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1. Introduction

The following square-free algebra CG associated to an arbitrary vertex labeled graph 
G was defined in [5], see also [1] and [2]. Let G be a graph without loops on the vertex 
set {0, ..., n}. (Below we always assume that all graphs might have multiple edges, but 
no loops.) Throughout the whole paper, we fix a field K of zero characteristic. Let ΦG

be the graded commutative algebra over K generated by the variables φe, e ∈ G, with 
the defining relations:

(φe)2 = 0, for any edge e ∈ G.
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Let CG be the subalgebra of ΦG generated by the elements

Xi =
∑
e∈G

ci,eφe,

for i = 1, ..., n, where

ci,e =

⎧⎪⎪⎨⎪⎪⎩
1 if e = (i, j), i < j;

−1 if e = (i, j), i > j;
0 otherwise.

(1)

In what follows we always assume that all algebras contain 1. For the reasons which 
will be clear soon, we call CG the spanning forests counting algebra of G. Its Hilbert 
series and the set of defining relations were calculated in [6] following the initial paper 
[7]. Namely, let JG be the ideal in K[x1, . . . , xn] generated by the polynomials

pI =
(∑

i∈I

xi

)DI+1

, (2)

where I ranges over all nonempty subsets in {1, . . . , n} and DI =
∑

i∈I dI(i), where dI(i)
is the total number of edges connecting a given vertex i ∈ I with all vertices outside I. 
Thus, DI is the total number of edges between I and the complementary set of vertices Ī. 
Set BG := K[x1, . . . , xn]/JG.

Remark 1. Observe that since 
∑n

i=0 Xi = 0, we can define CG as the subalgebra of ΦG

generated by X0, X1, . . . , Xn.
We can also define BG as the quotient algebra of K[x0, . . . , xn] by the ideal generated 

by pI , where I runs over all subsets of {x0, x1, · · · , xn}. This follows from the relation

pI =
(∑

i∈I

xi

)DI+1

=

⎛⎝p{0,1,...,n} −
∑
i∈I

xi

⎞⎠DI+1

.

To describe the Hilbert polynomial of CG, we need the following classical notion going 
back to W.T. Tutte. Given a simple graph G, fix an arbitrary linear order of its edges. 
Now, given a spanning forest F in G (i.e., a subgraph without cycles which includes all 
vertices of G) and an edge e ∈ G \ F in its complement, we say that e is externally 
active for F , if there exists a cycle C in G such that all edges in C \ {e} belong to 
F and e is minimal in C with respect to the chosen linear order. The total number 
of external edges is called the external activity of F . Although the external activity of 
a given forest/tree in G depends on the choice of a linear ordering of edges, the total 
number of forests/trees with a given external activity is independent of this ordering. 
Now we are ready to formulate the main result of [6].
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Theorem 1 (Theorems 3 and 4 of [6]). For any simple graph G, the algebras BG and CG
are isomorphic. The total dimension of these algebras (as vector spaces over K) is equal to 
the number of spanning subforests in G. The dimension of the k-th graded component of 
these algebras equals the number of subforests F in G with external activity |G| −|F | −k. 
Here |G| (resp. |F |) stands for the number of edges in G (resp. F ).

In the above notation, our main object will be the filtered subalgebra KG ⊂ ΦG

defined by the generators:

Yi = exp(Xi) =
∏
e∈G

(1 + ci,eφe), i = 0, . . . , n.

(Notice that we have one more generator here than in the previous case.)

Remark 2. Since Yi is obtained by exponentiation of Xi, we call KG the “K-theoretic” 
analog of CG. The original generators Xi are similar to the first Chern classes, see [7]
while their exponentiations Yi are similar to the Chern characters which are the main 
object of K-theory.

Our first result is as follows. Define the ideal IG in K[y0, y1, . . . , yn] as generated by 
the polynomials

qI =
(∏

i∈I

yi − 1
)DI+1

, (3)

where I ranges over all nonempty subsets in {0, 1, . . . , n} and the number DI is the same 
as in (2). Set DG := K[y0, . . . , yn]/IG.

Theorem 2. For any graph G, algebras BG, CG, DG and KG are isomorphic as (non-
filtered) algebras.

Moreover, the following stronger statement holds.

Theorem 3. For any graph G, algebras DG and KG are isomorphic as filtered algebras.

Recall that in a recent paper [4] the first author has shown that CG contains all 
information about the matroid of G and only it. Namely,

Theorem 4 (Theorem 2 of [4]). Given two graphs G1 and G2, algebras CG1 and CG2 are 
isomorphic if and only if the matroids of G1 and G2 coincide. (The latter isomorphism 
can be thought of either as graded or as non-graded, the statement holds in both cases.)

