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Abstract

Let W be a Weyl group whose type is a simply laced Dynkin diagram. On several W -orbits of sets of
mutually commuting reflections, a poset is described which plays a role in linear representations of the
corresponding Artin group A. The poset generalizes many properties of the usual order on positive roots of
W given by height. In this paper, a linear representation of the positive monoid of A is defined by use of the
poset.
© 2006 Published by Elsevier Inc.
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1. Introduction

The beautiful properties of the high root used in [5] to construct Lawrence–Krammer repre-
sentations of the Artin group with non-commutative coefficients have analogues for certain sets
of orthogonal roots. We study these properties and exploit them to construct a linear representa-
tion of the Artin monoid. In many instances, the monoid representation extends to an Artin group
representation; this will be the subject of subsequent work.

Let M be a Coxeter diagram of simply laced type, i.e., its connected components are of type A,
D or E. The Lawrence–Krammer representation [1,4,7,9] has a basis consisting of positive roots
of the root system of the Weyl group W = W(M) of type M . Here we use instead, a W -orbit
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B of sets of mutually orthogonal positive roots. Not all W -orbits of this kind are allowed; we
call those which are allowed, admissible (cf. Definition 1; a precise list for M connected is in
Table 2). In the Lawrence–Krammer representation we used the partial ordering of the positive
roots given by β � γ iff γ − β is a sum of positive roots with non-negative coefficients. In
Proposition 3.1 we generalize this ordering to an ordering (B,<) on every admissible W -orbit
B of mutually orthogonal roots. In the action of w ∈ W on a set B ∈ B the image wB is the set
of positive roots in {±wβ | β ∈ B}. In the single root case, there is a unique highest element, the
well-known highest root. This property extends to (B,<): there is a unique maximal element B0

in B (cf. Corollary 3.6).
In the Lawrence–Krammer representation, the coefficients were obtained from the Hecke

algebra whose type is the subdiagram of M induced on the set of nodes i of M whose cor-
responding fundamental root αi is orthogonal to the highest root. Here, the coefficients are
obtained from the Hecke algebra Z whose type is the subdiagram of M induced on the nodes
i whose corresponding fundamental root αi is orthogonal to each element of B0. Moreover,
in the Lawrence–Krammer representation, to each pair of a positive root β and a node i with
corresponding fundamental root αi such that (αi, β) = 0, we assigned an element hβ,i of the co-
efficient algebra. It occurs in the definition of the action of a fundamental generator of the Artin
group A in the Lawrence–Krammer representation, on the basis element β . For the analogous
purpose, we introduce elements hB,i (Definition 2) in the corresponding coefficient algebra Z.
These elements are parameterized by pairs consisting of an element B of B and a node i of M

such that the corresponding fundamental root αi is orthogonal to all of B .
In analogy to the developments in [5] we define a right free Z-module V with basis xB (B ∈ B)

which is a left module for the positive monoid A+ of the Artin group A of type M . For each node
i of M , the ith fundamental generator si of A+ maps onto the linear transformation τi on V given
by the following case division.

τixB =

⎧⎪⎪⎨
⎪⎪⎩

0 if αi ∈ B,

xBhB,i if αi ∈ B⊥,

xriB if riB < B,

xriB − mxB if riB > B.

(1)

This leads to the following main result of this paper.

Theorem 1.1. Let W be a Weyl group of simply laced type. For B an admissible W -orbit of sets
of mutually orthogonal positive roots, there is a partial order < on B such that the above defined
map si �→ τi determines a homomorphism of monoids from A+ to End(V ).

In the sections below we deal with this construction in detail; the proof of the theorem is in
Section 5.

When labeling the nodes of an irreducible diagram M , we will choose the labeling of [3].
If M is disconnected, the representations are easily seen to be a direct sum of representations
corresponding to the components. Since the poset construction also behaves nicely, it suffices to
prove the theorem only for M connected. Therefore, we will assume M to be connected for the
greater part of this paper.



1648 A.M. Cohen et al. / Journal of Combinatorial Theory, Series A 113 (2006) 1646–1666
2. Admissible orbits

Let M be a spherical Coxeter diagram. Let (W,R) be the Coxeter system of type M with
R = {r1, . . . , rn}. Throughout this paper we shall assume that M is simply laced, which means
that the order of each product rirj is at most 3.

By Φ+ we denote the positive root system of type M and by αi the fundamental root cor-
responding to the node i of M . We are interested in sets B of mutually commuting reflections.
Since each reflection is uniquely determined by a positive root, the set B corresponds bijectively
to a set of mutually orthogonal roots of Φ+. We will almost always identify B with this subset
of Φ+. The action of w ∈ W on B is given by conjugation in case B is described by reflections
and by w{β1, . . . , βp} = Φ+ ∩ {±wβ1, . . . ,±wβp} in case B is described by positive roots. For
example, if ri is the reflection about αi , then ri{αi} = {αi} as riαi = −αi .

The W -orbit B of a set B of mutually orthogonal positive roots is the vertex set of a graph
with edges labeled by the nodes of M , the edges with label j being the unordered pairs {B, rjB}
(so rjB �= B) for B ∈ B. The results of Section 3 show that if B is admissible, the edges of this
graph can be directed so as to obtain a partially ordered set (poset) having a unique maximal
element. This section deals with the notion of admissibility.

For nodes i, j of M we write i ∼ j to indicate that they are adjacent. We let ht(β) be the usual
height of a root β ∈ Φ+ which is

∑
i ai where β = ∑

aiαi .

Proposition 2.1. Let M be of simply laced type. Every set B of mutually orthogonal positive
roots satisfies the following properties for j ∈ M and β,γ ∈ B .

(i) There is no node i for which (αi, β) = 1, (αi, γ ) = −1 and ht(β) = ht(γ ) + 1.
(ii) Suppose (αj ,β) = −1 and (αj , γ ) = 1 with ht(γ ) = ht(β) + 2. Then there is no node i for

which αi ∈ B⊥ and i ∼ j .

Proof. Let B be a set of mutually orthogonal positive roots, and β,γ ∈ B .
(i) Suppose there is a node i for which (αi, β) = 1, (αi, γ ) = −1 and ht(β) = ht(γ ) + 1. As

β and γ are orthogonal we have (β, γ + αi) = 1 so β − γ − αi ∈ Φ . This is not possible as
ht(β − γ − αi) = 0.

(ii) Let β and γ be as in the hypothesis and assume there is an i for which αi ∈ B⊥ and
i ∼ j . Then (αi, γ − αj ) = 1, so γ − αj − αi is a root. As ht(γ ) = ht(β) + 2 we have ht(γ −
αj − αi) = ht(β). But (β, γ − αj − αi) = 1, so β − γ + αj + αi is a root which contradicts
ht(β − γ + αj + αi) = 0. �
Definition 1. Let B be a W -orbit of sets of mutually orthogonal positive roots. We say that B is
admissible if for each B ∈ B and i, j ∈ M with i � j and γ, γ −αi +αj ∈ B , we have riB = rjB .

Not all W -orbits on sets of mutually orthogonal positive roots are admissible. The W -
orbit of the triple B = {γ,α2 + α3 + α4, α1 + · · · + α5} of positive roots for M = D5, where
γ = α1 + α2 + α3, is a counterexample with i = 1 and j = 4. Suppose that M is disconnected
with components Mi . Then B is admissible if and only if each of the corresponding W(Mi)-
orbits is admissible. So there is no harm in restricting our admissibility study to the case where
M is connected. In that case, Proposition 2.3 below gives a full characterization of admissible
orbits.
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If i is a node and β a root with (αi, β) = ±1, then we say that ri moves β .

Lemma 2.2. Let r be a reflection in W and let β,γ be two mutually orthogonal positive roots
moved by r . Then there exists a reflection s which commutes with r such that {β} = rs{γ }.

Proof. Let δr be the positive root corresponding to the reflection r . Now r{β} = {±β ± δr}∩Φ+
and (γ,β ± δr ) = ±(γ, δr ). Using this we can construct a new positive root δ depending on
(β, δr ), (γ, δr ) as indicated in the table below.

(β, δr ) (γ, δr ) ±δ

1 1 β + γ − δr
1 −1 β − γ − δr
−1 1 β − γ + δr
−1 −1 β + γ + δr

It is easy to check that the reflection s with root δ commutes with r and indeed {β} =
rs{γ }. �
Proposition 2.3. Let M be connected. The following statements concerning a W -orbit B of sets
of mutually orthogonal positive roots are equivalent.

