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We prove a “decomposition lemma” that allows us to count 
preimages of certain sets of permutations under West’s stack-
sorting map s. As a first application, we give a new proof of 
Zeilberger’s formula for the number W2(n) of 2-stack-sortable 
permutations in Sn. Our proof generalizes, allowing us to 
find an algebraic equation satisfied by the generating function 
that counts 2-stack-sortable permutations according to length, 
number of descents, and number of peaks. This is also the first 
proof of this formula that generalizes to the setting of 3-stack-
sortable permutations. Indeed, the same method allows us 
to obtain a recurrence relation for W3(n), the number of 
3-stack-sortable permutations in Sn. Hence, we obtain the first 
polynomial-time algorithm for computing these numbers. We 
compute W3(n) for n ≤ 174, vastly extending the 13 terms of 
this sequence that were known before. We also prove the first 
nontrivial lower bound for lim

n→∞
W3(n)1/n, showing that it is 

at least 8.659702. Invoking a result of Kremer, we also prove 
that lim

n→∞
Wt(n)1/n ≥ (

√
t+1)2 for all t ≥ 1, which we use to 

improve a result of Smith concerning a variant of the stack-
sorting procedure. Our computations allow us to disprove a 
conjecture of Bóna, although we do not yet know for sure 
which one.
In fact, we can refine our methods to obtain a recurrence 
for W3(n, k, p), the number of 3-stack-sortable permutations 
in Sn with k descents and p peaks. This allows us to gain 
a large amount of evidence supporting a real-rootedness 
conjecture of Bóna. Using part of the theory of valid hook 
configurations, we give a new proof of a γ-nonnegativity result 
of Brändén, which in turn implies an older result of Bóna. We 
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then answer a question of the current author by producing 
a set A ⊆ S11 such that 

∑
σ∈s−1(A) x

des(σ) has nonreal 
roots. We interpret this as partial evidence against the same 
real-rootedness conjecture of Bóna that we found evidence 
supporting. Examining the parities of the numbers W3(n), we 
obtain strong evidence against yet another conjecture of Bóna. 
We end with some conjectures of our own.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The stack-sorting map

We use the word “permutation” to refer to an ordering of a set of positive integers writ-
ten in one-line notation. Let Sn denote the set of permutations of the set [n] := {1, . . . , n}. 
If π is a permutation of length n, then the normalization of π is the permutation in Sn

obtained by replacing the ith-smallest entry in π with i for all i ∈ [n]. We say a per-
mutation is normalized if it is equal to its normalization. A descent of a permutation 
π = π1 · · ·πn is an index i ∈ [n − 1] such that πi > πi+1. A peak of π is an index 
i ∈ {2, . . . , n − 1} such that πi−1 < πi > πi+1. Let des(π) and peak(π) denote the 
number of descents of π and the number of peaks of π, respectively.

Definition 1.1. Given τ ∈ Sm, we say a permutation σ = σ1 · · ·σn contains the pattern
τ if there exist indices i1 < · · · < im in [n] such that the normalization of σi1 · · ·σim is 
τ . We say σ avoids τ if it does not contain τ . Let Av(τ (1), . . . , τ (r)) denote the set of 
normalized permutations that avoid the patterns τ (1), . . . , τ (r). Let Avn(τ (1), . . . , τ (r)) =
Av(τ (1), . . . , τ (r)) ∩ Sn.

The study of permutation patterns is now a major area of research; it began with 
Knuth’s analysis of a certain “stack-sorting algorithm” [37]. In his dissertation, West [45]
defined a deterministic variant of Knuth’s algorithm. This variant is a function, which we 
call the “stack-sorting map” and denote by s, that sends permutations to permutations. 
The stack-sorting map has now been studied extensively [1,3,6–9,11–15,17–30,32–34,36,
40,42–45,47]. The reader seeking further historical background and motivation should 
see one of the references [3,8,20,23,26–29].

To define the function s, let us begin with an input permutation π = π1 · · ·πn. At 
any point in time during this procedure, if the next entry in the input permutation is 
smaller than the entry at the top of the stack or if the stack is empty, the next entry 
in the input permutation is placed at the top of the stack. Otherwise, the entry at the 
top of the stack is annexed to the end of the growing output permutation. This process 
terminates when the output permutation has length n, and s(π) is defined to be this 
output permutation. The following illustration shows that s(4162) = 1426.
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Definition 1.2. 1 We say a permutation π is t-stack-sortable if st(π) is an increasing 
permutation, where st denotes the t-fold iterate of s. Let Wt(n) be the set of t-stack-
sortable permutations in Sn, and let Wt(n, k) = {π ∈ Wt(n) : des(π) = k} and 
Wt(n, k, p) = {π ∈ Wt(n, k) : peak(π) = p}. Let

Wt(n) = |Wt(n)|, Wt(n, k) = |Wt(n, k)|, and Wt(n, k, p) = |Wt(n, k, p)|.

Knuth simultaneously initiated the study of stack-sorting and the investigation of 
permutation patterns with the following theorem.

Theorem 1.1 ([37]). A permutation is 1-stack-sortable if and only if it avoids the pat-
tern 231. Furthermore,

W1(n) = |Avn(231)| = Cn,

where Cn = 1
n+1

(2n
n

)
is the nth Catalan number.

In his dissertation, West conjectured a formula for W2(n), which Zeilberger later 
proved.

Theorem 1.2 ([47]). We have

W2(n) = 2
(n + 1)(2n + 1)

(
3n
n

)
.

Combinatorial proofs of Zeilberger’s theorem emerged later in [19,32,33,36]. Some 
authors have investigated the enumeration of 2-stack-sortable permutations according 
to various statistics [6,11,13,32]. The articles [31] and [35] give different proofs that new 
combinatorial objects called “fighting fish” are counted by the numbers W2(n). The 
authors of [2] studied what they called “n-point dominoes,” and they have found that 
there are W2(n + 1) such objects.

There is very little known about t-stack-sortable permutations when t ≥ 3 is fixed. 
Úlfarsson [44] characterized 3-stack-sortable permutations in terms of new “decorated 
patterns,” but the characterization is too unwieldy to yield any additional information. 
The recent paper [1] shows that for every t ≥ 1, the set of t-stack-sortable permutations 
can be described by a sentence in a first-order logical theory that the authors call TOTO. 

1 The permutations that we call t-stack-sortable are often called “West t-stack-sortable,” but we have 
dropped the word “West” for brevity. The term “t-stack-sortable” is sometimes used to refer to permutations 
that can be sorted using Knuth’s (nondeterministic) algorithm with t stacks in series; that use of the term 
is different from ours.
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The paper [17] also investigates t-stack-sortable permutations when t = n − r for some 
fixed r (focusing on the case in which r = 4). For fixed t ≥ 3, the best known general 
upper bound for Wt(n) (see [8, Theorem 3.4]), is the estimate

Wt(n) ≤ (t + 1)2n. (1)

The current author showed [27] that

lim
n→∞

W3(n)1/n < 12.53296 and lim
n→∞

W4(n)1/n < 21.97225. (2)

The limits in (2) are known to exist (see Section 6). Recently, Bóna has obtained a new 
proof of the first inequality in (2) using “stack words.” It also follows from Theorem 1.2
that

lim
n→∞

Wt(n)1/n ≥ 6.75 for all t ≥ 2. (3)

When t ≥ 3, we refer to (3) as a “trivial” lower bound for the growth rate of Wt(n), even 
though it relies on the highly nontrivial enumeration of 2-stack-sortable permutations. 
Remarkably, (3) was the best known lower bound for lim

n→∞
Wt(n)1/n for all t ≥ 2 until 

now.