On the other hand, the filtered algebras DG and KG contain complete information 
about G.
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Theorem 5. Given two graphs G1 and G2 without isolated vertices, KG1 and KG2 are 
isomorphic as filtered algebras if and only if G1 and G2 are isomorphic.

The structure of this paper is as follows. In § 2 we prove the new results formulated 
above. In § 3 we discuss Hilbert series of similar algebras defined by other sets of genera-
tors. In § 4 we discuss “K-theoretic” analogs of algebras counting spanning trees. Finally, 
in § 5 we present a number of open problems.

2. Proofs

To prove Theorem 2, we need some preliminary results.

Lemma 1. For any simple graph G, the algebras CG and KG coincide as subalgebras of 
ΦG.

Proof. Since (Xi)di+1 = 0, where di is the degree of vertex i, then

Yi = exp(Xi) = 1 +
di∑
j=1

(Xi)j

j! .

Hence Yi ∈ CG which means that KG ⊂ CG ⊂ ΦG.
To prove the opposite inclusion, consider Ỹi = Yi − 1 = exp(Xi) − 1. Since Xi|Ỹi, we 

get

(Ỹi)di+1 = 0.

Using the relation Xi = ln(1 + Ỹi) =
∑di

j=1
(−1)j−1(Ỹi)j

j! , we conclude Xi ∈ KG. Thus 
CG ⊂ KG, implying that CG and KG coincide. �
Lemma 2. For any simple graph G, the algebras BG and DG are isomorphic as (non-
filtered) algebras.

Proof. First we change the variables in DG by using ỹi = yi − 1, i = 0, 1, . . . , n. The 
generators of ideal IG transform as

q̃I =
(∏

i∈I

(ỹi + 1) − 1
)DI+1

,

for any subset I ⊂ {0, 1, . . . , n}.
Since for every vertex i = 0, 1, . . . , n,

((ỹi + 1) − 1)di+1 = ỹi
di+1,
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we can consider DG as the quotient K[[ỹ0, . . . , ̃yn]]/ĨG of the ring of formal power series 
(instead of the polynomial ring) factored by the ideal ĨG generated by all q̃I .

Similarly we can consider BG as the quotient K[[x0, . . . , xn]]/J̃G of the ring of formal 
power series by the ideal J̃G generated by all pI .

Introduce the homomorphism ψ : K[[ỹ0, . . . , ̃yn]] �→ K[[x0, . . . , xn]] defined by:

ψ : ỹi → exi − 1.

In fact, ψ is an isomorphism, because ψ−1 is defined by xi → ln(1 + ỹi).
Let us look at what happens with the ideal ĨG under the action of ψ. For a given 

I ⊂ {0, 1, . . . , n}, consider the generator q̃I . Then,

ψ(q̃I) =
(∏

i∈I

(ψ(ỹi) + 1) − 1
)DI+1

=
(∏

i∈I

exi − 1
)DI+1

=

=
(

exp
(∑

i∈I

xi

)
− 1

)DI+1

=
(∑

i∈I

xi

)DI+1

·
(

exp
(∑

i∈I xi

)
− 1∑

i∈I xi

)DI+1

.

The factor exp
(∑

i∈I xi

)
−1∑

i∈I xi
is a formal power series starting with the constant term 1. 

Hence the last factor in the right-hand side of the latter expression is an invertible power 
series. Thus, the generator q̃I is mapped by ψ to the product pI ·∗, where ∗ is an invertible 
series. This implies ψ(ĨG) = J̃G. Hence the algebras DG and BG are isomorphic. �
Proof of Theorem 2. By Lemmas 1, 2 and Theorem 1, we get that all four algebras 
are isomorphic to each other. Furthermore, by Theorem 1, we know that their total 
dimension over K is the number of subforests in G. �

Theorem 3 now follows from Theorem 2.

Proof of Theorem 3. Consider the surjective homomorphism h : DG → KG, defined by

h(yi) = Yi, i = 0, 1, . . . , n.

(It is indeed a homomorphism because every relation qI holds for Y0, . . . , Yn.) By The-
orem 2 we know that these algebras have the same dimension, implying that h is an 
isomorphism. Since the filtrations in DG and KG are defined using yi’s and Yi’s respec-
tively it is clear that h is a filtration preserving isomorphism. �
2.1. Proving Theorem 5

We start with a few definitions.



G. Nenashev, B. Shapiro / Journal of Combinatorial Theory, Series A 148 (2017) 316–332 321
Given a commutative algebra A, its element t ∈ A is called reducible nilpotent if and 
only if there exists a presentation t =

∑
uivi, where all ui, vi are nilpotents.

