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1. Introduction

In [13], the first and third authors provided bijective proofs for several entries found in Ramanu-
jan’s lost notebook [28]. The entries for which combinatorial proofs were given arise from the Rogers-
Fine identity and false theta functions, and are found in Chapter 9 of [9]. Although G.E. Andrews [5]
had previously devised a combinatorial proof of the Rogers-Fine identity, the combinatorics of each
of the identities proved in [13] is substantially different from that in Andrews’s proof, so that even
what might be considered small or subtle changes in an identity markedly alter the combinatorics.
This paper can be considered as a sequel to [13] in that we combinatorially prove further entries
from Ramanujan’s lost notebook. The entries to be examined in the present paper are connected
with either Heine’s transformation or partial theta functions. Readers may have difficulty discerning
the connections of some of the entries with either Heine’s transformation or partial theta functions.
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To see these relationships, consult the book [10] by Andrews and the first author, where all of the
identities established in this paper are proved analytically. The second author, in another paper [23],
has combinatorially proved some further identities involving partial theta functions found in the lost
notebook.

Algorithm Z of D. Zeilberger plays an important role. Euler’s partition identity and Sylvester’s bi-
jective proof of it also play leading roles. We will recall these and other bijections in Section 2. In
Section 3, we present combinatorial proofs of some identities arising from Euler’s identity. In Sec-
tion 4, we give bijective proofs of entries that are special cases of the g-Gauss summation formula.
The next goal of our paper is to provide combinatorial proofs of entries that are related to Heine's
2¢1 transformation formula. Some of the proofs follow along the lines of Andrews’s proof of Heine’s
2¢1 transformation formula [4], but others do not. In the final section, we introduce a new class of
partitions, namely partitions with a parity sequence. We obtain the generating function of these par-
titions analytically and bijectively. Using this generating function, we give a combinatorial proof of an
identity that is related with partial theta functions.

2. Preliminary results

A partition of a positive integer n is a weakly decreasing sequence of positive integers (A1,..., Ar)
such that A1 +--- 4+ A, =n, and we shall write A -n (see [6]). We relax our definition of a partition
by including 0 as a part, if necessary. We denote the number of parts of a partition A by £(1). As a
convention, we denote the partition of 0 by .

We employ the standard notation

@o:=@qo:=1, @n:=@QPn:=0-a)(1—aq)---(1-aq""), n>1,
and
(@)oo 1= (a; Qoo == lim (@;@)n, gl <1.
n—oo
We recall some familiar bijections that are used in the sequel.
Sylvester’s bijection. Sylvester’s map for Euler’s identity
—— =009 (21)
(q; qz)oo >

and many further contributions of Sylvester have been discussed by Andrews in [8]. We note here
that Sylvester’s bijection preserves the following statistic [19,20,30]:

L)+ —1)/2=puq, (2.2)

where A is a partition into odd parts and p is the partition into distinct parts associated with A under
Sylvester’s bijection.

Franklin’s involution. Recall that Franklin’s involution provides a bijective proof of Euler’s pentagonal
number theorem [6, pp. 10-11]

@ Poo= Y (=D)"g"C"D/2, (2.3)

n=—oo

Wright’s bijection. Recall that Wright's bijection [31] gives a bijective proof for the Jacobi triple prod-
uct identity

1 oo
(—2¢; Poo(-2714) o = ——— Y 2'q""V2 (24)
(q5 q)oo

n=—00

Algorithm Z and its application. The following bijection is an application of Algorithm Z discovered
by D. Zeilberger [11,16]. It was first observed by ].T. Joichi and D. Stanton [22] that Algorithm Z can
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apply in this way to the g-binomial theorem and used by the third author in [32] to establish a com-
binatorial proof for Ramanujan’s 1v/; summation formula. Recall the g-binomial theorem [6, p. 17]

Z (—=a; On )" = (—azq; q)oo_

= (2.5)
5 (4 Dn (z9; @)oo

For a positive integer n, let t be a partition into nonnegative distinct parts less than n and o a
partition into exactly n parts. We define u by

i =0n_g +m, forall1<i<L(m),

and let v be the partition consisting of the remaining n — ¢(;r) parts of o. It follows from the con-
struction that @ and v are uniquely determined by 7 and o. Furthermore, ¢t has distinct parts. The
left-hand side of (2.5) generates the pairs of partitions (;r,0), and the right-hand side generates the
pairs of partitions (u, v). Thus this map is a bijection between the two sets of such pairs of partitions.

Modular Ferrers diagram. We introduce a p-modular Ferrers diagram. For a partition A into parts A;
congruent to r modulo p, its p-modular Ferrers diagram is the diagram in which the i-th row has
[Xi/p] boxes, the boxes in the first column have r, and the other boxes have p. It can easily be
seen that the sum of the numbers in the boxes equals the number that A partitions. If a partition
has distinct parts, we can draw its modular Ferrers diagram in the form of a staircase. Moreover, if
necessary, we may use triangles for the boxes on the main diagonal. For instance, the following is a
p-modular Ferrers diagram in the form of a staircase.

3. Bijective proofs of identities arising from the Euler identity

A combinatorial proof of the following theorem was given by the first and third authors in the
process of combinatorially proving another entry from Ramanujan’s lost notebook [13, p. 413]. We
now provide a shorter proof.