Bóna [9] proved that the polynomial 
n−1∑
k=0

Wt(n, k)xk =
∑

σ∈Wt(n)

xdes(σ) is symmetric 

and unimodal (see Section 8 for the relevant definitions). In fact, his proof actually shows 
that 

∑
σ∈s−1(A)

xdes(σ) is symmetric and unimodal for every set A ⊆ Sn. Brändén strength-

ened this result with the following theorem (we define γ-nonnegativity in Section 8).

Theorem 1.3 ([14]). If A ⊆ Sn, then

∑
σ∈s−1(A)

xdes(σ) =

⌊
n−1

2
⌋∑

m=0

|{σ ∈ s−1(A) : peak(σ) = m}|
2n−1−2m xm(1 + x)n−1−2m.

In particular, 
∑

σ∈s−1(A)

xdes(σ) is γ-nonnegative.

In the present article, we concern ourselves with the following four conjectures of Bóna. 
Recall that a sequence (an)n≥1 of positive numbers is called log-convex if (an+1/an)n≥1
is nondecreasing.

Conjecture 1.1 ([3,8]). For all n, t ≥ 1, we have

Wt(n) ≤
(

(t + 1)n
n

)
.
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Conjecture 1.2 ([5]). For every t ≥ 1, the sequence (Wt(n))n≥1 is log-convex.

Conjecture 1.3 ([34]). If t is even, then Wt(n) is frequently odd. If t is odd, then Wt(n)
is rarely odd.

Conjecture 1.4 ([9]). For all n, t ≥ 1, the polynomial 
∑

σ∈Wt(n)

xdes(σ) has only real roots.

Remark 1.1. Bóna’s motivation for formulating Conjecture 1.1 came from the idea of 
encoding elements of Wt(n) as n-uniform words over a (t + 1)-element alphabet (see [7]
and [8] for more details). His motivation behind Conjecture 1.2 came from an observa-
tion that the sequences (Wt(n))n≥1 appear to be similar to the sequences that enumerate 
principal permutation classes, which he has also conjectured are log-convex. For example, 
Bóna has observed that his methods in [4] can be used to show that for fixed n, t ≥ 1, 
the number of t-stack-sortable permutations of length n with c components is monoton-
ically decreasing as a function of c. Similarly, his methods allow one to prove that the 
generating functions 

∑
n≥1 Wt(n)xn are not rational. Bóna formulated Conjecture 1.4

after observing that it holds when t = 1 and when t = n − 1 (it also holds when t ≥ n

because this is equivalent to the t = n − 1 case). Brändén [15] proved this conjecture in 
the cases t = 2 and t = n − 2, but the remaining cases are still open.

Conjecture 1.3 requires some explanation. Using Bóna’s result that 
∑

σ∈Wt(n) x
des(σ)

is symmetric, one can easily deduce that Wt(n) is even whenever n is even. Therefore, 
it is natural to consider the parity of Wt(n) when n is odd. Let gt(m) be the number 
of integers n with 1 ≤ n ≤ m such that Wt(n) is odd. Let Fr denote the rth Fibonacci 
number (with F1 = F2 = 1). Using Theorems 1.1 and 1.2, one can show that g1(2r) = r

and g2(2r) = Fr for all positive integers r. Bóna [34] interpreted this as saying W1(n) is 
rarely odd while W2(n) is frequently odd, and this led him to formulate Conjecture 1.3. 

One could formalize this by saying that Wt(n) is rarely odd if lim sup
m→∞

log gt(m)
logm = 0 and is 

frequently odd lim inf
m→∞

log gt(m)
logm > 0 (although Bóna did not use this formalism). Bóna’s 

motivation behind Conjecture 1.3 also came from the idea of encoding t-stack-sortable 
permutations as words.

1.2. Summary of main results

In Section 2, we formulate a “decomposition lemma,” which provides a new method 
for analyzing preimages of permutations under the stack-sorting map. We actually prove 
a stronger lemma, which we call the refined decomposition lemma, that allows us to take 
the statistics des and peak into account. In Section 3, we briefly review some formulas 
arising from the theory of new combinatorial objects called “valid hook configurations.” 
In Section 4, we use the decomposition lemma to give a new proof of Zeilberger’s formula 
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for W2(n). We also use the refined decomposition lemma to find an algebraic equation 
satisfied by the generating function of the numbers W2(n, k, p). This equation is new.

Our new proof of Zeilberger’s formula is the first one that generalizes to the setting of 
3-stack-sortable permutations. In Section 5, we use the refined decomposition lemma to 
prove a recurrence relation for the numbers W3(n, k, p). Specializing this theorem gives 
us a recurrence for W3(n, k), and specializing further gives a recurrence for W3(n). This 
yields the first polynomial-time algorithm for computing W3(n). According to Wilf [46], 
we have solved the problem of counting 3-stack-sortable permutations. More precisely, 
he would say that we have “p-solved” this problem.

Before now, the values of W3(n) were only known up to n = 13. Indeed, the only 
algorithm that was used to compute these numbers before now relied on a brute-force ap-
proach. Using our recurrence, we have generated the values of W3(n) for n ≤ 174. We have 
added these terms to sequence A134664 in the Online Encyclopedia of Integer Sequences 
[41]. There are two significant theoretical implications of these computations. First, we 
will see in Section 6 that Bóna’s Conjectures 1.1 and 1.2 cannot both be true. Thus, we 
have disproven a conjecture of Bóna, although we do not yet know with absolute certainty 
which one. Let us remark, however, that the data suggests very strongly that Conjec-
ture 1.2 is true while Conjecture 1.1 is false. Furthermore, it appears that our recurrence 
coupled with sufficient computing time (and clever computing!) should allow one to com-
pletely disprove Conjecture 1.1. Second, we will prove that lim

n→∞
W3(n)1/n ≥ 8.659702; 

this is the first nontrivial lower bound for lim
n→∞

W3(n)1/n. In Section 7, we prove that 
lim
n→∞

Wt(n)1/n ≥ (
√
t+ 1)2 for every t ≥ 1, yielding the first nontrivial lower bounds for 

these growth rates for all t ≥ 4. As a corollary, we improve a result of Smith concerning 
permutations that can be sorted by t stacks in series using the so-called “left-greedy 
algorithm” [43]. Although there are multiple ways one could rigorously interpret Bó-
na’s Conjecture 1.3, we will see in Section 6 that every reasonable interpretation of the 
conjecture is likely to be false.

We have also computed the numbers W3(n, k) for n ≤ 43, allowing us to verify Con-
jecture 1.4 when t = 3 and n ≤ 43 (see OEIS sequence A324916 [41]). In Section 8, 
we show that the formulas from Section 3 easily imply Brändén’s Theorem 1.3. We also 
provide a two-element set A ⊆ S11 such that 

∑
σ∈s−1(A) x

des(σ) is not real-rooted. This 
provides a negative answer to the last part of Question 12.1 in [28], which we interpret as 
a small amount of evidence against Bóna’s Conjecture 1.4. Section 9 concludes the paper 
with a new conjecture about lim

n→∞
W3(n)1/n and several conjectures about the numbers 

g3(m) (defined in Remark 1.1).
Before we proceed, let us make one additional remark about the usefulness of the 

decomposition lemma that we prove in Section 2. In a subsequent paper [22], we apply 
this lemma in order to settle several conjectures of the current author from [28]. More 
precisely, we complete the project of determining |s−1(Avn(τ (1), . . . , τ (r)))| for every 
subset {τ (1), . . . , τ (r)} ⊆ S3 with the exception of the singleton set {321}. This allows 
us to enumerate a new permutation class, find a new example of an unbalanced Wilf 
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Fig. 1. The left image is the plot of 3142567. The right image shows this plot along with a single hook.

equivalence, and prove a conjecture of Hossain concerning the so-called “Boolean-Catalan 
numbers.” Hence, one can even view the decomposition lemma as a bridge that allows 
one to use the stack-sorting map s as a tool for proving results that were conjectured 
without any reference to stack-sorting.

