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1. Introduction

A unit interval order is a partially ordered set that captures the order relations among 
a collection of unit intervals on the real line. Unit interval orders originated in the 
study of psychological preferences, first appearing in the work of Wiener [17], and then 
in greater detail in the work of Armstrong [4] and others. They were also studied by 
Luce [10] to axiomatize a class of utilities in the theory of preferences. Since then they 
have been systematically studied (see [5–8,15,18] and references therein). These posets 
exhibit many interesting properties; for example, they can be characterized as the posets 
that are simultaneously (3 + 1)-free and (2 + 2)-free (see Section 2). Moreover, it was 
first proved in [18] that the number of non-isomorphic unit interval orders on [n] equals 

1
n+1(

2n
n
), the n-th Catalan number (see also [5, Section 4]).

In [15], motivated by the desire to understand the f -vectors of various classes of posets, 
Skandera and Reed showed that a simple procedure for labeling a unit interval order 
yields the useful form of its n ×n antiadjacency matrix which is totally nonnegative (i.e., 
has all its minors nonnegative) with its zero entries appearing in a right-justified Young 
diagram located strictly above the main diagonal and anchored in the upper-right corner. 
The zero entries of such a matrix are separated from the one entries by a Dyck path 
joining the upper-left corner to the lower-right corner. Motivated by this observation, 
we call such matrices Dyck matrices. The Hasse diagram and the antiadjacency (Dyck) 
matrix of a canonically labeled unit interval order are shown in Fig. 1.

On the other hand, it follows from work of Postnikov [12] that the n ×n antiadjacency 
(Dyck) matrix of a (properly labeled) unit interval order P can be regarded as represent-
ing a rank n positroid on the ground set [2n]. We will say that such a positroid is induced
by P . Positroids, which are special matroids, were introduced and classified by Postnikov 
in his study of the totally nonnegative part of the Grassmannian [12]. He showed that 
there is a cell decomposition of the totally nonnegative part of the Grassmannian so that 
cells are indexed by positroids (or equivalent combinatorial objects). Positroids and the 
nonnegative Grassmannian have been the subject of a great deal of recent work, with 
connections and applications to cluster algebras [14], scattering amplitudes [3], soliton 
solutions to the Kadomtsev–Petviashvili equation [9], and free probability [2].

In this paper we characterize the positroids that arise from unit interval orders, which 
we call unit interval positroids. We show that the decorated permutations associated 
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Fig. 1. A canonically labeled unit interval order on [6] and its antiadjacency matrix, in which one entries 
and zero entries are separated by a Dyck path.

to rank n unit interval positroids are certain 2n-cycles in bijection with Dyck paths of 
length 2n. The following theorem is a formal statement of our main result (the necessary 
definitions are given in Section 2).

Main Theorem. A decorated permutation π represents a unit interval positroid on [2n]
if and only if π is a 2n-cycle (1 j1 . . . j2n−1) satisfying the following two conditions:

(1) in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear in increasing order 
while the elements n + 1, . . . , 2n appear in decreasing order;

(2) for every 1 ≤ k ≤ 2n − 1, the set {1, j1, . . . , jk} contains at least as many elements of 
the set {1, . . . , n} as elements of the set {n + 1, . . . , 2n}.

In particular, there are 1
n+1(

2n
n
) unit interval positroids on [2n].

The decorated permutation associated to a unit interval positroid on [2n] induced by 
a unit interval order P naturally encodes a Dyck path of length 2n. Here we provide a 
recipe to read this decorated permutation directly from the Dyck path appearing in the 
antiadjacency (Dyck) matrix A of P . We will refer to this path as the semiorder path
of A.

Theorem 1.1. Let P be a canonically labeled unit interval order on [n], and let A be its 
antiadjacency matrix. Number the n vertical steps of the semiorder path of A from bottom 
to top by 1, . . . , n and label the n horizontal steps from left to right by n +1, . . . , 2n. Then 
the sequence of 2n labels, read in the northwest direction, is the decorated permutation 
associated to the unit interval positroid induced by P .

Example 1.2. The vertical assignment on the left of Fig. 2 shows a set I of unit inter-
vals along with a canonically labeled unit interval order P on [5] describing the order 
relations among the intervals in I (see Theorem 2.2). The vertical assignment on the 
right illustrates the recipe given in Theorem 1.1 to read the decorated permutation 
π = (1 2 10 3 9 4 8 7 5 6) associated to the unit interval positroid induced by P directly 
from the antiadjacency matrix. Note that the decorated permutation π is a 10-cycle 
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Fig. 2. Following the solid assignments: unit interval representation I, its unit interval order P , the anti-
adjacency matrix ϕ(P ), and the Dyck path that separates the one entries from the zero entries in ϕ(P )
showing the decorated permutation π = (1 2 10 3 9 4 8 7 5 6).

satisfying conditions (1) and (2) of our main theorem. The solid and dashed assignment 
signs represent functions that we shall introduce later.

