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Linear programming bounds provide an elegant method to prove
optimality and uniqueness of an (n, N, t) spherical code. However,
this method does not apply to the parameters (4,10,1/6). We
use semidefinite programming bounds instead to show that the
Petersen code, which consists of the midpoints of the edges of the
regular simplex in dimension 4, is the unique (4,10,1/6) spherical
code.
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1. Introduction

Let C be an N-element subset of the unit sphere Sn−1 ⊆ R
n . It is called an (n, N, t) spherical code

if every two distinct points (c, c′) of C have inner product c · c′ at most t . An (n, N, t) spherical code
is called optimal if there is no (n, N, t′) spherical code with t′ < t .

Only for a few parameters optimal spherical codes are known. The table [9, p. 115] lists all known
cases in dimension n = 3. The tables [17, Table 9.1] and [11, Table 1] list all known cases in which
optimality can be proven using linear programming bounds.

One source of optimal spherical codes are iterated kissing configurations coming from the E8 root
lattice in dimension 8 and the Leech lattice in dimension 24 (see [13]). Starting from the sphere
packing defined by these lattices one fixes one sphere and considers all spheres in the packing
touching the fixed one. The touching points, also called a kissing configuration, form (8,240,1/2)

and respectively (24,196560,1/2) spherical codes. Then one views the kissing configuration as a
packing in spherical geometry and repeats this construction. One gets (7,56,1/3) and respectively
(23,4600,1/3) spherical codes.
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More formally, one picks a point x ∈ C from an (n, M,1/k) spherical code C in which x
has M ′ points Nx ⊆ C with inner product 1/k. Then the points (Nx − x/k)/

√
1 − 1/k2 form an

(n − 1, M ′,1/(k + 1)) spherical code.
In this way one gets sequences of spherical codes with parameters

(8,240,1/2), (7,56,1/3), (6,27,1/4), (5,16,1/5), (4,10,1/6), (3,6,1/7),

and

(24,196560,1/2), (23,4600,1/3), (22,891,1/4), (21,336,1/5), (20,170,1/6).

By using linear programming bounds Levenshtein [17] proved that every sharp (see Section 3)
spherical code is optimal. Levenshtein’s theorem applies to all spherical codes above except to those
with parameters (4,10,1/6), (3,10,1/7), (21,336,1/5), (20,170,1/6). In all optimal cases the spher-
ical code is also unique up to orthogonal transformations. This was proved for the cases (8,240,1/2),
(7,56,1/3), (24,196560,1/2), (23,4600,1/3) by Bannai and Sloane [5] and for (22,891,1/4) by Cuy-
pers [14] and independently by Cohn and Kumar [12] (who also corrected a minor error in the
(23,4600,1/3) case). For the cases (6,27,1/4), (5,16,1/5) see the discussion in [11, Appendix A].
One should point out that optimality does not imply uniqueness as one can see from the sharp
(q(q3 + 1)/(q + 1), (q + 1)(q3 + 1),1/q2) spherical codes from [10]. For some q there are two different
spherical codes with these parameters.

Based on massive computer experiments Cohn et al. [6, Section 3.4] conjectured that the
(4,10,1/6) spherical code is optimal and unique. As we explain in Section 2 this spherical code is
closely related to the Petersen graph and we call it the Petersen code. Whether the above spherical
codes with parameters (21,336,1/5) and (20,170,1/6) are optimal and unique is currently unclear.
At least in all these cases linear programming bounds cannot be used to show optimality. A (3,6,1/7)

spherical code is not optimal because the vertices of the regular octahedron form a (3,6,0) spherical
code which is a sharp spherical code.

The main result of this paper is the following theorem which proves the conjecture.

Theorem 1.1. The Petersen code is an optimal (4,10,1/6) spherical code. Up to orthogonal transformations it
is the unique spherical code with these parameters.

The proof is based on the semidefinite programming bounds for spherical codes developed in [2]
and [3]. Currently this is the only new case we know where the semidefinite programming bound
is tight and the linear programming bound is not. Another known case seems to be 8 points in S2

which was solved by Schütte and van der Waerden in [19]. The linear programming bound gives 8.29
whereas our numerical calculations suggest that the semidefinite programming bound is tight.

We could not prove optimality of (21,336,1/5) and (20,170,1/6) spherical codes using semidef-
inite programming bounds. For the first case the linear programming bound equals 392 whereas our
numerical calculations suggest that the semidefinite programming bound is approximately 363. How-
ever, we run into serious numerical problems here and at the moment we cannot definitely rule
out that the semidefinite programming bound is sharp. For the second case the linear programming
bound and the semidefinite programming bound coincide: They both give 206.25.