2. The decomposition lemma

West [45] defined the fertility of a permutation π to be |s−1(π)|, the number of preim-
ages of π under s. He then performed extensive calculations in order to compute the 
fertilities of the permutations of the forms

23 · · · k1(k+1) · · ·n, 12 · · · (k−2)k(k−1)(k+1) · · ·n, and k12 · · · (k−1)(k+1) · · ·n.

Bousquet-Mélou [12] found a method for determining whether or not a given permuta-
tion is sorted, meaning that its fertility is positive. She then asked for a general method 
for computing the fertility of any given permutation. The current author achieved this 
in even greater generality in [26–28] using new combinatorial objects called “valid hook 
configurations.” In this section, we prove the refined decomposition lemma and the de-
composition lemma, which provide a new method for analyzing fertilities of permutations.

The plot of a permutation π = π1 · · ·πn is the figure showing the points (i, πi) for all 
i ∈ [n]. For example, the image on the left in Fig. 1 is the plot of 3142567. A hook of π
is obtained by starting at a point (i, πi) in the plot of π, drawing a vertical line segment 
moving upward, and then drawing a horizontal line segment to the right that connects 
with a point (j, πj). In order for this to make sense, we must have i < j and πi < πj . 
The point (i, πi) is called the southwest endpoint of the hook, while (j, πj) is called the 
northeast endpoint. Let SWi(π) be the set of hooks of π with southwest endpoint (i, πi). 
The right image in Fig. 1 shows a hook of 3142567. This hook is in SW3(3142567) because 
its southwest endpoint is (3, 4).

Define the tail length of a permutation π = π1 · · ·πn ∈ Sn, denoted tl(π), to be the 
smallest nonnegative integer � such that πn−� �= n − �. We make the convention that 
tl(1 · · ·n) = n. The tail of π is the sequence of points (n −tl(π) +1, n −tl(π) +1), . . . , (n, n)
in the plot of π. For example, the tail length of the permutation 3142567 shown in Fig. 1
is 3, and the tail of this permutation is (5, 5), (6, 6), (7, 7). We say a descent d of π is 
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tail-bound if every hook in SWd(π) has its northeast endpoint in the tail of π. The only 
tail-bound descent of 3142567 is 3.

Suppose H is a hook of a permutation π = π1 · · ·πn with southwest endpoint (i, πi)
and northeast endpoint (j, πj). Let πH

U = π1 · · ·πiπj+1 · · ·πn and πH
S = πi+1 · · ·πj−1. 

The permutations πH
U and πH

S are called the H-unsheltered subpermutation of π and the 
H-sheltered subpermutation of π, respectively. For example, if π = 3142567 and H is the 
hook shown on the right in Fig. 1, then πH

U = 3147 and πH
S = 25. In all of the cases we 

consider in this paper, the plot of πH
S lies completely below the hook H in the plot of π

(it is “sheltered” by the hook H).

Lemma 2.1 (Refined Decomposition Lemma). If d is a tail-bound descent of a permutation 
π ∈ Sn, then ∑

σ∈s−1(π)

xdes(σ)+1ypeak(σ)+1

=
∑

H∈SWd(π)

⎛⎝ ∑
μ∈s−1(πH

U )

xdes(μ)+1ypeak(μ)+1

⎞⎠⎛⎝ ∑
λ∈s−1(πH

S )

xdes(λ)+1ypeak(λ)+1

⎞⎠ .

Proof. If the tail of π is empty, then both sides of the desired equation are 0 because 
s−1(π) and SWd(π) are empty. Hence, we may assume tl(π) ≥ 1. Let a = πd. Given 
σ ∈ s−1(π), we let fσ be the entry that forces a to leave the stack when we apply the 
stack-sorting procedure (described in the introduction) to σ. More precisely, fσ is the 
leftmost entry that appears to the right of a in σ and is larger than a. Note that fσ
appears to the right of a in π. Because d is tail-bound, this means that the point (fσ, fσ)
is in the tail of π. Given a point (j, j) in the tail of π, let Ej be the set of permutations 
σ ∈ s−1(π) such that fσ = j.

Now fix a point (j, j) in the tail of π, and let H be the hook in SWd(π) with northeast 
endpoint (j, j). We will show that∑

σ∈Ej

xdes(σ)+1ypeak(σ)+1

=

⎛⎝ ∑
μ∈s−1(πH

U )

xdes(μ)+1ypeak(μ)+1

⎞⎠⎛⎝ ∑
λ∈s−1(πH

S )

xdes(λ)+1ypeak(λ)+1

⎞⎠ ,

from which the lemma will follow. We can write π = L a πH
S j R, where L = π1 · · ·πd−1

and R = (j + 1) · · ·n. Suppose σ ∈ Ej . Let us write σ = τ j τ ′. Because j = fσ, it 
follows from the stack-sorting procedure that every entry in τ that is smaller than a
must appear to the left of a in s(σ) = π. This implies that every entry in πH

S that is 
smaller than a is in τ ′. In particular, πd+1 is in τ ′ (we know that a > πd+1 because d
is a descent of π). Now suppose b is an entry in πH

S that is larger than a. If b is in τ , 
then we can appeal to the stack-sorting procedure again to see that b must appear to 
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the left of πd+1 in π. This is impossible, so every entry in πH
S is in τ ′. The stack-sorting 

procedure forces every entry in L to be in τ , so every entry in τ ′ that is not in πH
S must 

be an entry in R. Furthermore, an entry in R that is also in τ ′ cannot appear to the left 
of one of the entries from πH

S in τ ′ (otherwise, j would appear to the right of one of the 
entries from πH

S in π). This proves that we can write τ ′ = λτ ′′, where λ is a permutation 
of the entries in πH

S . Moreover, every entry in τ ′′ is in R.
Now let μ = ττ ′′. One can verify that s(μ) = πH

U and s(λ) = πH
S . Let δ = 1 if 1

is a descent of τ ′′, and let δ = 0 otherwise. Because j = fσ, the leftmost entry in τ ′′

is the leftmost entry in μ that appears to the right of a in μ and is larger than a (if 
no such entry exists, then τ ′′ is empty). Also, the rightmost entry in τ is less than j. 
Combining these observations, we find that des(σ) +1 = des(τ) +1 +des(λ) +des(τ ′′) +1 =
des(μ) + 1 + des(λ) + 1 and peak(σ) + 1 = peak(τ) + 1 + peak(λ) + peak(τ ′′) + δ + 1 =
peak(μ) + 1 + peak(λ) + 1.

We have shown how to take a permutation σ ∈ Ej and decompose it into permutations 
μ ∈ s−1(πH

U ) and λ ∈ s−1(πH
S ) with des(σ) +1 = des(μ) +1 +des(λ) +1 and peak(σ) +1 =

peak(μ) + 1 + peak(λ) + 1. We can easily reverse this procedure. Namely, if we are given 
μ and λ, we can write μ = ττ ′′ so that the leftmost entry in τ ′′ is the leftmost entry in 
μ that appears to the right of a in μ and is larger than a. We then recover σ by letting 
σ = τ j λ τ ′′. �
Corollary 2.1 (Decomposition lemma). If d is a tail-bound descent of a permutation π ∈
Sn, then

|s−1(π)| =
∑

H∈SWd(π)

|s−1(πH
U )| · |s−1(πH

S )|.