(i) B is admissible.
(ii) For each pair r , s of commuting reflections of W , each B ∈ B and each γ ∈ Φ+ such that

γ and rsγ both belong to B , we have rB = sB .
(iii) For each reflection r of W and each B ∈ B the size of rB \ B is one of 0,1,2,4.
(iv) B is one of the orbits listed in Table 2.

Below in the proof we show that four is the maximum possible roots in rB \ B which can be
moved and so only three is ruled out in part (iii).

Proof. (i) ⇒ (ii). By (i), assertion (ii) holds when r and s are fundamental reflections. The
other cases follow by conjugation since each pair of commuting reflections is conjugate to a
pair of fundamental conjugating reflections. (As each reflection is conjugate to a fundamental
reflection, the reflections orthogonal to it can be determined and the system of roots orthogonal
to a reflection has the type obtained by removing nodes connected to the extending node of the
affine diagram.)

(ii) ⇒ (iii). When all r, s ∈ W move at most two mutually orthogonal roots, the implication
holds trivially. If r would move five mutually orthogonal roots then the 6 × 6 Gram matrix for
these roots together with the root of r is not positive semi-definite as its determinant is −16, a
contradiction. Hence r moves at most 4 roots.

Assume we have a B ∈ B such that r moves precisely three roots of B , say β1, β2, β3. By
Lemma 2.2 we know there exists a reflection s such that β1 = rsβ2. Now β2 = β1 ± δr ± δs with
δr , δs the positive roots corresponding to r and s, respectively. As β3 is orthogonal to β1 and β2,
we find (β3, δs) = ±(β3, δr ), so s moves β3 as well. But obviously rβ3 �= sβ3, so rB �= sB ,
which contradicts (ii).

(iii) ⇒ (i). Let B ∈ B and i, j ∈ M with i � j and γ, γ − αi + αj ∈ B . When both ri, rj do
not move any other root then riB = rjB . Without loss of generality we can assume ri moves four
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Table 1
For M = An we have t � n+1

2 and for M = Dn we have t � n
2

M |B| B

An t {α1, α3, . . . , α2t−1}
Dn t + k {αi ,βi | i = 1,3, . . . ,2k − 1} ∪ {αi | i = 2k + 1,2k + 3, . . . ,2t − 1}
Dn n/2 {α1, α3, . . . , αn−3, αn}
E6 1 {α2}
E6 2 {α2, α5}
E6 3 {α2, α3, α5}
E6 4 {α2, α3, α5, α2 + α3 + 2α4 + α5}
E7 1 {α2}
E7 2 {α2, α5}
E7 3 {α2, α5, α7}
E7 3 {α2, α3, α5}
E7 4 {α2, α3, α5, α7}
E7 4 {α2, α3, α5, α2 + α3 + 2α4 + α5}
E7 5 {α2, α3, α5, α7, α0}
E7 6 {α2, α3, α5, α7, α2 + α3 + 2α4 + α5, α0}
E7 7 {α2, α3, α5, α7, α2 + α3 + 2α4 + α5, α2 + α3 + 2α4 + 2α5 + 2α6 + α7, α0}
E8 1 {α2}
E8 2 {α2, α5}
E8 3 {α2, α3, α5}
E8 4 {α2, α3, α5, α7}
E8 4 {α2, α3, α5, α2 + α3 + 2α4 + α5}
E8 5 {α2, α3, α5, α7, α0}
E8 6 {α2, α3, α5, α7, α0, ᾱ0}
E8 7 {α2, α3, α5, α7, α2 + α3 + 2α4 + α5, α0, ᾱ0}
E8 8 {α2, α3, α5, α7, α2 + α3 + 2α4 + α5, α2 + α3 + 2α4 + 2α5 + 2α6 + α7, α0, ᾱ0}
For M = Dn we write βn−1 = αn and β2t+1 = αn + αn−1 + 2αn−2 + · · · + 2α2t+2 + α2t+1.
In E7 and E8 we use α0 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 and ᾱ0 = 2α1 + 3α2 +
4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8, the respective highest roots.

roots of B . Let β be a third root in B moved by ri . As β has to be orthogonal to γ, γ − αi + αj

we find (αi, β) = (αj ,β), so β − αi − αj or β + αi + αj is a positive root as well. This root is
also moved by ri and mutually orthogonal to γ, γ − αi + αj and β .

So now {γ, γ − αi + αj ,β,β − αi − αj } ⊆ B . But these 4 roots are also the roots moved
by rj . We know from above that 4 is the maximal number of mutually orthogonal roots moved
by ri (or by rj for that matter). We find riB = rjB which proves B is admissible.

At this point we have achieved equivalence of (i), (ii), and (iii), a fact we will use throughout
the remainder of the proof.

(iii) ⇒ (iv). In Table 1, we have listed all W -orbits of sets of mutually orthogonal positive
roots. It is straightforward to check this (for instance by induction on the size t of such a set),
so we omit the details. For all orbits in Table 1 but not in Table 2 we find, for some set B in the
orbit B, a reflection r which moves precisely three roots.

We will use the observation that if B belongs to a non-admissible orbit for W of type M , then
it also does not belong to an admissible orbit for W of any larger type.
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Table 2
Each row contains the type M , the size of B ∈ B, the size of the W -orbit B containing B ,
the Coxeter type Y of the roots orthogonal to B , the type of the Hecke algebra C defined in
Corollary 4.3, and the structure of the normalizer in W of B , respectively

M |B| |B| Y C NW (B)

An t
(n+1)!

2t t !(n−2t+1)! An−2t An−2t 2t St Sn+1−2t

Dn t n!
t !(n−2t)! At

1Dn−2t A1Dn−2t 22t StW(Dn−2t )

Dn 2t n!
2t t !(n−2t)! Dn−2t An−2t−1 22tW(Bt )W(Dn−2t )

E6 1 36 A5 A5 2S6

E6 2 270 A3 A2 22+1S4

E6 4 135 ∅ ∅ 24S4

E7 1 63 D6 D6 2W(D6)

E7 2 945 A1D4 A1D4 22+1+1W(D4)

E7 3 315 D4 A2 23S3W(D4)

E7 4 945 A3
1 A1 24+3S4

E7 7 135 ∅ ∅ 27L(3,2)

E8 1 120 E7 E7 2W(E7)

E8 2 3780 D6 A5 22+1W(D6)

E8 4 9450 D4 A2 24S3W(D4)

E8 8 2025 ∅ ∅ 28+3L(3,2)

In the first line for Dn, we define Dn−2t as being empty if n − 2t � 1. Only one of the roots
εi ± εj occur for roots in the first line of Dn. For roots in the second line, both occur.

For M = Dn the sets not in Table 2 contain at least one pair of roots εi − εj , εi + εj but also at
least one root εp ± εq without the corresponding other positive root containing εp, εq . (Here the
εi are the usual orthogonal basis such that Φ+ = {εi ± εj | i < j}.) For these sets the reflection
corresponding to a positive root εj ± εq moves precisely three roots.

Suppose M = En. The orbit of sets of three mutually orthogonal roots which is not in Table 2
is the orbit of {α2, α3, α5}, which is not admissible in the subsystem of type D4 corresponding to
these three roots and α4, as r4 moves all three roots.

The orbit of four mutually orthogonal positive roots not in Table 2 contains the set
{α2, α3, α5, α7} and r4 moves exactly three of these.

The orbit of five mutually orthogonal positive roots not in Table 2 contains the set
{α2, α3, α5, α7, α0} and r4 moves again exactly three of these.

If M = E7, the orbit of sets of six mutually orthogonal positive roots containing {α2, α5, α7,

α3, α2 + α3 + 2α4 + α5, α0} remains. Clearly the reflection r1 moves only the last three roots. If
M = E8, the orbit of sets of six mutually orthogonal positive roots is not admissible as it contains
the orbit of E7 we just discussed.

Finally the orbit of seven mutually orthogonal positive roots in E8 contains {α2, α3, α5, α2 +
α3 + 2α4 + α5, α7, α0, ᾱ0}. Here the reflection r8 moves only the last three roots.

(iv) ⇒ (iii). All orbits for type An are admissible as here every reflection moves at most two
mutually orthogonal roots.

All sets in the first collection of orbits in Dn contain from every pair of roots εi − εj , εi + εj

at most one element. So again as for An, every reflection moves at most two mutually orthogonal
roots.
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All sets in the second collection of orbits in Dn contain from every pair of roots εi −εj , εi +εj

both roots or none of them. So every reflection here will always move an even number of roots,
so the size of rB \ B is equal to 0,2 or 4.