For a nilpotent element t ∈ A, define its degree d(t) as the minimal non-negative 
integer for which there exists a reducible nilpotent element h ∈ A such that

(t− h)d+1 = 0.

Given an element R ∈ ΦG, we say that an edge-element φe belongs to R, if the 
monomial φe has a non-zero coefficient in the expansion of R as the sum of square-free 
monomials in ΦG.

Lemma 3. For any nilpotent element R ∈ KG, the degree d(R) of R equals the number 
of edges of G belonging to R. (Observe that d(R) is defined in KG.)

Proof. We can write R in terms of {X0, . . . , Xn}. (Observe that KG and CG coincide as 
subsets of ΦG, but have different graded/filtered structures.) Now we can concentrate on 
the graded structure of CG. Select the part of R which lies in the first graded component 
of CG. Thus

R = R1 + R′ =
n∑

i=0
aiXi + R′,

where R′ is reducible nilpotent because it belongs to the linear span of other graded com-
ponents. Thus d(R) = d(R1). The statement of Lemma 3 is obvious for R1. Additionally 
by construction, an edge-element φe belongs to R if and only if it belongs to R1. �
Lemma 4. Given a graph G, let {Ỹ0, . . . , Ỹn} be the set of generators of KG corresponding 
to the vertices (i.e., Ỹi = exp(Xi) − 1). Then

(1) {Ỹ0, . . . , Ỹn} are nilpotents;
(2)

∑n
i=0 ln(1 + Ỹi) = 0;

(3) for any subset I ⊂ [0, n] and any set of pairwise distinct non-zero numbers ai ∈ K

(i ∈ I), the degree d(
∑

i∈I aiỸi) is equal to the number of edges incident to at least 
one vertex belonging to I;

(4) the number of edges between vertices i and j equals to d(Ỹi)+d(Ỹj)−d(Ỹi+Ỹj)
2 .

Proof. Item (1) is obvious.
To settle (2), observe that ln(1 + Ỹi) = Xi which implies

n∑
ln(1 + Ỹi) =

n∑
Xi = 0.
i=0 i=0
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To prove (3), notice that, by Lemma 3, the degree d(
∑

i∈I aiỸi) is equal to the number 
of edges belonging to the sum 

∑
i∈I aiỸi. Each edge belongs either to zero, to one or to 

two generators Ỹi from the latter sum. Moreover, if an edge belongs to two generators, 
then it has coefficients of opposite signs. Since all ai are different, an edge-element φe

belongs to 
∑

i∈I aiỸi if and only if it belongs to at least one Ỹi, for i ∈ I. Thus the degree 
d(
∑

i∈I aiỸi) is the number of edges incident to at least one vertex from I.
To settle (4), notice that if e is an edge between vertices i and j, then φe belongs to 

Ỹi and to Ỹj with the opposite coefficients. Therefore φe does not belong to (Ỹi + Ỹj). 
Using Lemma 3, we get that d(Ỹi) + d(Ỹj) − d(Ỹi + Ỹj) equals twice the number of edges 
between i and j. �

Our proof of Theorem 5 uses the following technical lemma which should be obvious 
to the specialists.

Lemma 5 (Folklore). Let E be the set of edges of some graph G without isolated vertices. 
If we know the following information:

(1) which pairs ei, ej ∈ E of edges are multiple, i.e., connect the same pair of vertices;
(2) which pairs ei, ej ∈ E of edges have exactly one common vertex;
(3) which triples ei, ej , ek ∈ E of edges form a triangle,

then we can reconstruct G up to an isomorphism.

Proof. Assume the contrary, i.e., that there exist two non-isomorphic graphs G and G′

such that there exists a bijection ψ of their edge sets E and E′ preserving (1)–(3). Assume 
that under this bijection an edge e ∈ E corresponds to the edge e′ ∈ E′. Additionally 
assume that |V (G′)| ≥ |V (G)|.

Now we construct an isomorphism between G and G′. Let us split the vertices of G
into two subsets: V (G) = V̂ (G) ∪ Ṽ (G), where V̂ (G) are all vertices with at least two 
distinct neighboring vertices.

Let us construct a bijection ψ between the vertices of G and G′, which extends the 
given bijection ψ of edges, i.e., for any e = uv =∈ E, e′ = ψ(e) = ψ(u)ψ(v).

