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1. Introduction

In the last decade, an interesting collection of results has emerged from the study 
of (2+2)-free posets, or interval orders as they are also known, and their connection to 
permutations avoiding a non-standard permutation pattern of length three. The starting 
point for this story was the introduction in Bousquet-Mélou et al. [3] of a new type of 
permutation pattern that the authors termed a bivincular pattern. In that paper it was 
proven that length-n permutations avoiding the bivincular pattern 2|31 were in one-to-
one correspondence with unlabelled (2+2)-free posets on n elements. This was shown by 
encoding both structures as an integer sequence of length n that has come to be known 
as an ascent sequence. Via ascent sequences, Bousquet-Mélou et al. were able to solve 
the long-standing open problem of enumerating unlabelled (2+2)-free posets.

In [11], these ascent sequences were shown to uniquely encode another set of objects: 
all square upper-triangular matrices of non-negative integers whose entries sum to n
which have neither rows nor columns consisting of only zeros. Such matrices are known 
as Fishburn matrices since they were introduced by Fishburn [13]; these matrices and 
the three previously mentioned classes are enumerated by the Fishburn numbers [23, 
A022493].

These initial two papers linking (bijectively) four different discrete objects led to a 
series of papers that studied these bijections and built upon the correspondences. From 
the enumerative viewpoint, Dukes et al. [10] and Kitaev & Remmel [17] considered these 
objects according to several statistics (such as the number of minimal/maximal elements) 
and presented multivariate generating functions for these statistics. In Claesson et al. [5], 
the bijections from the original papers were lifted to achieve bijections between labelled 
(2+2)-free posets, upper-triangular matrices whose entries partition a set, and a form of 
coloured ascent sequences. This lift of the correspondences to the labelled setting was 
used to give a bijection from unlabelled (2+2)-free posets to Fishburn matrices [9], which 
is equivalent to the definition of the characteristic matrix in [13, §2.3].

In another direction, and more recently, it has emerged that refinements of these corre-
spondences have equally compelling stories to tell. Duncan & Steingrímsson [12] studied 
pattern avoidance in ascent sequences and established bijections between pattern avoid-
ing ascent sequences and other combinatorial objects such as set partitions and objects 
enumerated by the Catalan and Narayana numbers. Jelínek [24] presented a new method 
to derive formulas for the generating functions of interval orders. The method generalised 
the results of [10,17] and also allowed the enumeration of self-dual interval orders with re-
spect to several statistics. Using his newly derived generating function formulas, Jelínek 
proved a bijective relationship between self-dual interval orders and upper-triangular 
matrices having no zero rows [24]. Andrews & Jelínek [1] built on Jelínek’s work and 
proved several power series identities involving the refined generating functions for in-
terval orders and self-dual interval orders. Keller and Young [16] considered the difficult 
question of determining which ascent sequences map to semiorders; also known as unit 
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interval orders, semiorders are posets that are both (2+2) and (3+1)-free. See also [17]
for a consideration of this question.

The present paper adds to this body of work by analyzing two types of restrictions on 
ascent sequences. One motivation for these restrictions is that their images through the 
bijections of [3,9,11] are combinatorially significant in the subsets they identify, e.g. series-
parallel posets and 231-avoiding permutations. Moreover, the analysis of the images of 
these ascent sequences allows us to prove results about duals of each of the structures, 
thus going some way in answering an open problem of Dukes & Parviainen [11].

The first type of restriction we study (in Section 3) begins with a restriction on the 
types of ascents one may have in an ascent sequence. In particular, when the bijection 
of [3] recursively builds a (2+2)-free poset from an ascent sequence, there are some ascents 
that cause complicated and unnatural modifications to the poset, while the bijection 
treats all other ascents in a very natural way. Our first restriction is to those ascent 
sequences that contain only these ascents that result in this latter natural behaviour. 
A motivation for this restriction is that this good behaviour carries through to the general 
framework of bijections. Indeed, the images of these new restricted ascent sequences RAsc
through the bijections given in [3,9,11] are proven to be simple restrictions: the subset 
RMatrices of the matrices from [11] having only positive diagonal entries, the subset 
RPosets of (2+2)-free posets which have a chain of the maximal possible length, and 
the set RPerms of permutations avoiding the barred pattern 31524. This set RPerms was 
already identified in [3] in the context of modified ascent sequences. See Fig. 1.1 for a 
diagram outlining our sets and maps of interest.

In Section 4 we give a partial solution to an open problem of Dukes & Parviainen [11]
by addressing the topic of structural duality. The dual P ∗ of a (2+2)-free poset P is also a 
(2+2)-free poset. This observation prompts the question as to whether one can derive the 
ascent sequence (resp. permutation) corresponding to P ∗ from the ascent sequence (resp. 
permutation) corresponding to P . This question seems intractable in general because of 
the complicated map between some ascent sequences and posets as mentioned in the 
previous paragraph. However, consistent with our motivation for restricting to better-
behaved sets, we can answer this duality question completely for all posets in RPosets, 
which we do in Section 4.

In Section 5, we consider the Catalan family CAsc of 101-avoiding ascent sequences 
studied in [12], and investigate their images under the bijections of [3,9,11]. (The re-
stricted ascent sequences of [17] are also enumerated by Catalan numbers but are different 
from CAsc.) The results are perhaps even nicer than the R-families and are shown in 
Fig. 1.1. The posets that arise are the series-parallel interval orders, i.e., those that are 
both (2+2)-free and N-free. This class of posets appears in [6,7], while series-parallel 
posets in general are widespread in the literature, partially because their recursive struc-
ture permits many polynomial-time algorithms (see, for example, [14] and the references 
therein). The matrices and permutations which correspond to these ascent sequences 
are those matrices from RMatrices that are termed SE-free in [25], and 231-avoiding 
permutations, respectively.
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Posets: (2+2)-free posets P

RPosets: P has a
chain of length �(P )

CPosets:
series-parallel P

Asc: ascent sequences a

RAsc: self-modified a

CAsc:
101-avoiding a

Matrices: upper-� N-matrices
M w/o empty rows or columns

RMatrices: M has only
positive diagonal entries

CMatrices:
M is SE-free

Perms: Sn(2|31)

RPerms: Sn(31524)

CPerms: Sn(231)

fPM fMP

fPA

fAP

fAS
fMA

fAM

Fig. 1.1. A diagrammatic summary of the sets and bijections of interest.

We conclude in Section 6 with some open questions.

2. Preliminaries

While the intimate connections between four different types of objects are certainly a 
strength of this area of study, the drawback for our present purposes is there is a consid-
erable amount of background that needs to be introduced, including all four classical sets 
and many of the bijections among them. Our use of the words “classical” refers to the 
full sets considered by most of the papers mentioned in the Introduction, and as shown 
by the largest boxes in Fig. 1.1: ascent sequences, (2+2)-free posets, upper-triangular 
matrices with non-negative integer entries having neither rows nor columns of all zeros, 
and permutations avoiding 2|31.

2.1. The classical sets

An ascent sequence is a sequence a = (a1, . . . , an) of non-negative integers such 
that a1 = 0, and for all i with 1 < i ≤ n we have ai ≤ asc(a1, . . . , ai−1) + 1, where 
asc(a1, . . . , ak) denotes the number of ascents in the sequence (a1, . . . , ak). For example 
(0, 1, 0, 1, 3) is an ascent sequence whereas (0, 1, 0, 2, 4) is not. Let Ascn be the set of all 
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ascent sequences of length n, and let Asc denote the union of these sets over all n, with 
the same convention applying to all the notation below when the subscript n is dropped.

Let Posetsn be the set of (2+2)-free posets on n elements, meaning posets that have 
no induced subposet isomorphic to a disjoint union of two 2-element chains. We will be 
interested in a different defining property of (2+2)-free posets, as we now describe. Let 
P = (P, �) be a poset with n elements. Given x ∈ P , the set D(x) = {y ∈ P : y ≺P x} is 
called the strict downset of x. A fact described as “well known” in [2] and which is easy 
to check is that a poset is (2+2)-free if and only if the set of strict downsets of elements 
of P can be linearly ordered by inclusion. We let �(P ) denote the number of distinct 
nonempty such downsets, so that D(P ) = (D0, . . . , D�(P )) is the sequence of downsets 
of P linearly ordered by inclusion. In other words ∅ = D0 � D1 � . . . � D�(P ). For 
example, for the poset P in the top left of Fig. 2.1, we have

D(P ) = (∅, {p1, p2}, {p1, p2, p5}, {p1, p2, p3, p5}).