This paper is organized as follows. In Section 2 we establish the notation and formally 
present the fundamental concepts and objects used throughout this paper. Then, in Sec-
tion 3, we formally introduce canonical labellings and canonical interval representations 
of unit interval orders. Also, we use canonical labellings to exhibit an explicit bijection 
from the set of non-isomorphic unit interval orders on [n] to the set of n × n Dyck ma-
trices. Section 4 is dedicated to the description of the unit interval positroids via their 
decorated permutations, which yields the direct implication of the main theorem. In 
Section 5, we show how to read the decorated permutation associated to a unit interval 
positroid from either an antiadjacency matrix or a canonical interval representation of 
the corresponding unit interval order, which allows us to complete the proof of the main 
theorem. Then, in Section 6, we characterize the Le-diagrams of unit interval positroids. 
In Section 7, we find a necessary and sufficient condition for two unit interval positroids 
to index adjacent cells in the cell decomposition of the totally nonnegative part of the 
Grassmannian. Finally, in Section 8, we interpret the f -vector of a poset in terms of its 
antiadjacency matrix and, based on this, we propose a potential approach to compute 
the f -vector of a unit interval order.

2. Background and notation

For ease of notation, when (P, ≤P ) is a partially ordered set (poset for short), we just 
write P , tacitly assuming that the order relation on P is to be denoted by the symbol 
≤P . For x, y ∈ P , we will write x <P y when x ≤P y and x ≠ y. In addition, every poset 
showing up in this paper is assumed to be finite.
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Fig. 3. A 6-labeled unit interval order and one of its interval representations.

Definition 2.1. A poset P is a unit interval order if there exists a bijective map i ↦
[qi, qi + 1] from P to a set S = {[qi, qi + 1] ∣ 1 ≤ i ≤ n, qi ∈ R} of closed unit intervals of 
the real line such that for i, j ∈ P , i <P j if and only if qi + 1 < qj . We then say that S is 
an interval representation of P .

For each n ∈ N, we denote by Un the set of all non-isomorphic unit interval orders of 
cardinality n. For nonnegative integers n and m, let n+m denote the poset which is the 
disjoint sum of an n-element chain and an m-element chain. Let P and Q be two posets. 
We say that Q is an induced subposet of P if there exists an injective map f ∶ Q → P

such that for all r, s ∈ Q one has r ≤Q s if and only if f(r) ≤P f(s). By contrast, P is a 
Q-free poset if P does not contain any induced subposet isomorphic to Q. The following 
theorem provides a useful characterization of the elements of Un.

Theorem 2.2. [13, Theorem 2.1] A poset is a unit interval order if and only if it is 
simultaneously (3 + 1)-free and (2 + 2)-free.

If the poset P has cardinality n, then a bijective function �∶ P → [n] is called an 
n-labeling of P ; after identifying P with [n] via �, we say that P is an n-labeled poset. 
The n-labeled poset P is naturally labeled if i ≤P j implies that i ≤ j as integers for all 
i, j ∈ P .

Example 2.3. The Fig. 3 depicts the 6-labeled unit interval order introduced in Fig. 1
with a corresponding interval representation.

Another useful way of representing an n-labeled unit interval order is through its 
antiadjacency matrix.

Definition 2.4. If P is an n-labeled poset, then the antiadjacency matrix of P is the n ×n
binary matrix A = (ai,j) with ai,j = 0 if and only if i <P j.

Recall that a binary square matrix A is said to be a Dyck matrix if its zero entries 
are separated from its one entries by a Dyck path joining the upper-left corner to the 
lower-right corner. We call such a Dyck path the semiorder path of A. All minors of a 
Dyck matrix are nonnegative (see, for instance, [1]). We denote by Dn the set of all n ×n
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Dyck matrices. As presented in [15], every unit interval order can be naturally labeled so 
that its antiadjacency matrix is a Dyck matrix (details provided in Section 3). This yields 
a natural map ϕ∶ Un → Dn that is a bijection (see Theorem 3.5). In particular, ∣Dn∣ is the 
n-th Catalan number, which can also be deduced from the one-to-one correspondence 
between Dyck matrices and their semiorder (Dyck) paths.

For any matrix A and any k-element subsets I, J of row and column indices of A, define 
ΔI,J(A), the I, J-minor of A to be the determinant of the submatrix of A determined 
by rows I and columns J . Let Mat≥0d,n denote the set of all full rank d × n real matrices 
with nonnegative maximal minors. Given a totally nonnegative real n ×n matrix A, there 
is a natural assignment A ↦ ψ(A), where ψ(A) ∈ Mat≥0n,2n.