Proof. Set x = y = 1 in Lemma 2.1. �
3. Fertility formulas

The purpose of this brief section is to establish some terminology and state some for-
mulas from [26] that we will use in Section 8. We will also use a very special consequence 
of Theorem 3.1 in Section 4 when we analyze the generating function of the numbers 
W2(n, k, p).

A composition of b into a parts is an a-tuple of positive integers that sum to b. For 
example, (3, 4, 3, 1) is a composition of 11 into 4 parts. Let Compa(b) denote the set of 
compositions of b into a parts. Let Cr = 1

r+1
(2r
r

)
denote the rth Catalan number. Let

N(r, i) = 1
r

(
r

i

)(
r

i− 1

)
and V (r, j) = 2r−2j+1

(
r − 1
2j − 2

)
Cj−1. (4)

Let
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Nr(x) =
r∑

i=1
N(r, i)xi and Vr(y) =

r∑
j=1

V (r, j)yj . (5)

The numbers N(r, i) are called Narayana numbers. They are given in the OEIS se-
quence A001263 and constitute the most common refinement of the Catalan numbers 
[41]. The polynomials Nr(x) are called Narayana polynomials. Among many other 
things, the Narayana numbers N(r, i) count binary plane trees with r vertices and 
i − 1 right edges. The numbers V (r, j), which count binary plane trees with r ver-
tices and j leaves, are given in the OEIS sequence A091894. Let L(r, i, j) be the 
number of binary plane trees with r vertices, i − 1 right edges, and j leaves. Letting 
F (w, x, y) =

∑
r,i,j≥0 L(r, i, j)wrxiyj , we have

F (w, x, y) = x + wxy + w(F (w, x, y) + 1)(F (w, x, y) − x). (6)

This yields

F (w, x, y) =
1 − w + wx−

√
(1 − w + wx)2 − 4wx(1 − w + wy)

2w ,

from which one obtains

L(r, i, j) = 1
r + 1 − j

(
r − 1
r − j

)(
r + 1 − j

j

)(
r + 1 − 2j

i− j

)
. (7)

Let

Lr(x, y) =
r∑

i=1

r∑
j=1

L(r, i, j)xiyj (8)

so that

Lr(x, 1) = Nr(x) and Lr(1, y) = Vr(y).

Theorem 3.1 ([26]2). If n ≥ 1 and π = π1 · · ·πn has exactly k descents, then there exists 
a set V(π) ⊆ Compk+1(n − k) such that

∑
σ∈s−1(π)

xdes(σ)+1ypeak(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Lqt(x, y). (9)

In particular,

2 Strictly speaking, the first statement in Theorem 3.1 has not been stated explicitly before. However, the 
proofs of Corollary 5.1 and Theorem 5.2 in [26] immediately generalize to yield that statement.



C. Defant / Journal of Combinatorial Theory, Series A 172 (2020) 105209 11
∑
σ∈s−1(π)

xdes(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Nqt(x) (10)

and

∑
σ∈s−1(π)

ypeak(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Vqt(y). (11)

Thus,

|s−1(π)| =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Cqt . (12)

Remark 3.1. If π = 123 · · ·n, then the above theorem, along with Theorem 1.1, tells us 
that ∑

σ∈s−1(123···n)

xdes(σ)+1ypeak(σ)+1 =
∑

σ∈Avn(231)

xdes(σ)+1ypeak(σ)+1 = Ln(x, y).

4. A new proof of the formula for W2(n)

Recall from Section 2 the definition of the tail length tl(π) of a permutation π. Let 
B�(n) (respectively, B≥�(n)) be the number of 2-stack-sortable permutations σ ∈ W2(n +
�) such that tl(s(σ)) = � (respectively, tl(s(σ)) ≥ �). Let

D�(n) = {π ∈ Avn+�(231) : tl(π) = �} and D≥�(n) = {π ∈ Avn+�(231) : tl(π) ≥ �}.

Because W2(n) = s−1(W1(n)) = s−1(Avn(231)) by Theorem 1.1, we can write

B�(n) = |s−1(D�(n))| and B≥�(n) = |s−1(D≥�(n))|.

Suppose π ∈ D�(n +1) is such that πn+1−i = n +1 (where n ≥ 0). Then n +1 − i is a 
tail-bound descent of π. The decomposition lemma (Corollary 2.1) tells us that |s−1(π)|
is equal to the number of triples (H, μ, λ), where H ∈ SWn+1−i(π), μ ∈ s−1(πH

U ), and 
λ ∈ s−1(πH

S ). Choosing H amounts to choosing the number j ∈ {1, . . . , �} such that the 
northeast endpoint of H is (n +1 + j, n +1 + j). The permutation π and the choice of H
determine the permutations πH

U and πH
S . On the other hand, the choices of H and the 

permutations πH
U and πH

S uniquely determine π. It follows that B�(n + 1), which is the 
number of ways to choose an element of s−1(D�(n + 1)), is also the number of ways to 
choose the tuple (j, πH

U , πH
S , μ, λ). Let us fix a choice of j.

Because π avoids 231, πH
U must be a permutation of the set {1, . . . , n − i} ∪ {n + 1} ∪

{n +2 + j, . . . , n + � +1}, while πH
S must be a permutation of {n − i +1, . . . , n + j} \{n +
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Fig. 2. The decomposition of π into πH
U and πH

S .

1}. Therefore, choosing πH
U and πH

S is equivalent to choosing their normalizations. The 
normalization of πH

U is in D≥�−j+1(n − i), while the normalization of πH
S is in D≥j−1(i)

(see Fig. 2). Any element of D≥�−j+1(n − i) can be chosen as the normalization of πH
U , 

and any element of D≥j−1(i) can be chosen as the normalization of πH
S . Also, πH

U and 
πH
S have the same fertilities as their normalizations. Combining these facts, we find that 

the number of choices for the pair (πH
U , μ) is |s−1(D≥�−j+1(n − i))| = B≥�−j+1(n − i). 

Similarly, the number of choices for the pair (πH
S , λ) is B≥j−1(i). Hence,

B�(n + 1) =
n∑

i=1

�∑
j=1

B≥�−j+1(n− i)B≥j−1(i). (13)

Let

G�(w) =
∑
n≥0

B≥�(n)wn and I(w, z) =
∑
�≥0

G�(w)z�.

Note that

G�(0) = B≥�(0) = |s−1(D≥�(0))| = |s−1(123 · · · �)| = C�

by Theorem 1.1. Let C(z) =
∑

n≥0 Cnz
n = 1 −

√
1 − 4z

2z be the generating function of 
the Catalan numbers. Because B≥0(n) = W2(n) is the total number of 2-stack-sortable 
permutations in Sn, our goal is to understand the generating function

I(w, 0) = G0(w) =
∑

B≥0(n)wn =
∑

W2(n)wn.

n≥0 n≥0
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By (13), we have

∑
�≥0

∑
n≥0

B�(n + 1)wnz� =
∑
�≥0

�∑
j=1

∑
n≥0

n∑
i=1

B≥�−j+1(n− i)B≥j−1(i)wnz�

=
∑
�≥0

�∑
j=1

G�−j+1(w)(Gj−1(w) −Gj−1(0))z� =
∑
�≥0

�∑
j=1

G�−j+1(w)(Gj−1(w) − Cj−1)z�

=

⎛⎝∑
r≥0

Gr+1(w)zr
⎞⎠⎛⎝∑

j≥1
(Gj−1(w) − Cj−1)zj

⎞⎠ = (I(w, z) − I(w, 0))(I(w, z) − C(z)).