(Note that while this example P is labelled for the purposes of the explanation, the 
elements of Posets are unlabelled.) We will call Di level i of P , and an element x ∈ P

with D(x) = Di for some i will be said to lie at level i of P . Let Li = Li(P ) be the set of 
elements lying at level i of P and set L(P ) = (L0, . . . , L�(P )). Again for P from Fig. 2.1,

L(P ) = ({p1, p2, p5}, {p6}, {p3}, {p4}).

Let Matricesn be the set of all upper-triangular matrices whose entries are all non-
negative integers such that there is neither a row nor a column containing only zeros, and 
whose sum of all entries is n. Observe that the dimension d of an element of Matricesn
satisfies 1 ≤ d ≤ n.

A sequence a = (a1, . . . , ar) of non-negative integers is said to contain a sequence 
b = (b1, . . . , bs) as a pattern if there exists a subsequence of a of length s whose elements 
are in the same relative order as those of b. We say a is b-avoiding if it does not contain b. 
For example, (0, 2, 1, 3, 1, 0, 2), which we write as 0213102 for short, contains the pattern 
0101 because of its subsequence 0202, but avoids the pattern 1010.

When considering pattern-avoidance in sequences that are permutations, we allow 
for a more general notion of pattern: a permutation π = π1 . . . πn is said to contain the 
pattern 2|31 if there exists an occurrence πiπjπk of 231 in π with the additional conditions 
that j = i +1 and πi = πk+1. For example, 32541 contains 2|31 because of the occurrence 
251 of 231, whereas 31452 avoids 2|31 even though it has three occurrences of the classical 
pattern 231. The pattern 2|31 is an example of a bivincular pattern as introduced in [3]
since it puts conditions on both the entries and positions of an occurrence. As usual, 
we let Sn(2|31) denote the set of permutations of length n that avoid 2|31, and this is 
exactly our set Permsn.



408 M. Dukes, P.R.W. McNamara / J. Combin. Theory Ser. A 167 (2019) 403–430
P =

p1 p2 p5

p6

p3

p4

a = (0, 0, 1, 2, 0, 1)

M =

⎛
⎜⎝

2 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎠ π = 521634

fPM fMP

fPA

fAP

fAS
fMA

fAM

Fig. 2.1. The examples used when defining the bijections in Subsection 2.2.

2.2. The bijections

In this subsection, we gather the classical bijections from the literature [3,9,11] that we 
need. We refer the reader to these references for the proofs of bijectivity and our claims 
that particular pairs of maps are inverses. Due to its length, the reader may prefer to 
skip this subsection and instead refer back to it as a reference.

To denote the bijections from [3,9,11], we will use labels according to their domain 
and codomain, but rather than use the labels Asc, Posets, Matrices and Perms, we use 
the single-letter subscripts A, P, M and S (“S” for “symmetric group”). For example, fAP
denotes the bijection of [3] from ascent sequences to (2+2)-free posets.

If a < b are integers, we use the notation [a, b] for the set {a, . . . , b} and [a, b) for the 
set {a, . . . , b − 1}, etc.

For each of our bijections, we will refer to the example in Fig. 2.1.

2.2.1. Ascent sequences and matrices
Let a = (a1, . . . , an) be an ascent sequence and define the truncated sequence a(k) =

(a1, . . . , ak). If M is a d × d matrix, then we write dim(M) = d. Let mindex(M) be the 
lowest index of a row whose rightmost entry is non-zero. For example, mindex(M) = 2
for M from Fig. 2.1. The following map first appears in [11] where it is shown to be a 
bijection to Matricesn.

Definition 2.1. Given a = (a1, . . . , an) ∈ Ascn, we define fAM(a) recursively. First, 
fAM(a(1)) = (1), a 1 × 1 matrix. Supposing M (k) = fAM(a(k)) for some k ∈ [1, n), 
we have the following three cases for defining M (k+1) = fAM(a(k+1)).
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AM1 If ak+1 ∈ [0, mindex(M (k))) then let M (k+1) be the matrix M (k) with the entry at 
position (ak+1 + 1, dim(M (k))) increased by one.

AM2 If ak+1 = dim(M (k)) then let M (k+1) be the result of appending a new row and 
column of zeros to the matrix M (k), and inserting a one into the new diagonal 
entry.

AM3 If ak+1 ∈ [mindex(M (k)), dim(M (k))) then let M (k+1) be the outcome of the fol-
lowing: in M (k), insert a new (empty) row between rows ak+1 and 1 + ak+1, and 
insert a new (empty) column between columns ak+1 and 1 +ak+1. Let the new row 
be filled with all zeros except let the rightmost entry be 1. Move all the entries in 
the rightmost column above where it was prised apart to the left to the new empty 
spaces, and fill their former positions with zeros. Finally let all other entries in the 
new column be zero.

Then fAM(a) = fAM(a(n)) = M (n).

Example 2.2. Let a = (0, 0, 1, 2, 0, 1) as in Fig. 2.1.

◦ fAM(a(1)) = (1) = M (1).
◦ Since a2 ∈ [0, mindex(M (1)) = 1), AM1 applies and M (2) = (2).
◦ Since a3 = dim(M (2)), AM2 applies and M (3) =

( 2 0
0 1

)
.

◦ Since a4 = dim(M (3)), AM2 applies and M (4) =
(

2 0 0
0 1 0
0 0 1

)
.

◦ Since a5 ∈ [0, mindex(M (4)) = 3), AM1 applies and M (5) =
(

2 0 1
0 1 0
0 0 1

)
.

◦ Since a6 ∈ [mindex(M (5)) = 1, dim(M (5)) = 3), AM3 applies and we prise the matrix 

M (5) apart between rows 1 and 2, and columns 1 and 2 to get 
( 2 0 1

0 1 0
0 0 1

)
. We fill the 

new second row with zeros except for a 1 in column 4. We move the single entry 1 
in column 4 above the new row into the new second column, preserving this entry’s 
row index, and put zeros in its former position and in the rest of the new column. 

We get M (6) =
( 2 1 0 0

0 0 0 1
0 0 1 0
0 0 0 1

)
= fAM(a).

As is clear in the above definition, AM3 is by far the most involved, and this will be 
a feature of AP3 too. When AM3 is used in a recursive step, the results of the bijection 
quickly become intractable. The point of the R-families is that they are defined exactly 
so that AM3 and AP3 are never invoked, resulting in more manageable analysis.

We could define fMA as just the inverse of the bijection fAM but it will be useful to 
write an explicit definition following [11]. Example 2.2 in reverse serves as an example 
of Definition 2.3. Let rowsumi(M) denote the sum of the entries in row i of M .
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Definition 2.3. Given M ∈ Matricesn, define reduce(M) ∈ Matricesn−1 in the following 
fashion.

MA1 If rowsummindex(M)(M) > 1 then let reduce(M) equal M with the value at position 
(mindex(M), dim(M)) reduced by 1.

MA2 If rowsummindex(M)(M) = 1 and mindex(M) = dim(M) then let reduce(M) equal 
M with row dim(M) and column dim(M) removed.

MA3 If rowsummindex(M)(M) = 1 and mindex(M) < dim(M) then perform the following 
modifications to M to form reduce(M). For j ∈ [1, mindex(M)), move the entry in 
position (j, mindex(M)) to position (j, dim(M)). Then delete row mindex(M) and 
(the empty) column mindex(M).

Now recursively define M (n) = M , and M (k) = reduce(M (k+1)) for k ∈ [1, n). Let 
ak = mindex(M (k)) −1 for i ∈ [1, n] and define fMA(M) = (a1, . . . , an), which is an ascent 
sequence [11]. Note that in following this recursive procedure, the sequence (a1, . . . , an)
is constructed from right-to-left.

Remark 2.4. A bijection between ascent sequences and Fishburn matrices is given in [4]
which differs from ours only in the definition of AM3. Since our results are confined to 
those ascent sequences where AM3 is never invoked, our results would work equally well 
using the bijection of Chen, Yan and Zhou.

