bruhat order in terms of the containment of cores stemming from
this map is provided by LascoUg]. To be precise,

Proposition 40. The mays : Sk+1/Sk+1 — Cry1is an isomorphism from Bruhat order on
Sk+1/Sk+1 to Young ordek<C) onCy41.

We are thus able to obtain from okir+ 1-core charagterization of the chains in the
k-lattice that this lattice is isomorphic to the weak orderSpn1/ Sky1:

Corollary 41. Leto, T € Sy11/Sk41, and let) = p(s(o)) andu = p(s(z)). Then

0<pT <= A=k (8.3)

Proof. Proposition40 implies a characterization of the covering relations for weak order
on Sx+1/Sk+1. That is, Si[]C& is a bijection and the weak order is a suborder of the Bruhat
order, we have foo, T € Sg11/Sk+1

0<pw?T <<= s(0)Cs(t) and s;s(0) = s(r) for somei. (8.4)

The result thus follows from the characterization-ef; given in Corollary25. [
8.2. Bijection: k-tableaux and reduced words

We have seen in Theorem 37 that the saturated chains to ghiapthe k-lattice are
in bijection with k-tableaux of shape(y). On the other hand, the reduced words doe
S‘k+1/Sk+1 encode the chains . Corollary 41 thus implies there is a bijection between
k-tableaux of shapgand the reduced words fer(y).
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This bijection arises naturally by noting from Coroll&§ that the association between a
k-tableau and chaii @, ..., 2™ = J) in thek-Young lattice is determined by a sequence
in - izi1 such thaty, (c(2Y ™)) = ¢(AY) for j = 1,..., n. However, this sequence can
also be viewed as a reduced word for the permutatiovheres(s) = ¢(4) by Eq. (8.4).
Therefore, the following map provides the desired bijection:

Definition 42. For ak-tableauTl with mletters wheré, is thek + 1-residue of the lettea,
define

w:T —ipy---i1.

Forw =iy, ---i1 € Red(c), v~ 1(w) is the tableau with lettet = 1, ..., m occupying the
cells Ofsi( ceeSig @/S,’l_l cee S @.

Example 43. With k = 3

7] [1]
T = g v 1203210 since the 4-residues ar=§
1 0

5[7] 0[1]
2[3[4]5][7]

1[2][3[o]1]

¢

Proposition 44. The mapw : 7%(1) — Red(0) is a bijection wheres SkH/SHl is
defined uniquely by(1) = s(0).

We will now make use of canonical chains in tkefoung lattice to obtain a simple
bijection betweerk-bounded partitions and permutationsSin.1/Sk+1.-

Definition 45. For any partition, let “w;” be the word obtained by reading thet+ 1-
residues in each row of, from right-to-left, starting with the highest removable corner
and ending in the first cell of the first row. Further, let;" be the affine permutation
corresponding ta,.

since

)= (8.5)

ofw[n]]

3]
0
1

2]

Proposition 47. ¢ belongs taSi;1/Sk+1 ands(a;) = ¢(4).

Proof. Consideri € Py. In light of Propositiord4, it suffices to show that there is some
k-tableauT of shapec(/) wherew(7) = w;. Note that Corollaries 26 and 37 impiy(7T)

(of shapex(1)) is obtained from a certain chain®, ..., 1™ = J) in thek-Young lattice

by taking the sequendg - - - iz i1 such thas;, (c(2Y ™)) = ¢(AY) for j = 1,..., n. Now,

there exists a canonical saturated ch@&irfand thus a canonical sequerige- - i> i1) such
that2") is obtained by removing the highest removable cornef6fY. The existence of

such a chain is ensured by Theorem 23 since the highest removable corner of a partition is
always the highest of its+ 1-residue. However, the highest removable corner of a partition
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/. coincides with the highest removable corner @) and we therefore find that - - - iz i1
is exactlyw;. 0O

Given the bijection betweek-bounded partitions ané + 1-cores, this immediately
provides a bijection betwedabounded partitions and permutationsSin-1/Sk+1.

Corollary 48. The map¢ : Pr — Sii1/Ske1 Wherep(l) = o, is a bijection whose
inverseisp ™t =pos.

