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A cyclic descent function on standard Young tableaux of size 
n is a function that restricts to the usual descent function 
when n is omitted, such that the number of standard Young 
tableaux of given shape with cyclic descent set D ⊂ [n]
is invariant under any modulo n shift of D. The notion of 
cyclic descent was first studied for rectangles by Rhoades, 
and then generalized to certain families of skew shapes by 
Adin, Elizalde, and Roichman. Adin, Reiner, and Roichman 
proved that a skew shape has a cyclic descent map if and only 
if it is not a connected ribbon. Unfortunately, their proof is 
nonconstructive; until now, explicit cyclic descent maps are 
known only for small families of shapes.
In this paper, we construct an explicit cyclic descent map 
for all shapes where this is possible. We thus provide a 
constructive proof of Adin, Reiner, and Roichman’s result. 
Our construction of a cyclic descent map generalizes many of 
the constructions in the literature.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let Sn denote the symmetric group on [n] = {1, . . . , n}. For a permutation π ∈ Sn, 
the descent set of π is defined by
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Des(π) = {i ∈ [n− 1] : π(i) > π(i + 1)}.

In 1998, Cellini [4] introduced a notion of cyclic descent. Cyclic descents were further 
studied in [8], and are defined as follows. For π ∈ Sn, let

cDes(π) =
{

Des(π) ∪ {n} π(n) > π(1),
Des(π) π(n) < π(1).

The function cDes has the property that the multiset

{{cDes(π)|π ∈ Sn}}

is invariant under rotation of indices modulo n. Equivalently, the number of permutations 
with cyclic descent D ⊆ [n] is invariant under any modulo n rotation of D.

Moreover, let φ : Sn → Sn be the cyclic rotation function, such that

(φπ)(i) = π(i− 1)

for each π ∈ Sn, where indices are taken modulo n. Then φ has the property that for 
any π ∈ Sn,

cDes(π) + 1 = cDes(φπ),

where cDes(π) + 1 denotes the set obtained from cDes(π) by incrementing each element 
by 1 modulo n.

In fact, the existence of a bijection φ with this property implies that the multiset 
{{cDes(π)|π ∈ Sn}} is rotation-invariant modulo n.

Standard Young tableaux also have a well-studied notion of descent. Throughout this 
paper, let λ/μ denote a skew shape with |λ/μ| = n, where μ is a Young diagram contained 
in λ; we draw Young diagrams with origin in the northwest corner, so that in each Young 
diagram, the rows and columns are justified on the west and north, respectively.

The standard Young tableaux of shape λ/μ are the labellings of the cells of λ/μ with a 
permutation of [n], such that row entries are increasing from north to south, and column 
entries are increasing from west to east. Let SYT(λ/μ) denote the set of standard Young 
tableaux of shape λ/μ. For T ∈ SYT(λ/μ) the descent set of T is given by

Des(T ) = {i ∈ [n− 1] : the row of i + 1 is strictly south of the row of i}.

Example 1.1. The standard Young tableau

T =
3 5

1 4 7
2 6

of shape λ/μ = (4, 3, 2)/(2) has descent set Des(T ) = {1, 3, 5}.
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A natural question is whether an analogous notion of cyclic descent exists for standard 
Young tableaux. This question was first introduced by Rhoades [12] in 2010 for rectan-
gular tableaux, in the context of the cyclic sieving phenomenon of Reiner, Stanton, and 
White [11]. For more on cyclic sieving, see [1,6,7,10].

The following formulation of cyclic descent is due to Adin, Reiner, and Roichman in 
2017.

Definition 1.2. [3, Definition 2.1] A cyclic descent map for λ/μ is a pair (cDes, φ), where 
cDes : SYT(λ/μ) → 2[n] is a function and φ : SYT(λ/μ) → SYT(λ/μ) is a bijection, 
that satisfies the following properties for all T ∈ SYT(λ/μ).

• (Extension) cDes(T ) ∩ [n − 1] = Des(T ).
• (Equivariance) cDes(φT ) = cDes(T ) + 1, with indices taken modulo n.
• (Non-Escher) ∅ � cDes(T ) � [n].

Note that the term “cyclic descent map” exclusively refers to the pair (cDes, φ), not 
the cyclic descent function cDes. Moreover, note that cDes is uniquely determined by 
specifying, for each T ∈ SYT(λ/μ), whether n ∈ cDes(T ).

Example 1.3. The shape

λ/μ =

admits the following cyclic descent map (cDes, φ). For each T ∈ SYT(λ/μ), the set 
cDes(T ) is shown below it.

1 3 4
2 5 6
{1, 4}

1 2 5
3 4 6
{2, 5}

1 2 3
4 5 6
{3,6}

1 3 5
2 4 6
{1, 3, 5}

1 2 4
3 5 6
{2, 4,6}

In constructing this map, we chose to assign 6 (shown in red) to the cyclic descent sets 
of the third and fifth tableaux, as shown. For this particular λ/μ, this assignment is 
the only valid choice; in general there may be multiple valid choices, corresponding to 
multiple valid functions cDes. The bijection φ cycles the first three tableaux and last 
two tableaux. Thus, λ/μ has a cyclic descent map.

This definition motivates the following problem.

Problem 1.4. [2] For which skew shapes λ/μ does a cyclic descent map exist?

This problem was fully, albeit nonconstructively, solved by Adin, Reiner, and Roich-
man in [3] using nonnegativity properties of Postnikov’s toric Schur polynomials [9].



4 B. Huang / Journal of Combinatorial Theory, Series A 169 (2020) 105120
A connected ribbon is a connected skew shape with no 2 × 2 square.

Theorem 1.5. [3, Theorem 1.1] Let λ/μ be a skew shape with n cells. A cyclic descent 
map exists for λ/μ if and only if λ/μ is not a connected ribbon. Moreover, for all J ⊆ [n], 
all cyclic descent maps share the same fiber sizes | cDes−1(J)|.

However, the proof does not explicitly construct the cyclic descent map. It would be 
desirable, therefore, to prove Theorem 1.5 combinatorially. Adin, Reiner, and Roichman 
[3] give a combinatorial proof that connected ribbons do not have cyclic descent maps. 
They also combinatorially prove that the fiber sizes | cDes−1(J)| are fixed and give an 
explicit formula for the fiber sizes.

So, it remains to solve the following problem, posed by Adin, Elizalde, and Roichman 
in 2018. This problem reformulates [2, Problems 7.1, 7.2].

Problem 1.6. [2] For λ/μ not a connected ribbon, explicitly construct a cyclic descent 
map (cDes, φ).

It is worth noting that solving this problem provides a combinatorial procedure for 
computing certain Gromov-Witten invariants that appear as structure constants in the 
quantum cohomology of Grassmannians [3]. These Gromov-Witten invariants have many 
combinatorial and algebraic interpretations, summarized in [3, Section 3.4].

There are many partial results on this problem in the literature, the first of which is 
due to Rhoades [12]. Let pro and dem be the (Schützenberger) promotion and demotion 
operators, respectively; these will be formally defined in Section 2.1

Theorem 1.7. [12, Lemma 3.3] Let λ/μ be a rectangular Young diagram with length and 
width both larger than 1. Let φ = pro, and let n ∈ cDes(T ) if and only if n − 1 ∈
Des(demT ). Then (cDes, φ) is a cyclic descent map.

Remark 1.8. By definition of cyclic descent map, and because φ = pro and φ−1 = dem, 
the condition n − 1 ∈ Des(demT ) is equivalent to 1 ∈ Des(proT ). The latter condition 
is more analogous to our main result; we state Theorem 1.7 using the former condition 
to preserve the original statement.

Analogous results exist in the literature for other families of skew diagrams λ/μ. A 
summary of these results can be found in Table 1.1 below.

In this paper, we answer Problem 1.6 completely. We construct a general cyclic descent 
map for all λ/μ other than connected ribbons. This construction requires two bijective 
operations on SYT(λ/μ), which we call southeast rotation and northwest rotation, and 

1 The literature contains two inconsistent definitions of promotion. [2,13,15] define promotion to be the 
operation that we term demotion. We follow the definition from [5,12].
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Table 1.1
Summary of literature on Problem 1.6.
Shape Example Reference

Rectangle with dimensions > 1 [12, Lemma 3.3]

Young diagram and disconnected northeast cell [5, Proposition 5.3]

Hook plus internal cell [2, Theorem 1.11]

Stripa [2, Proposition 3.3]

2-row straight shape, not ribbon [2, Theorem 1.14]

2-row skew shape, not ribbon [2, Theorems 6.3, 6.11]b

a A disconnected union of single-row or single-column rectangles.
b Unlike the above results, these two theorems only give maps cDes such that {{cDes(T )|T ∈

SYT(λ/μ)}} is invariant under modulo n rotation. They do not give explicit φ, and explicit φ
corresponding to these cDes are not known.

which we denote rotSE and rotNW. These operations are defined in Section 3 and are 
new to the literature.

Our main result is as follows.

Theorem 1.9. Suppose λ/μ is a skew shape that is not a connected ribbon. Let

φ = rot−1
NW ◦ pro ◦ rotSE

and let n ∈ cDes(T ) if and only if 1 ∈ Des(φT ). Then (cDes, φ) is a cyclic descent map.

Let us provide some motivation for the rotation operators rotSE and rotNW. The 
promotion path of a standard Young tableau T be the set of cells traversed by 1 when 
T is promoted. One proof of Theorem 1.7 uses the following property of the promotion 
paths. For a standard Young tableau T of any shape, let P1 and P2 be the promotion 
paths of T and proT , and define the set of cells

Γ = {Z ∈ P1|western neighbor of Z is also in P1}.

The property is that P2 does not cross P1 from south to north, in the sense that if 
Z ∈ Γ ∩ P2, then the southern neighbor of Z is not in P2.

Suppose now T has rectangular shape. The proof uses the non-crossing property to 
show that n − 1 ∈ Des(T ) implies 1 ∈ Des(pro2 T ). If n − 1 ∈ Des(T ), the first step of 
P1 is northward, and the non-crossing property ensures that P2 is trapped south of P1. 
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This forces the last step of P2 to be northward, which implies that 1 ∈ Des(pro2 T ). We 
symmetrically get that n − 1 /∈ Des(T ) implies 1 /∈ Des(pro2 T ), so n − 1 ∈ Des(T ) if 
and only if 1 ∈ Des(pro2 T ). This implies equivariance, which is the core of the proof of 
Theorem 1.7.2

When T does not have rectangular shape, this strategy fails because there are now 
multiple possible source and destination cells for P1 and P2. The fact that n −1 ∈ Des(T )
no longer implies P2 is trapped south of P1, because P2 may start at a more northern 
cell than P1; moreover, even when P2 is trapped south of P1, the last step of P2 is not 
necessarily northward, because P2 may end at a different cell than P1.

This is the problem the rotation operators solve. The rotation operators force the 
source and destination of P2 to be, respectively, southwest and northeast of the source 
and destination of P1; due to this relative positioning, the non-crossing property once 
again traps P2 south of P1, and the above strategy succeeds. This argument is carried 
out in the proof of Proposition 5.18. It emulates the proof of Theorem 1.7, though in 
substantially generalized form.

As we will see in Section 6, Theorem 1.9 generalizes most of the constructions in 
Table 1.1.

The proof of Theorem 1.9 also explains the need for the hypothesis that λ/μ is not 
a connected ribbon. This hypothesis is necessary for the crucial Lemma 3.31, which 
states that the two rotation operations rotSE and rotNW, in an appropriate sense, do not 
interfere. That this non-interference property does not hold when λ/μ is a connected 
ribbon motivates the need for this hypothesis.

The rest of this paper is structured as follows. In Section 2, we review the definitions 
of promotion and demotion, state their relevant properties, and introduce two symmetry 
operations on standard Young tableaux. In Section 3, we define the rotation operations 
and prove their key properties. Section 4 presents some examples of Theorem 1.9 and 
discusses some properties of the construction (cDes, φ). Section 5 is devoted to the proof 
of Theorem 1.9. Section 6 discusses the cyclic descent maps known in the literature in 
relation to Theorem 1.9; most of these constructions are special cases of Theorem 1.9. 
Finally, Section 7 concludes with some open problems.
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2. Preliminaries

2.1. Promotion and demotion

We first define the Schützenberger promotion and demotion operators, which will 
appear throughout this paper.

Definition 2.1. The action of the promotion operator pro on T ∈ SYT(λ/μ) is as follows. 
Add 1 (mod n) to each entry of T ; this turns the n into a 1 and increments the remaining 
entries. Repeatedly apply the following operation until the cell containing 1 has neither 
northern nor western neighbor: swap 1 with the larger of its northern neighbor (if it 
exists) and its western neighbor (if it exists).

It is not difficult to show that the resulting tableau is standard.
Analogously, the demotion (sometimes known in the literature as dual promotion) op-

erator is defined by subtracting 1 (mod n) from each entry of T , and repeatedly swapping 
n with the smaller of its southern and eastern neighbors. It is clear that promotion and 
demotion are inverses.