Theorem 3.1. (See [28, p. 38], [10, Entry 1.6.4].) For each complex number a,
( a)nqn(n+1)/2

P Ly ok i (1)

— 2 —
5 (=a9%:q%)n = (—aq;n

Proof. Replace a by —a in (3.1). Then the left-hand side generates partitions A into odd parts, and the
exponent of a equals £(A) + (A1 — 1)/2. The right-hand side of (3.1) generates partitions into distinct
parts, and the exponent of a is the largest part. The identity now follows by Sylvester’s bijection and
its preserved statistic (2.2). O

Theorem 3.2. (See [28, p. 31], [10, Entry 6.5.1].) We have

— quzn +n 22n+11 + qzqun +7n(-l _ q10n+5) (3.2)
n=0 n=0

o0

2

( q; Q)Zn
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and

o0 o0

Z Z 12n? +5n q14n+7) +q2 iq12n2+11n(1 _ q2n+1)' (3.3)

n=0 n=0

( q; Q)2n+1

Proof. We prove the first identity. The second one can be proved in a similar way and we omit its
proof. Replacing q by g2 in (3.2), we obtain the identity

oo

2

The left-hand side generates partitions A into an even number of odd parts with weight (—1)*1=1/2,
Clearly, A is a partition of an even number 2N. Thus, we obtain

Z Z (—1)*1=D/2g2N (3.5)

N=01e0(2N)

Zq24n +2n q44n+22) 4 q2 i q24n2+14n(1 _ q20n+10). (34)

? (=g q2)2 = o

oo

X i,

where O(2N) is the set of partitions of 2N into odd parts. Let D(2N) be the set of partitions of 2N
into distinct parts. It follows from Euler’s identity (2.1) that O (2N) and D(2N) are equinumerous. Let
(1 be the image of A under Sylvester’s bijection, which is a partition in D(2N). Since A is a partition
of 2N into odd parts, £()) is even. Thus we see from (2.2) that

“ (—q*%; q2)2

(_1)@1*1)/2 =(—1™.

It then follows that

Z Z (— 1)@1 1)/2 2N Z Z (—HHg 2N (3.6)

N=0ie0(2N) N=0 pueD(2N)

We now apply Franklin’s involution for Euler’s pentagonal number theorem (2.3), in which we com-
pare the smallest part and the number of consecutive parts including the largest part. Note that in
the pentagonal number theorem, partitions 7z have weight (—1)¢“), However, the involutive proof
still works in our setting, since we move the smallest part to the right of the consecutive parts or
subtract 1 from each of the consecutive parts in order to add the number of consecutive parts as
a new part. Thus only the partitions of the even pentagonal numbers survive under the involution
in our setting, too. Under the involution, only partitions A of the form (2n,2n —1,...,n+ 1) or
(2n—1,2n—2,...,n) survive. That is, A -n(3n x 1)/2. It is easy to see that

n3n+1)/2=0(mod2), ifn=0,1 (mod4),
n(3n—1)/2=0(mod 2), ifn=0,3 (mod4).

When n=0,1 (mod 4), the surviving partition of n(3n + 1)/2 has parts 2n,2n —1,...,n+ 1. The
largest part of the partition is even. When n = 0,3 (mod 4), the largest part of the partition of
n(3n—1)/2 is odd. Then

e [’ 00
Z Z (_1)u1q2N — Z qn(3n+1)/2 _ Z qn(3n71)/2
N=0pueD(2N) n=0 n=1
n(3n+1)/2=0 (mod 2) n(3n—1)/2=0 (mod 2)
> 2 > 2
— Zq24n +2n (1 _ q44n+22) + q2 Zq24n +14n (1 _ q20n+10). (3‘7)
n=0

Hence, by (3.5), (3.6) and (3.7), we complete the proof of (3.4) and therefore also of Theorem 3.2. O
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M. Monks [24], at about the same time that the present authors gave their proof of Theorem 3.2
above, established an equivalent, combined version of (3.2) and (3.3) by essentially the same meth-
ods. We provide her formulation, which is also found in the lost notebook [28, p. 36], [9, p. 235,
Entry 9.4.7]. The function on the left-hand side below is one of Ramanujan’s mock theta functions.

Theorem 3.3. Define
1, ifn=1,5,7,11 (mod 24),
xe(M) =1 —1, ifn=13,17,19,23 (mod 24),
0, otherwise.

Then
o~ 4" .- (n2—1)/24
» =Y xsmq™ D,
_a2- 42
n=0( q4;q*)n =

In Theorem 3.2, Ramanujan anticipated a later theorem of N.J. Fine [19], [20, p. 45]. Let Q4(n)
denote the number of partitions of n into distinct parts such that the largest part is a (mod 2),
a=0, 1. Also, let Q;(n) denote the number of partitions of n into odd parts such that the largest part
is b (mod 4), b=1, 3. Then

Qo(m) — Q1() = (=1"(Q{ () — Q3 (M)
and
1, ifn=@k>+k)/2, k>0,
QoM — Qi) =4 —1, ifn=CBk*>—k)/2, k>0,
0, otherwise.