The orbits in En of sets containing fewer than three roots are admissible as every reflection
will never move more than two roots. For the remaining six orbits it is an easy exercise to verify
for one chosen set that every reflection moves indeed 0,1,2 or 4 roots. �

We finish this section with some further comments on Table 2. If B is a set of mutually
orthogonal positive roots as indicated in Table 2, then the type Y of the system of all roots
orthogonal to B is listed in the table. In the final column of the table we list the structure of
the stabilizer in W acting on B. If B has an element B all of whose members are fundamental
roots, this stabilizer can be found in [8]. Two distinct lines represent different classes; sometimes
even more than two, in which case they fuse under an outer automorphism (so they behave
identically). This happens for instance for M = Dn (first line) with n = 2t . In the second line for
Dn, the permutation action is not faithful.

3. Posets

In this section we show that admissible orbits carry a nice poset structure. An arbitrary W -
orbit of sets of mutually orthogonal positive roots has an ordering satisfying all of the properties
of the proposition below except for (iii).

We will need various properties involving the actions of the ri on an admissible W -orbit B.
Clearly, if αi ∈ B⊥, then riB = B . As described earlier, if αi is in B then also riB = B . If
(αi, β) = ±1, that is, ri moves β then, with Proposition 3.1(i) in mind, we see riB �= B and we
say that ri lowers B if there is a root β of minimal height in B among those moved by ri that
satisfies β − αi ∈ Φ . We say that ri raises B if there is a root β of minimal height in B among
those moved by ri such that β +αi is a root and ri does not lower B . We also use this for a single
positive root β: if β + αi is a root, we say ri raises β and if β − αi is a root we say ri lowers β .

Proposition 3.1. Let M be a spherical simply laced diagram and B an admissible W -orbit of
sets of mutually orthogonal positive roots. Then there is an ordering < on B with the following
properties.

(i) For each node i of M and each B ∈ B, the sets B and riB are comparable. Furthermore,
if (αi, β) �= 0 for some β ∈ B , then riB �= B and riB < B if ri lowers B and riB > B if ri
raises B .

(ii) Suppose i ∼ j and αi ∈ B⊥. If rjB < B , then rirjB < rjB . Also, rjB > B implies rirjB >

rjB .
(iii) If i � j , riB < B , rjB < B , and riB �= rjB , then rirjB < rjB and rirjB < riB .
(iv) If i ∼ j , riB < B , and rjB < B , then either rirjB = rjB or rirjB < rjB , rj riB < riB ,

rirj riB < rirjB , and rirj riB < rj riB .

It readily follows from the existence result that there is a unique minimal ordering < satisfying
the requirements of the proposition (it is the transitive closure of the pairs (B, rjB) for B ∈ B
and j a node of M such that rjB > B). The poset (B,<) with this minimal ordering is called
the monoidal poset (with respect to W ) on B (so B should be admissible for the poset to be
monoidal).
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Proof. We define the relation < on B as follows: for B,C ∈ B we have B < C iff there are
β ∈ B \C and γ ∈ C \B , of minimal height in B \C, respectively C \B , such that ht(β) < ht(γ ).
It is readily verified that < is an ordering. We show that it also satisfies properties (i)–(iv).

(i) If αi is orthogonal to each member of B or αi ∈ B , then riB = B , so B and riB are
comparable. So we may assume that (αi, β) = ±1 for at least one β . Notice if (β,αi) = ±1, that
riβ = β ± αi is in Φ but not in B as (β,β ± αi) = 2 ± 1 �= 0 whereas different elements of B

are orthogonal. In particular, riB �= B . If (β,αi) = ±1 holds for exactly one member of B , then
clearly riB and B are comparable. Suppose now B and riB are not comparable. Then there exist
at least one root β of minimal height in B \ riB and one γ ∈ B such that ht(β) = ht(riγ ) and
riγ is an element of minimal height in riB \ B . Clearly β �= riγ as they are in different sets by
their definition. As γ ∈ B \ riB we have ht(γ ) � ht(β) by our assumption that β is of minimal
height in B \ riB . As ht riγ = htβ we have (αi, γ ) = 1. Also riβ ∈ riB \ B and as riγ with
ht(riγ ) = ht(β) is of minimal height in riB \ B we see ht(riβ) � ht(riγ ). In particular, we must
have (αi, β) = −1. But according to Proposition 2.1(i), this never occurs.

(ii) By the assumption rjB < B , there is a root β ∈ B of minimal height among those moved
by rj such that β − αj ∈ rjB . Then β − αj is minimal among those moved by ri in rjB and
β − αi − αj ∈ rirjB , so rirjB < rjB .

The proof for the second assertion is a bit more complicated. By the assumption rjB > B ,
there is no root β ∈ B of minimal height among those moved by rj such that β − αj ∈ rjB .
Indeed all that are moved go to β +αj in rjB . Suppose that δ has minimal height among the roots
moved by ri in rjB . This implies δ = γ ± αj for some γ ∈ B . If δ = γ + αj for all choices of δ,
then rirjB > rjB , as ri(γ + αj ) = γ + αj + αi . So assume that δ = γ − αj has minimal height
among the roots moved by ri in rjB for some γ ∈ B . Let h be the minimal height of all elements
of B moved by rj . We know each of these roots is raised in height by rj and so γ is not one of
them. In particular, ht(γ ) > h. Also ht(γ )−1 = ht(δ) � h+1. It follows that ht(γ ) � h+2. The
two cases are γ has height h + 1 or h + 2. By Condition (i) for Proposition 2.1 for γ and β the
case h + 1 is ruled out. But then Condition (ii) of Proposition 2.1 with αi , γ , and β rules out the
case h + 2.

(iii) Suppose rjB < B and riB < B with riB �= rjB . Choose β an element of smallest height
in B moved by rj for which β −αj is a root. Choose γ an element of smallest height in B moved
by ri with γ −αi a root. We are assuming β −αj is a root. This means as (αi, αj ) = 0 that β ±αi

is a root if and only if β − αj ± αi is a root.
To prove the result we will get a contradiction if we assume ri raises rjB . Suppose then ri

raises rjB . In this case all elements ζ of smallest height in rjB which are moved by ri have
ζ + αi as roots. We will show first that γ − αj is not a root. If it were, ri lowers it as γ − αi is
a root. This means it is a root of smallest height moved by ri as γ is a root of smallest height
moved by ri in B and in rjB this has height one smaller. But it is lowered, not raised. This means
γ − αj is not a root.

Depending on (γ,αj ), either γ or γ + αj is a root of rjB . Suppose (γ,αj ) = 0 and so γ is a
root of rjB . As ri raises rjB , all elements of smallest height moved by ri must be raised. As γ

is lowered, there must be an rj δ ∈ rjB with δ − αj a root of rjB and ht(δ − αj ) less than ht(γ ).
Its height must be one less than ht(γ ) as heights are lowered at most one by rj . Now in rjB , the
elements δ − αj and γ contradict condition (i) for Proposition 2.1. Suppose then γ + αj is root.
The smallest height of elements for which ri moves roots in rjB is now either ht(γ ) or ht(γ )−1.
(It cannot be ht(γ ) + 1 as γ + αj is lowered.) If it is height ht(γ ) there is an element δ of height
ht(γ ) which is raised by ri . Now δ and γ + αj contradict Condition (i) of Proposition 2.1.
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We are left with one case in which an element of height ht(γ ) − 1 in rjB is raised by ri .
This means there is δ in B of height ht(γ ) which is lowered by rj and raised by ri . Recall γ

is lowered by ri and raised by rj . As i � j we have δ + αi − αj , γ + αj − αi in rirjB . Now
(δ, γ +αj −αi) = 2 so δ = γ +αi −αj . By admissibility of B we have riB = rjB contradicting
the starting assumptions.

(iv) We shall use the results of the following computations throughout the proof. Let ε ∈ B and
write ρ = (αi, ε) and σ = (αj , ε). Then ε−ραi = ri(ε), ε−σαj = rj (ε), ε−(ρ+σ)αi −σαj =
rirj (ε), ε − ραi − (ρ + σ)αj = rj ri(ε), ε − (ρ + σ)(αi +αj ) = rj rirj (ε) = rirj ri(ε). Note that
ρ = σ = 1 would imply (αj , ε − αi) = 2, whence ε = αi + αj . This means rirjB = rjB . To see
this, suppose αi + αj ∈ B . Then αi ∈ rjB as it is rj (αi + αj ). Now all other elements of rjB are
orthogonal to αi as αi is one of the elements. Now rirjB = rjB . So we can assume this does not
occur.