Promotion and demotion can be equivalently defined using the jeu de taquin (jdt) 
operation, a formal definition of which can be found in [14, p. 419-420]. To promote a 
tableau T ∈ SYT(λ/μ), replace the cell containing n with a jdt hole, perform a series 
of jdt slides to move the hole to a northwestern corner, increment all entries, and fill 
in the hole with a cell with entry 1. To demote a tableau T ∈ SYT(λ/μ), replace the 
cell containing 1 with a jdt hole, decrement all entries, move the hole to a southeastern 
corner with jdt slides, and fill the hole with a cell with entry n.

Jeu de taquin has the following property.

Lemma 2.2. [14, p. 431] A series of jdt slides preserves the descent set of any standard 
Young tableau.

The following property of promotion and demotion will be useful.

Lemma 2.3. Let λ/μ be any skew shape. For i ∈ {1, . . . , n − 2}, i ∈ Des(T ) if and 
only if i + 1 ∈ Des(proT ). Similarly, for i ∈ {2, . . . , n − 1}, i ∈ Des(T ) if and only if 
i − 1 ∈ Des(demT ).

Proof. Let us consider the steps in the procedure of the jeu de taquin definition of 
promotion. Deleting the cell containing n does not modify any descents in {1, . . . , n −2}. 
By Lemma 2.2, sliding the jdt hole to the northwest by jdt slides also preserves the 
descents in {1, . . . , n − 2}. Incrementing all the entries increments these descents, so for 
each descent i ∈ {1, . . . , n − 2}, i + 1 is a descent of the incremented tableau. Filling the 
hole with a cell with entry 1 does not affect these descents. This proves the lemma for 
promotion.
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The argument for demotion is analogous. �
Example 2.4. For λ = (5, 3, 2, 2, 1) and μ = (2, 2), below is a tableau T ∈ SYT(λ/μ) and 
its promotion.

2 6 8
3

1 4
5 9
7

pro	→

3 7 9
4

1 5
2 6
8

.

Note that Des(T ) = {2, 3, 4, 6, 8} and Des(proT ) = {1, 3, 4, 5, 7}, so i ∈ Des(T ) if and 
only if i + 1 ∈ Des(proT ) for i ∈ {1, . . . , 7}.

2.2. Transpose and reverse

The transpose of a skew shape λ/μ, denoted (λ/μ)t, is the skew shape obtained by 
reflecting λ/μ over a northwest-southeast line. This operation interchanges rows with 
columns. For T ∈ SYT(λ/μ), the transpose of T , denoted T t, is the reflection of T over 
a northwest-southeast line.

The reverse of a skew shape λ/μ, denoted (λ/μ)rev, is the shape obtained by rotating 
λ/μ by 180◦. The reverse of a tableau T ∈ SYT(λ/μ), denoted T rev, is the tableau 
obtained by rotating T by 180◦ and replacing each entry i by n + 1 − i.

The reverse transpose of a skew shape λ/μ or a tableau T ∈ SYT(λ/μ) is the shape 
obtained from it by applying the reverse and transpose operations; note that these op-
erations commute, so the reverse transpose is well defined.

The following properties of these operators are clear. Promotion and demotion com-
mute with transposition, and are conjugate with respect to reversal. That is, for all 
T ∈ SYT(λ/μ),

pro(T t) = pro(T )t

dem(T t) = dem(T )t

pro(T rev) = dem(T )rev

dem(T rev) = pro(T )rev.

Furthermore, transposition and reversal act on the descent set of a tableau as follows. 
For i ∈ [n − 1], i ∈ Des(T t) if and only if i /∈ Des(T ), and i ∈ Des(T rev) if and only if 
n − i ∈ Des(T ).
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Example 2.5. Below is a tableau T and its transpose and reverse.

T =

2 6 8
3

1 4
5 9
7

, T t =

1 5 7
4 9

2 3
6
8

, T rev =

3
1 5
6 9

7
2 4 8

.

Note that Des(T ) = {2, 3, 4, 6, 8}, Des(T t) = {1, 5, 7}, and Des(T rev) = {1, 3, 5, 6, 7}, so 
the aforementioned descent relations hold.

2.3. Notation and nomenclature conventions

For a number x and standard Young tableau T , we use posT (x) to denote the position 
of x in T .

Where applicable, we will use lowercase letters to denote the entries of standard Young 
tableaux and uppercase letters to denote cells in standard Young tableaux.

We say that a cell W is the northern neighbor of Z if W and Z are adjacent and W is 
north of Z. We analogously define W being the eastern, southern, and western neighbors
of Z.

We say W is strictly north of Z if the row of W is strictly north of the row of Z. We 
say W is nonstrictly north of Z if W is strictly north of Z or in the same row as Z. 
Note that a cell is nonstrictly north of itself, and two unequal cells in the same row are 
nonstrictly north of each other. We analogously define W being (strictly or nonstrictly) 
east, south, or west of Z.

We say W is nonstrictly (resp. strictly) southwest of Z if it is nonstrictly (resp. strictly) 
south and west of Z. We analogously define W being northwest, northeast, and southeast
of Z.

Finally, we say W is nonstrictly (resp. strictly) due north of Z if W and Z are in the 
same column and W is nonstrictly (resp. strictly) north of Z. We analogously define W
being due east, south, and west of Z.

Throughout this paper, if an assertion about relative positioning is made without 
mention of strictness, the nonstrict form of that assertion is implied.

3. Rotation

In this section we define the rotation operation, which will feature prominently in our 
main construction. There are two variants of rotation: southeast rotation, denoted rotSE, 
and northwest rotation, denoted rotNW.

These two operations are dual with respect to reversal, in a sense that will be made 
precise later. Thus we first define rotSE, and state and prove its properties.
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◦ ×
•

◦ • ×
•

• ×

Fig. 3.1. The southeast boundary of a skew diagram. Exterior corners are marked with blue crosses ×, and 
interior corners are marked with red circles ◦. Other points on the southeast boundary are marked with 
black dots •.

3.1. Southeast rotation

The southeast boundary of the skew shape λ/μ is the set of cells in λ/μ that do 
not have a diagonally-adjacent southeastern neighbor. Furthermore, a southeast exterior 
corner of λ/μ is a cell in the southeast boundary that has neither a southern nor eastern 
neighbor, and a southeast interior corner is a cell in the southeast boundary that has 
both southern and eastern neighbors. Fig. 3.1 illustrates these definitions.

Within each connected component of λ/μ, the southeast boundary is a connected 
ribbon, which has a natural southwest-to-northeast linear order.

A sequence of numbers x1, . . . , xk is min-unimodal if there is i ∈ [k] such that

x1 > x2 > · · · > xi < xi+1 < · · · < xk.

The notion of southeast min-unimodality will be central to our construction.

Definition 3.1. For T ∈ SYT(λ/μ) and a set S ⊆ [n], S is southeast min-unimodal in T
if it satisfies the following two conditions.

• In T , all elements of S lie in the same connected component of λ/μ and are on the 
southeast boundary.

• The elements of S, in the southeast boundary’s natural southwest-to-northeast order, 
form a min-unimodal sequence.

Definition 3.2. Let T ∈ SYT(λ/μ). The southeast rotation candidate set of T , denoted 
RcSE(T ), is the set {n, n − 1, . . . , n − k + 1}, where k is maximal such that this set is 
southeast min-unimodal in T . Let

RpSE(T ) = {posT (x)|x ∈ RcSE(T )}

be the cells occupied by RcSE(T ) in T .

Definition 3.3. The southeast rotation endpoint of T is the southeast exterior corner due 
east or due south of posT (min RcSE(T )). If posT (min RcSE(T )) is a southeast interior 
corner, there are two such exterior corners; the southeast rotation endpoint is the one 
on the southeast boundary between posT (min RcSE(T )) and posT (n).
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Note that posT (n) is always on the southeast boundary. Also note that the southeast 
rotation endpoint is in RpSE(T ) because its entry is at least n − k + 1.

Definition 3.4. Let T ∈ SYT(λ/μ). Let x1, x2, . . . , xj denote the entries of RpSE(T )
between posT (n) and the southeast rotation endpoint of T , inclusive, in that order along 
the southeast boundary. Thus x1 = n. To construct rotSE(T ) from T , move n to posT (xj), 
and for i = 1, . . . , j − 1, move xi+1 to posT (xi).

Example 3.5. Let

T =

2 7 9 1213
1 4 1011
3 6
5 8
14
15

.

The set RcSE(T ) is shown in bold. The southeast rotation endpoint of T is posT (11). So, 
the action of rotSE on T is

2 7 9 1213
1 4 1011
3 6
5 8
14
15

rotSE	→

2 7 9 1213
1 4 1115
3 6
5 8
10
14

The entries rotated by rotSE are shown in red.

Example 3.6. Let

T =

1 3 7 9 10
2 111315
4 12
5 14
6
8

The set RcSE(T ) is shown in bold. The southeast rotation endpoint of T is posT (15). 
Since rotSE moves 15 to its own cell, rotSE(T ) = T .

Example 3.7. Any standard Young tableau T of shape

λ/μ =
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has n = 8 in the southeast corner. Since the only southeast exterior corner of λ/μ is the 
southeast corner, the southeast rotation endpoint is that corner for all T ∈ SYT(λ/μ). 
Therefore, rotSE is the identity map on SYT(λ/μ).

3.2. Properties of southeast rotation

In this section, we prove some properties of southeast rotation. For the sake of clarity, 
we begin by stating all the properties, and then give their proofs.

Note that in a skew shape with more than one connected component, the connected 
components have a strict southwest-to-northeast order, in the sense that for any two 
distinct connected components, all the cells in one are strictly northeast of all the cells 
of the other.

A hook is a connected shape consisting of a single row and a single column joined at 
the northwest corner.

Proposition 3.8. RpSE(T ) is a skew shape contained in the southeast boundary of λ/μ. 
The southeast rotation endpoint X and the cell Y = posT (min RcSE(T )) are in the same 
connected component R of RpSE(T ), which is one of the following.

(a) A hook with northwestern corner Y and southern or eastern endpoint X. X is the 
southern endpoint if posT (n) is the southwesternmost cell in RpSE(T ) and the east-
ern endpoint if posT (n) is the northeasternmost cell in RpSE(T ).

(b) A single-column rectangle with northern and southern endpoints Y and X, respec-
tively.

(c) A single-row rectangle with western and eastern endpoints Y and X, respectively.

Moreover, all connected components of RpSE(T ) strictly to the northeast of R are single-
row rectangles, and all connected components of RpSE(T ) strictly to the southwest of R
are single-column rectangles.

Note that a 1 × 1 square is both a single-row rectangle and a single-column rectangle.
This result motivates the following definition.

Definition 3.9. Let RpC
SE(T ) denote the connected component of RpSE(T ) containing 

posT (min RcSE(T )). Let RpSW
SE (T ) and RpNE

SE (T ) denote the subsets of RpSE(T ) strictly 
southwest and strictly northeast of RpC

SE(T ), respectively.

By Proposition 3.8, RpC
SE(T ) is a hook, one-column rectangle, or one-row rectangle; 

RpSW
SE (T ) is a disconnected union of one-column rectangles; and, RpNE

SE (T ) is a discon-
nected union of one-row rectangles.

Example 3.10. In the following four tableaux T , the entries in RpSE(T ) are shown in
bold, and the entries in RpC

SE(T ) are shown in red. The first three tableaux, from left to 
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right, correspond to cases (a), (b), and (c) of Proposition 3.8. In the fourth, RpC
SE(T ) is 

a single cell, which corresponds to cases (b) and (c).

1 2 4 7 14
3 9 1112
5 10
6 13
8
15

2 3 6 1213
1 5 7 8
4 10
9 11
14
15

2 7 9 1213
1 4 1011
3 6
5 8
14
15

2 5 6 1213
1 4 7 9
3 10
8 11
14
15

.

Proposition 3.11. For T ∈ SYT(λ/μ) and i ∈ {1, . . . , n − 2}, i ∈ Des(T ) if and only if 
i ∈ Des(rotSE(T )).

Example 3.12. For the T in Example 3.5, we have Des(T ) = {2, 4, 7, 9, 13} while 
Des(rotSE(T )) = {2, 4, 7, 9}. The restrictions of the two descent sets to {1, . . . , n − 2}
agree.

Proposition 3.13. rotSE is a bijection from SYT(λ/μ) to itself.

We will prove these properties in order, starting with Proposition 3.8.

Proof of Proposition 3.8. RpSE(T ) is, by definition, contained in the southeast boundary 
of λ/μ. Since RcSE(T ) consists of the | RcSE(T )| largest elements of {1, . . . , n}, RpSE(T )
has the property that all cells of λ/μ (nonstrictly) southeast of a cell in RpSE(T ) are in 
RpSE(T ). This implies that RpSE(T ) is a skew shape. Since X is due south or due east 
of Y , X and Y are in the same connected component of this skew shape.