The structure of the paper is as follows: After giving some constructions and properties of the
Petersen code in Section 2, which also reveal the origin of its name, we show in Section 3 that one
cannot prove Theorem 1.1 using linear programming bounds. In Section 4 we recall the semidefinite
programming bounds and in Section 5 we present a proof of Theorem 1.1 based on them.

2. Constructions and properties of the Petersen code

There are many possibilities to construct the Petersen code and we already gave one. Here we give
two more.

The next construction justifies the name “Petersen code.” The Petersen graph is a graph with 10
vertices and 15 edges. The vertices are given by the 2-element subsets of a 5-element set and they
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are adjacent whenever the corresponding 2-element subsets have empty intersection. Every point of
the Petersen code corresponds to a vertex of the Petersen graph and the inner product between two
points is −2/3 whenever the corresponding vertices are adjacent. The inner product is 1/6 whenever
the corresponding vertices are not adjacent. This defines a Gram matrix having rank 4 which is unique
up to simultaneous permutation of rows and columns. The number of ordered pairs in the Petersen
code with inner product −2/3 is 30 and those with inner product 1/6 equals 60.

In the Petersen graph every vertex has three neighbors, every pair of adjacent vertices has no
common neighbors and every pair of nonadjacent vertices has exactly one common neighbor. So it
is a strongly regular graph with parameters ν = 10, k = 3, λ = 0, μ = 1. It is easy to see that it is
uniquely defined by these parameters. For more information about strongly regular graphs see [4]
and [8].

The next construction is geometric: After applying a suitable similarity transformation the mid-
points of the edges of the regular simplex in dimension 4 form the Petersen code. Sometimes,
this construction is also called the second hypersimplex �(2,5). The second hypersimplex is the 4-
dimensional polytope defined as the convex hull of the points ei + e j with 1 � i < j � 5 where ei is
the ith standard unit vector in R

5. For more information about second hypersimplices see [18].
By [15, Theorem 5.5] the Petersen code forms a spherical 2-design: A spherical code C ⊆ Sn−1

forms a spherical M-design if for every polynomial function f : R
n → R of degree at most M , the

average over C equals the average over the sphere Sn−1.

3. Linear programming bounds

Linear programming bounds provide an elegant method to prove optimality and uniqueness of an
(n, N, t) spherical code. In particular a theorem of Levenshtein [17, Theorem 1.2], which covers many
cases in a unified way is based on them. Before we prove that linear programming bounds cannot
prove the optimality of the (4,10,1/6) spherical code we briefly review the underlying notions (see
also e.g. [15, Theorem 4.3], [16], [13, Chapter 9], [2, Theorem 2.1]).

The positivity property of the Gegenbauer polynomials Cn/2−1
k (see [1, Chapter 6.4]), which are

normalized by Cn/2−1
k (1) = 1, underlies the linear programming bounds for spherical codes in Sn−1:

For every degree k = 0,1, . . . and every finite subset C of Sn−1 we have

∑
(c,c′)∈C2

Cn/2−1
k (c · c′) � 0. (1)

One formulation of the linear programming bounds is as follows.

Theorem 3.1. Let F (x) be a polynomial with expansion

F (x) =
d∑

k=0

fkCn/2−1
k (x) (2)

in terms of Gegenbauer polynomials Cn/2−1
k . Suppose that

(a) all coefficients fk are nonnegative,
(b) f0 > 0,
(c) F (x) � 0 for all x ∈ [−1, t].

Then an (n, N, t) spherical code satisfies

N � F (1)

f0
. (3)

Proof. For an (n, N, t) spherical code C we have the inequalities
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N F (1) �
∑

(c,c)∈C2

F (1) +
∑

(c,c′)∈C2

c �=c′

F (c · c′) =
∑

(c,c′)∈C2

F (c · c′) � N2 f0, (4)

where the first inequality is due to (c) and the second due to (a) and the positivity property (1). This
together with (b) implies (3). �

If there exists an (n, N, t) spherical code C so that N = �F (1)/ f0� in (3), then, of course, C is a
maximal (n, N, t) spherical code, i.e. N is the maximal number of points one can place on the sphere
Sn−1 so that distinct points have inner product at most t . If furthermore N = F (1)/ f0, then C is an
optimal (n, N, t) spherical code. This can be seen as follows. If (3) is tight it follows from the proof
that for an (n, N, t) spherical code C one has F (c · c′) = 0 for distinct c, c′ ∈ C . Suppose C ′ is an
(n, N, t′) spherical code with t′ < t . Then, F (c · c′) = 0 for all distinct c, c′ ∈ C ′ . Now we perturb C ′
continuously to another (n, N, t′′) spherical code C ′′ with t′ < t′′ < t . Still we would have that c · c′ is
a root of the polynomial F for all distinct c, c′ ∈ C ′′ yielding a contradiction.