By assumption, there are β,γ ∈ B such that β − αi ∈ riB and γ − αj ∈ rjB and such that
ht(β),ht(γ ) are minimal with respect to being moved by αi , αj , respectively. By symmetry, we
may also assume that ht(β) � ht(γ ).

If β = γ , then (αi, β) = (αj , γ ) = 1, a case that has been excluded. Therefore, we may assume
that β and γ are distinct. In particular, (αj ,β) is 0 or −1.

Suppose first that a β can be chosen so that (αj ,β) = 0. This is certainly the case if ht(β) <

ht(γ ). Now β − αi − αj ∈ rirjB , so β − αi ∈ riB is a root of smallest height moved by rj and
so rj riB < riB . Recall from our choice no root of height smaller than ht(β) is moved by ri .

Since β ∈ rjB and β − αi ∈ rirjB , we have rirjB < rjB unless there is δ ∈ B with δ − αj ∈
rjB , ht(δ −αj ) = ht(β)−1, and (αi, δ −αj ) = −1. But then the inner products show δ = −αi is
not a positive root. Notice this shows δ − αj + ai cannot be a root. Hence, indeed, rirjB < rjB .

Since β −αi −αj ∈ rj rirjB and β −αi ∈ rirjB , a similar argument to the previous paragraph
shows that rj rirjB < rirjB .

It remains to show rj rirjB < rj riB . Both sides contain β − αi − αj and ri does not lower or
raise rj riβ . We need to look at the δ in B of height up to ht(γ ). We know that for δ with ht(δ) <

ht(γ ) that (δ,αj ) = 0. Looking at the equations above with σ = 0 we see ri does not change
rj riδ = δ − ρ(αi + αj ). We also know that (γ,αj ) = 1. This means σ = 1. Using the equations
again with σ = 1 and ρ we must compare γ − ρ(αi + αj ) − αj with γ − ρ(αi + αj ) − αj − αi

which is lower. In particular, rirj riB < rj riB .
Suppose then that (αj ,β) = −1. This means, in particular, that ht(β) = ht(γ ). If (αi, γ ) = 0

we can use the argument above. We are left then with the case in which (αi, γ ) = 1, (αj ,β) = 1,
(αi, β) = −1, (αj , γ ) = −1, and of course (αi, αj ) = −1.

This means γ − αi and β − αj are positive roots of height ht(β) − 1. But (γ − αi,β − αj ) =
0 + 1 + 1 − 1 = 1 so by subtracting one root from the other, we should get another positive root.
As both roots are of the same height, this would give a root of height 0 which is not possible,
proving this case never arises. �

We showed during the proof that if αi +αj ∈ B and i ∼ j , then rirjB = rjB . This is case (iv)
of Proposition 3.1. The following lemma shows this is if and only if.

Lemma 3.2. Suppose that (B,<) is a monoidal poset for (W,R) for which rirjB = rjB with
i ∼ j . If riB < B and rjB < B , then αi + αj ∈ B .

Proof. Suppose αi + αj is not in B . Let β be an element of smallest height moved in B by rj
for which β −αj is a root. Such a root exists because rjB < B . As αi +αj is not in B , we know
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β −αj �= αi , and even αi is not in rjB . It follows as rirjB = rjB that αi ∈ (rjB)⊥. In particular,
ri(β − αj ) is in rjB . As β − αj ± αi is not orthogonal to β − αj we must have β + αi a root.
Now rj lowers β and ri raises β .

As riB < B there exists γ , an element of smallest height in B moved by ri for which γ − αi

is a root. We know ht(γ ) � ht(β) as ri moves β . Suppose (γ,αj ) = 0. Then γ ∈ rjB and riγ =
γ − αi is also in rjB . This contradicts the hypothesis that elements of riB are all orthogonal.
This implies (γ,αj ) = ±1. This in turn means ht(β) � ht(γ ) as ht(β) is the height of the smallest
element moved by rj . Now we have ht(β) = ht(γ ). If γ − αi and γ − αj were both roots, an
inner product computation would show (γ,αi + αj ) = 2 so γ = αi + αj . This means γ + αj is
a positive root, so in rjB we have β − αj and γ + αj contradicting (i) of Proposition 2.1. �

In order to address the monoid action later we will need some more properties of this action
in terms of lowering and raising. We begin with the case in which two different fundamental
reflections act the same on a member B of B.

Before we begin we need to examine the case in which some B has two indexes which raise
it to the same B ′. In particular, we have

Lemma 3.3. Suppose B ∈ B and riB = rkB > B with k �= i. If β is the element of B of smallest
height moved by either ri or rk , then β + αi + αk is also in B . Furthermore, i � k.

Proof. Let β be an element of smallest height in B moved by either ri or rk . We know that
all elements of smaller height are not moved by ri and rk . Elements of the same height could
be moved by ri or rk , but then the root would have to be added. Suppose (αi, β) = −1, so
riβ = β + αi . If (αk,β) = 0, then β ∈ rkB = riB as is β + αi and so (β,β + αi) = 2 − 1 �= 0,
which contradicts that elements of riB are mutually orthogonal. In particular, (αk,β) = −1 (for
otherwise, (αk,β) = 1 and so rkB < B).

If i ∼ k, then (αi, αk) = −1, and so (αk,β + αi) = −2, which implies that β + αi = −αk ,
contradicting that β + αi be a positive root. This means i � k which proves the last part of the
lemma.

Now by hypothesis rirkB = B and so β + αk + αi is in B which proves the remainder of the
lemma. �

Notice that if β and β +αi +αk are two roots in B with (αi, αk) = 0, (β,αi) = (β,αk) = −1,
the hypothesis of the lemma is satisfied, and ri maps β to β + αi and β + αi + αk to β + αk .
Acting by rk has the same effect except the order of the roots has been interchanged.

Lemma 3.4. Suppose (B,<) is a monoidal poset for (W,R). Let B ∈ B and let i, j ∈ M and
β,γ ∈ B . Then the following assertions hold.

(i) If i � j and rirjB < riB < B , then rirjB < rjB < B .
(ii) If i � j , B < riB , B < rjB , and riB �= rjB , then rirjB > riB and rirjB > rjB .

(iii) If i ∼ j , B < riB , and B < rjB , then riB < rj riB < rirj riB , and rjB < rirjB < rj rirjB .
(iv) If i ∼ j and rj rirjB < rj riB < riB < B , then also rj rirjB < rirjB < rjB < B .
(v) If αi /∈ B⊥ ∪ B , then either riB < B or riB > B .
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Proof. We can refer to Proposition 3.1 for the properties of (B,<).
(i) If rjB = rirjB , then also riB = B , a contradiction. Suppose rirjB > rjB . Then, by

transitivity B > rjB . Also B > riB by hypotheses. Notice if riB = rjB , rirjB = r2
i B = B

but rirjB < B . Now rirjB < rjB by Proposition 3.1(iii), a contradiction. Hence, by Proposi-
tion 3.1(i), rirjB < rjB .

If rjB = B , then also riB = rirjB , a contradiction. Suppose rjB > B . Then, by transi-
tivity, rjB > rirjB . Therefore, Proposition 3.1(iii) gives rirjB > rj rirjB = riB , a contradic-
tion. Hence, by Proposition 3.1(i), rjB < B . But also riB < B , so Proposition 3.1(iii) gives
rirjB < rjB (and rirjB < riB).

(ii) If rirjB = riB , then rjB = B , a contradiction. If rirjB < riB , then, by Proposition 3.1(iii)
applied to riB we have rjB < B , a contradiction. Hence by Proposition 3.1(i), rirjB > riB . The
proof of rirjB > rjB is similar.

(iii) Suppose rirjB = rjB . If αi ∈ (rjB)⊥, then, as rj lowers rjB , by Proposition 3.1(ii) ri
lowers rj rjB = B which is a contradiction. This means αi ∈ rjB and so αi + αj ∈ B . Notice
neither αi nor αj are in B as they are not orthogonal to αi + αj . As both ri and rj raise B , there
must be k, l, with i ∼ k and j ∼ l with αk and αl in B . Neither are orthogonal to αi + αj and
this is impossible. This means rirjB �= rjB .