2.2.2. Ascent sequences and posets
We next introduce the bijections between Ascn and Posetsn from [3]. Given a (2+2)-

free poset P , recall that �(P ) denotes the highest index of a level or, equivalently, �(P ) +1
is the number of levels in P . Let ��(P ) denote the minimum index of a level that contains 
a maximal element. Recall the sequence L(P ) of level sets defined in Subsection 2.1. The 
definition of fAP below is very similar in structure to Definition 2.1 above of fAM.

Definition 2.5. Given a = (a1, . . . , an) ∈ Ascn, we define fAP(a) recursively. First, 
fAP(a(1)) is the poset consisting of a single element p1. Supposing P (k) = fAP(a(k))
for some k ∈ [1, n), we have the following three cases for defining P (k+1) = fAP(a(k+1)).

AP1 If ak+1 ∈ [0, ��(P (k))] then let P (k+1) be the result of adding to P (k) a new maximal 
element pk+1 that covers the same elements as do the elements in Lak+1(P (k)).

AP2 If ak+1 = 1 + �(P (k)) then let P (k+1) be the result of adding to P (k) a new element 
pk+1 covering all maximal elements of P (k).

AP3 If ak+1 ∈ (��(P (k)), �(P (k))] then let P (k+1) be the outcome of the following: to P (k), 
add a new element pk+1 covering the same elements as the elements in Lak+1(P (k)). 
Let M be the set of maximal elements of P (k) lying at any level less than ak+1. 
Add all relations x � y where x ∈ M and y is any element of Lak+1(P (k)) ∪ · · · ∪
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p1
0

AP1
p1 p2

1
AP2 p1 p2

p3
2

AP2

p1 p2

p3

p4

p1 p2

p3

p4

p5

0
AP1

p1 p2

p3

p4

p5

p6

1
AP3

Fig. 2.2. The recursive construction of Example 2.6.

L�(P (k))(P (k)); here we do not consider the new element pk+1 to be an element of 
Lak+1(P (k)).

Then fAP(a) = fAP(a(n)) = P (n).

Example 2.6. Let a = (0, 0, 1, 2, 0, 1) as in Fig. 2.1. Certainly, P (1) is the one-element 
poset. The recursive construction of P = fAP(a) appears in Fig. 2.2, where the dotted 
shapes depict the different levels. The element ak+1 appears above each arrow and the 
case name appears below each arrow. The labels pi are just for expository purposes and 
are not part of fAP(a). In the final step, M = {p5}. Note that the new element p6 in the 
final step ends up on its own level, and this is true in general for applications of AP3.

To define the inverse fPA, a key observation from Definition 2.5 is that pk+1 is always a 
maximal element of P (k+1) and, furthermore, ak+1 will be exactly ��(P (k+1)). Therefore, 
fPA will be a recursive map that obtains P (k) from P (k+1) by removing a maximal element 
at level ��(P (k+1)) and records this level value as ak+1. Since all maximal elements at the 
same level in a (2+2)-free poset are order equivalent, it does not matter which element 
we remove. Of course, care has to be taken to make sure we invert AP3 correctly: see 
PA3 below.

Recall that Di(P ) denotes the strict downset of the elements at level i. Again, the 
definition below parallels the corresponding one from Subsection 2.2.1, i.e., Definition 2.3. 
Obviously, Fig. 2.2 in reverse serves as an example of Definition 2.7.

Definition 2.7. Given P ∈ Posetsn, let i = ��(P ) and define remove(P ) ∈ Posetsn−1 in 
the following fashion.
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PA1 If |Li| > 1 then let remove(P ) equal P with a maximal element at level i removed.
PA2 If |Li| = 1 and i = �(P ) then obtain remove(P ) by deleting the unique element at 

level i of P .
PA3 If |Li| = 1 and i < �(P ) then perform the following modifications to P to form 

remove(P ). Let M = Di+1(P ) \Di(P ). Make each element of M a maximal element 
by deleting all relations x ≺ y with x ∈ M. Then remove the unique element that 
was at level i of P .

Now recursively define P (n) = P , and P (k) = remove(P (k+1)) for k ∈ [1, n). Let ak =
��(P (k)) for i ∈ [1, n] and define fPA(P ) = (a1, . . . , an), which is an ascent sequence [3]. 
Note that in following this recursive procedure, the sequence (a1, . . . , an) is constructed 
from right-to-left.

2.2.3. Matrices and posets
The bijections between matrices and posets are actually simpler than those involving 

ascent sequences. To provide definitions for fMP and fPM, it is easier to work with labelled 
posets and remove the labels after the construction, as is done in [9]. We begin with fPM.

Definition 2.8. Let P be a labelled (2+2)-free poset on the set {p1, . . . , pn}. The poset 
is uniquely specified by the sets D(P ) and L(P ) defined in Subsection 2.1 since every 
element of Li has the set Di as its strict downset.

For j ∈ [0, �(P )], let Kj(P ) = Dj+1(P )\Dj(P ) where D�(P )+1 := P . Let M ′ be the 
matrix with entries M ′

ij = Li−1(P ) ∩ Kj−1(P ) for all i, j ∈ [1, �(P ) + 1], and define 
fPM(P ) to be the matrix whose (i, j) entry is |M ′

ij |.

Example 2.9. Let P be the (2+2)-free poset from the top-left of Fig. 2.1 where

D(P ) = (∅, {p1, p2}, {p1, p2, p5}, {p1, p2, p3, p5})

L(P ) = ({p1, p2, p5}, {p6}, {p3}, {p4}).

We have �(P ) = 3 and

K(P ) = (K0(P ),K1(P ),K2(P ),K3(P )) = ({p1, p2}, {p5}, {p3}, {p4, p6}).

From this

M ′ =

⎛
⎜⎝
{p1, p2} {p5} ∅ ∅

∅ ∅ ∅ {p6}
∅ ∅ {p3} ∅
∅ ∅ ∅ {p4}

⎞
⎟⎠ (2.1)

and so fPM(P ) is the matrix M in the bottom-left of Fig. 2.1.
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To define fMP by inverting fPM, the first step is to construct the set-valued matrix as 
in (2.1), but it is not clear which of the entries {p1, . . . , pn} should go where. The key 
insight is that it doesn’t really matter because fMP(M) will ultimately be an unlabelled
poset.

Definition 2.10. Let M ∈ Matricesn and let P ′ = {p1, . . . , pn}. Replace each of the zero 
entries in M with the empty set, and replace any non-zero integer a in M with a subset 
of P ′ of size a while ensuring there are no duplicated elements in the matrix. Given 
pi ∈ P ′, let c(pi) and r(pi) be the column and row indices of pi . Let P = (P ′, �) be the 
poset whereby pi ≺ pj if and only if c(pi) < r(pj). Finally let fMP(M) be the unlabelled 
version of the poset P . �
Example 2.11. Again using M from Fig. 2.1, suppose we assign {p1, . . . , p6} as follows:

M ′ =

⎛
⎜⎝
{p1, p2} {p3} ∅ ∅

∅ ∅ ∅ {p4}
∅ ∅ {p5} ∅
∅ ∅ ∅ {p6}

⎞
⎟⎠ .

This gives the strict order relations p1, p2 ≺ p4, p5, p6 and p3 ≺ p5, p6 and p5 ≺ p6. This 
is the same poset as in the top left of Fig. 2.1 once all labels are removed.

2.2.4. Ascent sequences to permutations
For an ascent sequence a, we follow [3], which used a technique systemised in [26], to 

recursively construct a permutation fAS(a) ∈ Sn(2|31).
Given a 2|31-avoiding permutation π ∈ Sn−1, we wish to add the entry n to π and 

get another 2|31-avoiding permutation. With this in mind, we say that the site between 
positions i and i + 1 in π is active if πi = 1 or πi − 1 is to the left of πi. The sites 
immediately before position 1 and immediately after position n − 1 are always active. 
We leave it as an exercise to check that the active sites are exactly those where inserting n
into π will result in an element of Sn(2|31). We label the active sites as subscripts from left 
to right beginning with 0. For example, the permutation 521634 becomes 05211623344.

Recall that for an ascent sequence a = (a1, . . . , an), the prefix (a1, . . . , ak) is denoted 
a(k).