Levenshtein’s theorem says that for every sharp spherical code there is a polynomial satisfying the
assumptions of Theorem 3.1 for which (3) is tight. A spherical code C is called sharp if it is a spherical
M-design and the number m of different inner products between distinct points satisfies M � 2m − 1.
The Petersen code is a spherical 2-design and there are 2 different inner products between distinct
points. Thus, Levenshtein’s theorem does not apply to it.

Now we show that it is not possible to prove the optimality of the Petersen code with help of
Theorem 3.1. Suppose that the polynomial F (x) = 1 + ∑d

k=1 fkC1
k (x) satisfies fk � 0 for k = 1, . . . ,d,

and F (x) � 0 for all x ∈ [−1,1/6]. If F would prove that the Petersen code is optimal, then the
inequalities in (4) are equalities, so we would have that

10 = F (1) = 1 +
d∑

k=1

fk, (5)

and that

0 = F (−2/3) = F (1/6), (6)

and furthermore that for all k with fk > 0,

0 =
∑

(c,c′)∈C2

C1
k (c · c′) = 10 + 30C1

k (−2/3) + 60C1
k (1/6). (7)

We shall show that (7) only holds for k = 1 and k = 2: By [1, (6.4.11)] we have the following
expression:

C1
k (cos θ) = 1

k + 1

k∑
j=0

cos
(
(k − 2 j)θ

)
. (8)

Hence,

lim
k→∞

C1
k (−2/3) = lim

k→∞
C1

k (1/6) = 0, (9)

so that for sufficiently large k, (7) cannot hold true. Checking the remaining cases it follows that (7)
is only valid for k = 1,2. Hence, F is of degree 2, but then F cannot satisfy the conditions (5) and (6)
and F (x) � 0 for x ∈ [−1,1/6].

This argument gives rather pessimistic estimates. In fact, numerical computations suggest that for
all d � 3 the optimal polynomial is

F (x) = 1 + 2270

680
x + 2775

680

(
4

3
x2 − 1

3

)
+ 1500

680

(
2x3 − x

)
, (10)

and so the best upper bound one can probably prove using Theorem 3.1 is 10.625. We checked this
for all d � 40 by computer.
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4. Semidefinite programming bounds

As we have seen above the positivity property of the polynomials Cn/2−1
k plays a crucial role

for the linear programming bounds. For the semidefinite programming bounds this is replaced by the
positivity property of the matrices Sn

k . From [2] we recall the matrices Sn
k and their positivity property.

First we define the entry (i, j) with i, j � 0 of the (infinite) matrix Y n
k containing polynomials in x, y, z

by

(
Y n

k

)
i, j(x, y, z) = xi y j · ((1 − x2)(1 − y2))k/2

Cn/2−3/2
k

(
z − xy√

(1 − x2)(1 − y2)

)
, (11)

and then we get Sn
k by symmetrization:

Sn
k = 1

6

∑
σ

σ Y n
k , (12)

where σ runs through all permutations of the variables x, y, z which acts on the matrix coefficients
in the obvious way. The matrices Sn

k satisfy the positivity property:

for all finite C ⊆ Sn−1,
∑

(c,c′,c′′)∈C3

Sn
k(c · c′, c · c′′, c′ · c′′) � 0, (13)

where “� 0” stands for “is positive semidefinite” where we mean that every finite minor is positive
semidefinite. Note that the difference between (11) and the original [2, (12)] is due to a change of
basis which does not affect the positivity property.

The interval [−1, t] of the linear programming bounds is supplemented by the domain

D = {
(x, y, z): −1 � x, y, z � t, 1 + 2xyz − x2 − y2 − z2 � 0

}
. (14)

We need some more notation. The space of (finite) symmetric matrices is a Euclidean space with
inner product 〈F , G〉 = trace(F G). The cone of positive semidefinite matrices is self dual, i.e. one has
〈F , G〉 � 0 for all positive semidefinite G if and only if F is positive semidefinite. If F is a symmetric
matrix with m rows and m columns, then we interpret 〈F , Sn

k〉 as the inner product of F with the
principal minor of Sn

k of appropriate size.
Now we can state the semidefinite programming bounds. The following polynomial formulation

can be deduced from [2, Theorem 4.2]. We provide an independent proof which has the additional
feature that it gives information in the case when the theorem provides tight results.