We claim that the shape formed by the cells

RNE = {Z ∈ RpSE(T )|Z is nonstrictly northeast of Y }

avoids a vertical 2 × 1 rectangle.
This is because the entries in this subset of RpSE(T ) is increasing from southwest to 

northeast. So, RNE is a disconnected union of single-row rectangles. It follows that the 
connected components strictly northeast of the connected component R are single-row 
rectangles; note that R itself is not necessarily a single-row rectangle because it can have 
cells that are not northeast of Y .

By an analogous argument, the subset

RSW = {Z ∈ RpSE(T )|Z is nonstrictly southwest of Y }

is a disconnected union of single-column rectangles, so the connected components strictly 
southwest of R are single-column rectangles.

If Y is part of a single-row rectangle of length more than 1 and a single-column rect-
angle of length more than 1, we get configuration (a). If Y is part of a single-column 
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rectangle, we get configuration (b). If Y is part of a single-row rectangle, we get config-
uration (c). �
Proof of Proposition 3.11. Let us assume posT (n) is the southwesternmost cell in 
RpSE(T ). Let RcSE(T ) = {n, . . . , n − k + 1}. Let X be the southeast rotation end-
point of T , and let Y = posT (n − k + 1). Recall that X ∈ RpC

SE(T ). The action of rotSE

takes one of two forms.

(a) If X is strictly due south of Y , we are in configurations (a) or (c) of Proposition 3.8. 
Then, rotSE moves n to X, each remaining entry of RpSW

SE (T ) to the next cell to the 
south in RpSW

SE (T ), and the entry in X to the northernmost cell of RpSW
SE (T ).

(b) If X is nonstrictly due east of Y , we are in configuration (b) of Proposition 3.8, and 
RpC

SE(T ) is a single-row rectangle. Then, rotSE moves n to X, the remaining entries 
of RpSW

SE (T ) to the next cell to the south in RpSW
SE (T ), n −k+1 to the northernmost 

cell of RpSW
SE (T ), and the remaining entries of RpC

SE(T ) one cell to the west.

We perform casework on i.

Case 1: i < n − k.

The action of rotSE affects neither i nor i + 1, so the lemma follows.

Case 2: i = n − k.

The action of rotSE does not move n − k. If it also does not move n − k + 1, the 
lemma follows. Otherwise the action of rotSE must take the form (b). So, RpC

SE(T ) is a 
single-row rectangle, with western endpoint Y and eastern endpoint X (possibly with 
X = Y ).

Let Z be the northernmost cell of RpSW
SE (T ). The action of rotSE moves n −k+1 from 

Y to Z. Suppose for contradiction that n − k is in one of Des(T ) and Des(rotSE(T )) but 
not the other. Then posT (n − k) must be strictly north of Z and nonstrictly south of Y .

The cells nonstrictly due east of Y are in RpSE(T ). If posT (n − k) were strictly due 
west of Y , it must be the western neighbor of Y . Then, {n, . . . , n − k} is southeast min-
unimodal in T , contradicting the maximality of k. Thus posT (n − k) is strictly south of 
Y . Since there are no cells in RpSE(T ) strictly north of Z and strictly south of Y , and 
n − k is the largest entry of T outside of RpSE(T ), n − k lies on the southeast boundary. 
But then, {n, . . . , n − k} is southeast min-unimodal in T , contradicting the maximality 
of k.

Case 3: i = n − k + 1.

Note that for this case to occur, we must have n − k + 1 ≤ n − 2, so n − k + 2 �= n.
If the action of rotSE takes the form (a), the set of cells whose entries are moved by 

rotSE is strictly south of Y . So, posT (n − k + 1) = posrotSE(T )(n − k + 1) = Y , and 
posT (n −k+2) is strictly south of Y if and only if posrotSE(T )(n −k+2) is strictly south 
of Y . Hence, n − k + 1 is a descent of T if and only if it is a descent of rotSE(T ).
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If the action of rotSE takes the form (b), it moves n −k+1 from Y to the northernmost 
cell of RpSW

SE (T ) and n from the southernmost cell of RpSW
SE (T ) to X. Aside from these 

entries, all entries in RpSW
SE (T ) remain in RpSW

SE (T ), and all entries in RpC
SE(T ) ∪RpNE

SE (T )
remain in RpC

SE(T ) ∪ RpNE
SE (T ).

Recall that n −k+2 �= n. Thus, either posT (n −k+2) ∈ RpSW
SE (T ) and posrotSE(T )(n −

k + 2) ∈ RpSW
SE (T ), in which case n − k + 1 is a descent of both T and rotSE(T ), or 

posT (n − k + 2) /∈ RpSW
SE (T ) and posrotSE(T )(n − k + 2) /∈ RpSW

SE (T ), in which case 
n − k + 1 is a descent of neither T nor rotSE(T ).

Case 4: n − k + 1 < i ≤ n − 2.
By examining the actions (a) and (b), we see that for any n − k + 1 < j1, j2 ≤ n − 1, 

posT (j1) is strictly south of posT (j2) if and only if posrotSE(T )(j1) is strictly south of 
posrotSE(T )(j2). This implies that i ∈ Des(T ) if and only if i ∈ Des(rotSE(T )).

This proves the lemma when posT (n) is southwesternmost in RpSE(T ). If posT (n)
is northeasternmost in RpSE(T ), then posT t(n) is southwesternmost in RpSE(T t). The 
above argument shows that for i ∈ [n − 2], i ∈ Des(T t) if and only if i ∈ Des(rotSE(T t)). 
But i ∈ Des(T ) if and only if i /∈ Des(T t) and i ∈ Des(rotSE(T )) if and only if i /∈
Des(rotSE(T t)), where we use that rotSE commutes with transposition. Therefore, i ∈
Des(T ) if and only if i ∈ Des(rotSE(T )). �

The rest of this subsection will be devoted to proving Proposition 3.13.

Lemma 3.14. The image of rotSE is in SYT(λ/μ). That is, for any T ∈ SYT(λ/μ), the 
tableau rotSE(T ) is standard.

Proof. We will show that the entries of RpSE(T ) in rotSE(T ) are standard. Since rotSE
does not alter entries outside of RpSE(T ), and all entries in RpSE(T ) are larger than all 
entries not in RpSE(T ), this proves that rotSE(T ) is standard.

By southeast min-unimodality of rotSE(T ), posT (n) is the southwesternmost or north-
easternmost cell in RpSE(T ). Let us first assume it is southwesternmost.

In T , let RcSE(T ) be in the southwest-to-northeast order x1, . . . , xk, with

n = x1 > · · · > xi = n− k + 1 < xi+1 < · · · < xk,

and let Y = posT (n − k + 1). Let X be the southeast rotation endpoint of T , and let xj

be the entry in X.
rotSE does not move the entries in RpNE

SE (T ), so the entries of RpNE
SE (T ) are standard 

in rotSE(T ). It remains to show that the entries of RpC
SE(T ) and RpSW

SE (T ) are standard 
in rotSE(T ).

We consider two cases.
Case 1: X is strictly due south of Y .
In this case j < i, and the set of rotated entries does not contain xi. This case 

corresponds to configuration (a) of Proposition 3.8, or configuration (b) where X �= Y .
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RpSW
SE (T ) is a union of one-column rectangles, arranged from southwest to northeast. 

In T , the entries of RpSW
SE (T ) are, from south to north, x1, . . . , xj−1. Thus, in rotSE(T ), 

the entries of RpSW
SE (T ) are, from south to north, x2, . . . , xj . This is standard.

rotSE moves n to X but does not otherwise change the entries in RpC
SE(T ). Since X

is the southern endpoint of either a hook or a single-column rectangle, the entries of 
RpC

SE(T ) are standard in rotSE(T ).

Case 2: X is nonstrictly due east of Y .

In this case j ≥ i, and the set of rotated elements contains xi. This case corresponds 
to configuration (c) of Proposition 3.8, where possibly X = Y .

In T , the entries of RpSW
SE (T ) are, from south to north, x1, . . . , xi−1, and the en-

tries of RpC
SE(T ) are, from east to west, xj , xj−1, . . . , xi. So, in rotSE(T ), the entries of 

RpSW
SE (T ) are, from south to north, x2, . . . , xi, and the entries of RpC

SE(T ) are, from east 
to west, x1, xj , xj−1, . . . , xi+1. Both sequences are decreasing, so the entries of RpC

SE(T )
and RpSW

SE (T ) are standard in rotSE(T ).
This proves the lemma when posT (n) is southwesternmost in RpSE(T ). If posT (n)

is northeasternmost in RpSE(T ), then posT t(n) is southwesternmost in RpSE(T t). The 
above argument shows that rotSE(T t) is standard. So, rotSE(T ) = rotSE(T t)t is stan-
dard. �

For S ⊂ [n], let

posT (S) = {posT (x)|x ∈ S}

denote the cells in T occupied by S.
To construct the inverse of rotSE, we will need a notion of balance.

Definition 3.15. If S is a southeast min-unimodal set in T , and W is an arbitrary cell in 
the same connected component as posT (S) and on the southeast boundary, S is balanced
with respect to W in T if the entries of

posT (S)NE
W = {W ′ ∈ posT (S)|W ′ is nonstrictly northeast of W}

and

posT (S)SW
Z = {W ′ ∈ posT (S)|W ′ is nonstrictly southwest of W}

are both increasing in the direction away from W .

Equivalently, since S is southeast min-unimodal, S is balanced with respect to W if 
W is consecutive with posT (minS) in the southwest-to-northeast order of posT (S) ∪W

(or equal to posT (minS)).
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Definition 3.16. The northern balance point of a southeast exterior corner Z is the far-
thest point on the southeast boundary due north of Z. The western balance point of Z
is defined analogously.

Equivalently, if Z is the northeasternmost southeast exterior corner in its connected 
component of λ/μ, its northern balance point is the northeastern corner of its connected 
component, and otherwise it is the southeast interior corner due north of Z. The western 
balance point of Z is characterized analogously.

The following lemma allows us to recover RcSE(T ) from the tableau rotSE(T ).

Lemma 3.17. The set RcSE(T ) is {n, . . . , n − k + 1}, where k is maximal such that S =
{n − 1, . . . , n − k + 1} obeys the following two properties.

(i) In R = rotSE(T ), S is southeast min-unimodal and contained in the same connected 
component as n.

(ii) The set posR(S) does not contain both the northern and western neighbors of 
posR(n). Moreover:
(a) If posR(S) contains the northern (resp. western) neighbor of posR(n), S is bal-

anced with respect to the northern (resp. western) balance point of posR(n).
(b) If posR(S) contains neither neighbor of posR(n), S is balanced with respect to 

both the northern and western balance points of posR(n).

Note that properties (i) and (ii) become more restrictive as k increases. So, for each 
T , S = {n − 1, . . . , n − k + 1} satisfies these properties for all k up to a threshold value, 
and for no k greater than it; the maximal k equals the threshold value.

Proof. Let RcSE(T ) = {n, . . . , n − k′ + 1}, and let its elements appear in the southwest-
to-northeast order x1, . . . , xk′ , such that

x1 > · · · > xi = n− k′ + 1 < xi+1 < · · · < xk′ .

Let S′ = {n − 1, . . . , n − k′ + 1}. We will show that S′ = S.
Let X be the southeast rotation endpoint of T , so X = posR(n). Furthermore, let 

Y = posT (n − k′ + 1). Since rotSE preserves the southwest-to-northeast order of S′, this 
set is southeast min-unimodal in R. Since RcSE(T ) is contained in the same connected 
component of T , all of S′ is in the same connected component of R as n. Thus, S′ satisfies 
condition (i).

By Proposition 3.8, RpSE(T ) cannot contain both the western and northern neighbors 
of X. By examining the three configurations in Proposition 3.8, we see that if X is strictly 
due south (resp. strictly due east) of Y , S′ is balanced with respect to the northern (resp. 
western) balance point of X, and if X = Y , S′ is balanced with respect to both balance 
points of X. Thus, S′ satisfies condition (ii).
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It remains to show that S′′ = {n − 1, . . . , n − k′} does not satisfy both conditions (i) 
and (ii). If n − k′ = 0 there is nothing to prove, so we can assume n − k′ ≥ 1. Suppose 
for contradiction that S′′ satisfies conditions (i) and (ii). We consider three cases.

Case 1: X is strictly due south of Y .
As posR(S′) contains the northern neighbor of X, so does posR(S′′). So, S′′ is balanced 

in R with respect to the northern balance point XN of X. If Y = XN , Y is either a 
southeast interior corner or the northeastern corner of a connected component of λ/μ. 
In either case, posT (n) must be southwest of Y , and thus (by definition of southeast 
rotation endpoint) southwest of X. But then, rotSE does not move the entry in Y , 
so posR(n − k′ + 1) = Y = XN . This makes it impossible for both posR(S′′)NE

Y and 
posR(S′′)SW

Y to be increasing away from XN , because one of these sets of cells contains 
the entry n − k′. Thus Y �= XN .