Lemma 2.5. ([12, Lemma 3.9])1 For an n × n real matrix A = (ai,j), consider the n × 2n
matrix B = ψ(A), where

⎛
⎜⎜
⎝

a1,1 . . . a1,n
⋮ ⋱ ⋮

an−1,1 . . . an−1,n
an,1 . . . an,n

⎞
⎟⎟
⎠

ψ�→
⎛
⎜⎜
⎝

1 . . . 0 0 (−1)n−1an,1 . . . (−1)n−1an,n
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 . . . 1 0 −a2,1 . . . −a2,n
0 . . . 0 1 a1,1 . . . a1,n

⎞
⎟⎟
⎠
.

For each pair (I, J) with I, J ⊆ [n] and ∣I ∣ = ∣J ∣, define the set

K =K(I, J) = {n + 1 − k ∣ k ∈ [n]∖I} ∪ {n + j ∣ j ∈ J}.

Then we have ΔI,J(A) = Δ[n],K(B).

Using Lemma 2.5 and the aforementioned map ϕ∶ Un → Dn, we can assign via ψ ○ϕ a 
matrix of Mat≥0n,2n to each unit interval order of cardinality n. In turn, every real matrix 
of Mat≥0n,2n gives rise to a positroid, a special representable matroid which has a very rich 
combinatorial structure. Let us recall the concept of matroid.

Definition 2.6. Let E be a finite set, and let B be a nonempty collection of subsets of 
E. The pair M = (E, B) is a matroid if for all B, B′ ∈ B and b ∈ B ∖ B′, there exists 
b′ ∈ B′ ∖B such that (B ∖ {b}) ∪ {b′} ∈ B.

If M = (E, B) is a matroid, then E is called the ground set of M and the elements of B
are called bases of M . Any two bases of M have the same size, which we denote by r(M)
and call the rank of M . If r(M) = d and E = [n], then we say that M is representable
if there exists a d × n real matrix A with columns A1, . . . , An such that B ∈ B precisely 
when {Ab ∣ b ∈ B} is a basis for the vector space Rd.

Definition 2.7. The rank d matroid on the ground set [n] represented by a matrix 
A ∈ Mat≥0d,n is denoted by ρ(A) and called a positroid.

1 There is a typo in the entries of the matrix B in [12, Lemma 3.9].
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Each unit interval order P (labeled so that its antiadjacency matrix is a Dyck matrix) 
induces a positroid via Lemma 2.5, namely, the positroid represented by the matrix 
ψ(ϕ(P )).

Definition 2.8. A positroid on [2n] induced by a unit interval order is called a unit 
interval positroid.

We denote by Pn the set of all unit interval positroids on the ground set [2n]. The 
function ρ ○ ψ ○ ϕ∶ Un → Pn plays a fundamental role in this paper. Indeed, we will end 
up proving that this function is a bijection (see Theorem 5.4).

Several families of combinatorial objects, in bijection with positroids, were intro-
duced in [12] to study the totally nonnegative Grassmannian: decorated permutations, 
Grassmann necklaces, Le-diagrams, and plabic graphs. We use decorated permutations, 
obtained from Grassmann necklaces, to provide a compact and elegant description of 
unit interval positroids.

In the next definition subscripts should be interpreted modulo n.

Definition 2.9. Let d, n ∈ N such that d ≤ n. An n-tuple (I1, . . . , In) of d-subsets of [n]
is called a Grassmann necklace of type (d, n) if for every i ∈ [n] the following conditions 
hold:

• i ∈ Ii implies Ii+1 = (Ii ∖ {i}) ∪ {j} for some j ∈ [n];
• i ∉ Ii implies Ii+1 = Ii.

For i ∈ [n], the total order <i on [n] defined by i <i ⋅ ⋅ ⋅ <i n <i 1 <i ⋅ ⋅ ⋅ <i i − 1 is 
called the shifted linear i-order. For a matroid M = ([n], B) of rank d, one can define the 
sequence I(M) = (I1, . . . , In), where Ii is the lexicographically minimal ordered basis of 
M with respect to the shifted linear i-order. It was proved in [12, Section 16] that the 
sequence I(M) is a Grassmann necklace of type (d, n). We call I(M) the Grassmann 
necklace associated to M . When M is a positroid we can recover M from its Grassmann 
necklace via Theorem 2.10; however, this does not hold for a general matroid, which can 
be deduced also from Theorem 2.10.