Definition 2.12. Given a = (a1, . . . , an) ∈ Ascn, we define fAS(a) recursively. First, 
fAS(a(1)) = 1, a permutation of one element. For k ∈ (1, n], we let fAS(a(k)) be 
fAS(a(k−1)) with k inserted at the active site labelled ak. Then fAS(a) is defined to 
be fAS(a(n)).

We leave it as an exercise to check that there will indeed exist an active site labelled ak.

Example 2.13. Let a = (0, 0, 1, 2, 0, 1) as in Fig. 2.1. We get the following sequence of 
permutations, labelled according to their active sites, with the arrows labelled by ak:
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011
0−→ 0211

1−→ 021132
2−→ 02113243

0−→ 052113243
1−→ 05211623344 ,

consistent with Fig. 2.1.

2.2.5. Relationships among the bijections
Since the bijections between matrices and posets are very different from those involv-

ing ascent sequences, it is not at all clear that Fig. 1.1 is a commutative diagram at the 
level of Posets, Asc and Matrices. Since our maps are all bijections, this is equivalent to 
showing that fPM = fAM ◦fPA, the truth of which is given as a remark in [9]. The equiva-
lent statement fPM ◦ fAP = fAM can be checked using a careful induction argument. The 
crux of the argument is that the ways in which AP1, AP2 and AP3 from Definition 2.5
change the matrix fPM(P (k)) to fPM(P (k+1)) match exactly with the effects of AM1, AM2
and AM3 respectively from Definition 2.1. In Theorem 4.3, we will use the equivalent 
statement that fPA = fMA ◦ fPM.

We will also need a bijection fPS (see Subsection 4.2), and we will define it by fPS =
fAS◦fPA. A direct definition of fPS that bypasses ascent sequences appears in [3, Sub. 4.2]
but we choose not to include that background here since we do not make heavy use of 
fPS.

3. Restricted sets

As we saw in the previous section, the bijection fAM (resp. fAP) becomes more com-
plicated when the case AM3 (resp. AP3) arises. In this section, we introduce the subset 
of Asc for which these cases never arise, denoted RAsc, where the letter R stands for 
“restricted.” There are two reasons for restricting our attention. First, as we will show, 
the images of this subset under our various bijections have nice definitions, and some of 
these images are combinatorially significant. Secondly, the bijections’ behaviour becomes 
more tractable, allowing us to obtain results for these restricted sets, as we will see in 
particular in Section 4.

We first must determine the conditions on an ascent sequence a that cause these two 
troublesome cases to arise. Referring to Definition 2.1, we need to avoid the situation 
when

ak+1 ∈ [mindex(M (k)),dim(M (k))). (3.1)

Let us translate this expression into properties of a. Looking at all three cases in this 
definition, we see that mindex(M (k+1)) is nothing more than ak+1+1, so mindex(M (k)) =
ak +1. In addition, this observation implies that AM1 corresponds to the case when ak is 
not an ascent in a. Moreover, observe that when AM1 applies, the dimension of the matrix 
does not change, but it increases by 1 for each application of AM2 or AM3. Therefore, 
dim(M (k)) is exactly asc(a1, . . . , ak) +1. Thus the condition (3.1) that invokes AM3 when 
constructing M (k+1) is equivalent to
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ak+1 ∈ (ak, asc(a1, . . . , ak)]. (3.2)

A similar analysis of Definition 2.5 shows that (3.2) is also exactly the condition that 
causes AP3 to be used. Thus we are led to the following definition of a subset of Asc, 
which was introduced in [3] under the name “self-modified” ascent sequences.

Definition 3.1. Let RAscn be the subset of Asc consisting of those ascent sequences a =
(a1, . . . , an) such that

ak ∈ [0, ak−1] ∪ {1 + asc(a1, . . . , ak−1)} for all k > 1. (3.3)

In other words, if ak is larger than ak−1, then ak must be the largest it can be under the 
conditions on an ascent sequence. For example, (0, 1, 0, 2) is in RAsc whereas (0, 1, 0, 1)
is not. Taking these ideas a step further, we get the following equivalent definition of 
RAsc, which will be useful later.

Lemma 3.2. RAscn is the subset of Asc consisting of those ascent sequences a =
(a1, . . . , an) such that

ak ∈ [0, ak−1] ∪ {1 + max(a1, . . . , ak−1)} for all k > 1. (3.4)

Proof. We argue by induction on the number of ascents. If the first ascent is at position 
i1 so that 0 = ai1 < ai1+1 then we have

ai1+1 = 1 + asc(a1, . . . , ai1) = 1 + max(a1, . . . , ai1) = 1.

With the jth ascent at position ij , we assume

aij+1 = 1 + asc(a1, . . . , aij ) = 1 + max(a1, . . . , aij ).

Thus at the (j + 1)st ascent, we have (note the subtle difference below between the 
indices ij+1 and ij + 1)

aij+1+1 = 1 + asc(a1, . . . , aij+1)

= 1 + asc(a1, . . . , aij+1)

= 1 + asc(a1, . . . , aij ) + 1

= 1 + max(a1, . . . , aij ) + 1

= max(a1, . . . , aij+1) + 1

= max(a1, . . . , aij+1) + 1. �
The rest of this section will be working towards proving Corollary 3.8, which states 

that, under the classical bijections defined in the previous section, RAscn maps to the 
sets we now define.
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Definition 3.3.

◦ Let RMatricesn be the set of matrices in Matricesn all of whose diagonal entries are 
positive.

◦ Let RPosetsn be the set of those posets in Posetsn that have a chain of length �(P ).
◦ Let RPermsn = Sn(31524) (defined next).

The set Sn(31524) is enumerated in [19,20] (see also [23, A098569]) and appears in 
[3] as the image fAS(RAscn). A permutation π is said to avoid the barred permutation 
31524 if every occurrence of the pattern 231 in π plays the role of 352 in an occurrence 
of the pattern 31524 in π. In other words, if we have i < j < k with πk < πi < πj , there 
must also exist � and m such that i < � < j < k < m and πiπ�πjπkπm is an occurrence 
of 31524.

Since a poset P in Posets has �(P ) + 1 levels, the maximal possible length of a chain 
is �(P ), so RPosetsn consists of those posets that have a chain that contains an element 
from every level.

The following observation will be crucial for several results stated in this paper. It 
not only gives the image of an element of RMatrices under fMA but, combined with 
Corollary 3.8(a), shows that all elements of RAsc take a particular form. We use ij to 
denote a sequence of j copies of i. From this point on, we will denote the entry in row i
and column j of the matrix M by mij or mi,j

Lemma 3.4. Suppose that M ∈ RMatrices with dim(M) = d. Then

fMA(M) = (0m11 , 1m22 , 0m12 , 2m33 , 1m23 , 0m13 , . . . , (d− 1)mdd , (d− 2)md−1 d , . . . , 0m1d).
(3.5)

Proof. This follows from the definition of fMA by considering how a = fMA(M) is con-
structed from right-to-left in Definition 2.3. Since the diagonal entries of M are all 
positive, we never have to apply MA3. �

Example 3.5. The matrix M =
(

2 0 1
0 1 0
0 0 1

)
is in bijection with the ascent sequence a =

(0, 0, 1, 2, 0).

The next lemma shows the essential condition for the desired bijection between RAscn
and RMatricesn.

Proposition 3.6. Let a = (a1, . . . , an) ∈ Ascn and M = fAM(a) with dim(M) = d. There 
will be a zero on the diagonal of M if and only if there exists i ∈ [1, n − 1] such that 
ai < ai+1 ≤ asc(a1, . . . , ai).
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Proof. To show this we will consider Definition 2.1 and how the matrix entries change 
during construction with respect to the rules AM1, AM2 and AM3.

Suppose that there exists i ∈ [1, n − 1] with ai < ai+1 ≤ asc(a1, . . . , ai). Re-
call from the second paragraph of this section that ai = mindex(M (i)) − 1 and 
asc(a1, . . . , ai) = dim(M (i)) − 1. So when constructing M (i+1) from M (i), AM3 applies, 
and M (i+1)

1+ai+1,1+ai+1
= 0. This entry is not in the rightmost column of the matrix and 

cannot therefore be increased by any subsequent applications of AM1 or AM2. Depending 
on the subsequent values in the ascent sequence, if AM3 is used then the 0 at position 
(1 + ai+1, 1 + ai+1) may be permuted amongst the diagonal entries but will never again 
be in the rightmost column, and therefore never again accessible to change.