The cell in RpSE(T ) southwest of XN closest to XN is Y = posT (xi). If i < k′, the 
cell in RpSE(T ) northeast of XN closest to XN is posT (xi+1); since S′′ is balanced in 
R with respect to XN , posR(n − k′) is on the southeast boundary between posT (xi)
and posT (xi+1). If i = k′, there are no cells in RpSE(T ) northeast of XN ; since S′′ is 
balanced in R with respect to XN , posR(n − k′) is on the southeast boundary northeast 
of posT (xi). In either case, rotSE does not move n − k′, so posR(n − k′) = posT (n − k′). 
So, {n, . . . , n − k′} is southeast min-unimodal in T . This contradicts the maximality of 
k′ in the definition of RcSE(T ).

Case 2: X is strictly due east of Y .
The argument here is symmetric.
As posR(S′) contains the northern neighbor of X, so does posR(S′′). So, S′′ is balanced 

in R with respect to the western balance point XW of X. If Y = XW , Y is either a 
southeast interior corner or the southwestern corner of a connected component of λ/μ. 
In either case, posT (n) must be northeast of Y , and thus (by definition of southeast 
rotation endpoint) northeast of X. But then, rotSE does not move the entry in Y , so 
posR(n − k′ + 1) = Y = XW . This makes it impossible for both posR(S′′)NE

Y and 
posR(S′′)SW

Y to be increasing away from XW , because one of these sets of cells contains 
the entry n − k′. Thus Y �= XW .

The cell in RpSE(T ) northeast of XW closest to XW is Y = posT (xi). If i > 1, the 
cell in RpSE(T ) southwest of XW closest to XW is posT (xi−1); since S′′ is balanced in 
R with respect to XW , posR(n − k′) is on the southeast boundary between posT (xi)
and posT (xi−1). If i = 1, there are no cells in RpSE(T ) southwest of XW ; since S′′ is 
balanced in R with respect to XW , posR(n −k′) is on the southeast boundary southwest 
of posT (xi). In either case, rotSE does not move n − k′, so posR(n − k′) = posT (n − k′). 
So, {n, . . . , n − k′} is southeast min-unimodal in T . This contradicts the maximality of 
k′ in the definition of RcSE(T ).

Case 3: X = Y .
In this case, RpC

SE(T ) is a 1 ×1 square consisting of X. Since all southern and eastern 
neighbors of cells in RpSE(T ) are in RpSE(T ), no cells northwest of X are in RpSE(T )
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except X itself. In particular, the balance points XN and XW are not in RpSE(T ). Note 
that S′′ is balanced in R with respect to at least one balance point Z ∈ {XN , XW }.

Let us first address the case k′ = 1. If k′ = 1, {n −1, n} is not southeast min-unimodal 
in T , so n −1 is in a different connected component than n in T . Thus the action of rotSE

on T is the identity map, and R = T . Then, S′′ = {n − 1} does not satisfy condition (i) 
because it is not contained in the same connected component as n in R.

Otherwise, let us assume k′ > 1. If 1 < i < k′, the cell in RpSE(T ) \ {X} southwest 
of Z closest to Z is posT (xi−1), and the cell in RpSE(T ) \ {X} northeast of Z closest 
to Z is posT (xi+1); since S′′ is balanced in R with respect to Z, posR(n − k′) is on 
the southeast boundary between posT (xi−1) and posT (xi+1). If i = k (resp. i = 1), 
the cell in RpSE(T ) \ {X} southwest (resp. northeast) of Z closest to Z is posT (xi−1)
(resp. posT (xi+1)), and there are no cells in RpSE(T ) \ {X} northeast (resp. southwest) 
of Z; since S′′ is balanced in R with respect to Z, posR(n − k′) is on the southeast 
boundary northeast (resp. southwest) of Z. In any case, rotSE does not move n − k′, so 
posR(n − k′) = posT (n − k′). So, {n, . . . , n − k′} is southeast min-unimodal in T . This 
contradicts the maximality of k′ in the definition of RcSE(T ). �

We now construct a function Θ : rotSE(SYT(λ/μ)) → SYT(λ/μ), which we will 
show is the inverse of rotSE (and thus that rotSE(SYT(λ/μ)) = SYT(λ/μ)).

Given R = rotSE(T ), we can, using Lemma 3.17, recover RcSE(T ). Since rotSE per-
mutes the entries of RcSE(T ) amongst themselves, we also recover RpSE(T ) as the set of 
positions of RcSE(T ) in R.

Θ moves n from posR(n) to either the northeasternmost or southwesternmost posi-
tion in RpSE(T ) and displaces the entries of RpSE(T ) in between one position closer to 
posR(n). The direction it moves n is as follows. If posR(n) and posR(min RpSE(T ))
are in different connected components of RpSE(T ), Θ moves n in the direction of 
posR(min RpSE(T )); otherwise, it moves n in the opposite direction.

Example 3.18. Let

R =

2 7 9 1213
1 4 1115
3 6
5 8
10
14

.

The set RcSE(T ), as determined by Lemma 3.17, is in bold. As posR(10) is southwest of 
posR(15) and not in the same connected component, Θ moves 15 to the southwesternmost 
cell of RpSE(T ). Thus the action of Θ is
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2 7 9 1213
1 4 1115
3 6
5 8
10
14

Θ	→

2 7 9 1213
1 4 1011
3 6
5 8
14
15

.

The entries moved by Θ are in red.

Example 3.19. Let

R =

2 7 9 1213
1 4 1015
3 6
5 8
11
14

.

The set RcSE(T ), as determined by Lemma 3.17, is in bold. As posR(10) is southwest 
of posR(15) but in the same connected component, Θ moves 15 to the northeasternmost 
cell of RpSE(T ). Thus, the action of Θ is

2 7 9 1213
1 4 1015
3 6
5 8
11
14

Θ	→

2 7 9 1315
1 4 1012
3 6
5 8
11
14

.

The entries moved by Θ are in red.

It isn’t difficult to check that, in these examples, rotSE(Θ(R)) = R.

Lemma 3.20. Θ is the left inverse of rotSE. That is, Θ(rotSE(T )) = T for all T ∈
SYT(λ/μ).

Proof. Let us assume posT (n) is the southwesternmost cell in RpSE(T ). The case where 
posT (n) is northeasternmost is analogous.

As before, let X be the southeast rotation endpoint of T . Moreover, let Y =
posT (min RcSE(T )) and R = rotSE(T ). We will first show that the action of Θ on R
sends n back to its original location. We consider two cases.

Case 1: X is strictly due south of Y .
In this case, min RcSE(T ) is not among the rotated elements. Thus, posR(n) = X and 

posR(min RcSE(T )) = Y . Since posR(min RcSE(T )) is northeast of posR(n) and in the 
same connected component, the action of Θ on R sends n back to the southwesternmost 
cell in RpSE(T ).
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Case 2: X is nonstrictly due east of Y .

In this case, min RcSE(T ) is among the rotated elements. Thus, posR(n) = X and 
posR(min RcSE(T )) is the northernmost cell in RpSW

SE (T ). Since posR(min RcSE(T )) is 
southwest of posR(n) and in a different connected component, the action of Θ on R
sends n back to the southwesternmost cell in RpSE(T ).

In either case, since rotSE and Θ preserve the southwest-to-northeast ordering of 
RcSE(T ) \ {n}, Θ also sends the remaining elements of RcSE(T ) to their original loca-
tions. �
Proof of Proposition 3.13. By Lemma 3.20, the map rotSE is invertible on the left, and 
thus injective. By Lemma 3.14, the image rotSE(SYT(λ/μ)) is contained in SYT(λ/μ). 
Thus the domain and codomain of rotSE have the same size; this implies that rotSE is a 
bijective map on SYT(λ/μ). �
3.3. Northwest rotation

Define the northwest boundary, northwest exterior corners, and northwest interior 
corners of λ/μ analogously as above. Within each connected component of λ/μ, the 
northwest boundary is a connected ribbon with a natural southwest-to-northeast linear 
order.

A sequence of numbers x1, . . . , xk is max-unimodal if there is i ∈ [k] such that

x1 < x2 < · · · < xi > xi+1 > · · · > xk.

Definition 3.21. For T ∈ SYT(λ/μ), a set S ⊆ [n] is northwest max-unimodal in T if it 
satisfies the following two conditions.

• In T , all elements of S lie in the same connected component of λ/μ and are on the 
northwest boundary.

• The elements of S, in the northwest boundary’s natural southwest-to-northeast order, 
form a max-unimodal sequence.

The definitions below are analogous to those given above.

Definition 3.22. Let T ∈ SYT(λ/μ). The northwest rotation candidate set of T , denoted 
RcNW(T ), is the set {1, 2, . . . , �}, where � is maximal such that this set is northwest 
max-unimodal in T . Let

RpNW(T ) = {posT (x)|x ∈ RcNW(T )}

be the cells occupied by RcNW(T ) in T .
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Definition 3.23. The northwest rotation endpoint of T is the northwest exterior corner 
due west or due north of posT (max RcNW(T )). If posT (max RcNW(T )) is a northwest 
interior corner, there are two such exterior corners; the northwest rotation endpoint is 
the one on the northwest boundary between posT (max RcNW(T )) and posT (1).

Definition 3.24. Let T ∈ SYT(λ/μ). Let x1, x2, . . . , xj denote the entries of RpNW(T )
between posT (1) and the northwest rotation endpoint of T , inclusive, in that order 
along the northwest boundary. Thus x1 = 1. To construct rotNW(T ) from T , move 1 to 
posT (xj), and for i = 1, . . . , j − 1, move xi+1 to posT (xi).

Remark 3.25. The two rotation operators commute with transposition, i.e.,

rotSE(T t) = rotSE(T )t

rotNW(T t) = rotNW(T )t

for all T ∈ SYT(λ/μ). Moreover, they are conjugate with respect to reversal, i.e.

rotSE(T rev) = rotNW(T )rev

rotNW(T rev) = rotSE(T )rev.

for all T ∈ SYT(λ/μ).

3.4. Properties of northwest rotation

The following analogues of Propositions 3.8. 3.11, and 3.13 hold for northwest rotation. 
They follow from similar arguments.

A reverse hook is a connected shape consisting of a single row and a single column 
joined at the southeast corner.

Proposition 3.26. RpNW(T ) is a skew shape contained in the northwest boundary of λ/μ. 
The northwest rotation endpoint X and the cell Y = posT (max RcNW(T )) are in the 
same connected component R of RpSE(T ), which is one of the following.

(a) A reverse hook with southeastern corner Y and northern or western endpoint X. X
is the northern endpoint if posT (1) is the northeasternmost cell in RpNW(T ) and 
the western endpoint if posT (1) is the southwesternmost cell in RpNW(T ).

(b) A single-column rectangle with southern and northern endpoints Y and X, respec-
tively.

(c) A single-row rectangle with eastern and western endpoints Y and X, respectively.

Moreover, all connected components of RpNW(T ) strictly to the northeast of R are single-
column rectangles, and all connected components of RpNW(T ) strictly to the southwest 
of R are single-row rectangles.
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Proposition 3.27. For T ∈ SYT(λ/μ) and i ∈ {2, . . . , n − 1}, i ∈ Des(T ) if and only if 
i ∈ Des(rotNW(T )).

Proposition 3.28. rotNW is a bijection from SYT(λ/μ) to itself.

3.5. A non-interference lemma

Finally, we will need that these two rotation operators do not interfere with each 
other, in the sense of Lemma 3.31 below. Critically, Lemma 3.31 uses the hypothesis 
that λ/μ is not a connected ribbon. On connected ribbons, this non-interference property 
can fail; this part of our argument motivates the need for λ/μ to be not a connected 
ribbon.

Lemma 3.29. Suppose T ∈ SYT(λ/μ), and neither RcSE(T ) nor RcNW(T ) contains 
some x ∈ [n]. Then RcSE(T ) and RcNW(T ) are disjoint. Moreover, RcSE(T ) =
RcSE(rotNW(T )) and RcNW(T ) = RcNW(rotSE(T )).

Proof. Since all entries of RcNW(T ) are smaller than x, and all entries of RcSE(T ) are 
larger than x, these sets are disjoint. Moreover, since x is in neither set, min RcSE(T ) −1 /∈
RcNW(T ). Therefore, applying rotNW to T does not move any elements of RcSE(T ), nor 
does it move min RcSE(T ) − 1.

In T , RcSE(T ) is southeast min-unimodal, but RcSE(T ) ∪ {min RcSE(T ) − 1} is not; 
since none of the elements of RcSE(T ) ∪ {min RcSE(T ) − 1} are moved by the action 
of rotNW on T , the same is true of rotNW(T ). Thus, RcSE(T ) = RcSE(rotNW(T )). An 
analogous argument shows RcNW(T ) = RcNW(rotSE(T )). �
Lemma 3.30. Suppose λ/μ contains a 2 × 2 square. For any T ∈ SYT(λ/μ), each of 
RpSE(T ) and RpNW(T ) contains at most two cells of this square.