Suppose rirjB < rjB . We cannot have rirjB = rj rjB = B by Lemma 3.3. Now Propo-
sition 3.1(iv) gives riB < B , a contradiction. Hence rirjB > rjB . The roles of i and j are
symmetric, so similarly we find rirjB > riB .

If rirj riB = rirjB then B = riB , a contradiction. Suppose rj rirjB < rirjB . As also rjB <

rirjB , Proposition 3.1(iv) gives riB < B , a contradiction, because αi + αj ∈ rirjB would imply
αj ∈ rjB whence rjB = B .

Similarly, it can be shown that rj rirjB > rirjB .
(iv) If rjB = B , then rj rirjB = rj riB , a contradiction. If rjB < B , then the result follows

from Proposition 3.1(iv) because αi + αj ∈ B would imply αj ∈ riB whence rj riB = riB .
Suppose therefore rjB > B . If rjB = rirjB , then rj riB = rj rirjB , a contradiction. If rjB >

rirjB , then by Proposition 3.1(iv) rj rirjB > rj riB , a contradiction because αi +αj ∈ rjB would
imply αi ∈ B whence riB = B .

Hence rjB < rirjB . But then by transitivity rirjB > rj rirjB , and, since rirjB > rjB , gives
Proposition 3.1(iv) rj rirjB > rirjB (for otherwise αi +αj ∈ rirjB , implying αj ∈ rjB so rjB =
B), a final contradiction.

(v) The hypotheses imply that there exists β ∈ B with (αi, β) = ±1. Then riβ = β ± αi ,
which is not orthogonal to β . As the elements of B are orthogonal by definition, riβ does not
belong to B , so riB �= B , and the conclusion follows from Proposition 3.1(i). �

Pick B0 a maximal element of B. This means riB0 is either B0 or lowers B0. This is possible
as B is finite. We need more properties of the poset determined by >. To begin with this we
consider certain Weyl group elements, w, for which wB0 = B for a fixed element B ∈ B. In
particular, we let w = ri1ri2 · · · ris be such that B0 > ris B0 > ris−1ris B0 > · · · > ri2ri3 · · · ris B0 >

ri1ri2ri3 · · · ris B0 = B . If there is such an expression for w, then there is one of minimal length.
We let B′ be the set of B ∈ B which are of this form. We will show that in fact B′ = B.

Lemma 3.5. In the notation just above, B′ = B.

Proof. Notice that B0 is in B′ by definition using w the identity. Recall that riB0 is either B0 or
lower. In particular, nothing raises B0. We show first that if B ∈ B′ and rjB > B then rjB ∈ B′.
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We prove this by induction on the minimal length of a chain from B0 to wB which satisfies
the descending property of the definition of B′. In particular, w = ri1ri2 · · · is and B0 > ris B0 >

ris−1ris B0 > · · · > ri2ri3 · · · ris B0 > ri1ri2ri3 · · · ris B0 = B . We say this chain has length s, the
length of w. We in fact show that there is a chain from B0 to rjB of length less than or equal
to s − 1. We have seen that no ri raises B0. Suppose that B = riB0 and rjB > B . If rjB = B0
the induction assumption is true. If rjB �= B0 we can use Lemma 3.4(ii) or (iii) to see that
rj riB > B0 a contradiction. In particular, the induction assumption is true for s � 1.

We can now assume s � 2. Pick a B with a chain of length s and assume the result is true
for any B ′ ∈ B′ with a shorter chain length. Suppose rjB is not in B′ and rjB > B . Notice
ri1B = ri2ri3 · · · ris B0 > B by the hypothesis. Clearly rjB �= ri1B as ri1B is in B′ using the
element ri2ri3 · · · ris . In particular, we can use Lemma 3.4(ii) or (iii). In either case rj ri1B > ri1B

and by our choice of s and the induction assumption, rj ri1B is in B′ and has a chain of length at
most s − 1 from B0 to it.

Suppose first i1 � j and use Lemma 3.4(ii). By the induction assumption there is a chain
down to rj ri1B of length at most s − 2 and then by multiplying by ri1 gives a chain down to rjB

of length at most s − 1 and the induction gives rjB ∈ B′.
Suppose now i1 ∼ j and use Lemma 3.4(iii). Again rj ri1B is in B′ by the induction hypothesis

and has a chain down to it of length at most s − 2. Using the induction again, and the hypothesis
of the minimality of s, we see also ri1rj rii B is in B′ and has a chain to it of length at most s − 3.
Now using this as rj ri1rjB , multiplying by rj and then by ri1 gives a chain to rjB of length at
most s − 1 and we are done with this part.

In particular, if B ∈ B′ and rjB > B , then rjB is in B′. If B ∈ B′ and rjB = B of course
rjB ∈ B′. Suppose rjB < B . Then the sequence to B and then rjB gives a sequence to rjB and
rjB is in B′. We see that B′ is closed under the action of W and as B is an orbit, B′ = B. �
Corollary 3.6. There is a unique maximal element B0 in B.

Proof. We have just shown that for every element B in B except B0 there is a sequence lowering
to B and so B0 is the only maximal element. �

See Example 4.4 for a listing of some of the B0.
This shows that each B ∈ B has a level associated with it, namely the smallest s for which B

can be obtained from B0 as above with a Weyl group element w of length s. Namely the smallest
s for which there is a reduced expression w = ri1ri2 · · · ris with wB0 = B for which B0 > ris B0 >

ris−1ris B0 > · · · > ri2ri3 · · · ris B0 > B . In particular, B0 has level 0 and if rjB0 < B0 it has level
1. The next lemma says that this s is the shortest length of any word w for which wB0 = B .

Lemma 3.7. Suppose w is an element of W of the smallest length for which wB0 = B . Then this
length, s, is the length of the shortest word defining B as an element of B′. In particular, if the
word is ri1ri2 · · · ris , then B0 > ris B0 > ris−1ris > · · · > ri1ri2 · · · ris B0 = B and this is the shortest
which does this. It is reduced.

Proof. Suppose w is an element of W for which wB0 = B and for which as in the defini-
tion of B′, we have w = ri1ri2 · · · ris and ris B0 > ris−1ris B0 > · · · > ri1ri2 · · · ris B0 = B with
this the shortest possible. Suppose w′ is any other Weyl group element with wB0 = B . If
w′ = rj1rj2 · · · rjt is a reduced decomposition of length t , then t is at most s and we get a se-
quence B0, rjt B0, rjt−1rjt B0, . . . , rj1rj2 · · · rjt B0 = B . If any of these differences do not have the
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relation > between them, the level of B would be strictly smaller than s, contradicting the mini-
mality of s. Hence, t = s and the sequence corresponding to w′ is also a chain. In particular, w is
reduced and any other reduced expression gives a descending sequence of the same length. This
shows there is a reduced word with this length taking B0 to B and any word doing this of shorter
or the same length, has to be descending at each step. This proves the lemma. �
Lemma 3.8. Suppose that (B,<) is a monoidal poset for (W,R).

(i) For each B ∈ B and each element w ∈ W of minimal length such that B = wB0 and node i

of M such that l(riw) < l(w), we have riB > B .
(ii) For each B ∈ B, if w,w′ ∈ W are of minimal length such that B = wB0 = w′B0, then

l(w) = l(w′) and, for each node i such that riB > B , there is w′′ ∈ W of length l(w) such
that B = w′′B0 and l(riw

′′) < l(w′′).

Proof. For (i) we use the characterization in Lemma 3.7 and realize that any of the equivalent
expressions also give a descending sequence. In particular, if l(riw) < l(w), an equivalent word
can be chosen to start with ri and so riB is one step above B in the chain to B from this word
and so riB > B .

For (ii) again use Lemma 3.7 and so l(w) = l(w′). If riB > B for some i, there is a sequence
from riB to B0. If w′B0 = riB accomplishes this in the minimal number of steps, w′′ = siw

′
satisfies the conclusion of the lemma. �
4. The positive monoid

We now turn our attention to the Artin group A associated with the Coxeter system (W,R).
We recall that the defining presentation of A has generators si corresponding to the fundamental
reflections ri ∈ R and braid relations sisj si = sj sisj if i ∼ j and sisj = sj si if i � j . The monoid
A+ given by the same presentation is known [10] to embed in A. For each admissible W -orbit of
a set of mutually commuting reflections, we shall construct a linear representation of A+. To this
end, we need a special element hB,i of A+ for each pair (B, i) consisting of a set B of mutually
commuting reflections and a node i of M whose reflection ri does not belong to B but commutes
with each element of B . As in the previous section, we shall represent reflections by positive
roots.