(14)

On the other hand,

B�(n + 1) = B≥�(n + 1) −B≥�+1(n),

so ∑
�≥0

∑
n≥0

B�(n + 1)wnz� =
∑
�≥0

∑
n≥0

B≥�(n + 1)wnz� −
∑
�≥0

∑
n≥0

B≥�+1(n)wnz�

= 1
w

∑
�≥0

(G�(w)−C�)z�−
1
z

∑
�≥0

G�+1(w)z�+1 = I(w, z) − C(z)
w

− I(w, z) − I(w, 0)
z

. (15)

Combining (14) and (15) yields the equation

(I(w, z) − I(w, 0))(I(w, z) − C(z)) = I(w, z) − C(z)
w

− I(w, z) − I(w, 0)
z

. (16)

We can now solve (16) for C(z), use the standard Catalan functional equation zC(z)2 +
1 − C(z) = 0, and clear denominators to obtain a polynomial

Q(u, v, w, z) = −vw + z + 2vwz + v2w2z + (w − z − 2wz − 2vw2z + v2w2z)u

+(w2z − 2vw2z + z2 + 2vwz2 + v2w2z2)u2

+(w2z − 2wz2 − 2vw2z2)u3 + w2z2u4

such that

Q(I(w, z), I(w, 0), w, z) = 0. (17)

Let Q′
u = ∂

∂u
Q(u, v, w, z). There is a unique fractional power series (Puiseux series) 

Z = Z(w) such that Z(w) = w + O(w2) and
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Q′
u(I(w,Z), I(w, 0), w, Z) = 0. (18)

Indeed, we can compute the coefficients of Z(w) one at a time from the equation (18)
after we have initially computed sufficiently many terms of I(w, z) via its combina-
torial definition. Let ΔuQ(v, w, z) be the discriminant of Q(u, v, w, z) with respect to 
the variable u. A computer can explicitly compute this discriminant as ΔuQ(v, w, z) =
w6(1 − 4z)2z3Q̂(v, w, z), where

Q̂(v, w, z) = z3 + 2wz2(−3 + 2vz) + w4z(1 + v + v2z)2 + w2z(9 + (2 − 10v)z + 6v2z2)

+ 2w3(−2 + (5 − 3v)z − (−2 + v)vz2 + 2v3z3).

At this point, we use Theorem 143 from the paper [10], which allows us to deduce from 
(17) and (18) that z = Z(w) is a repeated root of ΔuQ(I(w, 0), w, z). Since Z(w) =
w+O(w2), we know that w6(1 − 4Z)2Z3 �= 0. Therefore, z = Z(w) is a repeated root of 
Q̂(I(w, 0), w, z). The discriminant of a polynomial with a repeated root must be 0. This 
means that ΔzQ̂(I(w, 0), w) = 0, where ΔzQ̂(v, w) is the discriminant of Q̂(v, w, z) with 
respect to z. Computing ΔzQ̂(v, w) explicitly and ignoring extraneous factors, we find 
that R(I(w, 0), w) = 0, where

R(v, w) = −1 + 11w + w2 + v3w2 + v2w(2 + 3w) + v(1 − 14w + 3w2).

To complete our new proof of Theorem 1.2, we follow the proof of Proposition 5.2 in 
[12]. Namely, we consider the power series U(w) defined by U(w) = w(1 + U(w))3. We 
then verify that R(1 +U(w) −U(w)2, w) = 0 and deduce that I(w, 0) = 1 +U(w) −U(w)2. 
Lagrange inversion then completes the proof that

I(w, 0) =
∑
n≥0

2
(n + 1)(2n + 1)

(
3n
n

)
wn.

The above argument generalizes as follows. Let

Ix,y(w, z) =
∑
�≥0

∑
n≥0

∑
σ∈s−1(D≥�(n))

xdes(σ)+1ypeak(σ)+1wnz�.

Note that Ix,y(w, 0) =
∑

n≥0
∑

σ∈W2(n) w
nxdes(σ)+1ypeak(σ)+1. We make the convention 

that the empty permutation has 0 descents and −1 peaks so that Ix,y(0, 0) = x. Let F be 
the generating function in (6). If we replace B�(n) with 

∑
σ∈s−1(D�(n)) x

des(σ)+1ypeak(σ)+1, 
replace B≥�(n) with 

∑
σ∈s−1(D≥�(n)) x

des(σ)+1ypeak(σ)+1, use the refined decomposition 

3 In the notation of [10], we are applying Theorem 14 with k = 1. Our polynomial Q(u, v, w, z), power 
series I(w, z), and power series I(w, 0) are playing the roles of P (x0, . . . , xk, t, v), F (t, u), and F1(t), re-
spectively, from that article.
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lemma instead of the decomposition lemma, and use Remark 3.1 instead of Theorem 1.1, 
then the above argument produces the equation

(Ix,y(w, z) − Ix,y(w, 0))(Ix,y(w, z) − F (z, x, y))

= Ix,y(w, z) − F (z, x, y)
w

− Ix,y(w, z) − Ix,y(w, 0)
z

in place of (16). We then continue the argument, using the functional equation (6) instead 
of the Catalan functional equation for C(z), in order to arrive at the following theorem 
concerning the generating function of the numbers W2(n, k, p).

Theorem 4.1. The generating function

Ix,y(w, 0) =
∑
n≥0

∑
σ∈W2(n)

wnxdes(σ)+1ypeak(σ)+1

for the numbers W2(n, k, p) satisfies the equation R(Ix,y(w, 0), w, x, y) = 0, where

R(v, w, x, y) = −x + (4x + 8x2 − xy)w + (−6x− 16x2 − 16x3 + 3xy + 36x2y)w2

+ (4x + 8x2 − 3xy − 36x2y + 27x2y2)w3 + (−x + xy)w4 + (1 + (−4 − 12x)w

+ (6 + 20x + 32x2 − 33xy)w2 + (−4 − 4x + 16x2 + 30xy − 36x2y)w3

+ (1 − 4x + 3xy)w4)v2 + (4w + (−4 − 22x)w + (−4 − 20x + 8x2 + 33xy)w3

+ (4 − 6x + 3xy)w4)v2 + (6w2 + (4 − 12x)w3 + (6 − 4x + xy)w4)v3

+ (4w3 + (4 − x)w4)v4 + w4v5.

5. 3-stack-sortable permutations

In the previous section, we counted 2-stack-sortable permutations by viewing them as 
preimages of 231-avoiding permutations under the stack-sorting map. In doing so, we had 
to keep track of the tail lengths of the 231-avoiding permutations under consideration. 
In this section, we count 3-stack-sortable permutations by viewing them as preimages of 
2-stack-sortable permutations. We will again keep track of tail lengths, but we will also 
need an additional new statistic.

Definition 5.1. Given π = π1 · · ·πn ∈ Sn and a ∈ {0, . . . , n}, we say the open interval 
(a, a + 1) is a legal space for π if there do not exist indices i1 < i2 < i3 such that 
πi3 ≤ a < πi1 < πi2 . Let leg(π) be the number of legal spaces of π.

For example, if π ∈ Sn, then leg(π) = n + 1 if and only if π avoids 231. The legal 
spaces of 145326 are (0, 1), (1, 2), (4, 5), (5, 6), (6, 7), so leg(145326) = 5. Imagine adding 
a new point somewhere to the left of all points in the plot of a permutation π. One 
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can think of the legal spaces of π as the vertical positions where the new point can be 
inserted so as to not form a new 2341 pattern. This is relevant for us because of the 
following characterization of 2-stack-sortable permutations due to West.