Proof. Suppose for contradiction that RpSE(T ) contains at least three cells of the square. 
Since all elements of RcSE(T ) are larger than all elements of [n] \ RcSE(T ), RpSE(T )
contains the northeast, southeast, and southwest cells of the square. Thus, RpSE(T )
contains the shape

.

But Proposition 3.8 implies that RpSE(T ) avoids this shape, contradiction. We get a 
similar contradiction if RpNW(T ) contains at least three cells of the square. �
Lemma 3.31. Let T ∈ SYT(λ/μ), where λ/μ is not a connected ribbon. Then the 
sets RcSE(T ) and RcNW(T ) are disjoint. Moreover, RcSE(T ) = RcSE(rotNW(T )) and 
RcNW(T ) = RcNW(rotSE(T )).
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Proof. If λ/μ is disconnected and posT (1) and posT (n) are in different connected com-
ponents, then RpSE(T ) and RpNW(T ) are in different connected components. Hence, 
RcSE(T ) and RcNW(T ) are disjoint. Moreover, rotSE does not affect cells in the connected 
component of RpNW(T ) and vice versa; thus, we have RcNW(T ) = RcNW(rotSE(T )) and 
RcSE(T ) = RcSE(rotNW(T )).

If λ/μ is disconnected and posT (1) and posT (n) are in the same connected component, 
then there exists some x ∈ [n] such that posT (x) is not in this connected component. 
This x is in neither RcSE(T ) nor RcNW(T ), so the lemma follows from Lemma 3.29.

Otherwise, λ/μ is connected. By Lemma 3.29, we can assume

RcSE(T ) ∪ RcNW(T ) = [n].

As λ/μ is not a ribbon, it contains a 2 × 2 square. Suppose that in T , the entries of this 
square are

u v
w z

,

and label the corresponding positions U, V, W, Z.
Each of u, v, w, z belongs to RcSE(T ) or RcNW(T ). By Lemma 3.30, each of RcSE(T )

and RcNW(T ) contains at most two of u, v, w, z; as RcSE(T ) ∪ RcNW(T ) = [n], ex-
actly two are in each set. Thus, either u, w ∈ RcNW(T ) and v, z ∈ RcSE(T ), or 
u, v ∈ RcNW(T ) and w, z ∈ RpSE(T ). Suppose first that u, w ∈ RcNW(T ) and 
v, z ∈ RcSE(T ).

Suppose for contradiction that RcSE(T ) and RcNW(T ) are not disjoint, so there 
is a ∈ RcSE(T ) ∩ RcNW(T ). Since a ∈ RcSE(T ) while w /∈ RcSE(T ), a > w. 
By northwest max-unimodality of RcNW(T ), the entries of RpNW(T ) are decreas-
ing northeast of W . Thus, posT (a) is (nonstrictly) southwest of W . Since a ∈
RcNW(T ) while v /∈ RcNW(T ), a < v. By southeast min-unimodality of RcSE(T ), 
the entries of RpSE(T ) are increasing southwest of V . Thus, posT (a) is (nonstrictly) 
northeast of V . This is a contradiction. Thus, RcSE(T ) and RcNW(T ) are dis-
joint.

Let x = max RcNW(T ). By northeast max-unimodality of RcNW(T ), posT (x) is 
southwest of W . The rotation operation can only bring x northeast as far as the next-
northeastern position in RpNW(T ), which is southwest of U . Thus, posrotNW(T )(x) is 
southwest of U .

Let y = min RcSE(T ); note that y = x + 1. Because RcSE(T ) is southeast 
min-unimodal, posT (y) is northeast of V . Since RcSE(T ) and RcNW(T ) are dis-
joint, RcSE(T ) ⊆ RcSE(rotNW(T )). If RcSE(rotNW(T )) and RcSE(T ) are different, 
namely if x ∈ RcSE(rotNW(T )), by southeast min-unimodality posrotNW(T )(x) must 
be a position on the southeast boundary between posT (y) and the next-northeastern 
or next-southwestern cell in RpSE(T ). Thus, posrot (T )(x) must be northeast of 
NW
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V , contradiction. Thus, RcSE(T ) = RcSE(rotNW(T )), and analogously, RcNW(T ) =
RcNW(rotSE(T )).

The case where u, v ∈ RcNW(T ) and w, z ∈ RcSE(T ) is analogous. �
Example 3.32. When λ/μ is a connected ribbon, Lemma 3.31 does not hold. When

T =
2

3 6 7
4

1 5

,

the sets RcNW(T ) = {1, 2, 3, 4, 5} and RcSE(T ) = {3, 4, 5, 6, 7} overlap.

4. Discussion of Theorem 1.9

Recall our main result, reproduced below for clarity.

Theorem 1.9. Suppose λ/μ is a skew shape that is not a connected ribbon. Let

φ = rot−1
NW ◦ pro ◦ rotSE,

and let n ∈ cDes(T ) if and only if 1 ∈ Des(φT ). Then (cDes, φ) is a cyclic descent map.

We first present some examples of this result.

Example 4.1. The action of φ on

T =
2 4
3 5

1 6

is as follows.

2 4
3 5

1 6

rotSE	→
2 4
3 6

1 5

pro	→
1 3
4 5

2 6

rot−1
NW	→

2 3
4 5

1 6
.

Example 4.2. Below are the orbits of φ on SYT((3, 3, 2)/(1, 1)), along with the corre-
sponding cyclic descents.
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1 4
2 6

3 5
124

φ	→
2 5
3 6

1 4
235

φ	→
2 3
4 6

1 5
346

φ	→
1 4
3 5

2 6
145

φ	→
1 2
4 5

3 6
256

φ	→
1 3
2 6

4 5
136

φ

1 5
2 6

3 4
125

φ	→
1 2
3 6

4 5
236

φ	→
1 3
4 6

2 5
134

φ	→
2 4
3 5

1 6
245

φ	→
2 3
4 5

1 6
356

φ	→
1 4
3 6

2 5
146

φ

1 3
2 5

4 6
135

φ	→
1 2
3 4

5 6
246

φ	→
1 3
4 5

2 6
135

φ	→
2 4
3 6

1 3
246

φ	→
1 5
3 6

2 4
135

φ	→
1 2
4 6

3 5
246

φ

1 4
2 5

3 6
1245

φ	→
1 2
3 5

4 6
2356

φ	→
1 3
2 4

5 6
1346

φ

Some remarks on this construction are in order.

Remark 4.3. The bijection φ does not, in general, generate a Zn-action. For example, 
the orbit of

T =
1 3 5 10
2 4 8
6 7 9

under the action of φ has order 20.

Remark 4.4. Because the operations rotSE, pro, rotNW commute with transposition, φ
also commutes with transposition, i.e.,

φ(T t) = (φT )t

for all T ∈ SYT(λ/μ). Moreover, note that

φ−1 = rot−1
SE ◦ dem ◦ rotNW .

Therefore, φ and φ−1 are conjugate with respect to reversal, in the sense that

φ−1(T rev) = (φT )rev
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for all T ∈ SYT(λ/μ).

5. Proof of Theorem 1.9

In this section we prove our main result. Throughout this section, λ/μ is a skew shape 
that is not a connected ribbon. We will show that (cDes, φ), defined in Theorem 1.9, has 
the three properties in Definition 1.2. The extension property holds by construction, so 
it remains to establish the equivariance and non-Escher properties.

5.1. Proving non-escherness

We first prove that (cDes, φ) is non-Escher. Note the following property of φ.

Lemma 5.1. Let T ∈ SYT(λ/μ), and let η be some connected component of λ/μ. If η has 
entries J ⊆ [n] in T , then η has entries J + 1 in φT , where we take indices modulo n.

Proof. The operators rotSE and rotNW (and therefore, their inverses) only permute the 
cells within each connected component. The operator pro increments the entries of each 
connected component by 1 modulo n. �

We will also use the following two-sided bound on | Des(T )|.

Lemma 5.2. [2, Lemma 4.6] Let λ/μ be a skew shape with n cells (possibly a connected 
ribbon). Let c (resp. r) be the maximum length of a column (resp. row) in λ/μ. The 
maximum and minimum values of | Des(T )|, over all T ∈ SYT(λ/μ), are

min |Des(T )| = c− 1, max |Des(T )| = (n− 1) − (r − 1).

Proposition 5.3. (cDes, φ) satisfies the non-Escher property.

Proof. We will show 1 ≤ | cDes(T )| ≤ n − 1 for all T ∈ SYT(λ/μ).
If any column of λ/μ has height at least 2, then by Lemma 5.2, min | Des(T )| ≥ 1, 

so min | cDes(T )| ≥ 1. Otherwise, λ/μ is a disconnected union of single-row rectangles. 
Since λ/μ is not a connected ribbon, there are at least two connected components.

If T ∈ SYT(λ/μ) and | Des(T )| ≥ 1, then | cDes(T )| ≥ 1, as desired. Otherwise, 
| Des(T )| = 0. Then, for each i ∈ [n − 1], posT (i) is (nonstrictly) south of posT (i + 1). 
This implies that posT (1) is in the southernmost connected component and posT (n) is in 
the northernmost. By Lemma 5.1, posφT (1) is in the northernmost connected component 
and posφT (2) is in the southernmost. Thus, 1 ∈ Des(φT ), which implies n ∈ cDes(T ). 
Hence, we always have | cDes(T )| ≥ 1.

If any row of λ/μ has length at least 2, then by Lemma 5.2, max | Des(T )| ≤ n − 2, so 
max | cDes(T )| ≤ n − 1. Otherwise, λ/μ is a disconnected union of single-column rectan-
gles. Since λ/μ is not a connected ribbon, there are at least two connected components.
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If T ∈ SYT(λ/μ) and | Des(T )| ≤ n −2, then | cDes(T )| ≤ n −1, as desired. Otherwise, 
| Des(T )| = n − 1. So, for each i ∈ [n − 1], posT (i) is strictly north of posT (i + 1). Thus, 
posT (1) is in the northernmost connected component, and posT (n) is in the south-
ernmost. By Lemma 5.1, posφT (1) is in the southernmost connected component and 
posφT (2) is in the northernmost. Therefore 1 /∈ Des(φT ) and n /∈ cDes(T ). So, we always 
have | cDes(T )| ≤ n − 1. �
5.2. Promotion paths

Before we prove equivariance, we will introduce some machinery about promotion 
paths.

Recall that the promotion path of T ∈ SYT(λ/μ) is the set of cells traversed by 1
when T is promoted.

Definition 5.4. For T ∈ SYT(λ/μ), the φ-promotion path of T , denoted Pφ(T ), is the 
path traversed by 1 in the promotion phase of the action of φ on T . Equivalently, Pφ(T )
is the promotion path of rotSE(T ).

Example 5.5. Consider the T given in Example 4.1. The promotion path Pφ(T ) is shown 
in bold.

2 4
3 5

1 6

rotSE	→
2 4
3 6

1 5

pro	→
1 3
4 5

2 6

rot−1
NW	→

2 3
4 5

1 6
.

This path starts at a southeast exterior corner of λ/μ, which we call the path’s source, 
and ends at a northwest exterior corner of λ/μ, which we call the path’s destination. 
Note that the southeast and northwest exterior corners of λ/μ both have a southwest-
to-northeast order.

Throughout this subsection, we let T ∈ SYT(λ/μ) and

RcSE(T ) = {n, . . . , n− k + 1}.

Moreover, we let RcSE(T ) appear in the southwest-to-northeast order x1, . . . , xk, such 
that

x1 > x2 > · · · > xi = n− k + 1 < xi+1 < · · · < xk.

We let X be the southeast rotation endpoint of T and Y = posT (n − k + 1) = posT (xi). 
We also define T ′ = pro(rotSE(T )).

Throughout this subsection, we take the convention that posT (x0) and posT (xk+1)
are, respectively, the southwest and northeast corners of the connected component of Y . 
In the following lemma, this convention is relevant when i = 1 or i = k.
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Lemma 5.6. Suppose n − k + 1 ∈ RcSE(T ′), so W = posT ′(n − k + 1) is on the southeast 
boundary. Suppose further that W is in the same connected component as Y . Then, W
is not on the portion of the southeast boundary between posT (xi−1) and posT (xi+1), 
inclusive.

Remark 5.7. If k = 1, the portion of the southeast boundary between posT (x0) and 
posT (xk+1) is the portion of the southeast boundary in the connected component of Y . 
As a consequence, if the hypotheses of Lemma 5.6 hold, then k > 1.

Proof. Because 1 ∈ RcNW(T ), Lemma 3.31 implies 1 /∈ RcSE(T ). This implies n −k+1 >
1, so n −k is a valid entry in T . Moreover, the action of rotSE on T does not move n −k. 
This allows us to reason about W ′ = posT (n − k) = posrotSE(T )(n − k). Note that W
contains the incremented entry of W ′ after promotion of rotSE(T ).