For the converse, suppose that for all i ∈ [1, n − 1],

ai+1 ∈ [0, ai] ∪ {1 + asc(a1, . . . , ai)}. (3.6)

The procedure for constructing M will begin with M (1) = (1), a 1-by-1 matrix. Because 
of (3.6), only AM1 and AM2 will be needed to construct the subsequent M (i). Since AM1
and AM2 both preserve the property of all diagonal entries being strictly positive, M
will also have that desired property. �

We next provide a similarly essential ingredient for the desired bijection between 
RPosets and RMatrices.

Proposition 3.7. Let P ∈ Posetsn and let M = fPM(P ) with dim(M) = �(P ) + 1. All the 
entries on the diagonal of M will be non-zero if and only if P has a chain of length �(P ).

Proof. Consider the construction of M from P as given in Definition 2.8, especially the 
intermediate matrix M ′ given by

M ′
ij = Li−1 ∩ (Dj\Dj−1)

for all i, j ∈ [1, �(P ) + 1]. Suppose mii �= 0 for all i ∈ [1, �(P ) + 1]. We have that mii �= 0
if and only if M ′

ii �= ∅, which is equivalent to

Li−1 ∩ (Di\Di−1) �= ∅. (3.7)

In other words, there exists at least one element wi ∈ Li−1 ∩ (Di\Di−1) for all 1 ≤ i ≤
�(P ) + 1. Therefore,

w1 ≺P w2 ≺P · · · ≺P w�(P ), (3.8)

and so P has a chain of length �(P ).
To show that if P has a chain of length �(P ) then M has only non-zero diagonal 

entries, it suffices to show that the condition in (3.8) implies that in (3.7) for all i. So 
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consider the construction of P from M , as given in Definition 2.10. A chain in P of 
length �(P ) must arise from a sequence of �(P ) +1 nonempty entries in M ′, each strictly 
southeast of the previous one. But since dim(M ′) = �(P ) + 1 by definition of fPM, these 
nonempty entires in M ′ must all be along the diagonal, yielding (3.7) for all i. �

Combining the previous two propositions gives the main result of this section, which 
shows that RAsc, RMatrices, RPosets and RPerms are all in bijection, and the bijections 
we need are exactly the restricted versions of the classical ones. Part (c) of the theorem 
was already proved as [3, Prop. 10].

Corollary 3.8. The classical bijections among Ascn, Matricesn, Posetsn and Permsn re-
strict to bijections among RAscn, RMatricesn, RPosetsn and RPermsn, specifically,

(a) fAM maps RAscn bijectively to RMatricesn;
(b) fPM maps RPosetsn bijectively to RMatricesn;
(c) [3] fAS maps RAscn bijectively to RPermsn.

Proof. Part (a) follows from Proposition 3.6, the definitions of RAscn and RMatricesn, 
and the fact that fAM : Ascn → Matricesn is a bijection.

Similarly, (b) follows from Proposition 3.7, the definitions of RPosetsn and RMatricesn, 
and the fact that fPM : Posetsn → Matricesn is a bijection. �
4. Poset duality under the bijections

If a poset P is (2+2)-free, then it is clear that the dual poset P ∗ obtained by reversing 
all its inequalities is also (2+2)-free. An open question in [11] asks how a is related to 
a∗, where a and a∗ are the ascent sequences corresponding to P and P ∗ respectively. 
While this question appears intractable for general (2+2)-free posets, in this section 
we answer it for RPosets. In addition, we extend the answer to give the corresponding 
notion of duality for RPerms. Combined with the duality result for RMatrices given by [9, 
Theorem 10], we get a complete understanding of how poset duality acts on our four 
R-families according to our bijections. In fact, one major motivation for our restriction 
to the R-families is their amenability to adopting an analogue of poset duality.

In view of Corollary 3.8, we can abuse notation by using the same f notation for our 
bijections even though our domains will now be R-families as opposed to the domains of 
Asc, Matrices, Posets and Perms that we had before.

Definition 4.1. Let f : RPosets → Struct be a bijection where Struct is a collection of 
objects. Given P ∈ RPosets with f(P ) = s, we write s∗ for the unique object f(P ∗), and 
we call s∗ the dual of s according to f .

Example 4.2. As a first example, we consider the dual of an element M = (mij) of 
RMatrices according to the bijection fPM. Define flip(M) to be the reflection of M through 
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its antidiagonal, i.e., if dim(M) = d, then flip(M)ij = md+1−j, d+1−i. Observe that 
M ∈ RMatricesn if and only if flip(M) ∈ RMatricesn. Theorem 10 from [9] states that 
M∗ = flip(M).

4.1. Duality for ascent sequences

We will use Example 4.2 as a basis for determining the dual of an element of RAsc
according to fPA.

Theorem 4.3. Let a ∈ RAscn. By Lemma 3.4, we have

a = (0m11 , 1m22 , 0m12 , 2m33 , 1m23 , 0m13 , . . . , (d− 1)mdd , (d− 2)md−1 d , . . . , 0m1d) (4.1)

where M = fAM(a). The dual ascent sequence a∗ according to fPA is given by

a∗ = (0mdd , 1md−1 d−1 , 0md−1 d , 2md−2 d−2 , 1md−2 d−1 , 0md−2 d ,

. . . , (d− 1)m11 , (d− 2)m12 , . . . , 0m1d). (4.2)

Proof. Let P = fAP(a). We first observe that, since fPA = fMA ◦ fPM, we get a∗ =
fPA(P ∗) = fMA(flip(M)). Considering the definition of flip(M) and applying Lemma 3.4
yields the result. �
Example 4.4. If a = (0, 0, 1, 2, 0), then M =

(
2 0 1
0 1 0
0 0 1

)
. Thus flip(M) =

(
1 0 1
0 1 0
0 0 2

)
, and so 

a∗ = (0, 1, 2, 2, 0).

There is an alternative way to construct a∗ that avoids the need to write it out in the 
form (4.1). This alternative uses a map pan that takes any sequence of numbers as its 
input and returns an ascent sequence pan(a), which we call the panorama of a. First, we 
need a preliminary definition.

Definition 4.5. Given a sequence (a1, a2, . . . , ak) of real numbers, the view vi of the 
element ai is defined in the following recursive fashion:

(a) if j is the minimum index greater than i such that aj > ai, then define vi = vj + 1;
(b) if no such j exists then vi := 0.

We can think of the view vi as counting left-to-right maxima starting at the entry ai. 
For example, the sequence (0, 1, 2, 0, 4, 3, 1, 2) has (3, 2, 1, 1, 0, 0, 1, 0) as its sequence of 
views.

Definition 4.6. Let a be a sequence of real numbers. We construct the panorama sequence
pan(a) of a in the following manner. Suppose the maximum value of a occurs in positions 
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i1, i2, . . . , ij . Begin pan(a) with the sequence of views (vi1 , vi2 , . . . , vij ). Now continue this 
process with the next highest value in a, concatenating the corresponding view values 
onto the right end of pan(a). Repeat this process until the view of every element of a
has been added to pan(a).

Example 4.7. For a = (0, 1, 2, 0, 4, 3, 1, 2) as above, pan(a) = (0, 0, 1, 0, 2, 1, 3, 1).

As promised, we get the following alternative construction of a∗.

Proposition 4.8. Let a ∈ RAsc and let a∗ be its dual according to fPA. Then a∗ = pan(a).

Proof. Consider pan(a) with a as given in (3.5). By Corollary 3.8(a) and by definition of 
RMatricesn, we know that the diagonal entries mjj are all positive. With this observation 
in mind, we see that the left-to-right maxima that determine the view of the element 
ai come from those entries in a of the form jmj+1 j+1 with j > i that appear to the 
right of ai. It follows that the panorama pan(a) is exactly the sequence given in (4.2), 
as required. �

Observe that pan(a) in Example 4.7 is an ascent sequence, while Proposition 4.8
implies the same is true for all a ∈ RAsc; this is no coincidence. In fact, one can show 
that pan(a) is an ascent sequence for any sequence of real numbers a. One method of 
proof is to show pan(a) has a stronger property, originally defined in [15], which we 
recall now. Another reason for introducing this natural stronger property is that it will 
be useful in the next section.