Example 49. Giveno € 5‘{ with a reduced expressian = 31032130, we construct
the shape

[2] [2] [2]
5351505352515350 - ¥ =[0] — — — [3] — [3] — [3]0
0[1]2] 0[1]2]3] 0[1]2]3]0]
[1] [
Iz — [2]3
3[0[1] 3[0[1]
o[1[2]3]o]1] o[1]2]3]o]1]

from which we read the number of 3-bounded hooks to oquaﬁﬁ(o—) = (3,2,2,1).
Converselyg can be recovered fro, 2, 2, 1) by using Exampld6 to find¢ (3, 2, 2, 1) =

AAAAAAAA

for the same permutation).

The bijection¢, although algorithmically distinct, turns out to be the same bijection
presented by Bjorner and Brenti [1].

9. Comparing elements differing by more than one box

Now that we have been able in §7 to explicitly understand the covering relation for the
k-order and to characterize the chains, it is natural to ask what can be said about the relation
among vertices differing by more than one box. In this section we shall prove that

If u/A andu®* /A% are horizontal and vertical strips, respectively, thefu.

A number of somewhat technical properties will lead us to this result and shall also be used
in our development of a semi-standard version ofkitableaux corresponding to certain
chains in thé-Young lattice. We begin by continuing the studykef 1-cores, concentrating

on pairsy C 6.

Definition 50. Lety ando bek + 1-cores withy € §. A “rowaddef is a cells € §/y such
that there is no cell i /y that is ak 4+ 1-predecessor «f

Two properties concerning the existence of rowadders are needed.

Property 51. If y ando are k + 1-cores withy C o, thend/y has a rowadder at the top of
the leftmost column that contains more than one. cell

Proof. Letb (of k + 1-residue) denote the cell id/y at the top of the leftmost column
with more than one cell. Note thatif € y lies immediately southwest @f then no cell of
y lies to the right ofx. Further, the diagram af/y to the left ofb is a series of horizontal
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rows since columns to the left bfhave at most one cell.

9.1)

Suppose by contradiction that there is a éedl 5/ that is ak + 1-predecessor df. Then
hj.. () =k + 1, violating the assumption thais ak + 1-core. [J

Remark 52. For partitionsi andy, // is a horizontal strip if. € pand4, > p, , 4 for all
r. Further,u/ 4 is a vertical strip iffu, — 4, € {0, 1} for all r.

Property 53. Considery = ¢(1) andd = c¢(u) withy C o. Let¢ denote the leftmost column
of ¢/y with more than one cell

(i) If there are rowadders in the top two cells &fy in column¢, thenu// is not a
horizontal strip

(ii) If there is no rowadder in the second rowdfy in of columne, thenA“* & k.

Proof. (i) The number ok-bounded hooks in rowof J (resp.,y) is i, (resp..4,). Thus, by
Remark52, it suffices to prove that there are at legst# 1 k-bounded hooks in row + 1
of ¢ for somer. We shall consider the rows+ 1 andr containing rowadders, b € /7. If

a denotes the extremal cell pthat is ak 4+ 1-predecessor @, then the extremal celi of

) thatk + 1-precedes either lies below or besidesincea is extremal. However, ib lies
besidez, the hook ofb A b is k + 1in thek + 1-corey implying this case does not occur.
Whenb lies belowa, the squaré to the right ofa is not ind sinceb is extremal iny andb

is a rowadder:

alb ¢

b (9.2)
Xa Xc a c ~ r+1

i b | < r

Notice that the hook of, = b A b in y is k-bounded while the hook of, = b A b iny
exceedk. Therefore /. is the number of cells strictly betweep andb (equivalently,x,
anda). To determine the number &bounded hooks af, let c denote the last cell in row
r + 1 of 6 and¢ the square & + 1-predecessor af in the row withh. Since¢ does not
belong tod, the hook length ok. = ¢ A ¢ is at most + 1. But becausé is ak + 1-core,
xc = ¢ A c thus has &-bounded hook i@ as do all the cells oé to the right ofx.. Given
that the number of cells strictly betweep andc equals the number of cellg,, strictly
betweenx, anda, we have at least, + 1 k-bounded hooks in row + 1 of ¢ as claimed.
(ii) Since the number df-bounded hooks in a column pfresp. 0) corresponds to a row
of A7 (resp.,u®r), to provei® & u®*, it suffices to show that there are méebounded
hooks in some column gfthan in that column 0. Leta (of £ + 1-residue) denote the
top cell in the first columrd,, of §/y containing more than one cell. By assumption, the cell
b belowa is not a rowadder and thus there is a ¢elt §/y of the samek + 1-residue as
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b to the left of column¢,. Hence the squar@ aboveb hask + 1-residue and since the
diagram ofd/y to the left of columr¢, is a series of horizontal rows, ¢ o/7.