At first we define it on V̂ (G). Namely, given a vertex v ∈ V̂ (G), choose two non-
multiple edges ei and ej incident to it, and define ψ(v) as the common vertex of e′i and 
e′j . We need to show that ψ(v) does not depend on the choice of ei and ej . It is enough 
to check it for a pair ei and ek 	= ej , where ek is another edge incident to v. Indeed, 
if e′k has no common vertex with both e′i and e′j , then e′i, e′j and e′k form a triangle in 
G′ (because e′k has a common vertex with e′i and with e′j). Hence, ei, ej and ek form a 
triangle in G, but they have a common vertex v. Contradiction.

Now we need to extend ψ to vertices belonging to Ṽ (G). Note that each vertex v ∈
Ṽ (G) has exactly one adjacent vertex. There are two possibilities.
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1◦ The adjacent vertex u of v belongs to V̂ (G). Consider the edge euv ∈ E. (There 
might be several such edges, but this is not important, because in G′ they are also 
multiple.) Knowing the image ψ(euv) and the vertex ψ(u), we define ψ(v) as the vertex 
of ψ(euv) different from ψ(u).

2◦ Adjacent vertex u of v belongs to Ṽ (G). Consider the edge euv ∈ E Knowing 
ψ(euv), we define ψ(u) and ψ(v) as the vertices of the edge ψ(euv) (not important which 
is mapped to which).

Since G′ has no isolated vertices and each edge e′ has exactly two incident vertices 
from ψ(V ), we get that ψ : G → G′ is surjective. Hence, ψ : G → G′ is an isomorphism 
(otherwise it must be non-injective on vertices and, hence, |V (G)| > |V (G′)|). Therefore 
G and G′ are isomorphic. �
Proof of Theorem 5. Let G and G′ be a pair of graphs such that their filtered algebras KG

and KG′ are isomorphic. Without loss of generality, we can assume that |E(G)| ≤ |E(G′)|. 
Denote the numbers of vertices in G and G′ by n + 1 and n′ + 1 resp.

Consider KG as a subalgebra in ΦG. The elements Ỹi = exp(Xi) − 1, i ∈ [0, n] form a 
set of generators of KG. Since, by our assumptions, KG and KG′ are isomorphic as filtered 
algebras, denote by Z̃i ∈ KG, i ∈ [0, n′] the elements corresponding to the vertices of 
G′ under the latter isomorphism. The set {Z̃i, i ∈ [0, n′]} is also a generating set for KG

which gives the same filtered structure and satisfies the assumptions of Lemma 4. (Indeed, 
the operations of taking the logarithm and calculating the “degree” of an element are 
well-defined inside KG and KG′ . Thus we do not need to use the ambient algebras ΦG

and ΦG′ while applying Lemma 4.) In order to avoid confusion, we call Ỹi the i-th vertex 
of graph G, and we call Z̃j the j-th vertex of graph G′.

Since Ỹi, i ∈ [0, n] and Z̃i, i ∈ [0, n′] determine the same graded structure, then, in 
particular,

span{1, Ỹ0, . . . , Ỹn} = span{1, Z̃0, . . . , Z̃n′}.

Additionally, by Lemma 4, Ỹi, i ∈ [0, n] and Z̃i, i ∈ [0, n′] are nilpotents, implying that

span{Ỹ0, . . . , Ỹn} = span{Z̃0, . . . , Z̃n′}.

Firstly, we need to show that each edge-element φe belongs to at most two different 
Z̃i’s. Assume the contrary, i.e., that φe belongs to Z̃i, Z̃j and Z̃k. Then there exist 
three distinct non-zero coefficients r1, r2, r3 ∈ K such that φe does not belong to r1Z̃i +
r2Z̃j + r3Z̃k. Moreover, for generic distinct non-zero coefficients r′1, r′2, r′3 ∈ K, element 
φe′ (e′ ∈ E(G)) belongs to r′1Z̃i + r′2Z̃j + r′3Z̃k if and only if φe′ belongs to at least one 
of Z̃i, Z̃j and Z̃k. Hence by Lemma 3,

d(r1Z̃i + r2Z̃j + r3Z̃k) < d(r′1Z̃i + r′2Z̃j + r′3Z̃k).

But at the same time, by Lemma 4 (3), they should coincide, contradiction.
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By Lemma 4, for any i ∈ [0, n′], the degree d(Z̃i) equals the valency of Z̃i. Therefore,

2|E(G′)| =
n′∑
i=0

d(Z̃i) ≤ 2|E(G)|,

because each edge-element is included in at most two Z̃i. Since |E(G)| ≤ |E(G′)|, we 
conclude that |E(G)| = |E(G′)|. Furthermore, by Lemma 4 (2), each element φe, e ∈
E(G) belongs exactly to two vertices from Z̃i, i ∈ [0, n′] with the opposite coefficients. 
The number of edges between Z̃i and Z̃j equals d(Z̃i)+d(Z̃j)−d(Z̃i+Z̃j)

2 by Lemma 4; the 
number of common φe’s equals the latter number by Lemma 3. Thus we obtain a natural 
bijection between the edges of G and the edges of G′. Let us additionally assume that 
the number of pairs of non-multiple edges which have a common vertex in G′ is bigger 
than that in G.