Theorem 4.1. Let F (x, y, z) be a symmetric polynomial with expansion

F (x, y, z) =
d∑

k=0

〈
Fk, Sn

k(x, y, z)
〉
, (15)

in terms of the matrices Sn
k . Suppose that

(a) all Fk are positive semidefinite,
(b) F0 − f0 E0 � 0 for some f0 > 0 (E0 is the matrix whose only nonzero entry is the top left corner which

contains 1),
(c) F (x, y, z) � 0 for all (x, y, z) ∈ D,
(d) F (x, x,1) � B for all x ∈ [−1, t].

Then an (n, N, t) spherical code satisfies

N � 3B + √
9B2 + 4 f0(F (1,1,1) − 3B)

2 f0
. (16)
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Proof. Let C be an (n, N, t) spherical code. Define

S =
∑

(c,c′,c′′)∈C3

F (c · c′, c · c′′, c′ · c′′). (17)

Split this sum into three parts according to the indices C1, C2, C3 ⊆ C3 where Ci contains all triples
with i pairwise different elements. The contribution of C1 to S is N F (1,1,1), the one of C2 at most
3N(N − 1)B and the one of C3 is at most zero. Together,

S � N F (1,1,1) + 3N(N − 1)B. (18)

On the other hand,

S =
d∑

k=0

〈
Fk,

∑
(c,c′,c′′)∈C3

Sn
k(c · c′, c · c′′, c′ · c′′)

〉
(19)

�
〈

f0 E0,
∑

(c,c′,c′′)∈C3

Sn
k(c · c′, c · c′′, c′ · c′′)

〉
(20)

= N3 f0, (21)

yielding the statement of the theorem. �
A few remarks about the theorem and its proof are in order.
If the bound (16) is tight, then all inequalities in the proof must be equalities. In particular, the

univariate polynomial F (x, x,1) − B has roots at the inner products c · c′ for distinct c, c′ ∈ C . So we
can argue in the same way as in the case of the linear programming bounds that tightness implies
optimality.

If the bound (16) is tight, we have the following identities: Let C be an (n, N, t) spherical code
with

D(C) = {
(c · c′, c · c′′, c′ · c′′): (c, c′, c′′) ∈ C3},

I(C) = {
c · c′: (c, c′) ∈ C2, c �= c′}. (22)

Let F be a polynomial satisfying the hypothesis of Theorem 4.1 with constants B and f0 and proving
the tight bound (3B + √

9B2 + 4 f0(F (1,1,1) − 3B))/2 f0. Then

(i) N2 f0 − F (1,1,1) − 3(N − 1)B = 0,
(ii) F (x, y, z) = 0 for all (x, y, z) ∈ D(C),

(iii) F (x, x,1) = B for all x ∈ I(C),
(iv) 〈Fk,

∑
(c,c′,c′′)∈C3 Sn

k(c · c′, c · c′′, c′ · c′′)〉 = 0 for all k = 1, . . . ,d,

(v) 〈F0,
∑

(c,c′,c′′)∈C3 Sn
0(c · c′, c · c′′, c′ · c′′)〉 = N3 f0.

Semidefinite programming bounds are at least as strong as linear programming bounds: If G =∑d
k=0 gkCn/2−1

k (x) is a polynomial which satisfies the hypothesis of Theorem 3.1, then the polyno-
mial F (x, y, z) = (G(x) + G(y) + G(z))/3 satisfies the hypothesis of Theorem 4.1 with B = G(1)/3 and
f0 = g0. This is because one sets F0 = g0 E0 and from [2, Proposition 3.6] it follows that one can
express G with semidefinite matrix coefficients.

From [3, Lemma 4.1] it follows that one can express every symmetric polynomial in the form (15).
However, this expansion is not unique, e.g.

x + y + z =
〈(

0 3/2

3/2 0

)
, Sn

0

〉
+ 〈

(0), Sn
1

〉

=
〈(

0 0
)

, Sn
0

〉
+ 〈

(3), Sn
1

〉
, (23)
0 3
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where only the second expansion involves semidefinite matrices and where

Sn
0 =

(
1 (x + y + z)/3

(x + y + z)/3 (xy + xz + yz)/3

)
, Sn

1 = (
(x + y + z)/3 − (xy + xz + yz)/3

)
. (24)

5. Proof of optimality and uniqueness

In this section we prove Theorem 1.1 with the help of Theorem 4.1. Although we can present a
proof which one can verify essentially without using computer we relied heavily on computer assis-
tance to find it.