If we replace q by g in Theorem 3.2, then the two series generate the odd and even parts for

Qi () — Q3 (n). In other words, the left-hand sides of (3.2) and (3.3) are, respectively,
o0
> {eren - esenle™
n=0

and

o0

Y o{eien+1) - Qi@+ gt

n=0

and the right-hand sides provide the nonvanishing of the partitions counted on the left-hand sides at
the pentagonal numbers, as observed by Fine.

In the formulation of Ramanujan’s next two identities, it will be convenient to use the notation
for Ramanujan’s theta functions, namely,

o0
f@by:= Y a"mtV2pn=D2 - gp| <1,

n=—oo

Theorem 3.4. (See [28, p. 31], [10, Entry 6.5.2].) We have

i " f@.q)

= (3.8)
= @D (Do
and
— " f@.q
= ) 39
Z @ Do+ @ Do (3.9)

n=0
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Proof. We prove the first identity. The second one can be proved in a similar way. In (3.8), replace q
by q%. Then we obtain

o f@ ¢
= : 3.10
g @0 @90 510

The left-hand side generates partitions into an even number of odd parts. Equivalently, it generates
partitions of an even number into odd parts. Thus, we obtain

o0 o0
Sl ey T
N=01c0(2N) N=0ueD(2N)

where the second equality follows from Sylvester’s bijection. By decomposing the parts of @ into even
parts and odd parts, we obtain

i 3 q2N=(_q2;q2)m§: 3o

N=0peD(2N) n=0veD0(2n)

where DO(2n) is the set of partitions of 2n into distinct odd parts. Let v! and v3 be the partitions
consisting of parts of v congruent to 1 and 3 modulo 4, respectively. Note that since v is a partition
of 2n, the number of parts of v is even. Thus £(v!) = £(v3) (mod 2). We now use staircase 4-modular
Ferrers diagrams for the partitions v! and v3, in which the triangles on the main diagonal have the
residue 1 or 3 and the remaining boxes have 4. We then apply Wright's bijection to the pair (v?, v3).
Since £(v!) = £(v3) (mod 2), we collect only even powers of z from the summation on the right-hand
side of the Jacobi triple product identity (2.4). By substituting g—! and q* for z and g, respectively,
we obtain

1 s 2
8k2 42k
S Y e Z goerx
n=0veDO0(2n) (q q ) —00
Thus it follows that
2 2 (=% 9 8k2+2k 1 10 .6
OOZ Z qn: (q4-q4) Zq " :(qz.qz) f(q ’q)'
n=0 veDO(2n) P10 o o0

This completes our bijective proof of (3.10). O

Corollary 3.5. (See [28, p. 35], [10, Entry 1.7.7].) We have

(=1 gtDH(+2)/2
Z (q)n(l—q2n+1) :‘Jf(q,q7),

n=0

Proof. By Theorem 3.4, it suffices to show that

0o o0
(_1)nq(n+1)(n+2)/2 m+l 2m+2
=q(q) E = Z
rg (@n(1—g?™+) * (q)ZmH —

Let A be a partition arising from (qg2™*2).. Then the parts of A are distinct and larger than 2m + 1.
Let n = £(). Detach 2m from each of the n parts. By combining this with m from g™*!, we have
(2n + 1)m, which is generated by 1/(1 — q?"*1). The resulting parts of A form a partition into distinct
parts that are larger than 1 with weight (—1)". Such partitions are generated by

(_ 1 )nq2+3+"'+(l’l+1)

(@n
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Combining them with g that was left from ¢™+!, we arrive at
(—1)ng+De+2)/2
(Dn

This completes the proof. O
The following corollary can be proved by a similar argument, and so we omit the proof.

Corollary 3.6. (See [28, p. 35], [10, Entry 1.7.9].) We have

2, (=gt D/2
Zm =f(@. ).

n=0
4. Bijective proofs of identities arising from the q-Gauss summation formula

Recall that the g-Gauss summation theorem is given by [6, p. 20, Corollary 2.4]

o0

3 (@ @n(b; Qn <£>” _ (c/a: @)oo (c/b; oo
(c; Qn(q; @)n \ ab (€; Qoo(c/(@b); Poo”

(4.1)
n=0

where |c/(ab)| < 1. Bijective proofs of (4.1) have been given by the first and third authors [13], S. Cor-
teel [17], S. Corteel and ]. Lovejoy [18], and the third author [32]. Here, we prove a special case
of (4.1).

Theorem 4.1. (See [28, p. 370], [10, Entry 1.3.2].) For arbitrary complex numbers a, b,

00 (_b/a)nanqn(n+1)/2 (_aq)oo
= : 42
; (@n(b)n (bg)oo “2)

Proof. In (4.1), we replace b and c by bq and —b/d, respectively. We then let a go to infinity to obtain

i (=b/d)pd"q" ™ D/2 (—dq)o
(@n(bg)n b)) '

n=0

whose combinatorial proof just follows from the proof of the g-Gauss summation. O

Theorem 4.2. (See [28, p. 41], [10, Entry 4.2.6].) We have

G R L (/R
» = — ) (4.3)
= (@i (% %00

Proof. We replace q with —q in (4.3) to obtain the equivalent identity

oo

3 (—a; )ng™ _ 1o
(q% 93 @%¢®)00

n=0

1

which is the case of (4.2) with a, b, and q replaced by g~ 1, 1, and g2, respectively. Therefore, the

theorem follows. O
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5. Bijective proofs of identities arising from Heine’s transformation

The identities in this section are proved in [10, Chapter 1] by appealing to Heine’s transformation
or some variant or generalization thereof.