(9.3)

Sincea anda have the same+ 1-residue, the cell, = a A a has hook-length bounded by
kiny and at least + 1 in 6. Similarly for the cellx, = b A b. Therefore, in the column with
x4, b € § is the onlyk-bounded hook i that is not iny while x, andx;, arek-bounded
hooks iny that are nok-bounded ind. We reach our claim sincghas at least one more
k-bounded hook tha# in this column. [

We shall say that, 4 areadmissibleff /. and u®*//“* are, respectively, horizontal
and vertical strips, i.e. iffi, 2 arer-admissible for some.

Proposition 54. If u, A € P, forms an admissible paithen ¢(u)/c(1) is a horizontal
strip.

Proof. Giveny, /is an admissible pair, we hayg . is a horizontal strip and®t /A is a
vertical strip. In particular € pand by Propertyt4,c¢(2) € ¢(u). Now, assume by contra-
diction thatc(w)/¢(4) contains some column with more than one cell. The topaellthe
leftmost such column must be a rowadder by Property 51. If the bellowc is a rowadder,
then this column contains two rowadders implying by Property 53(i)itjp&is not a hori-
zontal strip. On the other hand dis not a rowadder, theif’ & u* by Property 53(ii) and
thus u®/J® is not a vertical strip. Either case (gives a
contradiction. [

Lemma 55. Lety and J be k + 1-cores where no column has more k-bounded hooks in
y than in g, and whered/y is a horizontal strip. With i denoting the + 1-residue of the
rightmost cell ind/y, the removable corners &f+ 1-residue i ind are exactly the cells of

k + 1-residue iind/y.

Proof. Letay (of k + 1-residuei) denote the rightmost cell in/y and note that; is a
removable corner sinc&/y is a horizontal strip. It:1 is not a rowadder o/, then there
is a cellay € 6/y that is ak + 1-predecessor af;. Similarly, if a2 is not a rowadder then
there is a celiz € 6/y which is ak + 1-predecessor of. By iteration, we eventually reach
arowaddew,, € §/y, and have thé + 1-stringas, az, ..., a,, of cells withk + 1-residue
i. Note thatay, ..., a,, are all extremal cells of since they lie in the horizontal strifyy.
Furthermore, no cell lies to the right afi implying that no cell lies to the right of any
extremal cell withk + 1-residue aboveas, by Propertyl5. Thereforeqs, ..., a,, are all
removable corners af. It thus remains to show that any extremal celkef 1-residud in
0 abovea,, or belowa is not removable.

The diagrams of and¢ coincide south-east afi, givenas is the rightmost element of
o/y. If a1 is ak + 1-predecessor of an extremal cdllthen a cell must lie to right-hand
side ofd since otherwiseli ;14 (y) = k + 1 in thek 4 1-corey. Property 15 thus implies
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that all extremal cells of + 1-residuea lying south-east ofl also have a cell to their right.
Therefore, there are no removable cornerk ¢f1-residud south-east of.

Similarly by Propertyl5, our claim will follow by showing that there is a célle ¢
above the extremal cell, 1 € ¢ that is ak + 1-predecessor af,,. Supposé ¢ 6. Then
the hook length of,,+1 A a,y, ISk + 2 in 6 sincea,, +1 and the removable corney, have the
samek + 1-residue, but ik-bounded iny sincea,, ¢ y andy has ndk + 1-hooks. Note that
the column containing,,+1 is of the same length ipas ino sinceb ¢ § anda,,+1 ¢ 0/7.
Therefore;y has morek-bounded hooks in this column contradicting our assumpti@n.