To show that the Petersen code is the unique (4,10,1/6) spherical code we use the matrices
F0 ∈ R

4×4, F1 ∈ R
3×3, F2 ∈ R

1×1 given by

F0 =

⎛
⎜⎜⎜⎝

2882/3 114 −2500 0

114 324 216 0

−2500 216 8716 1296

0 0 1296 11664

⎞
⎟⎟⎟⎠ ,

F1 =
⎛
⎝

0 0 0

0 3588 −4536

0 −4536 11664

⎞
⎠ , F2 = (2000 ) . (25)

Let

mijk = 1

6

∑
σ

σ
(
xi y j zk), 0 � i � j � k, (26)

where σ runs through all permutations of the variables x, y, z, be the polynomial which one gets by
symmetrizing xi y j zk . Then,

F (x, y, z) = 11664m320 + 11664m221 + 7128m220 − 9072m211

+ 432m210 − 2412m111 + 324m110 + 228m100 − 118/3, (27)

and

F (x, x,1) − B = 1

3888

(
x + 2

3

)2(
x − 1

6

)(
x2 + 4

9
x + 20

27

)
. (28)

It is a straightforward computation that F satisfies the condition of Theorem 4.1 with F (1,1,1) =
59750/3, B = 250, f0 = 800/3 so that it shows N � 10 for a (4, N,1/6) spherical code. This finishes
the proof of the optimality.

Before showing uniqueness, let us describe how we derived F0, F1, F2. We have

S4
0(x, y, z) =

⎛
⎜⎜⎜⎝

1 m100 m200 m300

m100 m110 m210 m310

m200 m210 m220 m320

m300 m310 m320 m330

⎞
⎟⎟⎟⎠ ,

S4
1(x, y, z) =

⎛
⎝

m100 − m110 m110 − m210 m210 − m310

m110 − m210 m111 − m220 m211 − m320

m210 − m310 m211 − m320 m221 − m330

⎞
⎠ ,

S4
2(x, y, z) = (− 1

2 + 5
2 m200 − 3m111 + m220 ) . (29)

Then 0 = ∑2
k=0〈Ki,k, S4

k 〉 for
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K1,0 =

⎛
⎜⎜⎜⎝

0 − 1
2 0 0

− 1
2 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , K1,1 =

⎛
⎝

1 0 0

0 0 0

0 0 0

⎞
⎠ , K1,2 = ( 0 ) ,

K2,0 =

⎛
⎜⎜⎜⎝

1
2 0 − 5

4 0

0 0 0 0

− 5
4 0 2 0

0 0 0 0

⎞
⎟⎟⎟⎠ , K2,1 =

⎛
⎝

0 0 0

0 3 0

0 0 0

⎞
⎠ , K2,2 = ( 1 ) ,

K3,0 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 −1 1
2 0

0 1
2 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , K3,1 =

⎛
⎜⎝

0 1
2 0

1
2 0 0

0 0 0

⎞
⎟⎠ , K3,2 = (0 ) ,

K4,0 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 − 1
2

1
2

0 − 1
2 0 0

0 1
2 0 0

⎞
⎟⎟⎟⎠ , K4,1 =

⎛
⎝

1 0 1
2

0 0 0
1
2 0 0

⎞
⎠ , K4,2 = (0 ) , (30)

i.e. the matrices Ki,k form a basis of the kernel of the linear map which assigns symmetric polynomi-
als to the matrix coefficients. From the discussion following the proof of Theorem 4.1 we know that
the matrix entries have to satisfy the equalities (i)–(v) where

∑
(c,c′,c′′)∈C3

S4
0(c · c′, c · c′′, c′ · c′′) =

⎛
⎜⎜⎜⎝

1000 0 250 125
9

0 0 0 0

250 0 125
2

125
36

125
9 0 125

36
125
648

⎞
⎟⎟⎟⎠ ,

∑
(c,c′,c′′)∈C3

S4
1(c · c′, c · c′′, c′ · c′′) =

⎛
⎝

0 0 0

0 0 0

0 0 0

⎞
⎠ ,

∑
(c,c′,c′′)∈C3

S4
2(c · c′, c · c′′, c′ · c′′) = ( 0 ) . (31)