Theorem 5.1. (See [28, p. 16], [10, Entry 1.4.8].) For arbitrary complex numbers a, b,

1 S (ag; ab"q" 2 v (ag)**
(@q)oo ,; @*:*)n (~ha:a )wg (@ D2n(—bg: ¢*)n
0 (aq)ZrH-l
+ (—bg*: ¢ : 5.1
(~ba q)""g(q;q)zm(—qu;qz)n G

Proof. Rewrite the left-hand side of (5.1) as

1 (g nb"q”
(aq)ooZ (@% 4*)n Z

n=0

n2

5.2
(aq”“, q)oo(q @’ (5:2)

The right-hand side is a generating function for vector partitions (7, v) such that 7r is a partition into
parts that are strictly larger than n, and v is a partition into n distinct odd parts. We examine these
partitions in two cases.

Case 1. v has an even number of parts. Let 2k be the number of parts in 7. Detach n from each part
of r and attach 2k to each part of v. Denote the resulting partitions by o and A, respectively. It is
clear that o is a partition into 2k parts, and A is a partition into distinct odd parts that are greater
than or equal to 2k + 1. These are generated by

2k
ﬂ(_quk-’J;qZ)w. (53)
o (@ Dok

Case 2. w has an odd number of parts. Let 2k + 1 be the number of parts in . Detach 2k + 1 from
each part of 7 and attach 2k 4+ 1 to each part of v. By reasoning similar to that above, we can see
that the resulting partition pairs are generated by

00 (aq)2k+1 (_b 2

;2 ) 54
O(Q;Q)2k+1 q)oo (54)

Combining the two generating functions (5.3) and (5.4) together with (5.2), we complete the
proof. O
Theorem 5.2. (See [28, p. 10], [10, Entry 1.4.9].) We have

R G P e G L

(5.5)
= @ (@Doo ; (@% 9*)n
Proof. Multiplying both sides of (5.5) by (q)~, We obtain the equivalent identity
o n(n+1)/2 X 1 \nann+1)/2
q (=Dq
T @0 = Y e (), -5)
(@n (@Dn

n=0 n=0

since (¢2; q%)oo = (—q; @)oo (q; @)oo. The left side of (5.6) is a generating function for the pair of parti-
tions (7T, v), such that  is a partition into n distinct parts and v is a partition into distinct parts that
are strictly larger than n, and where the exponent of (—1) is the number of parts in v. For a given
partition pair (77, v) generated by the left side of (5.6), let k be the number of parts in v. Detach n



B.C. Berndt et al. / Journal of Combinatorial Theory, Series A 117 (2010) 957-973 965

from each part of v and attach k to each part of 7. Then we obtain partition pairs (o, A), such that o
is a partition into k distinct parts and A is a partition into distinct parts that are strictly larger than k,
and the exponent of (—1) is the number of parts in o. These partitions are generated by the right
side of (5.6). Since this process is easily reversible, our proof is complete. O

The identity in Theorem 5.2 is connected with the theory of gradual stacks with summits [7].

Theorem 5.3. (See [28, p. 10], [10, Entry 1.4.12].) For eachn > 0,

x m m(m+1)/2 S pm nm(m+1)/2
aq (_bqnm-&-n; qn)oo — Z q (_aqnm-H; q)oo.
= @m = @h49m

amqm<m+1)/2 s . s
—@Om generates partitions into m distinct parts, where the exponent

of a is the number of parts. Second, (—bq"™*"; q")», generates partitions into distinct parts, where
each part is at least nm + n, each part is a multiple of n, and the exponent of b equals the number

of parts. Let (T, v) be the partition pair generated by """ and (—bg"™*1; g, respectively.

(@m
.. e k qnk(k-+1)/2
Detach nm from each part of v. The remaining partition is generated by % Attach nk to each

part of ;r. Then the resulting partition is a partition into distinct parts that are greater than or equal
to nk 4 1. Since this process is reversible, we are finished with the proof. O

Proof. First observe that

Theorem 5.4. (See [28, p. 30], [10, Entry 1.4.17].) For each n > 0,

o0 o0
bmqm(m+])/2 amqm(m+1)/2
(—aq) —————— = (-bq) _— (5.7)
> m%; (@Om(~0q)nm > n;, (@m(=b@)nm
Proof. Rewrite the left-hand side of (5.7) in the form
o0 o0
bmqm(m+1)/2 bmqm(m+l)/2 ;
(—aq) _— =) ———(—ag™*") _. (5.8)
2 (@m(—a@nm @m ( )os

m=0 m=0

. mgm(m-+1)/2 . . L . .
First, qu generates partitions into m distinct parts with the exponent of b keeping track of

the number of parts. Second, (—aq™*1),, generates partitions into distinct parts, each strictly larger
than mn. Let (o, v) denote a pair of partitions generated by bqu;—)m;wz and (—ag™t1),, respectively.
Let k denote the number of parts in v. Detach mn from each part of v and denote the resulting
partition by v’. Attach kn to each part of o and denote the resulting partition by o’. Then v’ is a
partition into k distinct parts, and ¢’ is a partition into distinct parts, each strictly larger than kn.
Such partitions are generated by the right side of (5.8). Since the process is reversible, the proof is
complete. O