Note that rotSE rotates n to X, and the promotion path Pφ(T ) starts at X and passes 
through Y . Thus in T ′, the cells RpSE(T ) \ {Y } collectively contain {n − k + 2, . . . , n}, 
the incremented entries of RcSE(T ) \ {n}. Since W contains entry n − k + 1 in T , this 
implies W /∈ RpSE(T ) \ {Y }.

Let Z1 = posT (xi−1) and Z2 = posT (xi+1). We will show that W is not northeast of 
Z1 and southwest of Y . That W is not northeast of Y and southwest of Z2 follows by 
an analogous argument.

We handle the three possible configurations of X and Y from Proposition 3.8 sepa-
rately.

Case 1: X, Y are in configuration (a).
Here, Z1 is the southern neighbor of Y . Since W /∈ RpSE(T ) \{Y }, W �= Z1. It suffices 

to show W �= Y .
Suppose W = Y ; because Y is on the promotion path Pφ(T ), when rotSE(T ) is 

promoted the incremented entry of W ′ moves one cell east or south into W . Thus, W ′ is 
the northern or western neighbor of Y . If W ′ is the western neighbor of Y , the southern 
neighbor of W ′ is not in RpSE(T ) because RpC

SE(T ) is a hook; thus, the entry in this 
cell in T is larger than n − k but not in RcSE(T ), contradiction. A similar contradiction 
arises if W ′ is the northern neighbor of Y .

Case 2: X, Y are in configuration (b), with X �= Y .
Here, Z1 is the southern neighbor of Y . Since W /∈ RpSE(T ) \ {Y }, W �= Z1. It again 

suffices to show W �= Y .
Suppose W = Y ; as before, W ′ is the northern or western neighbor of Y . If W ′ is the 

western neighbor of Y , we get the same contradiction as the previous case by considering 
the southern neighbor of W ′ in T . If W ′ is the northern neighbor of Y , W ′ is also on the 
southeast boundary, because otherwise Y must be a southeast interior corner, and X, Y
would be in configuration (a). Thus, RcSE(T ) ∪{n − k} is southeast min-unimodal in T , 
contradicting maximality of k.

Case 3: X, Y are in configuration (c), including possibly X = Y .
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Here, Z1 is the northernmost cell of RpSW
SE (T ) if RpSW

SE (T ) is nonempty, and otherwise 
is the southwest corner of the connected component of Y . Suppose for contradiction that 
W is on the southeast boundary, northeast of Z1 and southwest of Y .

If W is strictly south of Y , it is not on the promotion path Pφ(T ), so W = W ′. Then, 
RcSE(T ) ∪ {n − k} is southeast min-unimodal in T , contradiction.

Otherwise, W is in the same row as Y . Recall that in T ′, the cells RpSE(T ) \ {Y }
collectively contain {n −k+2, . . . , n}, and W contains n −k+1, the largest entry outside 
this set. Thus W = Y ; as before, W ′ is the northern or western neighbor of Y . If W ′ is 
the northern neighbor of Y , we consider two sub-cases:

(a) If X �= Y , we get the same contradiction as in Case 1 by considering the eastern 
neighbor of W ′.

(b) If X = Y , Y is a southeast exterior corner, so W ′ is on the southeast boundary. 
Thus, RcSE(T ) ∪ {n − k} is southeast min-unimodal in T , contradicting maximality 
of k.

If W ′ is the western neighbor of Y , it is also on the southeast boundary, because otherwise 
Y must be a southeast interior corner, and X, Y would be in configuration (a). Thus, 
RcSE(T ) ∪ {n − k} is southeast min-unimodal in T , contradicting maximality of k. �

The main result of this subsection is the following.

Proposition 5.8. Suppose n − 1 and n are in the same connected component of T , and 
n − 1 ∈ Des(T ). Let X1, X2 denote the sources of Pφ(T ) and Pφ(φT ), respectively. If the 
first step in Pφ(T ) is northward, X2 is nonstrictly southwest of X1. If the first step in 
Pφ(T ) is westward, X2 is strictly southwest of X1.

Example 5.9. Suppose

T =
2 5 6

1 3 9 10
4 7 11
8 12

.

The actions of φ on T and φT are shown below. The promotion paths Pφ(T ) and Pφ(φT )
are shown in bold.

2 5 6
1 3 9 10
4 7 11
8 12

rotSE	→
2 5 6

1 3 9 10
4 7 12
8 11

pro	→
1 3 7

2 4 6 11
5 8 10
9 12

rot−1
NW	→

2 3 7
1 4 6 11
5 8 10
9 12

= φT,

2 3 7
1 4 6 11
5 8 10

rotSE	→
2 3 7

1 4 6 11
5 8 12

pro	→
3 4 8

1 5 7 12
2 6 9

rot−1
NW	→

3 4 8
1 5 7 12
2 6 9 = φ2T.
9 12 9 10 1011 1011
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Here, the first step of Pφ(T ) is northward, and X2 is nonstrictly southwest of X1.

Example 5.10. Suppose

T =
2 5 6

1 3 7 9
4 8 11
1012

.

The actions of φ on T and φT are shown below. The promotion paths Pφ(T ) and Pφ(φT )
are shown in bold.

2 5 6
1 3 7 9
4 8 11
1012

rotSE	→
2 5 6

1 3 7 9
4 8 12
1011

pro	→
3 6 7

1 4 8 10
2 5 9
1112

rot−1
NW	→

3 6 7
1 4 8 10
2 5 9
1112

= φT,

3 6 7
1 4 8 10
2 5 9
1112

rotSE	→
3 6 7

1 4 8 10
2 5 9
1112

pro	→
4 7 8

1 5 9 11
2 6 10
3 12

rot−1
NW	→

4 7 8
1 5 9 11
2 6 10
3 12

= φ2T.

Here, the first step of Pφ(T ) is westward, and X2 is strictly southwest of X1.

For the rest of this subsection, suppose n −1 and n are in the same connected compo-
nent of T , and n − 1 ∈ Des(T ). Since n − 1 and n are in the same connected component, 
k > 1. Since n − 1 ∈ Des(T ), posT (n) is southwesternmost in RpSE(T ), so x1 = n. Let 
the entry of X in T be xj for some j ∈ [k].

Note that X = X1, because both are the southeast rotation endpoint of T .
In rotSE(T ), x1 = n is at X, and the entries x2, . . . , xk occupy the remaining cells of 

RpSE(T ), in that order, from southwest to northeast. By examining the three configu-
rations in Proposition 3.8, we see that in T ′, the entries x2 + 1, . . . , xk + 1 are still in 
RpSE(T ) in that order. Moreover, {x2 + 1, . . . , xk + 1} = {n, . . . , n − k + 2}. Thus,

{n, . . . , n− k + 2} ⊆ RcSE(T ′).

By Lemma 3.31, the sets RcSE(φT ) and RcNW(φT ) are disjoint. Therefore each ele-
ment of RcSE(φT ) is in the same cell in φT and in

rotNW(φT ) = pro(rotSE(T )) = T ′.

Moreover, Lemma 3.31 states that

RcSE(φT ) = RcSE(T ′).

Thus, X2, the southeast rotation endpoint of φT , is also the southeast rotation endpoint 
of T ′. We will use this characterization of X2 in the following proof.
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Proof of Proposition 5.8. Recall that X is due east or due south of Y . We consider two 
cases.

Case 1: X is strictly due south of Y .

This case corresponds to configuration (a) of Proposition 3.8, or configuration (b) 
where X �= Y . In rotSE(T ), X contains the entry n; so, the beginning of Pφ(T ) is a 
due-north path from X to Y . We will show that X2 is nonstrictly southwest of X1.

Since X is strictly due south of Y , j < i. The action of rotSE on T moves exactly the
elements x1, . . . , xj . In particular, it does not move xj+1, . . . , xi. Furthermore, promotion 
of rotSE(T ) increments these elements and moves them down by one cell. So, for m ∈
{j + 1, . . . , i}, posT ′(xm + 1) is the southern neighbor of posT (xm).

If RcSE(T ′) = {n, . . . , n − k + 2}, X2 is the southeast exterior corner due east or due 
south of posT ′(n − k + 2) = posT ′(xi + 1). Since posT ′(xi + 1) is the southern neighbor 
of posT (xi) = Y , we have X2 = X. This is nonstrictly southwest of X1 = X, as desired.

Otherwise, n −k+1 ∈ RcSE(T ′), so {n, . . . , n −k+1} is southeast min-unimodal in T ′. 
This implies that posT ′(n −k+1) is on the southeast boundary between posT ′(xi−1 +1)
and posT ′(xi+1 +1). Here, if i = k, we let posT ′(xi+1 +1) be the northeast corner of the 
connected component of Y , and if i = 2, we let posT ′(xi−1 + 1) = posT ′(n + 1) be the 
southwest corner of the connected component of Y .

We claim that posT ′(xi+1+1) = posT (xi+1). If i = k, this holds by definition. If i < k, 
the action of rotSE on T does not move xi+1. Moreover, in both configurations (a) and (b), 
posT (xi+1) is strictly east of X; therefore posT (xi+1) is not in Pφ(T ), and promotion of 
rotSE(T ) increments its entry without moving it. Therefore posT ′(xi+1+1) = posT (xi+1).

If i > j + 1, then i − 1 ∈ {j + 1, . . . , i}. So, posT ′(xi−1 + 1) is the southern neighbor 
of posT (xi−1). Therefore, posT ′(n − k + 1) is on the southeast boundary between the 
southern neighbor of posT (xi−1) and posT (xi+1). But, by Lemma 5.6, posT ′(n − k + 1)
is not on the southeast boundary between posT (xi−1) and posT (xi+1). Thus, posT ′(n −
k + 1) is the southern neighbor of posT (xi−1), which is posT ′(xi−1 + 1). But xi−1 + 1 >
n − k + 1, contradiction.

Otherwise, i = j+1. Define Z to be the northernmost cell of RpSW
SE (T ) if it is nonempty, 

and otherwise as the southwest corner of the connected component of Y . We claim that 
posT ′(xi−1 + 1) = Z. If j > 1, RpSW

SE (T ) is nonempty, so Z is the northernmost cell 
of RpSW

SE (T ). The action of rotSE moves xj = xi−1 to Z. Since Z is strictly south of 
X, it is not on Pφ(T ); thus, promotion of rotSE(T ) increments the entry in Z without 
moving it, and posT ′(xi−1 + 1) = Z. If j = 1, RpSW

SE (T ) is empty, so Z is the southwest 
corner of the connected component of Y . As posT ′(xi−1+1) equals this cell by definition, 
posT ′(xi−1 + 1) = Z.

So, posT ′(n − k + 1) is on the southeast boundary between Z and posT (xi+1). By 
Lemma 5.6, posT ′(n − k+1) is not on the southeast boundary between posT (xi−1) = X

and posT (xi+1). Thus, posT ′(n −k+1) is southwest of X. By southeast min-unimodality, 
posT ′(min(RcSE(T ′))) is southwest of X as well. Hence, X2 is nonstrictly southwest of 
X1 = X.
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Case 2: X is due east of Y , including possibly X = Y .

This case corresponds to configuration (c) of Proposition 3.8. We will show that in 
this case, X2 is strictly southwest of X1. Note that in this case the first step of Pφ(T )
may be northward or westward, and in particular may be northward when X = Y ; but, 
regardless of the direction of this step, proving that X2 is strictly southwest of X1 implies 
the result.

We claim that in this case, posT (n) ∈ RpSW
SE (T ). Suppose otherwise; since posT (n)

is southwesternmost in RpSE(T ), posT (n) ∈ RpC
SE(T ). Since n is the largest entry, 

posT (n) = X. But, since posT (n) is southwesternmost in RpSE, X = Y . This is only 
possible if n = n − k + 1, which implies k = 1. This is a contradiction because n − 1 and 
n are in the same connected component of T , which implies k > 1. As a consequence, 
RpSW

SE (T ) is nonempty and i > 1. Let Z be the northernmost cell of RpSW
SE (T ).

In rotSE(T ), X contains n and Z contains n − k + 1. Since Z is strictly southwest of 
X, it does not intersect Pφ(T ). Thus, promoting rotSE(T ) increments but does not move 
the entry in Z, and posT ′(n − k + 2) = Z.

If RcSE(T ′) = {n, . . . , n − k + 2}, then X2 is a southeast exterior corner due east 
or due south of posT ′(n − k + 2) = Z. As Z is strictly southwest of X, X2 is strictly 
southwest of X1 = X.

Otherwise, n −k+1 ∈ RcSE(T ′), so {n, . . . , n −k+1} is southeast min-unimodal in T ′. 
This implies that posT ′(n −k+1) is on the southeast boundary, between posT ′(xi−1 +1)
and posT ′(xi+1 + 1). As before, if i = k, we let posT ′(xi+1 + 1) be the northeast corner 
of the connected component of Y ; as noted above, we never have i = 1.