So far we have constructed a bijection between the edges of G and the edges of G′. 
We want to prove that this bijection provides a graph isomorphism. We will achieve this 
as a result of the 5 claims collected in the following proposition which is closely related 
to Lemma 5.

Proposition 1. The following facts hold.

(1) If φe1 and φe2 have no common vertex in G, then they have no common vertex in G′

as well.
(2) If φe1 and φe2 are multiple edges in G, then they are multiple edges in G′ as well.
(3) If φe1 and φe2 have exactly one common vertex in G, then they have exactly one 

common vertex in G′ as well.
(4) If φe1 , φe2 and φe3 form a claw in G, then they form a claw in G′ as well. (Three 

edges form a claw if they have one common vertex and their three other ends are 
distinct.)

(5) If φe1 , φe2 and φe3 form a triangle in G, then they form a triangle in G′ as well.

Proof. To prove (1), assume the contrary, i.e., assume that φe1 and φe2 belong to Z̃j

(and denote the corresponding coefficients by a and b resp.). Since elements Ỹ0, . . . , Ỹn

have no monomial φe1φe2 , then Z̃0, . . . , Z̃n′ have no monomial φe1φe2 as well (since their 
spans coincide). Then ln(1 + Z̃j) contains the monomial φe1φe2 with the coefficient −ab.

By Lemma 4 (2), we have 
∑n′

i=0 ln(1 + Z̃i) = 0, so there exists k ∈ [0, n′], k 	= j

such that ln(1 + Z̃k) contains the monomial φe1φe2 with a non-zero coefficient. Then Z̃k

must contain φe1 and φe2 (since Z̃k does not contain φe1φe2). Hence, Z̃k has φe1 and φe2

with coefficients −a and −b resp. Therefore ln(1 + Z̃k) contains monomial φe1φe2 with 
the coefficient −(−a)(−b) = −ab. Thus the sum 

∑n′

j=0 ln(1 + Z̃j) contains φe1φe2 with 
coefficient −2ab, contradiction.

To prove (2), consider the map from span{Ỹ0, . . . , Ỹn} to K2, sending an element from 
the span to the pair of coefficients of φe1 and φe2 resp. Since edges e1 and e2 are multiple 
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in G, the image of this map has dimension 1. If φe1 and φe2 are not multiple in G′, then 
the image of the map from span{Z̃0, . . . , Z̃n′} = span{Ỹ0, . . . , Ỹn} has dimension 2.

To prove (3), observe that we have already settled Claims 1 and 2, and also we 
additionally assumed that the number of pairs of edges which have a common vertex in 
G′ is bigger than that in G. Then each such pair of edges from G is mapped to the pair 
of edges from G′ with the same property.

To prove (4), consider the map from span{Ỹ0, . . . , Ỹn} to K3, sending an element in 
the span to the triple of coefficients of φe1 , φe2 and φe3 resp. The image of this map has 
dimension 3. However if φe1 , φe2 and φe3 form a triangle in G′, then the image of the 
map from span{Z̃0, . . . , Z̃n′} has dimension 2.

Proof of (5) is similar to that of (4). �
Now applying Lemma 5 we finish our proof of Theorem 5. �

3. Further generalizations

In this section we will consider the Hilbert series of other filtered algebras similar to 
KG. (Recall that the Hilbert series of a filtered algebra is, by definition, the Hilbert series 
of its associated graded algebra.)

Let f be a univariate polynomial or a formal power series over K. We define the 
subalgebra F [f ]G ⊂ ΦG as generated by 1 together with

f(Xi) = f
(∑

ci,eφe

)
, i = 0, . . . , n.

Example 1. For f(x) = x, F [f ]G coincides with CG. For f(x) = exp(x), F [f ]G coincides 
with KG.

Obviously, the filtered algebra F [f ]G does not depend on the constant term of f . 
From now on, we assume that f(x) has no constant term, since for any g such that f −g

is constant, the filtered algebras F [f ]G and F [g]G are the same.

Proposition 2. Let f be any polynomial with a non-vanishing linear term. Then the 
algebras CG and F [f ]G coincide as subalgebras of ΦG.