Theorem 5.4 provides a generalization of a certain Duality that was utilized by D.M. Bressoud [15]
in connecting the well-known identities

00 n2 1

q _
,; @ g9 (—0% 0900 (q: 0700 (@*: ) oo
and
o qn2+2n 1

=@t (0% 0900(0% 070 (@ )0
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of LJ. Rogers [29] with the Rogers-Ramanujan identities. In particular, if we consider the case n =1
in Theorem 5.4,

o bmqm(m-H)/Z(_aqm+l)<>O S amqm(m+1)/2(_qu-&-l)OQ

= ) 59
(@Dm Z @m (5:9)

m=0 m=0

and replace q by g2 and a by a/q in (5.9) we obtain the identity

o m_m? 2m+2. ;2 o0 m,m%+m 2m+1. ;2
) am™q™ (—bq 14700 b™q (—aq 14700
Fa.b=2, €% Pm -2 €% Pm = Fea.a/a- (510

m=0 m=0

Note that the transformation T defined by
T(F(a,b)) = F(bq,ag™")

is an involution. Thus (5.10) is a fixed point under this involution.

Bressoud [15] does not state this Duality explicitly but uses the underlying combinatorics in his
paper [15]. K. Alladi [2] observed the involution (5.10) as Bressoud’s Duality and used it to connect
six identities of Rogers [29] with the Rogers-Ramanujan identities via the modified convergence of a
certain continued fraction of Ramanujan, A. Selberg, and B. Gordon.

Similarly Theorem 5.3 is also a generalization of Bressoud’s Duality.

Theorem 5.5. (See [28, p. 42], [10, Entry 1.5.1].) We have

o0 o0

n n?
>0 art ), Y e 1)

s — (@%: ¢*)n(—ag* ¢*)n

o0 2
anqn +n

=(-aq:4*) )

= @ q*)n(—ag: ¢*)n

(512)

Proof. We prove (5.11). Moving (—aq?: %)« inside the summation sign and using a corollary of the
g-binomial theorem [6, p. 19, Eq. (2.2.6)], namely,

o amqm2+m+2mn
(4% 4%)m

242, 2
(_aq nt aq )OO =
m=0
we find that it suffices to show that
o0 aqu2 00 am+nqn2+m2+m+2mn

= . 513
,; @ m% (@ Pm(@% P)n (513)

Let us interpret the right side of (5.13). Consider a Durfee square of side m + n. Attach 1 to each
of the first m rows. Append the 2-modular diagram of a partition generated by ﬁ to the first m

rows. Finally append the 2-modular diagram of a partition generated by @ 2) to the next n rows.

Then, it is clear that the resulting partition is generated by the sum on the left side of (5.13). For the
reverse process, let 7 be a partition generated by the left side of (5.13). Then 7 has a Durfee square
of side k, and below the Durfee square there are no parts. Let 7, be a partition to the right of the
Durfee square in 7r. Let m be the number of odd parts in 7. Rearrange the order of 7, so that the
first m parts are odd. Detach 1 from each part of the first m parts of m,. Then the first m parts are

generated by W, and the remaining parts are generated by W. Setting n =k —m, we are
’ m il —m
done.

Since the proof of (5.12) is similar, we omit it. O
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The next identity is technically not in Ramanujan’s lost notebook [28] but is the lone entry on
a page published with the lost notebook. In fact, this identity is from the years prior to Ramanu-
jan’s departure for England, since it can be found as Entry 9 of Chapter 16 in Ramanujan’s second
notebook [27]. Prior to the proof given in [1] and [12, p. 52], proofs were given by V. Ramamani
[25] and Ramamani and K. Venkatachaliengar [26]. S. Bhargava and C. Adiga [14] have established a
generalization.

Theorem 5.6. (See [28, p. 362], [10, Entry 1.6.1].) For a # 0,

b SN (1) (b/a)aq" 2
@D D (05 a = @n

n=0

(5.14)

n=0

Proof. Replace a by —a in (5.14) and move (—aq). inside the summation on the left side to obtain
the equivalent identity

b o (—b/a)aq D2
— = . 5.15
2 g T = L, (>19)

Then, the right-hand side of (5.15) is a generating function for the partition pair (7, v), where 7 is
a partition into k distinct nonnegative parts that are less than n, and where v is a partition into n
distinct parts. Let us define o to be the partition such that

n=0

Oi = T4 1—i + Vmpqi+1, 1 <i<Kk.

Note that each part of o is greater than or equal to n. Let A be a partition consisting of the remaining
n — k parts of v. Detach n — k from each part of o and attach k to each part of A. Then the resulting
partition pairs (o/,1’) have the property that ¢’ is a partition into k parts that are greater than or
equal to k, and A’ is a partition into distinct parts that are strictly larger than k as desired. Since this
process is reversible by Algorithm Z, the proof is complete, except for checking the exponents of a
and b.