We claim that posT ′(xi+1 + 1) = posT (xi+1). If i = k, this is true by definition; 
otherwise, assume i < k. If posT (xi+1) ∈ RpC

SE(T ), rotSE moves the entry in this cell one 
cell westward; thus, posrotSE(T )(xi+1) is the western neighbor of posT (xi+1). This cell lies 
on the promotion path of rotSE(T ), so pro increments this cell and moves its incremented 
entry one cell eastward. So, posT ′(xi+1 + 1) = posT (xi+1). If posT (xi+1) ∈ RpNE

SE (T ), 
rotSE does not move this cell’s entry, so posrotSE(T )(xi+1) = posT (xi+1). This cell does 
not lie on the promotion path of rotSE(T ), so pro increments this cell but does not move 
its incremented entry. Thus, again posT ′(xi+1 + 1) = posT (xi+1).

By Lemma 5.6, posT ′(n − k + 1) is not on the southeast boundary between the cells 
posT (xi−1) = Z and posT (xi+1) = posT ′(xi+1 + 1). Thus, posT ′(n − k + 1) is southwest 
of Z. By southeast min-unimodality, X2 = posT ′(min(RcSE(T ′))) is southwest of Z as 
well. Since Z is strictly southwest of X = X1, X2 is strictly southwest of X1. �

5.3. Demotion paths

We analogously define a notion of demotion paths.
The demotion path of T ∈ SYT(λ/μ) is the set of cells traversed by n when T is 

demoted.
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Definition 5.11. For T ∈ SYT(λ/μ), the φ−1-demotion path of T , denoted Pφ−1(T ), is 
the path traversed by n in the demotion phase of the action of φ−1 on T . Equivalently, 
Pφ−1(T ) is the demotion path of rotNW(T ).

This path starts at a northwest exterior corner of λ/μ, which we call the path’s source, 
and ends at a southeast exterior corner, which we call its destination. Note that for all 
T , the φ−1-demotion path of φT is the φ-promotion path of T , traversed in the opposite 
direction.

We have this analogue of Proposition 5.8.

Corollary 5.12. Suppose 1 and 2 are in the same connected component of T , and 1 /∈
Des(T ). Let X1, X2 denote the sources of Pφ−1(T ) and Pφ−1(φ−1T ), respectively. If the 
first step in Pφ−1(T ) is southward, X2 is strictly southwest of X1. If the first step in 
Pφ−1(T ) is eastward, X2 is nonstrictly southwest of X1.

Proof. Consider the tableau T ′ = (T rev)t. Since 1 and 2 are in the same connected 
component of T , n − 1 and n are in the same connected component of T ′. Since 1 /∈
Des(T ), n − 1 ∈ Des(T ′).

The promotion paths Pφ(T ′) and Pφ(φT ′) are the reverse transposes of the demotion 
paths Pφ−1(T ) and Pφ−1(φ−1T ), respectively. Let X ′

1 and X ′
2 be the sources of Pφ(T ′)

and Pφ(φT ′). X ′
1 and X ′

2 are the reverse transposes of X1 and X2.
Suppose the first step in the Pφ−1(T ) is southward. Then, the first step in Pφ(T ′) is 

westward. By Proposition 5.8 on T ′, X ′
2 is strictly southwest of X ′

1. Thus, X2 is strictly 
southwest of X1.

Conversely, suppose the first step in the Pφ−1(T ) is eastward. Then, the first step in 
Pφ(T ′) is northward. By Proposition 5.8 on T ′, X ′

2 is nonstrictly southwest of X ′
1. Thus, 

X2 is nonstrictly southwest of X1. �
5.4. Pseudo-promotion paths

We will also use a notion of pseudo-promotion paths.

Definition 5.13. For T ∈ SYT(λ/μ) and a southeast exterior corner Z of λ/μ, the pseudo-
promotion path of Z in T is the set of cells starting at Z, obtained by the following 
procedure: while the current cell is not a northwest exterior corner, walk to the larger of 
the current cell’s northern neighbor (if it exists) and western neighbor (if it exists).

Example 5.14. For the tableau T below, the pseudo-promotion path for the cell containing 
11 is shown in bold.

1 6 7
2 5 8 9
3 1011 .
4 12



B. Huang / Journal of Combinatorial Theory, Series A 169 (2020) 105120 35
If posT (n) = Z, the pseudo-promotion path of Z in T is the promotion path of T . 
However, the pseudo-promotion path is defined even when the entry in Z is not n.

Lemma 5.15. Let T ∈ SYT(λ/μ) and Z be a southeast exterior corner of λ/μ. The 
pseudo-promotion paths of Z in T and rotSE(T ) are the same.

Proof. For each cell W that is not a northwest exterior corner, define the pseudo-
promotion direction of W in T as the direction of the larger of W ’s northern neighbor (if 
it exists) and its western neighbor (if it exists). This is the direction a pseudo-promotion 
path would take to leave W .

We claim that for any W , the pseudo-promotion directions of W in T and rotSE(T )
are the same.

In both T and rotSE(T ), the entry in RpSE(T ) is RcSE(T ). Proposition 3.8 implies 
that RpSE(T ) avoids the shape

.

Thus, it is not possible for both the northern and western neighbors of W to be in 
RpSE(T ).

We consider two cases.
Case 1: One of the northern and western neighbors of W is in RpSE(T ).
Since all elements of RcSE(T ) are larger than all non-elements of RcSE(T ), the pseudo-

promotion direction of W in both T and rotSE(T ) is in the direction of the neighbor in 
RpSE(T ).

Case 2: Neither of the northern and western neighbors of W is in RpSE(T ).
The operation rotSE does not move either of these neighbors, so the northern and 

western neighbors of W have the same entries in T and rotSE(T ). Therefore the pseudo-
promotion direction of W is the same in both. �

If a pseudo-promotion path reaches a northwest interior corner U of λ/μ, the destina-
tion of the path must be the northwest exterior corner due north of U or the northwest 
exterior corner due west of U . So, the remaining steps of the path must be all northward 
or all westward.

Lemma 5.16. Let T ∈ SYT(λ/μ), and let Z be a southeast exterior corner of λ/μ. If 
the pseudo-promotion path of Z in T passes through a northwest interior corner U , the 
pseudo-promotion paths of Z in T and rotNW(T ) are equal between Z and U , inclusive. 
Otherwise, the pseudo-promotion paths of Z in T and rotNW(T ) are equal.

Thus, the two paths are not always equal; but if they differ, they differ only in that 
after reaching U , one travels due north while the other travels due west.
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Example 5.17. Let T be the tableau in Example 5.14. The tableau rotNW(T ) is shown 
below, with the pseudo-promotion path for the cell containing 11 shown in bold.

2 6 7
1 5 8 9
3 1011
4 12

.

This path differs from the pseudo-promotion path in Example 5.14 only in that after 
reaching the northwest interior corner with entry 5, this path traveled north while the 
path in Example 5.14 traveled west.

Proof. We will show that for any cell W not a northwest interior corner, the pseudo-
promotion directions of W in T and rotNW(T ) are the same.

We claim that not both the northern and western neighbors of W are in RpNW(T ). 
Suppose otherwise; because W has northern and western neighbors and is not a northwest 
interior corner, it has a northwestern neighbor. As the northern and western neighbors 
of W are in RpNW(T ), the northwestern neighbor is also in RpNW(T ). Thus, RpNW(T )
contains the shape

.

But, Proposition 3.26 implies that RpNW(T ) avoids this shape, contradiction.
So, there are two cases to consider.
Case 1: One of the northern and western neighbors of W is in RpNW(T ).
Since all elements of RcNW(T ) are smaller than all non-elements of RcNW(T ), the 

pseudo-promotion direction of W in both T and rotNW(T ) is the same.
Case 2: Neither of the northern and western neighbors of W is in RpNW(T ).
The operation rotNW does not move either of these neighbors, so the pseudo-promotion 

direction of W is the same in both T and rotNW(T ). �
5.5. Cyclic rotation of descents

The main result of this subsection is the following.

Proposition 5.18. Let T ∈ SYT(λ/μ). If n − 1 ∈ Des(T ), then 1 ∈ Des(φ2T ).

Throughout this subsection, let

P1 = Pφ(T ), P2 = Pφ(φT ).

Let S1, S2 denote the sources of P1 and P2, and let D1, D2 denote their destinations, 
respectively.
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By definition, P2 is the pseudo-promotion path of S2 in rotSE(φT ). By Lemma 5.15
applied to φT , P2 is also the pseudo-promotion path of S2 in φT .

Let

T ′ = rotNW(φT ) = pro(rotSE(T )).

Let P ′
2 be the pseudo-promotion path of S2 in T ′, with destination D′

2.

Proposition 5.19. Suppose 1 and 2 are in the same connected component of φ2T , and 
1 /∈ Des(φ2T ). If the last step in P ′

2 is northward, then D1 is strictly southwest of D′
2. If 

the last step in P ′
2 is westward, then D1 is nonstrictly southwest of D′

2.

Example 5.20. Suppose

T =
1 3 8

2 4 7 12
5 9 11
6 10

.

The action of φ on T is shown below. The promotion path P1 and pseudo-promotion 
path P ′

2 are shown in bold on, respectively, rotSE(T ) and T ′ = pro(rotSE(T )). Note that 
P ′

2 begins on the cell with entry 10 in T ′ because this is the southeast rotation endpoint 
of φT .

1 3 8
2 4 7 12
5 9 11
6 10

rotSE	→
1 3 8

2 4 7 11
5 9 12
6 10

pro	→
2 4 9

1 5 8 12
3 6 10
7 11

rot−1
NW	→

1 4 9
2 5 8 12
3 6 10
7 11

.

The last step in P ′
2 is northward, and D1 is strictly southwest of D′

2.

Example 5.21. Suppose

T =
1 4 10

2 3 8 12
5 7 11
6 9

.

The action of φ on T is shown below. The promotion path P1 and pseudo-promotion 
path P ′

2 are shown in bold on, respectively, rotSE(T ) and T ′ = pro(rotSE(T )). Note that 
P ′

2 begins on the cell with entry 12 in T ′ because this is the southeast rotation endpoint 
of φT .

1 4 10
2 3 8 12
5 7 11

rotSE	→
1 4 10

2 3 8 11
5 7 12

pro	→
1 2 11

3 4 5 12
6 8 9

rot−1
NW	→

1 2 11
3 4 5 12
6 8 9 .
6 9 6 9 7 10 7 10
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The last step in P ′
2 is westward, and D1 is nonstrictly southwest of D′

2.

Proof. Recall that Pφ−1(φT ) and Pφ−1(φ2T ) are, respectively, P1 and P2 traversed in 
the opposite direction. Corollary 5.12, applied to φ2T , implies that if the last step in P2

is northward, D1 is strictly southwest of D2, and if the last step in P2 is westward, D1

is nonstrictly southwest of D2.
If P ′

2 = P2, then D2 = D′
2 and the result follows.

Otherwise, by Lemma 5.16, P ′
2 and P2 are the same until they reach a northwest 

interior corner C, and then one of them moves north while the other moves west.
If P2 moves north and P ′

2 moves west after C, then D′
2 is the first northwest exterior 

corner to the southwest of D2. Since D1 is strictly southwest of D2, D1 is nonstrictly 
southwest of D′

2.
If P2 moves west and P ′

2 moves north after C, then D′
2 is the first northwest exterior 

corner to the northeast of D2. Since D1 is nonstrictly southwest of D2, D1 is strictly 
southwest of D′

2. �
Proof of Proposition 5.18. The operations rotSE and rotNW do not move entries across 
connected components. The operation pro increments all entries, but does not move any 
incremented entries across connected components. Thus, the connected components of 
n − 1 and n in T are, respectively, the connected components of 1 and 2 in φ2T .

Let us first address when n − 1 and n are not in the same connected component of T . 
If the connected component of n − 1 is north of the connected component of n in T , the 
connected component of 1 is north of the connected component of 2 in φ2T . Consequently, 
n − 1 ∈ Des(T ) and 1 ∈ Des(φ2T ). Analogously, if the connected component of n − 1 is 
south of the connected component of n in T , then n − 1 /∈ Des(T ) and 1 /∈ Des(φ2T ). 
This proves the result when n − 1 and n are not in the same connected component of T .

Otherwise, assume n − 1 and n are in the same connected component of T . It follows 
that 1 and 2 are in the same connected component of φ2T . Suppose for contradiction 
that n − 1 ∈ Des(T ) and 1 /∈ Des(φ2T ).

By Propositions 5.8 and 5.19, we have the following conditions.

(a) If the first step in P1 is northward, then S2 is nonstrictly southwest of S1.
(b) If the first step in P1 is westward, then S2 is strictly southwest of S1.
(c) If the last step in P ′

2 is northward, then D1 is strictly southwest of D′
2.

(d) If the last step in P ′
2 is westward, then D1 is nonstrictly southwest of D′

2.

Let

Γ = {Z ∈ P1|western neighbor of Z is also in P1} ∪ {D1}.