Definition 4.9. A restricted growth function (RGF) is a sequence a of non-negative in-
tegers such that each j > 0 that appears in a is preceded by an appearance of j − 1. 
Equivalently, for all j > 0 that appear in a, the first appearance of j is preceded by an 
appearance of every i satisfying 0 ≤ i < j.

For example, (0, 1, 0, 2, 1, 3) is an RGF whereas (0, 1, 0, 1, 3, 2) is not.

Lemma 4.10. RAsc ⊆ RGF ⊆ Asc and both containments are strict.

Proof. Both containments are trivial for sequences of length n = 1, so assume n > 1 and 
let a = (a1, . . . , an) ∈ RAscn. By (3.4), the first time j > 0 appears, it must take the 
form 1 + max(a1, . . . , ai−1) for some i. Thus j − 1 appears before j, and a is an RGF.

Next let a = (a1, . . . , an) be an RGF, and let l(j) denote the position in a of the 
leftmost appearance of the number j, when such a position exists. Note that to prove 
that a ∈ Asc, it suffices to show that al(j) ≤ 1 + asc(a1, . . . , al(j)−1) for each j. By 
definition of RGFs, l(0) < l(1) < · · · < l(m), where m is the maximum value in a. Hence 
position l(i) − 1 is always an ascent for 1 ≤ i ≤ m. Thus asc(a1, . . . , al(j)−1) ≥ j − 1, 
from which we conclude al(j) = j ≤ 1 + asc(a1, . . . , al(j)−1), as required.
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To see the strict containments, the shortest examples are (0, 1, 0, 1) ∈ RGF \ RAsc
while (0, 1, 0, 1, 3) ∈ Asc \ RGF. �
Remark 4.11. Clearly, generalised ballot sequences (also known as Yamanouchi words) 
are RGFs, and so we have (slightly) generalised the first author’s result [8] that gener-
alised ballot sequences are ascent sequences.

Remark 4.12. We leave it as an exercise for the reader to justify our earlier assertion that 
pan(a) is an RGF and hence an ascent sequence for any sequence of real numbers a. (In 
fact, one can constructively prove the converse that every RGF is a panorama sequence.) 
A harder exercise is to show there is another way in which pan(a) is “nicer” than a: if 
a is an RGF, then pan(a) ∈ RAsc. Consequently, pan2(a) ∈ RAsc for any sequence a
of real numbers. Moreover, this latter fact combined with Proposition 4.8 tells us that 
pan2(a) = a if and only if a ∈ RAsc. This last observation gives an alternative definition 
of RAsc.

As we mentioned, we have not been able to answer in full the open question from [11]
by determining a∗ for all a ∈ Asc. However, we assert that RAsc is in some sense the 
largest subset that behaves nicely with respect to poset duality. Indeed, since (a∗)∗ = a
by definition, the fact that pan2(a) = a if and only if a ∈ RAsc tells us that a∗ can be 
as simple as pan(a) if and only if a ∈ RAsc.

4.2. Duality for permutations

For our one remaining notion of duality, we use the definition of the dual of an ascent 
sequence to determine the dual π∗ of an element π of RPerms = Sn(31524) according to 
fPS := fAS ◦ fPA.

Our definition of π∗ requires the use of what are perhaps the three best known in-
volutions on a permutation π = (π1, . . . , πn): its inverse π−1, its reverse rev(π) :=
(πn, . . . , π1), and its complement comp(π) := (n + 1 − π1, . . . , n + 1 − πn). Together, 
these involutions allow us to state the result with the most technical proof of this paper.

Theorem 4.13. Let π ∈ Sn(31524) = RPerms. The dual permutation according to fPS is 
given by π∗ = (comp(rev(π)))−1.

Proof. Let a ∈ RAscn and let π = fAS(a) ∈ Sn(31524). See Example 4.14 below for an 
example pertinent to the key elements of this proof; we will use the symbol � in this 
proof to denote paragraphs or single statements that are demonstrated in the example. 
Theorem 4.3 tells us how to construct a∗ from a: if

a = (0m11 , 1m22 , 0m12 , 2m33 , 1m23 , 0m13 , . . . , (d− 1)mdd , (d− 2)md−1 d , . . . , 0m1d) (4.3)

then a∗ is given by
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a∗ = (0mdd , 1md−1 d−1 , 0md−1 d , 2md−2 d−2 , 1md−2 d−1 , 0md−2 d ,

. . . , (d− 1)m11 , (d− 2)m12 , . . . , 0m1d).

Here, a = fMA(M) and a∗ = fMA(flip(M)) as shown in the proof of Theorem 4.3. �.
In Definition 2.12, we saw a recursive definition of fAS(a). However, as shown in [3, 

Cor. 9], when a ∈ RAsc, we have the following equivalent but simpler definition. Let 
a = (a1, . . . , an) ∈ RAscn and let k be the largest value in this sequence. Let Wi(a) be 
the list of all positions j ∈ [1, n] such that aj = i written in decreasing order. Define

fAS(a) = W0(a)W1(a) . . .Wk(a) =
k⊕

i=0
Wi(a) (4.4)

to be the concatenation of these lists �.
The proof will rely on several different ways to sum the mab values which we now 

identify. The sums use three different ways to traverse the upper-triangular entries of 
(mij).

T traversal (1, 1) → (2, 2) → (1, 2) → (3, 3) → (2, 3) → (1, 3) → . . . → (2, d) → (1, d).
R traversal (1, d) → (2, d) → . . . → (d, d) → (1, d − 1) → . . . → (d − 1, d − 1) → . . . →

(1, 1).
S traversal (1, d) → (1, d − 1) → . . . → (1, 1) → (2, d) → . . . (2, 2) → . . . → (d − 1, d) →

(d − 1, d − 1) → (d, d).

Let Tij be the sum of mab using T traversal until we reach the pair (a, b) = (i, j). Let 
Rij be the sum of mab using R traversal until we reach the pair (a, b) = (i, j). Let Sij

be the sum of mab using S traversal until we reach the pair (a, b) = (i, j). The quantities 
T ′
ij , R

′
ij , and S′

ij are those where one sums m′
ab’s in place of mab’s, where the two are 

related via m′
ij = md+1−j, d+1−i. In other words, the primed versions of the sums are 

obtained by traversing in the prescribed orders but over the entries of flip(M) instead of 
M �. Notice that we have the following identities:

Tij + Rij = n + mij (4.5)

T ′
ij + R′

ij = n + m′
ij (4.6)

S′
ij = Rd+1−j, d+1−i . (4.7)

Let us use the notation [x]a for the list (x, x − 1, . . . , x − a + 1), and define [x]0 to be 
the empty list. Applying fAS(a) we find that Wi−1(a) = [Tid]mid

· · · [Tii]mii
. This is due 

to the T traversal matching the order of the powers mij appearing in (4.3). Thus

π = fAS(a) =
d⊕ i⊕

[Tij ]mij
(4.8)
i=1 j=d
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where ⊕ denotes left-to-right concatenation of sequences, and where the index j in the 
inner concatenation runs from d down to i �. Similarly, working with flip(M) instead of 
M , we have

π∗ = fAS(a∗) =
d⊕

i=1

i⊕
j=d

[T ′
ij ]m′

ij
� (4.9)

We now have bona fide expressions for both π and π∗. It remains to show that they 
satisfy the equation stated in the theorem.

The value π(a) is obtained in the following way:

π(a) = Tij + Sij −mij + 1 − a (4.10)

where (i, j) is the unique pair such that a ∈ (Sij−mij , Sij ] �. Indeed, to determine π(a), 
we first have to determine which sequence [Tij]mij

from (4.8) will include the ath entry of 
π. The order from left-to-right in which the [Tij ]mij

appear matches the S traversal, which 
is why we pick (i, j) in the stated way. Next we need the π(a) values for a ∈ (Sij−mij , Sij ]
to give the sequence [Tij ]mij

. Indeed, the smallest such a is Sij −mij + 1, which gives 
π(a) = Tij in (4.10). As a increases all the way to Sij, we get all the π(a) values decreasing 
all the way to Tij −mij +1, as required. This argument also makes it clear that the pair 
(i, j) is also the unique pair such that b = π(a) ∈ (Tij −mij , Tij ] �.