Theorem 5.1 ([45]). A permutation is 2-stack-sortable if and only if it avoids the pattern 
2341 and also avoids any 3241 pattern that is not part of a 35241 pattern.

We are now in a position to state and prove the main theorems of this article. In what 
follows, let B(g)

≥� (n) be the number of 3-stack-sortable permutations σ ∈ W3(n + �) such 
that tl(s(σ)) ≥ � and leg(s(σ)) = � + g. Also, recall the definitions from Section 2.

Theorem 5.2. If n ≥ 1, then

W3(n) =
n+1∑
g=1

B
(g)
≥0 (n),

where the numbers B(g)
≥� (n) satisfy the following relations. We have B(0)

≥� (n) = 0 and

B
(g)
≥� (1) =

{
0, if g �= 2;
C�+1, if g = 2.

If n, g ≥ 1 and � ≥ 0, then

B
(g)
≥� (n + 1) =

�∑
j=1

(
n∑

a=2

g−1∑
b=max{2,g−a}

n−b+1∑
i=a−1

B
(a)
≥j−1(i)B

(b)
≥�−j+1(n− i) + B

(g−1)
≥j−1 (n)C�−j+1

)

+ B
(g−1)
≥�+1 (n).

Proof. The first statement and the fact that B(0)
≥� (n) = 0 are clear from the definitions we 

have given. The permutations σ counted by B(g)
≥� (1) are in S�+1 and satisfy tl(s(σ)) ≥ �, 

so they must actually satisfy s(σ) = 123 · · · (� + 1). Since leg(123 · · · (� + 1)) = � + 2, the 
formula for B(g)

≥� (1) follows from Theorem 1.1.
Now, let B(g)

� (n) be the number of 3-stack-sortable permutations σ ∈ W3(n + �) such 
that tl(s(σ)) = � and leg(s(σ)) = � + g. Let

D(g)
� (n) = {π ∈ W2(n + �) : tl(π) = �, leg(π) = � + g} (19)

and

D(g)
≥� (n) = {π ∈ W2(n + �) : tl(π) ≥ �, leg(π) = � + g} (20)

so that
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B
(g)
� (n) = |s−1(D(g)

� (n))| and B
(g)
≥� (n) = |s−1(D(g)

≥� (n))|.

We have B(g)
≥� (n + 1) = B

(g)
� (n + 1) + B

(g−1)
≥�+1 (n), so we need to show that

B
(g)
� (n + 1) =

n∑
a=2

g−1∑
b=max{2,g−a}

n−b+1∑
i=a−1

�∑
j=1

B
(a)
≥j−1(i)B

(b)
≥�−j+1(n− i)

+
�∑

j=1
B

(g−1)
≥j−1 (n)C�−j+1. (21)

Suppose π ∈ D(g)
� (n +1) is such that πn+1−i = n +1 (where n ≥ 0). The decomposition 

lemma (Corollary 2.1) tells us that |s−1(π)| is equal to the number of triples (H, μ, λ), 
where H ∈ SWn+1−i(π), μ ∈ s−1(πH

U ), and λ ∈ s−1(πH
S ). Choosing H amounts to 

choosing the number j ∈ {1, . . . , �} such that the northeast endpoint of H is (n + 1 +
j, n + 1 + j). The permutation π and the choice of H determine the permutations πH

U

and πH
S . On the other hand, the choices of H and the permutations πH

U and πH
S uniquely 

determine π. It follows that B(g)
� (n +1), which is the number of ways to choose an element 

of s−1(D(g)
� (n + 1)), is also the number of ways to choose the tuple (j, πH

U , πH
S , μ, λ). Let 

us fix a choice of j.
Assume for the moment that i ≤ n −1, and let r be the largest entry appearing to the 

left of n + 1 in π. Because π is 2-stack-sortable, we can use Theorem 5.1 to see that πH
U

is a permutation of the set {1, . . . , n − i − 1} ∪ {r, n + 1} ∪ {n + 2 + j, . . . , n + � + 1} and 
that πH

S is a permutation of {n − i, . . . , n + j} \ {r, n + 1}. Therefore, choosing πH
U and 

πH
S is equivalent to choosing their normalizations and the value of r. The normalization 

of πH
S is in D(a)

≥j−1(i) for some a ∈ {2, . . . , i + 1}, while the normalization of πH
U is in 

D(b)
≥�−j+1(n − i) for some b ∈ {2, . . . , n − i +1}. Once we have chosen a and b, the number 

of choices for the tuple (πH
U , μ, πH

S , λ) is B(a)
≥j−1(i)B

(b)
≥�−j+1(n − i).

Suppose we have already chosen the value of a. The fact that π avoids 2341 and the 
definition of a legal space tell us that there are a possible values of r, say κ1 < · · · < κa

(see Example 5.1 for an illustration of this part of the proof). If we choose r = κm, then π
has a +b −m +1 +� legal spaces. We are assuming that leg(π) = � +g, so g = a +b −m +1. 
It follows that 2 ≤ a ≤ n and max{2, g − a} ≤ b ≤ g − 1. Since a ∈ {2, . . . , i + 1} and 
b ∈ {2, . . . , n − i + 1}, we also have the constraint a − 1 ≤ i ≤ n − b + 1. This explains 
the expression 

∑n
a=2

∑g−1
b=max{2,g−a}

∑n−b+1
i=a−1

∑�
j=1 B

(a)
≥j−1(i)B

(b)
≥�−j+1(n − i) in (21).

The expression 
∑�

j=1 B
(g−1)
≥j−1 (n)C�−j+1 in (21) comes from the case in which i = n. In 

this case, πH
S is in D(g−1)

≥j−1 (n), and πH
U = (n + 1)(n + 2 + j)(n + 3 + j) · · · (n + � + 1) is an 

increasing permutation of length � − j + 1. The number of choices for the pair (πH
S , λ) is 

B
(g−1)
≥j−1 (n). The number of choices for μ is |s−1(πH

U )| = C�−j+1. �
Example 5.1. Consider the part of the proof of Theorem 5.2 in which we have already 
chosen n, g, �, j, i and have assumed i ≤ n − 1. Suppose n = 8, � = 5, j = 2, and i = 5. If 



18 C. Defant / Journal of Combinatorial Theory, Series A 172 (2020) 105209
Fig. 3. The decomposition of π into πH
U and πH

S along with the possible choices for r. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

we choose the normalization of πH
U to be 24315678 and choose the normalization of πH

S

to be 315246, then a = leg(315246) − (j−1) = 5 and b = leg(24315678) − (� − j+1) = 4. 
The green dots in Fig. 3 represent the possible choices for r, which are κ1 = 4, κ2 = 5, 
κ3 = 7, κ4 = 8, and κ5 = 9. If r = κm, then we can refer to this figure to see that 
leg(π) = 15 −m = � + a + b −m + 1. Hence, the choice of r is determined by the value 
of g.

The proof of Theorem 5.2 generalizes, allowing us to obtain a recurrence for 
W3(n, k, p), the number of 3-stack-sortable permutations in Sn with k descents and 
p peaks. We actually state the following theorem in terms of polynomials, but one can 
obtain the desired recurrence by comparing coefficients. In what follows, let

E
(g)
≥� (n) =

∑
σ∈s−1(D(g)

≥� (n))

xdes(σ)+1ypeak(σ)+1,

where D(g)
≥� (n) is as in (20). We have suppressed the dependence on x and y in our 

notation for readability. Let Lr(x, y) be as in (8).