Proof. The argument is the same as in the proof of Lemma 1. We only need to change 
exp(x) − 1 to f(x) and ln(1 + y) to f−1(y). �
Theorem 6. Let f be any polynomial with non-vanishing linear and quadratic terms. 
Then given two simple graphs G1 and G2 without isolated vertices, F [f ]G1 and F [f ]G2

are isomorphic as filtered algebras if and only if G1 and G2 are isomorphic graphs.

Proof. Repeat the proof of Theorem 5. �
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3.1. Generic functions f and their Hilbert series

Since Xdi+1
i = 0 for any i, we can always truncate any polynomial (or a formal power 

series) f at degree |G| + 1 without changing F [f ]G. Therefore, for a given graph G, it 
suffices to consider f as a polynomial of degrees less than or equal to |G|. To simplify 
our notation, let us write HSf,G instead of HSF [f ]G .

Given a graph G, consider the space of polynomials of degree less than or equal to 
|G| and the corresponding Hilbert series.

Proposition 3. In the above notation, for generic polynomials f of degree at most |G|, the 
Hilbert series HSf,G is the same. This generic Hilbert series (denoted by HSG below) is 
maximal in the majorization partial order among all HSg,G, where g runs over the set 
of all formal power series with non-vanishing linear term.

Here (as usual) by generic polynomials of degree at most |G| we mean polynomials 
belonging to some Zariski open subset in the linear space of all polynomials of degree at 
most |G|.

Recall that, by definition, a sequence (a0, a1, . . .) is bigger than (b0, b1, . . .) in the 
majorization partial order if and only if, for any k ≥ 0,

k∑
i=0

ai ≥
k∑

i=0
bi.

More information about the majorization partial order can be found in e.g. [3].

Proof. Note that, for a function f , the sum of the first k + 1 entries of its Hilbert series 
HSf,G equals the dimension of

span {fα0(X0)fα1(X1) · · · fαn(Xn) :
n∑

i=0
αi ≤ k}.

It is obvious that, for a generic f , this dimension is maximal. Since all Hilbert series 
HSf,G are polynomials of degree at most |G| + 1, then the required property has to be 
checked only for k ≤ [G|. Therefore it is obvious that, for generic f , their Hilbert series 
is maximal in the majorization order. �
Remark 3. We know that the Hilbert series of the graded algebra CG is a specialization 
of the Tutte polynomial of G. However we can not calculate the Hilbert series of KG

from the Tutte polynomial of G, because there exists a pair of graphs (G, G′) with the 
same Tutte polynomial and different HSKG

and HSKG′ , see Example 2.
Additionally, notice that, in general, HSexp,G := HSKG

	= HSG. Analogously we can 
not calculate generic Hilbert series HSG from the Tutte polynomial of G, see Example 2.



G. Nenashev, B. Shapiro / Journal of Combinatorial Theory, Series A 148 (2017) 316–332 327
Fig. 1. Graphs with the same matroid and different “K-theoretic” and generic Hilbert series.

Example 2. Consider two graphs G1 and G2 presented in Fig. 1. It is easy to see that 
G1 and G2 have isomorphic matroids and hence, the same Tutte polynomial. Therefore, 
the Hilbert series of CG1 and CG2 coincide. Namely,

HSCG1
(t) = HSCG2

(t) = 1 + 3t + 6t2 + 9t3 + 8t4 + 4t5 + t6.

However, the Hilbert series of their “K-theoretic” algebras are distinct. Namely

HSKG1
(t) = 1 + 4t + 10t2 + 14t3 + 3t4,

HSKG2
(t) = 1 + 4t + 10t2 + 15t3 + 2t4.

Moreover their generic Hilbert series are also distinct and different from their “K-
theoretic” Hilbert series. Namely,

HSG1(t) = 1 + 4t + 10t2 + 15t3 + 2t4,

HSG2(t) = 1 + 4t + 10t2 + 16t3 + t4.

Putting our information together we get,

HSCG1
= HSCG2

≺ HSKG1
≺ HSKG2

= HSG1 ≺ HSG2 ,

where ≺ denotes the majorization partial order.