We restrict our search to polynomials F satisfying

∂ F

∂x

(
−2

3
,−2

3
,

1

6

)
= 0,

∂ F

∂x

(
−2

3
,

1

6
,

1

6

)
= 0,

∂ F

∂x

(
−2

3
,−2

3
,1

)
= 0. (32)

Furthermore, we restrict our search to those polynomials lying in the subspace of dimension 9
spanned by

m320, m221, m220, m211, m210, m111, m110, m100, 1. (33)

The one-dimensional affine subspace

Fγ (x, y, z) = (11664m320 + 9720m220 − 1296m210 − 6480m111 + 2268m110 − 108m100 − 18)

+ γ (34992m221 − 7776m220 − 27216m211 + 5184m210 + 12204m111

− 5832m110 + 1008m100 − 64), γ ∈ R, (34)

satisfies all these linear equalities. We have

Fγ (x, y, z) =
2∑〈

Ak, S4
k

〉 + γ
〈
Bk, S4

k

〉
(35)
k=0
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with

A0 =

⎛
⎜⎜⎜⎝

−18 −54 0 0

−54 2268 −648 0

0 −648 3240 5832

0 0 5832 0

⎞
⎟⎟⎟⎠ ,

A1 =
⎛
⎝

0 0 0

0 −6480 0

0 0 0

⎞
⎠ , A2 = ( 0 ) , (36)

and

B0 =

⎛
⎜⎜⎜⎝

−64 504 0 0

504 −5832 2592 0

0 2592 4428 −13608

0 0 −13608 34992

⎞
⎟⎟⎟⎠ ,

B1 =
⎛
⎝

0 0 0

0 12204 −13608

0 −13608 34992

⎞
⎠ , B2 = ( 0 ) . (37)

In this affine subspace we want to find a polynomial which satisfies the inequalities (c) and (d)
from Theorem 4.1 and which at the same time has a representation of the form (15) with positive
semidefinite matrices Fk . Hence, we are left with the problem of finding a matrix in the intersection
of an affine subspace with the cone of positive semidefinite matrices which is a basic task in semidef-
inite programming. Since this problem is not known to be in NP—in fact it is the major open problem
in the theory of semidefinite programming—it is not a priori clear that a solution exists which one
can nicely describe.

We solved these two semidefinite programming problems separately and we used the numerical
software csdp [7] for this task: If 0.28 � γ � 0.68, then Fγ satisfies (c). If 0.18 � γ � 0.38, then Fγ

has a representation of the form (15) with positive semidefinite matrices. We make the Ansatz γ = 1
3

and try to find a nice representation. For this we solve the semidefinite feasibility problem

Ak + 1

3
Bk + β1 K1,k + β2 K2,k + β3 K3,k + β4 K4,k � 0, k = 0,1,2, (38)

which luckily happens to have the solution β1 = β3 = β4 = 0 and β2 = 2000.
To show uniqueness we first derive the three points distance distribution α of a (4,10,1/6) spher-

ical code C which is defined by

α(x, y, z) = 1

|C |
∣∣{(c, c′, c′′) ∈ C3: c · c′ = x, c · c′′ = y, c′ · c′′ = z

}∣∣. (39)

Since −2/3 and 1/6 are the only roots of the polynomial F (x, x,1) − B , these are the only inner
products which can occur among distinct points in C . This enables us to use (iv) and (v) together
with the relations

α(x, y, z) = α
(
σ(x, y, z)

)
for all permutations σ of x, y, z,

α(1,1,1) = 1,∑
(x,y,z)∈D

α(x, y, z) = 100,

∑
x∈[−1,1]

α(x, x,1) = 10, (40)

to determine α by solving a system of linear equations: It is
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α(−2/3,−2/3,1/6) = 6, α(−2/3,−2/3,1) = 3,

α(−2/3,1/6,1/6) = 12, α(1/6,1/6,1/6) = 18,

α(1/6,1/6,1) = 6, α(1,1,1) = 1. (41)

Now by [15, Theorem 5.5] C is a spherical 2-design. By [15, Theorem 7.4] it carries a 2-class as-
sociation scheme whose valencies and intersection numbers are uniquely determined. In fact it is a
strongly regular graph with parameters ν = 10, k = 3, λ = 0, μ = 1. This uniquely defines the Petersen
graph which finishes the proof of the uniqueness.
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