Theorem 5.3. If n ≥ 1, then

∑
σ∈W3(n)

xdes(σ)+1ypeak(σ)+1 =
n+1∑
g=1

E
(g)
≥0 (n),

where the polynomials E(g)
≥� (n) satisfy the following relations. We have E(0)

≥� (n) = 0 and

E
(g)
≥� (1) =

{
0, if g �= 2;
L (x, y), if g = 2.
�+1
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If n, g ≥ 1 and � ≥ 0, then

E
(g)
≥� (n + 1)

=
�∑

j=1

(
n∑

a=2

g−1∑
b=max{2,g−a}

n−b+1∑
i=a−1

E
(a)
≥j−1(i)E

(b)
≥�−j+1(n− i) + E

(g−1)
≥j−1 (n)L�−j+1(x, y)

)

+ E
(g−1)
≥�+1 (n).

Proof. To derive the formula for E(g)
≥� (1), we follow the same argument used to find the 

formula for B(g)
≥� (1) in the proof of Theorem 5.2, except we use Remark 3.1 instead of 

Theorem 1.1. To derive the last statement in this theorem, we follow the rest of the 
proof of Theorem 5.2, except we invoke the refined decomposition lemma instead of the 
decomposition lemma and again use Remark 3.1 instead of Theorem 1.1. �
6. Data analysis

The sum of two permutations μ and λ, denoted μ ⊕ λ, is the permutation whose plot 
is obtained by placing the plot of λ above and to the right of the plot of μ. It is easy 
to check that the sum of two t-stack-sortable permutations is t-stack-sortable. It follows 
that Wt(m +n) ≥ Wt(m)Wt(n) for all m, n ≥ 1. We express this by saying the sequence 
(Wt(n))n≥1 is supermultiplicative. It follows from Fekete’s lemma that

lim
n→∞

Wt(n + 1)
Wt(n) = lim

n→∞
Wt(n)1/n = sup

n≥1
Wt(n)1/n. (22)

We have used Theorem 5.2 to compute the numbers W3(n) for n ≤ 174. We have 
added these terms to the OEIS sequence A134664. This allows us to prove the first 
nontrivial lower bound for lim

n→∞
W3(n)1/n. Note that this is better than the lower bound 

of (
√

3 + 1)2 obtained in Section 7.

Theorem 6.1. We have

lim
n→∞

W3(n)1/n ≥ 8.659702.

Proof. The value of W3(174) is

1335109055832443343636882328903941541553316885478273864987091560565206631540

3801527870514001230180265889501841168312512206012823853129556966628901079194

868270269904,

and the 174th root of this number is slightly more than 8.659702. The proof follows from 
(22). �
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We can also show that Bóna’s Conjectures 1.1 and 1.2 contradict each other.

Theorem 6.2. If (W3(n))n≥1 is log-convex, then W3(n) >
(4n
n

)
for all sufficiently large 

n.

Proof. It follows from Stirling’s formula that lim
n→∞

(4n
n

)1/n = 256/27 ≈ 9.4815. Also, 
W3(174)
W3(173) ≈ 9.4907. If (W3(n))n≥1 is log-convex, then lim

n→∞
W3(n)1/n = lim

n→∞
W3(n + 1)
W3(n)

≥ 9.4907 > 9.4815. �
We now turn our attention to the parity of W3(n) and Bóna’s Conjecture 1.3. Let 

εt(n) be the number in {0, 1} with the same parity as Wt(n). As mentioned in the 
introduction, εt(n) = 0 whenever n is even. The values of ε3(2n + 1) for 0 ≤ n ≤ 86 are

1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0,

0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0.

(23)

Letting gt(m) =
∑m

n=1 εt(n), we can use this data to find that g1(m) < g2(m) ≤ g3(m)
whenever 13 ≤ m ≤ 660. Therefore, it appears that W3(n) is odd more frequently than 
W2(n)! If this is true, then Bóna’s Conjecture 1.3 is certainly false. We state some new 
conjectures and open problems concerning the parities of the numbers W3(n) in Section 9.

Let us end this section by recording one final proposition, which verifies Bóna’s Con-
jecture 1.4 in several new cases. We have obtained this proposition by computing several 
values of W3(n, k) via Theorem 5.3 (setting y = 1 in that theorem).

Proposition 6.1. If n ≤ 43, then the polynomial 
∑

σ∈W3(n)

xdes(σ) has only real roots.

7. Lower bounds for t-stack-sortable permutations

Let Γt be the set of all κ = κ1 · · ·κt+2 ∈ St+2 such that κt+1 = t + 2 and κt+2 = 1. 
Let Avn(Γt) be the set of permutations in Sn that avoid all of the patterns in Γt. After 
applying a dihedral symmetry to the permutations in Γt, we can use a result of Kremer 
[38,39] to see that

∑
n≥t

|Avn(Γt)|xn = (t− 1)!xt−2 1 + (t− 1)x−
√

1 − 2(t + 1)x + (t− 1)2x2

2 . (24)

Some basic singularity analysis now shows that lim
n→∞

| Avn(Γt)|1/n = (
√
t + 1)2.

We will prove by induction that Avn(Γt) ⊆ Wt(n). Since Γ1 = {231}, this is certainly 
true for t = 1 (by Theorem 1.1). Now suppose that t ≥ 2 and that Avn(Γt−1) ⊆ Wt−1(n). 
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Choose a permutation π ∈ Sn\Wt(n). This means that s(π) /∈ Wt−1(n), so s(π) contains 
a permutation in Γt−1. In other words, there exist entries b1, . . . , bt−1, c, a that appear 
in this order in s(π) and satisfy a < bj < c for all j ∈ {1, . . . , t − 1}. Because c appears 
to the left of a in s(π), there must be an entry d > c that appears to the right of c and 
to the left of a in π. The entries b1, . . . , bt−1 must appear to the left of d in π since they 
would appear to the right of c in s(π) otherwise. The subpermutation of π formed by 
the entries a, b1, . . . , bt−1, c, d has a normalization that is in Γt, so π /∈ Avn(Γt). This 
completes the induction and proves the following theorem.

Theorem 7.1. For every t ≥ 1, we have

lim
n→∞

Wt(n)1/n ≥ (
√
t + 1)2.

In [43], Smith investigated a variant of the stack-sorting map known as the “left-greedy 
algorithm.” Let Ŵt(n) be the set of permutations in Sn that can be sorted by t stacks in 
series using the left-greedy algorithm (see her paper for definitions). Smith proved that 
Wt(n) ⊆ Ŵt(n) and that |Ŵt(n)| ≥ t!

(t + 1)t (t + 1)n whenever n ≥ t ≥ 1. In terms of 

exponential growth rates, this shows that lim
n→∞

|Ŵt(n)|1/n ≥ t +1 (using Fekete’s lemma, 
one can show that this limit exists). The following corollary of Theorem 7.1 improves 
this estimate.

Corollary 7.1. For every t ≥ 1, we have lim
n→∞

|Ŵt(n)|1/n ≥ (
√
t + 1)2.

8. Symmetry, unimodality, γ-nonnegativity, log-concavity, and real-rootedness

We devote this brief section to showing how Brändén’s theorem concerning γ-non-
negativity (Theorem 1.3) follows easily from Theorem 3.1. We also show that the 
analogue of that theorem with “γ-nonnegative” replaced by “real-rooted” is false. Let us 
begin by recalling some definitions.