We now define the elements hB,i . As in [5] we do this by defining reduced words vB,i ∈ A

and letting hB,i = v−1
B,isivB,i . Later we shall consider the image of these elements in a certain

Hecke algebra.
For the definition of vB,i we use chains (and their labels) from B to B0 depending on i.

In particular, for rjB > B and i � j we use sj vrj B,i and for j ∼ i we use sj sivri rj B,i . If we
were to use just any chain we would not get this unique element without some further work. For
instance, if M = D5 and B = {ε3 + ε4, ε1 + ε2}, both α1 and α3 are in B⊥ and r2r1 and r2r3
both take B to B0 = {ε1 + ε4, ε2 + ε3}. If we use the definition here, with vB,1 = s2s1, we find
hB,1 = (s2s1)

−1s1(s2s1) = s2. However, if we would use vB,1 = s2s3, corresponding to a non-
admitted chain, we find s−1

3 s−1
2 s1s2s3 instead of s2 and we would need a proper quotient of the

Hecke algebra for hB,1 to be well defined.
In Lemma 4.1 below we show that conjugating si by any of the vB,i as defined by means of

chains gives the same element, which is a fundamental generator of A commuting with every
reflection having its positive root in B0.
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Definition 2. Suppose (B,<) is a monoidal poset of (W,R), with maximal element B0. Let
(B, i) be a pair with B ∈ B and i a node of M such that αi ∈ B⊥.

Choose a node j of M with rjB > B . If j � i let vB,i = sj vrj B,i and if i ∼ j let vB,i =
sj sivri rj B,j . We define vB0,i as the identity.

Furthermore, set hB,i = vB,i
−1sivB,i .

Notice this definition makes sense as a non-deterministic algorithm assigning an element of
A to each pair (B, i) as specified because

• if αi ∈ B⊥ and i � j , then αi ∈ (rjB)⊥;
• If i ∼ j , then αi + αj ∈ (rjB)⊥ and αj ∈ (rirjB)⊥.

By Lemma 3.7, vB,i will be a reduced expression whose length is the length of a chain from B

to B0. The elements vB,i are not uniquely determined, but we will show that the elements hB,i

are.

Lemma 4.1. For B and (B, i) as in Definition 2, suppose that vB,i and v′
B,i both satisfy Defi-

nition 2. Then the elements hB,i of A defined by each are the same, i.e., hB,i = vB,i
−1sivB,i =

vB,i
′−1sivB,i

′.
Furthermore, each hB,i is a fundamental generator sj of A whose root αj is orthogonal to

every root of B0.

Proof. We use induction on the height from B0. The case of B0 is trivial.
We first dispense with the case in which rjB = rj ′B . We know from Lemma 3.3 that in B

there are two elements β and β + αj + αj ′ with j � j ′. As αi ∈ B⊥ we know (β,αi) = 0 and
also (β + αj + αj ′ , αi) = 0. It follows that (αj ,αi) = (αj ′ , αi) = 0 as the inner products of
fundamental roots are 0 or −1. In particular, using rj we get vB,i = sj vrj B,i , and vB,i

−1sivB,i =
vrj B,i

−1s−1
j sisj vB,i . As s−1

j sisj = si this is vrj B,i
−1sivB,i = hrj B,i . The same is true for rj ′ and

we are assuming rjB = rj ′B . Now we can use induction.
We next suppose rjB > B and rj ′B > B with rjB �= rj ′B . There will be two cases depending

on whether j � j ′ or j ∼ j ′. Suppose first j � j ′. We use Lemma 3.4(ii) to see that rj rj ′B >

rj ′B and rj ′rjB > rjB . Suppose first i � j and i � j ′. For the chain starting with rj we can
follow it with rj ′ and if we start with rj ′ we can follow it with rj . In each case with these choices
we get vB,i = sj sj ′vrj rj ′B,i as sj sj ′ = sj ′sj and αi ∈ (rjB)⊥ and αi ∈ rj ′B)⊥. The induction is
used for vrj B,i and for vrj ′B,i in order to take the chain we have chosen and then also for vrj rj ′B,i .
In each case we get hrj rj ′B,i .

Suppose next that i ∼ j but i � j ′. Using the chain for rj we get B < rjB < rirjB by
Proposition 3.1(ii). As above by Lemma 3.4(ii) we get rj rj ′B > rj ′B and now again by Proposi-
tion 3.1(ii) using αi ∈ (rj ′B)⊥ we get rirj rj ′B > rj rj ′B . Now for the rj ′ chain continue through
rj and then ri to reach vB,i = sj ′sj sivri rj rj ′B,j . Through the rj chain which goes through rirjB

add rj ′ for which j ′ � i. Here we get vB,i = sj sisj ′vrj ′ ri rj B,j . Again use induction at all the
levels to get the needed result. Notice rirjB �= rj ′rjB as rirj rj ′B > rj rj ′B as above and so ri
raises rj rj ′B .

The final case in which j � j ′ is with j ∼ i ∼ j ′, see Fig. 1. For this we again use Lemma 3.4
(ii) and (iii) and Proposition 3.1. In particular, rjB > B and rirjB > rjB . Also as rjB �= rj ′B
we have rj ′rjB > rjB . Now by Lemma 3.4(iii) we have rirj ′rirjB > rj ′rirjB > rirjB . We
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Fig. 1.

know αj ∈ (rirjB)⊥ and also in (rj ′rirjB)⊥ as j � j ′. Now using Proposition 3.1(ii) we see
rj rirj ′rirjB > rirj ′rirjB . Notice rirjB �= rj ′rjB by Lemma 3.3 as i ∼ j ′. Following the trail
of αi we see it is in (rj rirj ′rirjB)⊥. Following this chain after rirj and using induction we
see vB,i = sj sisj ′sisj vrj ri rj ′ ri rj B,i . Going up through rirj ′ gives the same result as sj sisj ′sisj =
sj sj ′sisj ′sj is similar to sj ′sisj sisj ′ = sj ′sj sisj sj ′ . In particular, the result is true again using
induction at all the higher levels.

We now consider the cases in which j ∼ j ′. As before, the easiest case is when i � j and
i � j ′. In this case as before use Lemma 3.4(iii) to obtain rj ′rj rj ′B > rj rj ′B > rj ′B . As αi is
orthogonal to αj and αj ′ we obtain vB,i = sj ′sj sj ′vrj ′ rj rj ′B,i . The same result holds for the other
order and the result follows by induction.

The only other possibility is i ∼ j and i � j ′ as i could not be adjacent to both j and j ′ (for
otherwise there would be a triangle in the Dynkin diagram). For this we use the familiar six sides
diagram generated by rj and rj ′ using Lemma 3.4(iii), see Fig. 2. At rjB we may also act by ri
which we know raises rjB . It is clear that rj ′rjB �= rirjB as αj is in (rirjB)⊥ and so rj could
not raise (or even lower) it. We can proceed by Lemma 3.4(ii) to rj ′rj rirjB . Notice rj rj ′rjB �=
rirj ′rjB by Lemma 3.3 as i ∼ j . Now proceed by Lemma 3.4(iii) to rirj rirj ′rjB = rirj rj ′rirjB .
By following the perpendicularities we see αj ′ ∈ (rirj rj ′rirjB)⊥. Using this chain which starts
with rj and continues with ri , we find vB,i = sj sisj ′sj sivsi rj rj ′ ri rj B,j ′ . Using the other direction
starting with rj ′ then rj , then ri , we can continue with rj ′ and rj to get rj rj ′rirj rj ′B and conclude
using this direction vB,i = sj ′sj sisj ′sj vrj rj ′ ri rj rj ′B,j ′ . At the juncture rj rj ′B we act by ri or
by rj ′ . These two could not be equal as again αj is in (rirj rj ′B)⊥ and so rj could not move it.
However, if they were equal, it lowers it to rj ′rjB . These words are equivalent and we can use
induction as usual for the last time.

This finishes all cases and shows the words have the same effect under conjugation on si . �
We finish this section by exhibiting relations that hold for the hB,i . Since we are actu-

ally interested in their images in the Hecke algebra H of type M under the natural morphism
Q(m)[A] → H , we phrase the result in terms of elements of this algebra.
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Fig. 2.

Proposition 4.2. Suppose that (B,<) is a monoidal poset with maximal element B0. Let C be the
set of nodes of M such that αi is orthogonal to B0 and denote Z the Hecke algebra over Q(m) of
the type C. Then, for B ∈ B and i a node of M , the images of the elements hB,i ∈ A in the Hecke
algebra of type M under the natural projection from the group algebra of A over Q(m) actually
are fundamental generators of Z and satisfy the following properties.