4. “K-theoretical” analog for spanning trees

In this section we always assume that G is connected. For an arbitrary loopless graph 
G on the vertex set {0, ..., n}, let ΦT

G be the graded commutative algebra over a given 
field K generated by the variables φe, e ∈ G, with the defining relations:

(φe)2 = 0, for any edge e ∈ G;∏
e∈H

φe = 0, for any non-slim subgraph H ⊂ G,

where a subgraph H is called slim if its complement G \H is connected.
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Let CT
G be the subalgebra of ΦT

G generated by the elements

XT
i =

∑
e∈G

ci,eφe,

for i = 1, ..., n, where ci,e is given by (1). (Notice that XT
i and Xi are defined by exactly 

the same formula but in different ambient algebras.)
Algebra CT

G will be called the spanning trees counting algebra of G and is, obviously, 
the quotient of CG modulo the set of relations 

∏
e∈H φe = 0 over all non-slim subgraphs 

H. Its defining set of relations is very natural and resembles that of (2). Namely, define 
the ideal J T

G in K[x1, . . . , xn] as generated by the polynomials:

pTI =
(∑

i∈I

xi

)DI

, (4)

where I ranges over all nonempty subsets in {1, . . . , n} and the number DI is the same 
as in (2). Set BT

G := K[x1, . . . , xn]/J T
G . One of the results of [5] claims the following.

Theorem 7 (Theorems 9.1 and Corollary 10.5 of [5]). For any simple graph G on the set 
of vertices {0, 1, . . . , n}, the algebras BT

G and CT
G are isomorphic. Their total dimension is 

equal to the number of spanning trees in G. The dimension dimBT
G(k) of the k-th graded 

component of BT
G equals the number of spanning trees T in G with external activity 

|G| − n − k.

Similarly to the above, we can define the filtered algebra KT
G ⊂ ΦT

G which is isomorphic 
to CT

G as a non-filtered algebra. Namely, KT
G is defined by the generators:

Y T
i = exp(XT

i ) =
∏
e∈G

(1 + ci,eφe), i = 0, . . . , n.

The first result of this section is as follows. Define the ideal IT
G ⊆ K[y0, y1, . . . , yn] as 

generated by the polynomials:

qTI =
(∏

i∈I

yi − 1
)DI

, (5)

where I ranges over all nonempty proper subsets in {0, 1, . . . , n} and the number DI is 
the same as in (2), together with the generator

qT{0,1,...,n} =
n∏

i=0
yi − 1. (6)

Set DT
G := K[y0, . . . , yn]/IT

G.
We present two results similar to the case of spanning forests.
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Fig. 2. Graphs and their Δ-subgraphs.

Theorem 8. For any simple graph G, algebras BT
G, CT

G, DT
G and KT

G are isomorphic as 
(non-filtered) algebras. Their total dimension is equal to the number of spanning trees 
in G.

Proof. The proof is similar to that of Theorem 2. Algebras CT
G and KT

G coincide as sub-
algebras of ΦT

G (but they have different filtrations); algebras CT
G and BT

G are isomorphic 
by Theorem 7. The proof of the isomorphism between DT

G and BT
G is the same as above; 

we only need to add the variable x0 = −(
∑n

i=1 xi) to BT
G. �

Theorem 9. For any simple graph G, algebras DT
G and KT

G are isomorphic as filtered 
algebras.

Proof. Similar to the above proof of Theorem 3. �
To move further, we need to give a definition.

Definition 1. Let G be a connected graph. We define its Δ-subgraph Ĝ ⊆ G as the 
subgraph with the following edges and vertices:

• e ∈ E(Ĝ), if e is not a bridge (i.e., G \ e is still connected),
• v ∈ V (Ĝ), if there is an edge e ∈ E(Ĝ) incident to v.

By the bridge-free matroid of G we call the graphical matroid of Ĝ.

In general, Ĝ contains more information about G than its matroid, because there exist 
graphs with isomorphic matroids and non-isomorphic Δ-subgraphs, see Fig. 2.

Recall that in a recent paper [4], the first author has shown that CT
G depends only on 

the bridge-free matroid of G. Namely,

Proposition 4 (Proposition 16 of [4]). For any two connected graphs G1 and G2 with 
isomorphic bridge-free matroids (matroids of their Δ-subgraphs), algebras CT

G1
and CT

G2

are isomorphic.
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Unfortunately, we can not prove the converse implication at present although we con-
jecture that is should hold as well, see Conjecture 6 in § 5. In case of filtered algebra KT

G1

and KT
G2

we can also prove an appropriate result only in one direction, see Proposition 5.
Similarly to § 3 we can to define F [f ]TG ⊂ ΦG. Let f be a univariate polynomial or 

a formal power series over K. We define the subalgebra F [f ]TG ⊂ ΦG as generated by 1
and by

f(XT
i ) = f

(∑
ci,eφe

)
, i = 0, . . . , n.

Proposition 5. For a univariate polynomial f and any two connected graphs G1 and G2
with isomorphic Δ-subgraphs Ĝ1 and Ĝ2, algebras F [f ]TG1

and F [f ]TG2
are isomorphic as 

filtered algebras. Additionally, KT
G1

and KT
G2

are isomorphic as filtered algebras.