A polynomial p(x) = a0 + a1x + · · · + anx
n ∈ R≥0[x] is called

• symmetric if ai = an−i for all i ∈ {0, . . . , n}; in this case, n/2 is called the center of 
symmetry of p(x);

• unimodal if there exists j ∈ {0, . . . , n} such that a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥
an;

• log-concave if ai−1ai+1 ≤ a2
i for all i ∈ {1, . . . , n − 1};

• real-rooted if all of the complex roots of p(x) are real.

If p(x) is a symmetric polynomial with center of symmetry n/2, then it can be written in 
the form p(x) =

∑�n/2�
m=0 γmxm(1 +x)n−2m for some real numbers γm. We then say p(x) is 
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γ-nonnegative if the numbers γm are all nonnegative. We have the following implications 
among these properties for polynomials in R≥0[x] [16]:

real-rooted =⇒ log-concave =⇒ unimodal;

symmetric and real-rooted =⇒ γ-nonnegative =⇒ symmetric and unimodal.

New Proof of Theorem 1.3. 4 Note that it suffices to prove Theorem 1.3 in the specific 
case in which A = {π} is a singleton set. Indeed, the result for a general set A ⊆ Sn then 
follows by summing over all π ∈ A. Thus, let us fix a permutation π ∈ Sn with exactly 
k descents.

Recall the notation from (4) and (5). One can show that

Nq(x) =
q∑

m=0

V (q,m + 1)
2q−1−2m xm+1(1 + x)q−1−2m

for all q ≥ 1. Therefore, for (q0, . . . , qk) ∈ Compk+1(n − k), we have

k∏
t=0

Nqt(x) =
k∏

t=0

qt∑
mt=0

V (qt,mt + 1)
2qt−1−2mt

xmt+1(1 + x)qt−1−2mt

=
n∑

m=0

∑
m0+···+mk=m−k

m0,...,mk≥0

1
2n−1−2m

(
k∏

t=0
V (qt,mt + 1)

)
xm+1(1 + x)n−1−2m.

Let V(π) ⊆ Compk+1(n − k) be the set of compositions from Theorem 3.1. Invoking 
equation (10) from that theorem, we obtain

∑
σ∈s−1(π)

xdes(σ)+1 =
∑

(q0,...,qk)∈V(π)

k∏
t=0

Nqt(x)

=
∑

(q0,...,qk)∈V(π)

n∑
m=0

∑
m0+···+mk=m−k

m0,...,mk≥0

1
2n−1−2m

(
k∏

t=0
V (qt,mt + 1)

)
xm+1(1 + x)n−1−2m

=
n∑

m=0

1
2n−1−2m xm+1(1 + x)n−1−2m

∑
(q0,...,qk)∈V(π)

∑
(m′

0,...,m
′
k)∈Compk+1(m+1)

k∏
t=0

V (qt,m′
t),

where we have made the substitution m′
i = mi + 1. It turns out that

4 To deduce Bóna’s symmetry and unimodality result from Theorem 3.1, one simply needs to observe that 
this theorem tells us that ∑σ∈Wt(n) x

des(σ)+1 is a sum of products of Narayana polynomials with the same 
center of symmetry and then use the well-known fact that Narayana polynomials are real-rooted.
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∑
(q0,...,qk)∈V(π)

∑
(m′

0,...,m
′
k)∈Compk+1(m+1)

k∏
t=0

V (qt,m′
t)

is the coefficient of ym+1 in the polynomial on the right-hand side of (11), so it is equal 
to

|{σ ∈ s−1(π) : peak(σ) = m}|.

Note that this is 0 if m > n−1
2 . Hence,

∑
σ∈s−1(π)

xdes(σ) =

⌊
n−1

2
⌋∑

m=0

|{σ ∈ s−1(π) : peak(σ) = m}|
2n−1−2m xm(1 + x)n−1−2m. �

We now give an example to show that Theorem 1.3 is false if the term “γ-nonnegative” 
is replaced by “real-rooted.”

Example 8.1. Let

μ = 6 7 8 4 5 9 10 1 2 3 11 and μ′ = 6 7 8 9 2 3 4 5 10 1 11.

We claim that 
∑

σ∈s−1({μ,μ′}) x
des(σ) is not real rooted. To see this, we use the fact5 that 

V(μ) = {(4, 2, 3), (3, 3, 3)} and V(μ′) = {(4, 4, 1)}. Using (10), we find that

∑
σ∈s−1{μ,μ′}

xdes(σ) = 1
x

∑
σ∈s−1(μ)

xdes(σ)+1 + 1
x

∑
σ∈s−1(μ′)

xdes(σ)+1

= 1
x

(N4(x)N2(x)N3(x) + N3(x)N3(x)N3(x)) + 1
x
N4(x)N4(x)N1(x)

= 3x2 + 31x3 + 112x4 + 169x5 + 112x6 + 31x7 + 3x8,

and this polynomial is not real-rooted. This example yields a negative answer to the last 
part of Question 12.1 in [28].

Remark 8.1. Theorem 1.3 diverges from Bóna’s point of view in Conjecture 1.4 by re-
placing the sum over s−1(Wt−1(n)) with a sum over s−1(A) for an arbitrary set A ⊆ Sn. 
This different viewpoint suggests that the sets of the form Wt(n) = s−1(Wt−1(n)) might 
not be too special when compared with arbitrary sets of the form s−1(A) for A ⊆ Sn. If 

5 The reader interested in seeing why this is the case can refer to [28] for the full definition of V(π) and 
a description of how to compute it. However, the reader wishing to avoid this definition can still compute ∑

σ∈s−1({μ,μ′}) x
des(σ) using a brute-force computer program that simply finds all of the permutations in 

s−1({μ, μ′}). A priori, a brute-force computer program would not easily find this example since it would 
have to search over subsets of S11.
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one believes Conjecture 1.4, then the preceding example lends credence to the hypoth-
esis that the sets Wt(n) are special. On the other hand, if one does not believe there 
is anything special about the sets Wt(n), then this example hints that Conjecture 1.4
might be false.

9. Conjectures and open problems

We saw in Theorem 6.2 that Conjectures 1.1 and 1.2 cannot both be true. Our data 
suggests that Conjecture 1.2 is true. Moreover, by plotting the points (1/n, W3(n)) for 
1 ≤ n ≤ 174, we have arrived at the following new conjecture.

Conjecture 9.1. We have

9.702 < lim
n→∞

W3(n)1/n < 9.704.

We also believe that the decomposition lemma could be used (possibly along with a 
significant amount of work) to find a lower bound for lim

n→∞
W4(n)1/n that exceeds 9.704.

Turning back to the parities of the numbers W3(n), we have the following problem.

Problem 9.1. Characterize the positive integers n such that W3(n) is odd.

Problem 9.1 seems more tractable now that we have obtained a recurrence for the 
numbers W3(n) in Theorem 5.2. Indeed, it appears as though there could be some pat-
terns in the sequence whose initial terms are listed in (23). Solving this problem could 
require going through the proof of Theorem 5.2 and seeing which terms in the various 
sums simplify when we reduce modulo 2.

Recall the definition of gt(m) from Section 6. We have the following conjectures. 
Conjectures 9.3, 9.4, and 9.5 each contradict Bóna’s Conjecture 1.3.

Conjecture 9.2. The limit lim
n→∞

log g3(m)
logm exists.

Conjecture 9.3. We have lim inf
n→∞

log g3(m)
logm > 0.

Conjecture 9.4. For every integer m ≥ 13, we have g2(m) ≤ g3(m).

Conjecture 9.5. We have lim
m→∞

(g3(m) − g2(m)) = ∞.
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