On the right-hand side of (5.15), the power of b equals the number of parts k in 7. The power
of a is n — k, the number of parts of v minus the number of parts of 7. In the partition pair (o, 1),
note that k is the number of parts in o and n — k is the number of parts in A. Observe that in the
last portion of the process, the number of parts is not changed. This then completes the proof. O

Theorem 5.7. (See [28, p. 38], [10, Entry 1.6.5].) If a is any complex number, then

i amqm(mﬂ) _ (_aqz. qz) i (_a)nqn(nJrl)/Z ' (516)
= (% qH)m(1 +ag?™ ) e (—agi)n

Proof. By Theorem 3.1, the identity (5.16) can be written in the equivalent form

00 amqm(m-H) o0 ni2. 2
=) (—aq)"(—aq”""*:q%) .
mzzo (@% g*)m(1 +ag*™+1) n; ( )

Note that (—aq?™t2;q?). generates partitions into distinct even parts, each greater than or equal
to 2n 4 2, with the exponent of a denoting the number of parts. Let m be the number of parts
generated by a partition arising from (—aq®"t2; q%)oo. Detach 2n from each of the m parts. Combining
this with (—aq)", we obtain (—aq?™*+1)". However, note that, for n > 0, all of these odd parts are
generated by 1/(1 +aq®"*1), and each part is weighted by —a. The remaining parts, which are even,
are generated by

S amqm(m+1)

2. 92 '
= @%4%m
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For these partitions into m distinct even parts, the exponent of a again denotes the number of
parts. O

6. Partitions with a parity sequence

Let D, be the set of partitions into n distinct parts less than 2n such that the smallest part of each
partition is 1, and if 2k — 1 is the largest odd part, then all odd positive integers less than 2k — 1 occur
as parts. For a partition A € D,;, we define the parity sequence as the longest sequence of decreasing
consecutive numbers containing the largest odd part and denote its length by c(1). Thus, the largest
part of the parity sequence might be even. For instance, when n =5,

c(5,4,3,2,1) =5,
c(8,6,5,4,3,1) =4,
c(9,7,6,5,3,1) =1.
Let
A=(A1, ..y Asy A1y vy Asics Asct1s - - -5 An) € Dy,

where its parity sequence is underlined. By the definition of a parity sequence, we see that

(P1) A1,...,As are even;
(P2) all the positive odd integers less than or equal to Asy; occur in A;
(P3) )“$+C is odd and )\S+L‘ = )‘«S+C+1 + 2.

We now compute the generating function of D,. For a partition A € Dy, let k be the number of odd
parts of A. Then it follows from the definition of D, that the odd integers 1, 3,...,2k — 1 occur in X
and the other n — k parts are distinct even numbers. Note that the generating function of partitions
into m distinct even parts less than 2n is [6, pp. 33-35]

qm(m+1) |:n - 1]
m q27

as the g-binomial coefficient [;]q generates partitions into at most b parts < (a —b) for 0 < b <a,
where

__@Qa_
[a] = { (R CH if0<b<a,
q

b 0, otherwise.
Therefore,
n—1 ) 1 n 1
Z gt = Zq(n—k) +k +k[ B ] ) (6.1)
€Dy k=0 ¢

Lemma 6.1. For any positive integer n,

n—1

—k)24k2 n—1
§ :q(n k)2 +k +l<|: 0 ] 2 = (—q: q)n_]qn(n-&-])/Z. (6.2)
k=0 a

Proof. Let fu(q) = (—q: Q)n_1q""*+1/2. Then, for n > 1,

far1(@ = (@ +¢*) fu(@).
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We prove the lemma by showing that the left-hand side of (6.2) satisfies the same recurrence as f(q).
First of all, when n =1, (6.2) holds true. For n > 1, using a familiar recurrence for [,’:]q2 [6, Eq. (3.3.4)],
we find that

n
) (n+1—k)2+k2+l<|:n:|
1 k
q2

k=0

n—1
2 k)2 4k2 n 2
=q(n+1) + § :q(n+1 k)< +k +k|:k:| +qn +n+1
k=1 7

n—1

— gt 4 Zq(n+l—k)2+k2+k e R B R L

Pt k e k—1 7
k=

n—1 n—2
2 EAVERY] n—1 12 2 n—1 2
=q(n+1) +Zq(n k)*+k +k+2n+1|: ] 2 + Zq(n k)2 +(k+1) +k+1[ ] 2 +qn +n+1
q q

k k
k=1 k=0
n—1 - _Tl 1— n—1 S n 1
— Zq(n—k) +k+k+2n+1 P + Zq(n—k) +k +3k+2|: P ]
L 1q2 2
k=0 q k=0
n—1 s —n 1 - n—1 , , n 1
— Zq(nfk) +k“+k+2n+1 . i + Zq(kJrl) +(n—k—1) +3(n7k71)+2|: . ] ]
k=0 - -9° k=0 q
- 24 k2 (n—17 ! 2,42 n—1
_ (n—k)*+k*+k+2n+1 - (n—k)=+k+k+n+1 -
S R .
k=0 - -9° k=0 q
n—1 Yy n 1
2n+1 1 —k)*+k=+k -
= (@ 4 ) Y g [ ” L’
k=0 q

which completes the proof. O

S.0. Warnaar has kindly informed the authors that a shorter, but more recondite, proof of
Lemma 6.1 can be effected by using a theorem of LJ. Rogers summing a very-well poised g¢s
[21, p. 356, Eq. (I1.21)].