Theorem 56. If u, A is n-admissiblgthen there are distinct integers, .. ., i, where

¢(A) = siy -+ si, (e(p) -
Proof. Sincew* is the number ok-bounded hooks in colummof § = ¢(u), given that, A
isn-admissible, no column has mdedoounded hooks ifn = ¢(4) thanind = ¢(w). Further,
0/yis a horizontal strip by Propositidsd. Therefore, if y denotes thé + 1-residue of the
rightmost celliy € d/y, then Lemma 55 implies that the diagram(s)/y can be obtained
by deleting all cells ok + 1-residugy from ¢/y and is thus a skew diagram with no more
than one cell in each column.

We now claim that no column has mdkébounded hooks i than ins;,, (). Proposi-
tion 22 gives thas;, (6) has the same number kfbounded hooks a&in every column
except the one containing the cel, where it has one fewer. Since no column has more
k-bounded hooks in than ind, it suffices to show that in the column with;, y does not
have more-bounded hooks than, (). This follows by noting that weakly to the right of
the column withay, s;, (6) andy coincide.

Therefore we can use Lemma 55 to prove that, (s, (6))/y can be obtained by deleting
all cells ofk 4+ 1-residue y andi y—1 from 6/y. By iterating the preceding argument, there is
someN wheres;, - - - s;,, (0)/y is the empty partition implying that= s;, - - - s (6). Since
each iteration causes the removal of all cells with a giverl-residue frond/y, i1, ..., in
are distinct. Further, since the numbekdfounded hooks ié is lowered by one each time
by Proposition 22N = |u| — |4l =n. O

Using this result, Corollary 25 implies
Corollary 57. If u, 4is an admissible pajitheni<pu.
We conclude this section with another set of conditions under whigh

Theorem 58. If 1 C u, A% C u®*, andc(u)/c() is a horizontal striptheny, / is admis-
sible

Proof. We start by showing that// is a horizontal strip, or equivalently by ReméeBR,
that the number df-bounded hooks in rowof y = ¢(1) is not smaller than the number of
k-bounded hooks in row + 1 of § = ¢(w).

In row r of y, let y, denote the last cell and let be the rightmost cell with a hook
exceeding. Note that:,, (y) > k + 1 sincey is ak + 1-core. If there ard — 1 cells strictly
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betweenx, andy,, theny hasd k-bounded hooks in row. It thus remains to prove that
there are no more thashk-bounded hooks in row + 1 of 6. In rowr + 1 of ¢, let y, be
the last cell and let, be the cell so that there adle— 1 cells between, andy, (if x, ¢ o
thend, 1 <d and the claim holds).

X v T T 1] <rowr

Note thatx, lies weakly to the left ok, sincey, lies weakly to the left ofy, givend/y is a
horizontal strip. Thus, the number of cells abayen v is weakly greater thafy. — 1 for ¢,
the number of cells above in the partitiony. Sincey C §, the number of cellg, above
Xq in o satisfied, > ¢, — 1. Henceh,, (6) =, +d + 120, +d = hy, (y) — 1 > k. That
is, hy, (0) exceedsk. Therefore the maximal number kibounded hooks in row + 1 of 6
isd.

To see thau®k //.“* is a vertical strip, note thalt/y has at most one box in every column.
Thus, the number df-bounded hooks in a column éfcannot exceed the number lof
bounded hooks in that columnpby more than one singeC § implies any hook exceeding
kin y must exceedt in 6. Now, recall that the number éfbounded hooks in the columns
of y ands are.”* andu®*, respectively. Giverd®* C u®*, this leads tq,™ — 2% ¢ {0, 1}
for all r——conditions that are equivalentwk/)f“k being a vertical strip. O

10. Generalizedk-tableaux and thek-Young lattice
We now introduce a set of tableaux that serve as a semi-standard verkitabtEaux.

Definition 59. Let y be ak + 1-core,m be the number of-bounded hooks of, anda =
(o, - .., o) be a composition ain. A semi-standar#-tableau of shapgand evaluation
is a filling of y with integers 12, . .., r such that

(i) rows are weakly increasing and columns are strictly increasing,
(i) the collection of cellsfilled with letteirare labeled with exactly; distinctk+1-residues.