(i) h2
B,i = 1 − mhB,i .

(ii) hB,ihB,j = hB,jhB,i if i � j .
(iii) hB,ihB,j hB,i = hB,jhB,ihB,j if i ∼ j .
(iv) hrj B,i = hB,i if i � j .
(v) hrirj B,j = hB,i if i ∼ j and (αj ,B) �= 0.

Proof. By [6] we can identify the Hecke algebra of type C with the subalgebra of the Hecke
algebra H generated by the si for i ∈ C. As described above we define hB,i = vB,i

−1sivB,i where
we consider this element in the Hecke algebra. By Lemma 4.1, it is a fundamental generator of Z.

(i) This clearly follows from the quadratic Hecke algebra relations we are assuming.
(ii) Assume first rkB > B and both αi and αj are orthogonal to αk . We are assuming here

i � j . Then we can take vB,i = skvrkB,i and vB,j = skvrkB,j . Now hB,i = (vrkB,i)
−1s−1

k siskvrkB,i .
This is hrkB,i and we can use induction.

Suppose i ∼ k but j � k. Then we can take vB,i = sksivri rkB,k and we can take vB,j =
sksivri rkB,j . Then hB,j = hrirkB,j and hB,i = hrirkB,k . Now as above we can again use induc-
tion.

The final case with i � j is when i ∼ k ∼ j . Now vB,i = sksivri rkB,k and vB,j = sksj vrj rkB,k .
Suppose that rirkB = rj rkB . If so vB,i = sksiw

′ with vB,j = sksjw
′ and w′ = vrirkB,k . Now

vB,i
−1sivB,i = w′−1s−1

i s−1
k sisksiw

′ = w′−1skw
′. Doing the same with rj gives the same thing

and so they commute. This means rj rkB �= rirkB and we can use Lemma 3.4(ii) to get rirj rkB >

rirkB and rirj rkB > rj rkB . Now applying this with vB,i gives vB,i = sksj siskvrkri rj rkB,j and
vB,j = sksisj skvrkrj ri rkB,i . Let B ′ = rkrirj rkB . Now hB,i = hB ′,j and hB,j = hB ′,i . Now use
induction.
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(iii) Suppose i ∼ j . We wish to show hB,ihB,j hB,i = hB,jhB,ihB,j . Suppose first k � i and
k � j . In this case vB,i = skvrkB,i and vB,j = skvrkB,j . This means hB,i = hrkB,i and hB,j =
hrkB,j . Now use induction.

We are left with the case where k ∼ i ∼ j . Then j � k as there are no triangles in the Dynkin
diagram. Notice on the chain from αi we start with rk , apply ri and can then if we wish add rj
provided rj raises rirkB . The chain from αj is rk which fixes αj , and then we can continue with
ri and then rj which forces rj rirkB > rirkB by Proposition 3.1(ii). Now vB,i = sksisj vrj ri rkB,k

and vB,j = sksisj vrj ri rkB,i . Now check that if B ′ = rj rirkB that hB,i = hB ′,k and hB,j = hB ′,i .
Now use induction.

(iv) Suppose rjB > B . Then vB,i = sj vrj B,i . Now conjugating ri by vB,i has the same effect

as conjugating vrj B,i as s−1
j sisj = si . If rjB < B , use the same argument on rjB which is raised

by rj .
(v) Assume first that rjB > B . Then vB,i = sj sivri rj B,j . Notice s−1

i s−1
j sisj si = sj and con-

jugating si by vB,i has the same effect as conjugating sj by vrirj B,j and the result follows.
If rjB < B , then rirjB < rjB by Proposition 3.1(ii). Now apply the above to rirjB . As
(αj ,B) �= 0, we know rjB �= B by Lemma 3.4(v).

All cases have been completed. �
Corollary 4.3. Let (B,<) be a monoidal poset. Retain the notation of the previous proposition.
Denote C the set of all nodes j of M such that (αj ,B0) = 0 and Z the Hecke algebra whose type
is the diagram M restricted to C. Then, for each node j in C, there is an element B of (B,<)

which is minimal and there is a node k of M such that (αk,B) = 0 and hB,k = sj , the image of
the fundamental generator of A in Z.

Proof. The following proof is similar to the one of [5, Lemma 3.8]. Let j be a node of C. Then
hB0,j = sj . Let B ∈ B be minimal such that there exists a node k with (αk,B) = 0 and hB,k = sj .
Suppose there is a node i such that riB < B . If i � k then by Proposition 4.2(iv) hriB,k = hB,k =
sj . If i ∼ k then by Proposition 4.2(v) hrkriB,i = hB,k = sj and by Proposition 3.1(ii), rkriB < B .
Both cases contradict the minimal choice of B , so B must be a minimal element of (B,<). �
Example 4.4. Suppose M is a connected simply laced diagram. Then the type of C as defined in
Corollary 4.3 is given in Table 2. We deal with two series in particular.

If M = An−1 and B is the W -orbit of {α1, α3, . . . , α2p−1}, then

B0 = {ε1 − εn−p+1, ε2 − εn−p+2, . . . , εp − εn} and

C = {αp+1, αp+2, . . . , αn−p−1}.
Therefore, the Hecke algebra Z is of type An−2p−1.

If M = Dn and B is the W -orbit of {α1, α3, . . . , α2p−1}, then

B0 = {ε1 + ε2p, ε2 + ε2p−1, . . . , εp + εp+1} and

C = {αp,α2p+1, α2p+2, . . . , αn}.
The Hecke algebra Z has type A1Dn−2p (where D1 is empty and D2 = A1A1).

5. The monoid action

Let B be an admissible W -orbit of sets of mutually orthogonal positive roots, let (B,<) be the
corresponding monoidal poset (cf. Proposition 3.1), let B0 be the maximal element of (B,<) (cf.
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Corollary 3.6), and let C be the set of nodes i of M with αi ∈ B⊥
0 . As before (Proposition 4.2),

Z is the Hecke algebra over Q(m) of type C. These are listed in Table 1 under column C. In
analogy to the developments in [5] we define a free right Z-module V with basis xB indexed
by the elements B of B. By Lemma 4.1 the linear transformations τi of (1) are completely
determined. We are ready to prove the main theorem.

Proof of Theorem 1.1. Let M be connected (see a remark following the theorem). We need to
show that the braid relations hold for τi and τj , that is, they commute if i � j and τiτj τi = τj τiτj

if i ∼ j .
Take B ∈ B. By linearity, it suffices to check the actions on xB . We first dispense with the

case in which either τixB or τj xB is 0. This happens if B contains αi or αj . If both roots are in
B both images are 0 and the relations hold.

Suppose then that αi is in B but αj is not in B . Consider first the case in which i � j . Then
τixB = 0 and so τj τixB = 0. Now τj xB is in the span of xB and xrj B . Notice as (αi, αj ) = 0
that αi is in rjB as well as B and so τiτj xB = 0 also. Suppose i ∼ j . Clearly τiτj τixB = 0 as
τixB = 0. As αi ∈ B , the root αi + αj belongs to rjB . Also rj raises B as a height one element,
αi , becomes height 2. This means τj xB = xriB − mxB . If ri lowers rjB , τixriB = xrirj B . But
rirjB contains ri(αi + αj ) = αj , so τj xrirj B = 0. Also τixB = 0 as αi ∈ B . This proves the
result unless τi raises τjB . We know τi takes the root αi + αj to αj and so lowers a root of
height 2. The only way ri could raise rjB is if rjB contained an αk with k ∼ i. This would be
rjβ for β ∈ B . If rjβ = β we would have αk ∈ B but all elements of B except αi are orthogonal
to αi . This means αk is not orthogonal to αj and we have j ∼ k, j ∼ i, and i ∼ k a contraction as
there are no triangles in the Dynkin diagram. We conclude that the braid relations hold if either
τi or τj annihilates xB .

We now consider the cases in which i � j with neither αi nor αj being in B . We wish to show
τiτj = τj τi .

We suppose first that both αi and αj are in B⊥. This means that τixB = xBhB,i and that
τj xB = xBhB,j . We need only ensure that hB,i and hB,j commute, which is Proposition 4.2(ii).

Suppose now that αi is in B⊥ and αj is not in B⊥. In this case τj τixB = τj xBhB,i . Also
τj xB = xrj B − δmxB where δ is 0 or 1. This gives

τj τixB = (xrj B − δmxB)hB,i .