The statement of the theorem is equivalent to showing π∗(a) = b if and only if 
π(n +1 −b) = n +1 −a. Suppose that π∗(a) = b. Then we have π∗(a) = T ′

ij+S′
ij−m′

ij+1 −a

where (i, j) is the unique pair such that a ∈ (S′
ij − m′

ij , S
′
ij ]. Equivalently (i, j) is the 

unique pair such that b = π∗(a) ∈ (T ′
ij −m′

ij , T
′
ij ]. The rest of this proof will start with 

the statement that

T ′
ij + S′

ij −m′
ij + 1 − a = b, (4.11)

where (i, j) is the unique pair such that b ∈ (T ′
ij −m′

ij , T
′
ij ] and consist of manipulations 

to remove all primed terms with a view to recovering a statement that is equivalent to 
π(n + 1 − b) = n + 1 − a.

From (4.5)–(4.7), we have T ′
ij −m′

ij = n − Sd+1−j, d+1−i , and

S′
ij = Rd+1−j, d+1−i = n + md+1−j, d+1−i − Td+1−j, d+1−i .

The above equality (4.11) is therefore equivalent to

n− Sd+1−j, d+1−i + (n + md+1−j, d+1−i − Td+1−j, d+1−i) + 1 − b = a.

Subtract both sides of this equation from n + 1 to yield

Td+1−j, d+1−i + Sd+1−j, d+1−i −md+1−j, d+1−i + 1 − (n + 1 − b) = n + 1 − a
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where, again, (i, j) is the unique pair such that b ∈ (T ′
ij −m′

ij , T
′
ij ]. Notice that

b ∈ (T ′
ij −m′

ij , T
′
ij ]

⇐⇒ T ′
ij −m′

ij < b ≤ T ′
ij

⇐⇒ n + 1 − T ′
ij + m′

ij > n + 1 − b ≥ n + 1 − T ′
ij

⇐⇒ n− T ′
ij + m′

ij ≥ n + 1 − b > n− T ′
ij

⇐⇒ R′
ij ≥ n + 1 − b > R′

ij −m′
ij

⇐⇒ Sd+1−j, d+1−i ≥ n + 1 − b > Sd+1−j, d+1−i −md+1−j, d+1−i

⇐⇒ n + 1 − b ∈ (Sd+1−j, d+1−i −md+1−j, d+1−i, Sd+1−j, d+1−i].

Thus we now have that

Td+1−j, d+1−i + Sd+1−j, d+1−i −md+1−j, d+1−i + 1 − (n + 1 − b) = n + 1 − a

where (i, j) is the unique pair such that

n + 1 − b ∈ (Sd+1−j, d+1−i −md+1−j, d+1−i, Sd+1−j, d+1−i].

Changing the variables to I := d + 1 − j and J := d + 1 − i, we get

TI,J + SI,J −mI,J + 1 − (n + 1 − b) = n + 1 − a

where (I, J) is the unique pair such that n + 1 − b ∈ (SI,J −mI,J , SI,J ]. By comparing 
with (4.10), we see that we have arrived at a statement that is equivalent to π(n +1 −b) =
n + 1 − a, as required. �
Example 4.14. Let

a = (0, 0, 0, 1, 1, 0, 2, 2, 2, 2, 0, 3, 1, 1)

and so

π = fAS(a) = (11, 6, 3, 2, 1 | 14, 13, 5, 4 | 10, 9, 8, 7 | 12)

where the vertical bars separate each Wi(a) from Wi+1(a). We have a = fMA(M) where

M =

⎛
⎜⎝

3 1 1 0
0 2 0 2
0 0 4 0
0 0 0 1

⎞
⎟⎠

by (4.3). Thus
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flip(M) =

⎛
⎜⎝

1 0 2 0
0 4 0 1
0 0 2 1
0 0 0 3

⎞
⎟⎠

from which we can read off

a∗ = (0, 1, 1, 1, 1, 2, 2, 0, 0, 3, 3, 3, 2, 1),

yielding

π∗ = (9, 8, 1 | 14, 5, 4, 3, 2 | 13, 7, 6 | 12, 11, 10)

which does indeed equal (comp(rev(π)))−1.
From here on, we give examples of other items appearing in the proof. First, we have 

T33 = 3 + 2 + 1 + 4 = 10, R33 = 2 + 1 + 1 + 4 = 8, S33 = 1 + 1 + 3 + 2 + 2 + 4 = 13, 
T ′

33 = 1 + 4 + 2 = 7, R′
33 = 1 + 1 + 3 + 2 + 2 = 9, and S′

33 = 2 + 1 + 1 + 4 + 1 + 2 = 11. 
Next, consistent with (4.8) and (4.9), we have

π = [14]0[11]1[6]1[3]3 | [14]2[10]0[5]2 | [12]0[10]4 | [12]1,

and

π∗ = [14]0[9]2[5]0[1]1 | [14]1[7]0[5]4 | [13]1[7]2 | [12]3.

Finally, let us give some examples of (4.10), starting with a = 10. To determine π(10)
we find that 10 ∈ (S33 −m33, S33] = (9, 13]. We thus obtain π(10) = T33 + S33 −m33 +
1 − 10 = 10 + 13 − 4 + 1 − 10 = 10. As a increases to 11, 12, 13, the only term that 
changes on the right-hand side of (4.10) is a, and we get 9, 8, 7 for the respectively values 
of π(a). Notice that the four values we obtained here for π(a) are exactly the elements 
of [T33]m33 .

5. A Catalan restriction and series-parallel posets

In this section, we consider subsets of the R-families whose cardinalities are given by 
the Catalan numbers; we thus use the C prefix for naming these subsets. The study of 
these subsets is also motivated by the results of applying our bijections to these subsets, 
which allow us to draw connections between some natural families: pattern-avoiding 
ascent sequences, pattern-avoiding permutations, and series-parallel (2+2)-free posets. 
Pattern avoidance in ascent sequences is studied from an enumerative perspective in [12].

A sequence is said to be abab-avoiding if it is both 0101-avoiding and 1010-avoiding.

Proposition 5.1. Let a be a sequence of non-negative integers. The following are equiva-
lent:
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(a) a is a 101-avoiding ascent sequence;
(b) a is an abab-avoiding ascent sequence;
(c) a is a 0101-avoiding ascent sequence;
(d) a is an abab-avoiding RGF.

Consequently, the number of sequences of length n satisfying these conditions is the 
Catalan number Cn.

Proof. That (a) implies (b) is immediate, as is the implication from (b) to (c). That 
(a) and (c) are equivalent is [12, Theorem 2.5]. Lemma 4.10 gives that (d) implies (b), 
while [12, Lemma 2.4] gives that both (a) or (c) imply (d).

The last assertion is shown in [12, Theorem 2.5] and also follows from the fact that the 
number of sequences a of length n satisfying (d) is shown to be Cn in [21, Exer. 88]. �
Definition 5.2. Let CAscn denote the set of those sequences of length n consisting of 
non-negative integers that satisfy the conditions of Proposition 5.1.

As an example, of the 15 ascent sequences of length 4, the only one containing abab
is 0101. Thus 14 = C4 = |CAsc4|.

It is certainly not the case that CAscn = RAscn since 01021 ∈ RAscn\CAscn. However, 
we do have the following relationship.

Proposition 5.3. CAscn ⊆ RAscn.

Proof. Let a = (a1, . . . , an) be an ascent sequence that is not in RAscn. We will show 
that a violates one of the characterizations of CAscn from Proposition 5.1. By definition 
of RAscn, there exists i such that ai−1 < ai < 1 + asc(a1, . . . , ai−1). If ai = aj for some 
j < i − 1, then ajai−1ai is an occurrence of 101 in a, violating Proposition 5.1(a). If 
aj > ai for some j < i − 1, then the RGF property implied by Proposition 5.1(d) would 
again imply the appearance of the subsequence aiai−1ai in a. Thus we can assume that 
aj < ai for all j with 1 ≤ j ≤ i − 1.