We denote the set of all semi-standkitéibleaux of shapg /) and evaluation by7;" (2).
Whena = (1), we call thek-tableaux $tandard. In this case;75, (2) is the setT* (%)
of k-tableaux introduced in® Hereafter, a semi-standdedableau will simply be referred
to as ak-tableau.

»»»»»

the set

- (10.1)

4]4]5
2[2[3[4]4]5]

NNNE
v|w|o]

16
4
2
1

5]
3
2

4[4]6] 4]5]6]
2[2[3[4]4]6] 2[2[4[4]5]6]




L. Lapointe, J. Morse / Journal of Combinatorial Theory, Series A 112 (2005) 44—-81 75
10.1. Standardizing and deleting a letter from k-tableaux

As with the standarll-tableaux, we shall prove that deleting some letter frdatableau
produces anothde-tableau. To this end, we present a method for constructing a standard
k-tableau from a givek-tableau of the same shape.

Definition 61. For « a composition oinandT € 7;"(2), defineSt(T) by the iterative
process

If ais the biggest letter of, leti denote thet + 1-residue of the rightmost cell i
that contains. Construct a tableali by replacing each occurrence of leteewith k + 1-
residuei by the letterm. Now, leta denote the biggest letter (smaller thahin 7 andi
thek + 1-residue of the rightmost cell ifi that contains. Again construct a new tableau
by replacing each occurrence of leteewith k + 1-residud by the lettern — 1. S¢(T) is
the tableau obtained by iterating this process until each collection of repeated letters forms
only onek + 1-string. That isSt(T) € T, (4).

aaaaa

(8,521

4-residues=

~
I
SNNE

v|w|o]
ofw[n]-]

3]
6] 0
1

4]4
2[2[3[4]4[é6]

|

1[2]3
2[3[0[1]2[3]

Every lettera = 6 of residue = 3 is replaced byn = 9:

NN N
v|w|o]

4]4]9]
2[2[3[4]4]9]
[8]
— 1 y _ Q- [4]9
Then letters: = 5 of residue = 1 are replaced by: = 8: 22 ATaTs]
1[2][2]2]3]4]4]9]
[8]
Then letters: = 4 of residue = 2 are replaced by: = 7: |72 o]
1[2[2][2[3]4]7]9]
[8]
Then letters: = 4 of residue = 1 are replaced by: = 6: |12 ST7Te]
1[2]2[2][3]6][7]9]
a=3,i=0 E a=2,i=3 [8]
imi — 7]9] — [7]9]
Slm”arly’ m=>5 2[5[6]7]9] m=4 4|5]6]7]9]
1]2]2]2][5]6]7]9] 1[2]2]4[5]6]7]9]
a=2,i=2 [g]
— 415|6|7|9
m=3 1]2[3]4[5]6[7]9]

Oncethetableauis standard, the step 2, i = 1, m = 2followedbya =1,i =0, m =1
does not change the tableau.
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Proposition 63. LetT € T* " )(2). The tableau obtained by deleting the letter m from

(o1,mes m

Thbelongs to7, () for someus with [ 2] — |u| = 0.

Proof. Let7 denote the tableau obtained by deleting the lettieom T. Since Conditions (i)
and (i) of ak-tableau clearly hold fof, it suffices to show that the shape Bfis given
by ¢(u) for someu=<4. To this end, considest(T'), the standardt-tableau of shape(4)
associated t@. Deleting the largest letter froisy (7') gives ak-standard tableau of shape
Siy (c(/l)) by Proposition32. By iteration, removing the largest, letters fromSz(T)
gives a standark-tableaurl” of shape;, - - -si,,, (c(i)), whereiy, ..., iy, are, respectively,
thek + 1-residues of the, largest letters Sz (7). Since? has the same shape &s

T e T(xl _________ (W wherec(w) = siy -+ s, (¢(4). Further,u</ by Corollary 25 and
|Al — |u| = oy, by Proposition 22. [

It is known (e.g. [3]) that there are no semi-standard tableaux of shiaped
evaluationu when A i u in dominance order. We have found that this is also true for the
k-tableaux.