We also get τiτj xB = τixrj B − δmτixB . Notice αi ∈ B⊥ and i � j imply αi ∈ (rjB)⊥. In partic-
ular,

τiτj xB = xrj Bhrj B,i − δmxBhB,i .

In order for this to be τj τixB we need hrj B,i = hB,i , which is satisfied by Proposition 4.2(iv).
We are left with the case in which neither αi nor αj is in B or in B⊥. In this case the relevant

actions are τi on xB and τj on xB . If riB = rjB it is clear τi and τj commute. This gives the
following table.

τi on xB τj on xB τiτj xB = τj τixB

lower lower xri rj B

lower raise xri rj B − mxriB

raise raise xri rj B − mxriB
− mxrj B + m2xB

Notice that αi /∈ (rjB)⊥ as αi /∈ B⊥. Similarly αj /∈ (riB)⊥.
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Suppose first that τi and τj both lower B . By Proposition 3.1(iii) this means τi also lowers
rjB and τj lowers riB . Now

τiτj xB = τixriB = xrirj B .

The same result occurs in the reverse order as ri and rj commute.
Suppose next that τi and τj both raise B . Then by Lemma 3.4(ii), τi raises rjB and τj

raises riB . In particular, we have

τj τixB = τj (xriB − mxB) = xrj riB − mxriB − mxrj B + m2xB.

The same is true for the reverse order.
Suppose then τi lowers B and τj raises B . By Lemma 3.4(i), applied to {τiB < B < τjB},

the reflection ri also lowers rjB and rj raises riB . This means

τiτj xB = τi(xrj B − mxB) = xrirj B − mxriB.

In the other order

τj τixB = τj xriB = xrj riB − mxriB.

These are the same. Notice here the assumptions imply riB �= rjB and rirjB �= B . We conclude
that τi and τj commute whenever i � j .

We now suppose i ∼ j and wish to show τiτj τi = τj τiτj . Suppose first αi and αj are in B⊥.
Then τixB = xBhB,i and τj xB = xBhB,j . The condition needed is hB,ihB,j hB,i = hB,jhB,ihB,j ,
which is Proposition 4.2(iii).

Suppose now i ∼ j and αi ∈ B⊥ but αj /∈ B⊥. We are still assuming neither αi nor αj is in B .
The relevant data here are the actions of rj on B and ri on rjB . The table below handles the
cases where rj lowers B and ri lowers rjB as well as those where rj raises B and ri raises rjB .
The other cases, of ri raising rjB when rj lowers B and of ri lowering rjB when ri raise B , are
ruled out by Condition (ii) of Proposition 3.1.

ri on rj B rj on B τiτj τixB

lower lower xri rj Bhri rj B,j = xri rj BhB,i

raise raise xri rj Bhri rj B,j − mxB − xrj BhB,i + m2xBhB,i

Notice that αi /∈ (rjB)⊥ as if (αj ,β) �= 0, then (αi, rjβ) = (αi, β − (αj ,β)αj ) = (αj ,β) �= 0.
Suppose first rj lowers B and ri lowers rjB as in the first row. Then

τj τiτj xB = τj τixrj B = τj xrirj B = xrirj Bhrirj B,j .

Note here αj ∈ (rirjB)⊥ by application of rirj to αi ∈ B⊥. Also

τiτj τixB = τiτj xBhB,i = τixrj BhB,i = xrirj BhB,i .

Now the braid relation is satisfied according to Proposition 4.2(v).
Suppose rj raises B and ri raises rjB .

τiτj τixB = τiτj xBhB,i

= τi(xrj B − mxB)hB,i

= (xri rj B − mxrj B − mxBhB,i)hB,i

= xrirj BhB,i − mxrj BhB,i − mxBh2
B,i

= xrirj BhB,i − mxrj BhB,i − mxB + m2xBhB,i .



A.M. Cohen et al. / Journal of Combinatorial Theory, Series A 113 (2006) 1646–1666 1665
Here we used h2
B,i = 1 − mhB,i . In the other order we have

τj τiτj xB = τj τi(xrj B − mxB)

= τj (xri rj B − mxrj B − mxBhB,i)

= xrirj Bhrirj B,j − mxB − m(xrj B − mxB)hB,i

= xrirj Bhrirj B,j − mxB − mxrj BhB,i + m2xBhB,i .

Once again we need hrirj B,j = hB,i which is Proposition 4.2(v).
We can finally consider the case in which i ∼ j and neither αi nor αj is in B⊥ ∪ B . Here

relevant data are the actions of ri and rj on B , where for the first row we assume αi + αj /∈ B

(for otherwise, each side equals zero).

ri on B rj on B τiτj τixB

lower lower xri rj riB

lower raise done below
raise raise xri rj riB

− m(xrj riB
+ xri rj B)

+ m2(xrj B + xriB
) − (m3 + m)xB

We start with the first row in which both ri and rj lower B . We may assume riB �= rjB or τi

and τj act on xB and xriB in the same way. By Proposition 3.1(iv) and Lemma 3.2 all the actions
we encounter are lowering actions. Therefore,

τiτj τixB = τiτj xriB = τixrj riB = xrirj riB .

This gives the same result with the other product.
Next take the bottom row in which both ri and rj raise B . By Lemma 3.4 (iii), the actions we

encounter are all raising actions.

τiτj τixB = τiτj (xriB − mxB)

= τi

(
xrj riB − mxriB − m(xrj B − mxB)

)

= xrirj riB − mxrj riB − mxB − m(xrirj B − mxrj B) + m2(xriB − mxB)

= xrirj riB − m(xrj riB + xrirj B) + m2(xrj B + xriB) − (
m3 + m

)
xB.

This also gives the same result with the other product.
We now tackle the remaining cases. Here ri lowers B and rj raises B . There are two cases

depending on how rj acts on riB .

ri on B rj on B rj on riB τiτj τixB = τj τiτj xB

lower raise raise xri rj riB
− mxrj riB

− m(xB − mxriB
)

lower raise lower xrj ri rj B − mxrj riB

Consider first the second row, where rj lowers riB . By the Lemma 3.4(iv) applied to rirjB ,
this means ri raises rj riB and the remaining raising and lowering actions can be determined by
this. Notice rj riB �= B , for otherwise riB = rjB which is not consistent with the assumption.
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τiτj τixB = τiτj xriB

= τixrj riB

= xrirj riB − mxrj riB .

For the other product

τj τiτj xB = τj τi(xrj B − mxB)

= τj (xri rj B − mxriB)

= xrj ri rj B − mxrj riB .

These are the same as indicated in the table.
For the first row suppose next that rj raises riB . By Lemma 3.4(iii) applied to riB , rj raises

riB , ri raises rj riB , rj lowers rirjB and ri raises rjB . Again we use B �= rj riB .

τiτj τixB = τiτj xriB

= τi(xrj riB − mxriB)

= xrirj riB − mxrj riB − m(xB − mxriB).

For the other product

τj τiτj xB = τj τi(xrj B − mxB)

= τj (xri rj B − mxrj B − mxriB)

= xrj ri rj B − mxB − m(xrj riB − mxriB).

This gives the same for either product.
These are also the same as indicated in the table finishing the last case. In particular, Theo-

rem 1.1 has been proven. �
We expect that the representations obtained for the positive monoid A+ by means of our Main

Theorem 1.1 will be extendible to the full Artin group A. Proving this is work in progress. For
type An, all of them are, as is clear from the BMW algebra of that type [2,5].

References

[1] S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471–486.
[2] J.S. Birman, H. Wenzl, Braids, Link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989) 249–273.
[3] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5, et 6, Hermann, Paris, 1968.
[4] A.M. Cohen, D.B. Wales, Linearity of Artin groups of finite type, Israel J. Math. 131 (2002) 101–123.
[5] A.M. Cohen, D.A.H. Gijsbers, D.B. Wales, BMW Algebras of simply laced type, J. Algebra 286 (2005) 107–153.
[6] J. Crisp, Injective maps between Artin groups, in: Geometric Group Theory Down Under, Canberra, 1996,

de Gruyter, Berlin, 1999, pp. 119–137.
[7] F. Digne, On the linearity of Artin braid groups, J. Algebra 268 (2003) 39–57.
[8] R. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980) 62–80.
[9] D. Krammer, Braid groups are linear, Ann. of Math. 155 (2002) 131–156.

[10] L. Paris, Artin monoids inject in their groups, Comment. Math. Helv. 77 (2002) 609–637.