Proof. Note that if G has a bridge e, then filtered algebra F [f ]TG is the Cartesian product 
of filtered algebras F [f ]TG′ and F [f ]TG′′ , where G′ and G′′ are connected components of 
G \ e.

Thus filtered algebra F [f ]TG is the Cartesian product of such filtered algebras corre-
sponding to the connected components of the Δ-subgraph of G.

Therefore if connected graphs G1 and G2 have isomorphic Δ-subgraphs, then their 
filtered algebras F [f ]TG1

and F [f ]TG2
are isomorphic. �

Remark 4. In the general case we cannot prove that these algebras distinguish graphs 
with different Δ-subgraphs. The proof of Theorem 5 does not work for two reasons. 
Firstly, d(Ỹi) is not the degree of the i-th vertex in G. Secondly, even if we can construct 
a similar bijection between edges, we do not have an analog of Proposition 1. Since in 
the proof we consider coefficients of monomial φe1φe2 , in case when e1 and e2 are not 
bridges and when {e1, e2} is a cut, this monomial can still lie in the ideal.

It is possible to construct such a bijection in a smaller set of graphs, namely for graphs 
such that, for any edge e in the graph, there is another edge e′ which is multiple to e. 
For such graphs we do not have the second problem, because if {e1, e2} is a cut, then 
e1 and e2 are multiple edges. So, instead of the actual converse of Proposition 5, we can 
prove the converse in the latter situation, but we do not present this result here.

Proposition 6. In the above notation, for generic polynomials f of degree at most |G|, 
the Hilbert series HSF [f ]TG is the same. This generic Hilbert series (denoted by HSGT

below) is maximal in the majorization partial order among HSF [g]TG for g running over 
the set of power series with non-vanishing linear term.

Proof. See the proof of Proposition 3. �
Example 3. Consider two graphs G1 and G2, see Fig. 2. It is easy to check that subgraphs 
Ĝ1 and Ĝ2 have isomorphic matroids, implying that algebras CT

G and CT
G are isomorphic.
1 2
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HSCT
G1

(t) = HSCT
G2

(t) = 1 + 4t + 4t2.

The Hilbert series of “K-theoretic” algebras are distinct, namely

HSKT
G1

(t) = 1 + 5t + 3t2,

HSKT
G2

(t) = 1 + 6t + 2t2.

These graphs are “small”, so their generic Hilbert series coincides with the “K-theoretic” 
one. Putting our information together, we get

HSCT
G1

= HSCT
G2

≺ HSKT
G1

= HSG1T ≺ HSKT
G2

= HSG2T .

5. Related problems

At first, we formulate several problems in case of spanning forests; their analogs for 
spanning trees are straightforward.

Problem 1. For which functions f besides a + bx and a + bex, can one present relations 
in F [f ]G for any graph G in a simple way? In other words, for which f , can one define 
an algebra similar to BG and DG?

Since the Hilbert series HSKG
and HSG are not expressible in terms of the Tutte 

polynomial of G, they contain some other information about G.

Problem 2. Find combinatorial descriptions of HSKG
and HSG.

Problem 3. For which graphs G, do the Hilbert series HSKG
and HSG coincide? In other 

words, for which G, is exp a generic function?

Problem 4. Describe combinatorial properties of HSf,G when f is a function starting 
with a monomial of degree bigger than 1, i.e. f(x) = xk + · · · , k > 1? In particular, 
calculate the total dimension of F [f ]G.

The most delicate and intriguing question is as follows.

Problem 5. Do there exist non-isomorphic graphs G1 and G2 such that, for any poly-
nomial f(x), the Hilbert series HSf,G1 and HSf,G2 coincide? In other words, does the 
collection of Hilbert series HSf,G taken over all polynomials f determine G up to iso-
morphism?

The following problems deal with the case of spanning trees only.
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Conjecture 6 (Comp. [4]). Algebras CT
G1

and CT
G2

for graphs G1 and G2 are isomorphic 
if and only if their bridge-free matroids are isomorphic, where the bridge-free matroid is 
the graphical matroid of the Δ-subgraph.

Problem 7. Which class of graphs satisfies the property that if two graphs G1 and G2 from 
this class have isomorphic KT

G1
and KT

G2
, then their Δ-subgraphs are isomorphic. In other 

words, can one classify all pairs (G1, G2) of connected graphs, which have isomorphic 
filtered algebras KT

G1
and KT

G2
? (The same problem for F [f ]TG1

and F [f ]TG2
, where f(x) =

x + ax2 + · · · .)
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