We can prove the following theorem using (6.1) and (6.2). However, we provide a combinatorial
proof.

Theorem 6.2. For any positive integer n, the generating function of Dy, is

(—q; Pn_1q""HV/2,

Proof. For a positive integer n, let t = (n,n—1,...,2,1) and u = (w1, 42, ..., L¢) be a partition into
distinct parts less than n. We insert the parts u; in decreasing order into 7 as follows.

Insertion. Let 7 be T and begin with i =1.

(1) If ; 4+ @4 is even, then add w1 to 7y, i.e., add wq horizontally to 7, and add 1 to i; if m; + w1 is
odd, then add 1 to each of the 7;, ..., w1y, -1, i.e, add wq vertically down starting from 7;, and
the i remains the same.

(3) By an abuse of notation, let us denote the resulting partition by .

(3) Repeat the process with uo, ..., Wy, ie., until the parts of u are depleted.
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Fig. 1 illustrates our insertion with an example.

O0000O 00000 e O000O0Cee® O00000O0O
0000 0000 e 00000 00000 e
00O — 000Oe — 0000 — 0000

(0]®) ocoe 00O 000

©) ©) ©) @)

Fig. 1. Insertion of u = (4,2,1) into T = (5,4,3,2,1).

Throughout the proof, we assume that 7y = co. We first show that the final ;v is a partition in D,
with parity sequence (7541, ..., Tstc) such that if p, was inserted horizontally, then

czpe and 75— 751 — 1= s (6.3)
and if pe was inserted vertically, then
c=p¢ and 75— 11 — 1> WUy (6.4)

We use induction on £. If £ =1, then

m+pu,n—1,n—-2,...,2,1), ifn 4 1 is even,
T= n+1,n,...,n—pu1+2,n—pq,...,2,1), ifn+ uqisodd,

where in each case the parity sequence is underlined. Since w1 <n, we see that m € D, and the
conditions in (6.3) and (6.4) are satisfied. Given t = (n,n—1,...,1) and u = (41, ..., l¢), SUPPOSe
that the partition 7 resulting from the insertion of u1,..., (¢—1 satisfies either (6.3) or (6.4). We
denote

n:(nla--"nSaT[S-Q—l?"-7JTS+C,-T[S+C+17"-77[)1)eDﬂa

where its parity sequence is underlined. By (P1), we see that 75 is even. Since ;> 1 for any j < ¢,
it follows from the definition of insertion that the last horizontal insertion happened at the s-th part.
Thus, in order to insert (¢, we need to examine the parity of ms1 + (¢ by (P1). If 7541 + ¢ is even,
then we make a horizontal insertion; namely, the resulting partition is

!
T =1, ..., s, Tsq1 + ey Ts2, -5 Tstes Wsctls -+ Tn)-

Since 7t € Dy, all odd positive integers < 7541 occur in 7r, from which it follows that all odd positive
integers < 7542 occur in ', Also, since s — 7541 > 4e—1 by (6.3) and (6.4), we see that

7[5,_7[5/4,_] =75 — (Wsq1 + e) > pe—1 — g 2> 1.

Thus 7’ € D,. We now show that 77’ satisfies (6.3). Since ¢ > u¢—1 by (6.3) and (6.4), and pe—1 > [,
we see that the parity sequence of 7’ is (7sy2, ..., Tsic), which has length ¢ — 1 > u,. Also, since
o1 = Tsy2 + 1,

/ ’
o1 — Wgyp =Ts1+ e — Tsy2= e+ 1.

Therefore, 7t/ is a partition in D, satisfying (6.3). If 751 + ¢ is odd, then we make a vertical inser-
tion; namely, the resulting partition is

7' =1, s o1 + 1, Togpy + 1, syt 1s -« - » TTn)-

Since ¢ > ¢—1 by (6.3) and (6.4), and p¢—1 > (g, We see that the parity sequence of 7’ is
(Tsp1+1, .00 Tsqpyy + 1),

whose length is w,. Also, since s — w541 > Ug—1 > o,
Ty — Ty =Ts— (Tsp1+1) > pe—1 — 1> .

Thus 7’ satisfies (6.4). We now show that 7’ € Dj. Since 7511 + ¢ is odd, we see that s, is even,
SO sy, +1 and 7,41 are consecutive odd integers. Since 7 € Dy, all odd positive integers < 7541
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occur in 77, from which it follows that all odd positive integers < 751 + 1 occur in 7’. Therefore, 7’
is a partition in D, satisfying (6.4).
We now show that the map is bijective by defining its inverse. Let

A=A, A, Asi 1, ooy Astes Astcgls -+ -5 An) € D,

where its parity sequence is underlined.

Deletion. We now compare ¢ and (As — Agyq — 1).

(1) If there is no As or ¢ < (As — Asy1 — 1), then we let o4 = ¢ and subtract 1 from each of
As+1s-+-» Astc, 1.€., subtract oq vertically from A; if ¢ > (As — As41 — 1), then we let o =
As — As+1 — 1 and subtract (As — Asyq1 — 1) from As_q, i.e., subtract o1 horizontally from A.