Remark 64. There are nk-tableaux mT"(}) whent(u) < £(A) since any element of

7;"(A) has height?(1), has only£(uw) dlstlnct letters, and must be strictly increasing in
columns.

Theorem 65. There are no semi-standard k-tableauﬂlﬁ(i) whenA % u. Further, there
is exactly one when = p.

Proof. Consideri, u € Py with |4] = |u|. We shall proceed by induction on the length of

u. A k-tableau of evaluatiop = (u1) must be of shape(1) wheref(1) <£(u) by Remark

64. Therefore4 = (u1) and the claim holds. Assume the assertion holds wiign< N.
Consideru = (41, ---» uy) @ndL = (Ja, ..., Ay) With 2% p. Thatiis,ug +--- + p; >

A1+ ---+ 4; for somej <N. Suppose by contradiction that there is sofhe T"()l)

The prewous proposition implies that removing the leiefrom T results in ak- tableau

T e T" 0@ wherei<A. Thus,c(Z) = si; - - s, (c(2) for someis, ..., iy,

.....

by Corollary 25 Sincel (1) < N, the induction hypothesis impligg < J. Therefore

g+ -+ u, <Ji+...+ 4, forall r <N — 1. Further; <A by Proposition 22 since the
si; act by deleting removable corners starting with), and thugey +- - -+ u, <A1+. ..+ 4,
forallr <N — 1. Thereforepu, + - - - + py > A1+ -+ + Ay given 1 . However, since
Al = |ul, |u|l > A1+ ---+ Ay implies€(2) > £(u). We thus reach a contradiction by
Remark 64.

To see that there is exactly okéableaul’ € T"(/l) we shall first show by induction that

there can be no more than one such tableau ﬁer()l, ..., An). Delete the letteN from

T to obtain ak-tableauT e 7"‘ ai ()l) wherec(l) = s, - iy (¢(4)). Remark 64
11,

implies thatt (/) gﬁ(/l) =N-1 Smce exactlle cells were removed from to obtain/,
and the length of. was decreased by at least one, #he. ., i;, are uniquely determined
and correspond to thet+ 1-residues in the top row ef1). Thus, for two distinck-tableaux
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in 7}"(&) to exist, two distinctk-tableaux inTZ"(i) are necessary. By induction this is a
contradiction.

We prove that there is in fact alwayskaableauT e 7}" (4) by construction: start
with uniquek-tableau of shape and evaluation). For j > 1, letAY) = (44, ..., 4;) and
consider thek-tableau of shape(1)) and evaluatiom.”). Add the letterj + 1 in all
positionss;, _, -+ si, (¢(2)) /c(2Y) wherei, is thek + 1-residue of the squarg + 1, )

of Wiore=1,...,2541. O
10.2. Bijection: generalized k-tableaux and chains in the k-lattice

A rule for expanding the product oflaSchur function with the homogeneous function
he (for £<k) in terms ofk-Schur functions was conjectured|[ihl]. We introduce certain
sequences of partitions based on this generalized Pieri rule and show their connection to
the semi-standarkitableaux. The connection with symmetric functions is then discussed
in 811.

Recall from the introduction that a pair ktbounded partitions, u is “r-admissiblé if
and only if 1/u andA®* /u®* are, respectively, horizontal and verticadtrips. For compo-
sition o, a sequence of partitior(sl(o), A )f”) is “o-admissible” if A0, 20D s

a«;-admissible pair for alj. This given, since Corollary 57 implies thatif”, 2V~ is
o j-admissible therl =Y <), we have that any-admissible sequence must be a chain
in thek-Young lattice. We are interested in the set of chains:

Definition 66. For any composition, let

Dy ={w=2,..../" =) that are z-admissiblq .

We now give a bijection between the set of chain®fj(/) and the tableaux ifi} ().

Definition 67. For anyP = (4@, ... i) ¢ Dk()), let I(P) be the tableau of
shape:(1) where lettej fills cells in positions:(19)/c(2Y V), for j =1, ..., m.

Proposition 68. If P € DX (1), then['(P) € TX(J).