If a ∈ CAscn, we know a is an RGF, so the first appearance aj of any non-zero element 
of (a1, . . . , ai−1) results in position j − 1 contributing +1 to asc(a1, . . . , ai−1). Because 
aj < ai, the combined contribution of these first appearances to asc(a1, . . . , ai−1) is at 
most ai − 1. Since ai − 1 < asc(a1, . . . , ai−1), there must then be a value aj that results 
in at least two ascents, i.e., there must exist j and k such that 1 < j < k ≤ i − 1
with aj = ak such that both j − 1 and k − 1 are ascents. Consequently, ajak−1ak is an 
occurrence of 101 in a, again violating Proposition 5.1(a). �

We next turn to determining the image of CAscn under our bijections. We begin with 
posets since this case is perhaps the most interesting. Recall from Fig. 1.1 that CPosetsn
denotes the series-parallel posets in Posetsn. In other words, CPosetsn consists of those 
posets with n elements that are both (2 + 2)-free and N-free.
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elevel ai

flevel aj

glevel ak

hlevel al

Fig. 5.1. For ease of reference of notation, we give one possible configuration of the N-subposet of P from 
the proof of Proposition 5.4. This is just one of two possible configurations, since there is no mathematical 
reason why level ai should appear below level aj .

Proposition 5.4. fAP : CAscn → CPosetsn, and fAP is a bijection.

Proof. Since fAP : Ascn → Posetsn is a bijection and since CAscn and CPosetsn both have 
size Cn by Proposition 5.1 and [21, Exer. 182], it suffices to prove that fAP(a) ∈ CPosetsn
for any a = (a1, . . . , an) ∈ CAscn. So suppose fAP(a) = P contains an N. Since a ∈ RAscn
by Proposition 5.3, we know that only rules AP1 and AP2 from Definition 2.5 are used 
in constructing P . Let i, j, k, l be distinct positions in a that result (under fAP) in the 
elements e, f, g, h, respectively, of P which form an N as, for example, in Fig. 5.1. Since 
a ∈ CAscn ⊆ RAscn, applying [3, Lem. 7] tells us that e, f, g, h appear at levels ai, aj , 
ak, al respectively of P . Comparing strict downsets, we see that al > ak > aj , ai. There 
are two cases to consider depending on the relative values of the positions k and l.

We first consider the case l > k. Since a is an RGF by Proposition 5.1, in constructing 
P , the first time an element was added at level al it must have been added as a top 
element using the rule AP2. But since h ≯P g, there must be some element h′ at level 
al that was added before g (and so also before h). Thus we have alakal appearing in a, 
contradicting Proposition 5.1(a).

It remains to consider the case l < k. With the same reasoning as the previous 
paragraph, there exists an element g′ at level ak that was added as a top element. Since 
e /∈ Dg and g and g′ are at the same level, we know e /∈ Dg′ . Thus g′ was added to P
before e. On the other hand, since h >P e, we know h was added to P after e, and hence 
so was g. Thus we have akaiak appearing in a, again contradicting Proposition 5.1(a). �

We follow Jelínek [25] to define the family CMatricesn.

Definition 5.5. An SE-pair of a matrix M ∈ Matrices is a pair of non-zero entries mij

and mi′j′ such that i < i′, j < j′ and i′ ≤ j. We say that M is SE-free if it contains no 
SE-pair.

In [25, Lem. 1.2], Jelínek shows that P ∈ Posets is series-parallel if and only if fPM(P )
is SE-free.
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Definition 5.6. Define CMatricesn to be the subset of Matricesn consisting of those ele-
ments that are SE-free.

Finally, we determine the C-family for permutations. The answer is quite appealing, 
namely CPerms = Sn(231).

Remark 5.7. At this point, it is worth clarifying the containment relations of Fig. 1.1. We 
already showed in Proposition 5.3 that if a ∈ Asc, then a being 101-avoiding automati-
cally implies that a is self-modified. That the analogous implications hold for the other 
three C-families follows from Theorem 5.9, but can also be checked directly as follows:

◦ If π ∈ Sn(231) then π ∈ Sn(31524) by definition of Sn(31524).
◦ If M ∈ Matrices is a k-by-k matrix that is SE-free, then it must have only positive 

diagonal entries. To see this, suppose mii = 0 for some i. By definition of Matrices, 
we have 2 ≤ i ≤ k − 1, and there must exist an SE-pair formed by mai and mib

where 1 ≤ a < i and i < b ≤ k.
◦ We leave it as an exercise to show that if P ∈ Posets is series-parallel, then P has a 

chain of length �(P ).

Proposition 5.8. fAS maps CAscn bijectively to CPerms.

Proof. The definition of CAscn and the fact that fAS is a bijection tells us that 
|fAS(CAscn)| = Cn. As is well known, Cn is also the cardinality of CPerms. Thus it 
suffices to show that CPerms ⊆ fAS(CAscn). Crucial to our proof is that, from Proposi-
tions 5.1(a) and 5.3, we have CAscn = RAscn(101).

Corollary 3.8(c) and the definition of RPerms give fAS(RAscn) = RPerms ⊇ CPerms. 
Thus if fAS(a) ∈ CPerms, then a ∈ RAscn. We wish to show the more refined fact 
that a ∈ CAscn, i.e., that a avoids 101. So suppose that a contains a 101 pattern as 
(ai, aj , ak) = (d, c, d). Then in fAS(a), using the definition of fAS(a) given in (4.4), j will 
be in Wc(a) which is to the left of Wd(a). In Wd(a), k will be to the left of i since k > i. 
Thus (j, k, i) will be a 231 pattern in fAS(a), which is the desired contradiction. �

We now have all the necessary ingredients to compile the following “Catalan” refine-
ment of Corollary 3.8

Corollary 5.9. The classical bijections among Ascn, Matricesn, Posetsn and Perms restrict 
to bijections among CAscn, CMatricesn, CPosetsn and CPerms. Specifically,

(a) fAP maps CAscn bijectively to CPosetsn;
(b) [25] fPM maps CPosetsn bijectively to CMatricesn;
(c) fAS maps CAscn bijectively to CPerms.
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6. Open problems

Comparing our bijections, the definition of those between Matrices and Posets are 
perhaps the simplest, which helps with our understanding of that correspondence. In 
particular, although we determined in Section 4 the effect of poset duality on just the 
R-families, the result from [9] that M∗ = flip(M) given in Example 4.2 holds for all 
M ∈ Matrices. At the other extreme, the bijections fAM, fAP, and their inverses are the 
most complicated, especially because of the cases AM3 and AP3. It is not surprising, 
therefore, that our open problems all involve ascent sequences.

As we have already mentioned, we have not answered the following question of [11]
for a ∈ Asc \ RAsc.

Problem 6.1. Given P ∈ Posets with fPA(P ) = a, how do we obtain fPA(P ∗) from a?

The following problem has already been considered in [16,17].

Problem 6.2. Under fAP, which ascent sequences give rise to posets that are both (2+2)-
free and (3+1)-free?

Posets that are both (2+2)- and (3+1)-free are known as semiorders or unit interval 
orders, and it is well known that they are counted by the Catalan numbers. Analogous 
to Problem 6.2, a question already answered by [9, Prop. 16] is to determine those 
M ∈ Matrices that map under fMP to semiorders. The answer is those M such that there 
does not exist i > i′ and j < j′ with mijmi′j′ �= 0. For example, in Fig. 2.1, m33m24 �= 0
while {p3, p4, p5, p6} form a (3+1) in P .

Obtaining sets in bijection with semiorders can be motivated by a famous problem in 
symmetric functions: a conjecture of Stanley and Stembridge [22] states that the chro-
matic symmetric functions of incomparability graphs of (3+1)-free posets are e-positive. 
Guay-Paquet [18] has reduced this conjecture to the case of semiorders. So perhaps an 
alternative characterization of semiorders would give insight into the conjecture. For ex-
ample, we have a characterization of semiorders in terms of matrices M in the previous 
paragraph, and [9, Lem. 15] tells us an easy way to identify which elements of fMP(M)
are incomparable.

Finally, Proposition 5.4 suggests the following modification of Problem 6.2.

Problem 6.3. Under fAP, which ascent sequences give rise to posets that are (2+2)-free, 
(3+1)-free and N-free?
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