(2) By an abuse of notation, let us denote the resulting partition by A.

(3) Repeat the process until we arrive at A = (n,n—1,...,1); we record the amount we subtract in
the i-th step as oj.

We now show that this process is well defined, i.e., the resulting partition in each step is still in Dy
and the sequence o1, 03, ... is strictly increasing with each part less than n. If o7 was subtracted
vertically, then the resulting partition is

Otseshsshsat — 1o oo hsre — 1, Agieats - s An). (6.5)

It follows from (P1), (P2), and (P3) that all the positive odd integers less than the largest odd part
occur. If o7 was subtracted horizontally, then the resulting partition is

()\1, e ,)hsf],)hs+1 + 17)\s+17 s 7)\s+07 )\s+c+], e )Ln)- (6-6)

The largest odd part of the resulting partition is either A5+ 1 or Agy1. Again, by (P1), (P2), and (P3),
the resulting partition is in D.

We now show that the sequence o1, 09, ... is strictly increasing with each part less than n. First
of all, note that if A # (n,n—1,...,1), then c <n. Thus we can easily see that o7 <n since o1 <c. It
now suffices to show that o; > 0y41 for i =1, 2, .... Suppose that oy was subtracted vertically from A.
Then, in (6.5), the length c* of the parity sequence of the resulting partition is larger than c. Also,

As— (As41— 1) —1=2s — A1 > C.

Since o7 is the minimum of ¢* and As — (As41 — 1) — 1, we see that o2 > 0. Suppose that o7 was
subtracted horizontally from A. Then, in (6.6), the length c* of the parity sequence of the resulting
partition is larger than c, which is larger than or equal to (As — As+1 — 1). Also,

Asm1— Ast1+ 1) —=1=As 1 —Asy1 =22 As+2 —As11 — 2> As — Asp1 — 1 =07,

where the first inequality follows from (P1). Since o3 is the minimum of ¢* and As_1 — (As41 +1) —1,
we see that 0y > 07.

We now show that the deletion map defined above is the inverse process of our insertion map.
Let 7t be the partition resulting from the insertion of w = (41, 2, ..., (¢) into 7, namely

T =1, oo, s, st 1s--vsTstcs Tstctls«--»Tn) € D
If ;¢ was inserted horizontally, then we see that
C= Mg =75 —Ts41— 1,

by (6.3). Thus, by the map, we have to subtract , horizontally. If ;, was inserted vertically, then we
see that

C= g <TTs — 541 — 1,

by (6.4). Thus, by the map, we have to subtract w, vertically. O
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Theorem 6.3. (See [28, p. 28], [10, Entry 1.6.2].) For any complex number a,

S x . n,n(n+1)/2
2"anqn2 _ Z (—q; Q)n—lza q2 . (6.7)
n=0 n=0 (—aq% q%)n

Proof. Let E,;, be the set of partitions into even parts less than or equal to 2n. By Theorem 6.2,
the right-hand side of (6.7) generates pairs of partitions (7,o0) with m € D, and o € E,, where
the exponent of a denotes the number of parts of r plus the number of parts of o, with the sign
(=19, Let 7, (resp. o¢) be the largest even part in 7 (resp. o). For convenience, we define 7, =0
(resp. o, = 0) if there is no even part in 7 (resp. o). Note that by the definition of D,, the following
are equivalent:

i)m=2n—-1,2n-3,...,3,1);
(ii) 7we = 0;
(iii) mq =2n—1.

We now compare 7, and oe.

Case 1. If 7, > 0 and 7, > o, then move 7, to o. We denote by (;t/,0’) the resulting partition
pair. Since 7w € D, and 7, > 0,  has n parts < 2n — 2. Thus, 7’ has n — 1 parts < 2n — 2 and o,
is still less than or equal to 2n — 2, from which it follows that 7’ € D,_1 and o’ € E;,_1. The pair
(', o) is generated by the right-hand side of (6.7), and it has the opposite sign.

Case 2. If 0, > 0 and o, > 7, then move o, to . We denote by (7t/,0’) the resulting partition
pair. Since 7 € D,, m has n parts < 2n. Also, since o € Ep, 0. < 2n. Thus, 7/ has n+ 1 parts < 2n,
from which it follows that 7’ € D11 and ¢’ € Ep41. The pair (7', ¢”) is generated by the right-hand
side of (6.7), and it has the opposite sign.

Therefore, the partition pairs (;r,0) with e > 0 or o, > 0 are cancelled, and there remain only
n=02n—-1,2n—3,...,1) and o =, which are generated by the left-hand side of (6.7). O

Alladi [3] has devised a completely different proof of Theorem 6.3 and has also provided a number-
theoretic interpretation of Theorem 6.3 as a weighted partition theorem. Although we have given a
bijective proof of Theorem 6.3, we do not interpret Theorem 6.3 number-theoretically. On the other
hand, even though Alladi interpreted Theorem 6.3 number-theoretically, his proof of Theorem 6.3 is
g-theoretic. It would be worthwhile to see how our bijective proof of Theorem 6.3 translates into a
combinatorial proof of Alladi’s weighted partition theorem.

Recently, the third author [33] found another combinatorial proof of Theorem 6.3.
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