Proof. If P = (4@, ., ..., 1) e Dk()) thenT'(P) has the shape of the+ 1-core
¢(4). It thus suffices to prove thdt(P) is column strict and hag; distinctk 4 1-residues
that are filled with the lettej. Since2), 1V~ is «;-admissible by definition oD% (),
Theorems6 implies thats;, - - - i, (cY™)) = ¢(2) for some collection of distinct
integersi1, ..., iy, and Proposition 54 implies tha¢i”)/¢(AY~V) is a horizontal strip.
I'(P) is thus column strict since the lettglies only in a horizontal strip. Further, given
that each of the;; operators;, adds addable corners of residugthe lettelj occupiesy;
distinctk + 1-residues sinca, ... ., iy; are distinct. [J
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Definition 69. For ak-tableaul e 7 () with o = (ag, ..., ay), let T(T) = A9, ...,
2y wherec(1") is the shape of the tableau obtained by deleting the letters . .., m
fromT.

Proposition 70. If T e TX(2), thenT(T) € DL()).

Proof. Letting T(T) = (A?, ..., A’™), the definition ofl" implies that the tableaux’
obtained by deleting letteris+ 1, ..., m from T have corresponding shapes.”)). By
Proposition63, the T’ are k-tableaux. In particular7’ has strictly increasing columns.
Thus sincel 1 is obtained by deleting lettérfrom 77, ¢(2?)/c(A%~) is a horizontal
strip and further, by Proposition 68/~ <1 with |10 — |19~Y| = o,. Property 13 then
impliesthat!! =Y < 2@ and(A )2« < (1 D)@« Thereforel®, 29~ arex;-admissible
by Theorem 58 and we have thatT) € DX(1). O

Theorem 71. T is a bijection betweefM* (1) and DX (1), with -1 =T..

Proof. Given Proposition$8 and 70, we only have to show that#f Dk(j) andT e
7;"(/1), thenI'(I'(T)) = T andI"(I"(P)) = P. This follows from the same deleting—filling
letter argument given in the proof of Theorem 371

11. Symmetric functions andk-tableaux

Refer to Macdonald [14] for details on symmetric functions and Macdonald polyno-
mials. Here, we are interested in the study of ¢he-Kostka polynomialsk,,; (¢, 1) €
Nl[g, t]. These polynomials arise as expansion coefficients for the Macdonald polynomials
J;[X; q, t]interms of abasis dual to the monomial basis with respect to the Hall-Littlewood
scalar product. As in the introduction, we use the modificatiaf X ; g, ] whose expan-
sion coefficients in terms of Schur functions are ghe-Kostka coefficients:

Hj[X:q. 1= Kui(q. 1) sulX]. (11.1)
u

The ¢, r-Kostka coefficients also have a representation theoretic interprefdiioinom
which they were shown [6] to lie iN[g, ¢]. SinceJ,[X; ¢, t] reduces to the Hall-Littlewood
polynomial Q,[X; t] wheng = 0, we obtain a modification of the Hall-Littlewood poly-
nomials by taking:

Hy[X: 1] = Hy[X: 0,11 = Y K (1) sulX], (11.2)
=y

with the coefficientsk (1) € N[¢] known as Kostka—Foulkes polynomials. We can then
obtain the homogeneous symmetric functions by letting1l:

hiIX] = Hy[X: 11 = > Ky sulX], (11.3)
=

wherekK ,; € N are the Kostka numbers.
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Recentwork in the theory of symmetric functions has led to a new approach in the study of
thegq, t-Kostka polynomials. The underlying mechanism for this approach relies on a family
of polynomials that appear to have a remarkable kinship with the classical Schur functions
[9,11,12]. More precisely, consider the fiItratimﬁl) c A§2) c... C A§°°) = A, given by
linear spans of Hall-Littlewood polynomials indexedlsipounded partitions. That is,

A = CUH X sy <k k=1,23,....