Each column that P1 intersects contains one cell in Γ.
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We claim that if Z ∈ Γ ∩ P ′
2, then the southern neighbor of Z is not in P ′

2. Suppose 
for contradiction that Z ∈ Γ ∩ P ′

2 and the southern neighbor of Z is in P ′
2. Since Z ∈ Γ, 

Z = D1 or the western neighbor of Z is in P1.
Suppose Z = D1. Then, the southern neighbor of D1 is in P ′

2, so D′
2 is nonstrictly 

southwest of D1. But, by conditions (c) and (d), D1 is nonstrictly southwest of D′
2. 

Thus D1 = D′
2. Since the southern neighbor of D1 = D′

2 is in P ′
2, the last step in P ′

2 is 
northward. This contradicts condition (c), that D1 is strictly southwest of D′

2.
Otherwise, the western neighbor of Z is in P1. Because the southern neighbor of Z

exists, the southwestern neighbor of Z must also exist, or else λ/μ is not a skew shape. 
So, in rotSE(T ), let the western neighbor and southwestern neighbors of Z have entries 
u and v, as shown below.

u Z
v

.

Thus, u < v. Since both Z and its western neighbor are in P1, the entries in these cells 
in T ′ are

u+1
v+1

.

Since both Z and its southern neighbor are in P ′
2, the step in P ′

2 departing the southern 
neighbor of Z is northward, contradicting that u < v. This proves our claim that the 
southern neighbor of Z ∈ Γ ∩ P ′

2 cannot be in P ′
2.

The path P ′
2 runs southeast to northwest. Since S2 is nonstrictly southwest of S1 by 

conditions (a) and (b), and D′
2 is nonstrictly northeast of D1 by conditions (c) and (d), 

P ′
2 must be confined to the region of λ/μ between the columns of S1 and D1, inclusive. 

Call this region Δ. As each column of Δ contains one element of Γ, Γ divides Δ into 
regions Δ+, the cells nonstrictly due north of a cell in Γ, and Δ−, the cells strictly due 
south of a cell in Γ.

Conditions (a) and (b) imply S2 ∈ Δ−, while conditions (c) and (d) imply D′
2 ∈ Δ+. 

Thus, P ′
2 must intersect Γ at a cell Z such that the southern neighbor of Z is also in P ′

2. 
This is a contradiction. �
5.6. Completion of the proof

We now have the tools to show that (cDes, φ) satisfies the equivariance property.

Proposition 5.22. (cDes, φ) satisfies the equivariance property. That is, if T ∈ SYT(λ/μ)
and i ∈ [n], then i ∈ cDes(T ) if and only if i + 1 ∈ cDes(φT ), where we take indices 
modulo n.

Proof. We consider three cases: i ∈ [n − 2], i = n − 1, and i = n.
Case 1: i ∈ [n − 2].
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The result follows from Proposition 3.11, Lemma 2.3, and Proposition 3.27, due to 
the following equivalence chain:

i ∈ Des(T ) ⇔ i ∈ Des(rotSE(T ))

⇔ i + 1 ∈ Des(pro(rotSE(T )))

⇔ i + 1 ∈ Des(rot−1
NW(pro(rotSE(T )))).

Case 2: i = n − 1.
It is equivalent to show that n − 1 ∈ Des(T ) if and only if 1 ∈ Des(φ2T ).
The forward direction follows from Proposition 5.18.
To show the converse, we consider T such that n − 1 /∈ Des(T ). Then, n − 1 ∈

Des(T t). By Proposition 5.18, 1 ∈ Des(φ2(T t)). Since φ commutes with transposition, 
1 ∈ Des((φ2T )t), and thus, 1 /∈ Des(φ2T ). Therefore, n − 1 /∈ Des(T ) implies 1 /∈
Des(φ2T ), as desired.

Case 3: i = n.
By the definition of cDes, n ∈ cDes(T ) if and only if 1 ∈ cDes(φT ). �
Finally, we prove our main result.

Proof of Theorem 1.9. We will show that (cDes, φ) satisfies the extension, equivariance, 
and non-Escher properties. Extension follows by definition. Equivariance and non-Escher 
follow from Propositions 5.22 and 5.3. �
6. Special cases

In this section we review some of the literature for cyclic descents of skew tableaux. 
We will state which of the constructions in the literature are special cases of Theorem 1.9. 
The proofs that these constructions coincide with the construction in Theorem 1.9 are 
sometimes complex. Thus, we omit the proofs here; the proofs can be found in the arXiv 
version of this paper, at arXiv:1808.04918.

First, let us introduce the relevant definitions from the literature.
For a (not necessarily standard) tableau T of shape λ/μ and integer a, let a + T be 

the tableau obtained by adding a to each entry of T and taking entries modulo n.
Where appropriate, we will also name cells by their coordinates. Thus, (x, y) is the 

cell in the xth row and yth column of λ/μ where (1, 1) is the shared northwest corner of 
λ and μ. Let Tx,y denote the entry of T in cell (x, y).

The generalized jeu de taquin operator j̃dt [2, Definition 2.3] acts on a tableau T as 
follows. While T is not standard, apply the following operation to T : find the minimal 
entry i such that i is not smaller than both its northern and western neighbors, and 
swap i with the larger of these neighbors.

https://arxiv.org/abs/1808.04918
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Example 6.1. Below is one action of j̃dt on a nonstandard tableau.

3 4 2
5 1 	→ 3 4 2

1 5 	→ 1 4 2
3 5 	→ 1 2 4

3 5 .

Remark 6.2. For all T ∈ SYT(λ/μ),

pro(T ) = j̃dt(1 + T ) and dem(T ) = j̃dt(−1 + T ).

Throughout this section, we adopt the following notational convention. We use 
(cDes, φ) to denote the cyclic descent map given in Theorem 1.9, and (cDes′, φ′) to 
denote the cyclic descent maps from the literature that we are comparing to (cDes, φ).

6.1. Rectangles and strips

Recall this result by Rhoades, stated in Section 1.

Theorem 1.7. [12, Lemma 3.3] Let λ/μ be a rectangular Young diagram with length and 
width both larger than 1. Let φ′ = pro, and let n ∈ cDes′(T ) if and only if n − 1 ∈
Des(demT ). Then (cDes′, φ′) is a cyclic descent map.

Adin, Elizalde, and Roichman give an analogous construction for strips, skew shapes 
with more than one connected component whose connected components are all single-row 
or single-column rectangles.

Theorem 6.3. [2, Proposition 3.3] Let λ/μ be a strip. Let φ′ = pro, and let n ∈ cDes′(T )
if and only if n − 1 ∈ Des(demT ). Then (cDes′, φ′) is a cyclic descent map.

The cyclic descent map (cDes′, φ′), defined in Theorems 1.7 and 6.3, coincides with 
the (cDes, φ) defined in Theorem 1.9.

In fact, it can be shown that (φ, cDes) and (φ′, cDes′) are the same for a family of 
λ/μ including both rectangles and strips.

Corollary 6.4. In any skew shape λ/μ whose connected components are all rectangles, 
(φ, cDes) and (φ′, cDes′) are the same.

6.2. Hook plus internal cell

Let λ = (n −k, 2, 1k−2) and μ = (). The following construction is due to Adin, Elizalde, 
and Roichman.

Definition 6.5. [2, Corollary 4.8] For T ∈ SYT(λ/μ), let n ∈ cDes′(T ) if and only if 
posT (T2,2 − 1) is in the first column of T .



42 B. Huang / Journal of Combinatorial Theory, Series A 169 (2020) 105120
This construction is different from the others in that it constructs ψ = φ′ −1 instead 
of φ′.

Definition 6.6. [2, Definition 4.13] For T ∈ SYT(λ/μ), define ψT as follows.

• If 1 /∈ Des(T ), let the first row of ψT have entries [n] \ cDes′(T ), in increasing order 
from west to east, where cDes′(T ) is defined in Definition 6.5. Let (ψT )2,2 be defined 
as follows, depending on the location of posT (T2,2 − 1).
(a) If posT (T2,2 − 1) is in the first row of T , (ψT )2,2 = T2,2 − 1.
(b) If posT (T2,2 − 1) is in the first column of T and not the southernmost entry 

(k, 1), and a is the entry in its southern neighbor, (ψT )2,2 = a − 1.
(c) If posT (T2,2 − 1) = (k, 1), (ψT )2,2 = n.
The remaining entries are in the first column of T , in increasing order from north to 
south.

• If 1 ∈ Des(T ), let ψT = (ψT t)t, reducing to the previous case.

Theorem 6.7. [2, Theorem 1.11] Let cDes′ be defined by Definition 6.5, and let φ′ = ψ−1, 
where ψ is defined by Definition 6.6. Then (cDes′, φ′) is a cyclic descent map.

The cyclic descent map (cDes′, φ′), defined in Theorem 6.7, coincides with the 
(cDes, φ) defined in Theorem 1.9.

6.3. Two-row straight shapes

Let λ = (n − k, k) with 2 ≤ k ≤ n/2 and μ = (). The following construction is due to 
Adin, Elizalde, and Roichman.

Definition 6.8. [2, Definition 1.12] For T ∈ SYT(λ/μ), let n ∈ cDes′(T ) if and only if 
both of the following conditions hold.

(1) T2,k = T2,k−1 + 1.
(2) For every 1 < i < k, T2,i−1 > T1,i.

By a slight abuse of notation, let 1 + T≤x denote the tableau obtained by adding 1
modulo x to the entries 1, . . . , x in T , and leaving the remaining entries unchanged.

Definition 6.9. [2, Definition 5.13] For T ∈ SYT(λ/μ), define φ′T as follows.

(1) If T2,k = T2,k−1 + 1, let φ′T = j̃dt(1 + T≤x), where x = T2,k.
(2) Otherwise:

(a) If n is in the first row of T , let φ′T = pro(T ).
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(b) If n is in the second row of T , let φ′T be the tableau obtained from 1 + T as 
follows: switch 1 with y + 1, where y is the entry immediately to the west of 1, 
and then apply j̃dt.

Theorem 6.10. [2, Theorem 1.14] The (cDes′, φ′) defined by Definitions 6.8 and 6.9 is a 
cyclic descent map.

The cyclic descent map (cDes′, φ′) defined in Theorem 6.10 coincides with the (cDes, φ)
defined in Theorem 1.9.

6.4. Young diagram with disconnected northeast cell

The following construction is due to Elizalde and Roichman.

Theorem 6.11. [5, Proposition 5.3] Let λ/μ consist of a Young diagram of size n −1 and 
a disconnected northeast cell. For T ∈ SYT(λ/μ), let n ∈ cDes(T ) if and only if one of 
the following holds.

(1) n is in the disconnected cell.
(2) d �= n is in the disconnected cell and n − d ∈ Des(j̃dt(−d + T ))

Moreover, define φ′ by

φ′(T ) = j̃dt(1 + d + j̃dt(−d + T )).

Then (cDes′, φ′) is a cyclic descent map.

This cyclic descent map is not a special case of (cDes, φ). As a counterexample, let

T =
1

2 3 5
4 6

.

Then

φT =
2

1 3 4
5 6

and φ′T =
2

1 4 6
3 5

,

so φT �= φ′T . Moreover, cDes(φT ) = {2, 4, 6}, while cDes′(φT ) = {2, 4}.
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7. Concluding remarks and open problems

With the results in this paper, we have fully solved the problem of finding an explicit 
cyclic descent map for all skew shapes where a cyclic descent map exists. We thus have 
a constructive proof of Theorem 1.5.

As noted in Remark 4.3, the φ defined in Theorem 1.9 does not, in general, generate 
a Zn-action. As promotion generates a Zn action on rectangles, this is one property 
of promotion on rectangles that does not generalize to φ. It would be interesting to 
determine when this property holds.

Problem 7.1. For which λ/μ, not a connected ribbon, does φ generate a Zn-action?

This class includes rectangles [15, Theorem 4.1(a)] and strips [2, Proposition 3.3]; it 
isn’t difficult to show that it includes any skew shape whose connected components are 
all rectangles. [2, Theorem 1.11] shows that hooks plus an interior cell are in this class 
as well.

It would also be interesting to study the structure of orbits of the action of φ. As φ
does not generate a Zn-action, these orbit sizes are not always divisors of n. In fact, it 
is possible for an orbit size to be neither a multiple nor a divisor of n; as noted in [2], 
the orbit generated by φ on

T = 1 3 4 7 9
2 5 6 8

has size 6 and the period of the corresponding cyclic descent sets is 3.
Moreover, computer experiments done by the author show that the orbit generated 

by φ on

T =

1 2 5 9 14
3 7 8 1019
4 12151820
6 17232426
112125
132227
162829

has size 488969 = 29 ×16861, suggesting that these orbit sizes can grow arbitrarily large, 
and rather quickly.

The following problems aim to better understand the distribution of orbit sizes.

Problem 7.2. For λ/μ not a connected ribbon, determine, exactly or asymptotically in 
terms of n and the row lengths of λ and μ, the number of distinct orbits of φ on SYT(λ/μ).

Problem 7.3. For λ/μ not a connected ribbon, determine, exactly or asymptotically in 
terms of n and the row lengths of λ and μ, the size of the largest orbit of φ on SYT(λ/μ).
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