A family of symmetric functions called tHeSchurfunctlonss) )[X t], was introduced in

[11] (these functions are conjectured to be precisely the polynomials defined using tableaux
in [9]). It was shown that th&-Schur functions form a basis fotgk) and that, forl a
k-bounded patrtition,

HilX:q,t1 = Y K@.0sP1X:01, Kiqn € Zig. 1 (11.4)
mpg Sk
and
HilX;t] = sG]+ Y K ©O0sPix;e1, K00 ezl
wp <k
ﬂ>D;-

(11.5)

The study of thek-Schur functions is motivated in part by the conject[@d1] that the
expansion coefficients actually lie M[g, 7]. That is,

K", 1) eN[g,1]. (11.6)

i

Since itwas shown thaﬁk)[x; t] = s,[X]forklarger than the hook-length éfthis conjec-

ture generalizes Eql{.1). Also, there is evidence to support tka, (¢, t) — K;’? (q,1) €
N[g, t], suggesting that the Schur expansion coefficients are simpler thangtheKostka
polynomials.

The preceding developments on Kakattice can be applied to the study of the generalized
g, t-Kostka coefficients as follows: theSchur functions appear to obey a generalization
of the Pieri rule on Schur functions. To be precise, it was conjectured in [9,11] that for the
complete symmetric functioh,[ X1,

hIX1sPx: =) sPx, (11.7)

ueE/(.fZ
where

E(k) {u | /2 is a horizontak-strip andu®* /A”* is a vertical¢- strlp} . (11.8)
Iteration, froms(k)[X 1] = 1, then yields that the expansion/of, [X]4,,[X] - - - satisfies

mIx1="7y K. sPix; 11, (11.9)
u
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(k)

WhereK is a nonnegative integer reducing to the usual Kostka numhemwhenk is

large smcec(k)[X t] = s,[X] in this case. The definition of(k) in thek-Pieri expansion
thus reveals the motivation behind the set of chains given |n Deﬂrﬁﬁoffhls connection
implies that

KL’? = the number of chains of thelattice inD¥ () .

Equivalently, using the bijection between chaing)'j(u) and7j{‘ (1) givenin Theoren71,
we have

KL’}) = the number ok-tableaux of shape(i) and evaluatiori .

Although this combinatorial interpretation relies on the conjectured Pierital&}, it was
proven in [11] that thek-Schur functions are unitriangularly related to the homogeneous

symmetric functions. That |sK(k) = 0 whenu ¥ 1 andK(k) = 1. Therefore, Theorem 65

implies that the number ch‘-tableaux does correspondl@? in these cases.

More generally, note that letting = 0 in Eq. (11.6) gives that the coefficients in Hall—
Littlewood expansion Eq. (11.5) satisfg?;ﬁ) (0, 1) € N[t]. However, sinced;[X; 1] =
h;[X], we have thang? 0,1 = ngf from Eq. (11.9). Therefore, since itappears mg{f

counts the number of semi-stand&rtableaux in’ff (w), it is suggested that there exists
a t-statistic on suctk-tableaux giving a combinatorial interpretation for the generalized

Kostka—FoquesK ®) (0, 1).

Alternatively, H;[X 1,1] = hw[X] for iFn implies thatK(k)(l 1) = K( by
Eq. (11.9). This lends support to the idea that,a-statistic on the standarldtableaux
that would account for the apparently positive coeﬁicie’ﬁp@ (g,1)In EqQ. (11.6). Thatis,

K(")(l 1) = the number of standardtableaux of shape(y) .

LA

Equivalently, our bijection between affine permutations and staridaioleaux suggests
there may be a, ¢-statistic on reduced words that would account for the positivity:

K/i’?(l, 1) = the number of reduced words @f, € Sta1/Sk41 -

We mention one final consequence of WaRieri rule. For/ a partition of lengthn, the
producth,, ---h; giving h; can be written in any order since the functions commute.
Therefore,

holX1=y Ky s1X; 11, (11.10)
u

for any reordering: of the entries ofi. Therefore,K/(l? is also the number of chains in
Dk (w). Equivalently,K/i’;) is the number ok-tableaux in7} (u). Thus, conjecturel(l.7)
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implies:

If « is a rearrangement of, then |7X(w)| = \Tf(y)]. Equivalently, the number of
k-tableaux in7* (1) equals the number d¢tableaux in7 (u).

This conjecture suggests that there is a generalization of the Bender—Knuth involution
on semi-standard tableaux that permutes the evaluatigrtaifleaux accounting for this
phenomenon. Sd&9] for this new involution and thus the proof of this conjecture.
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