For i ∈ [n], the Gale order on ([n]
d
) with respect to <i is the partial order ≺i defined in 

the following way. If S = {s1 <i ⋅ ⋅ ⋅ <i sd} ⊆ [n] and T = {t1 <i ⋅ ⋅ ⋅ <i td} ⊆ [n], then S ≺i T
if and only if sj <i tj for each j ∈ [d].

Theorem 2.10. [11, Theorem 6] For d, n ∈ N such that d ≤ n, let I = (I1, . . . , In) be a 
Grassmann necklace of type (d, n). Then

B(I) = {B ∈ ([n]) ∣ Ij ≺j B for every j ∈ [n]}

d
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is the collection of bases of a positroid M(I) = ([n], B(I)), where ≺i is the Gale i-order 
on ([n]

d
). Moreover, M(I(M)) =M for all positroids M .

Therefore there is a natural bijection between positroids on [n] of rank d and Grass-
mann necklaces of type (d, n). However, decorated permutations, also in one-to-one 
correspondence with positroids, will provide a more succinct representation.

Definition 2.11. A decorated permutation of [n] is an element π ∈ Sn whose fixed points 
j are marked either “clockwise” (denoted by π(j) = j) or “counterclockwise” (denoted 
by π(j) = j).

A weak i-exceedance of a decorated permutation π ∈ Sn is an index j ∈ [n] satisfying 
j <i π(j) or π(j) = j. It is easy to see that the number of weak i-excedances does not 
depend on i, so we just call it the number of weak excedances.

To every Grassmann necklace I = (I1, . . . , In) one can associate a decorated permu-
tation πI as follows:

• if Ii+1 = (Ii ∖ {i}) ∪ {j}, then πI(j) = i;
• if Ii+1 = Ii and i ∉ Ii, then πI(i) = i;
• if Ii+1 = Ii and i ∈ Ii, then πI(i) = i.

The assignment I ↦ πI defines a one-to-one correspondence between the set of Grass-
mann necklaces of type (d, n) and the set of decorated permutations of [n] having exactly 
d weak excedances.

Proposition 2.12. [2, Proposition 4.6] The map I ↦ πI is a bijection between the set of 
Grassmann necklaces of type (d, n) and the set of decorated permutations of [n] having 
exactly d weak excedances.

Definition 2.13. If P is a positroid and I is the Grassmann necklace associated to P , 
then we call πI the decorated permutation associated to P .

3. Canonical labellings on unit interval orders

In this section we introduce the concept of a canonically labeled poset, and we use it 
to exhibit an explicit bijection from the set Un of non-isomorphic unit interval orders of 
cardinality n to the set Dn of n × n Dyck matrices.

Given a poset P and i ∈ P , the order ideal and the dual order ideal of i are defined 
to be Λi = {j ∈ P ∣ j ≤P i} and Vi = {j ∈ P ∣ i ≤P j}, respectively. We define the altitude
function of P to be the map α∶ P → Z defined by i ↦ ∣Λi∣ − ∣Vi∣. We say that an n-labeled 
poset P respects altitude if for all i, j ∈ P , the fact that α(i) < α(j) implies i < j (as 
integers). Notice that every poset can be labeled by the set [n] such that, as an n-labeled 
poset, it respects altitude (see also [7, p. 33]).
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Definition 3.1. An n-labeled poset is canonically labeled if it respects altitude.

Each canonically n-labeled poset is, in particular, naturally labeled. The next propo-
sition, extending [16, proof of Theorem 2.11], characterizes canonically n-labeled unit 
interval orders in terms of their antiadjacency matrices.

Proposition 3.2. ([15, Proposition 5]) An n-labeled unit interval order is canonically la-
beled if and only if its antiadjacency matrix is a Dyck matrix.

The above proposition indicates that the antiadjacency matrices of canonically labeled 
unit interval orders are quite special. In addition, canonically labeled unit interval orders 
have very convenient interval representations.

Proposition 3.3. Let P be an n-labeled unit interval order. Then the labeling of P is 
canonical if and only if there exists an interval representation {[qi, qi + 1] ∣ 1 ≤ i ≤ n} of 
P such that q1 < ⋅ ⋅ ⋅ < qn.

Proof. Let α∶ P → Z be the altitude map of P . For the forward implication, suppose that 
the n-labeling of P is canonical. Among all interval representations of P , assume that 
{[qi, qi + 1] ∣ 1 ≤ i ≤ n} gives the maximum m ∈ [n] such that q1 < ⋅ ⋅ ⋅ < qm. Suppose, by 
way of contradiction, that m < n. The maximality of m implies that qm > qm+1. This, 
along with the fact that α(m) ≤ α(m + 1), ensures that qm ∈ (qm+1, qm+1 + 1). Similarly, 
qi + 1 ∉ (qm+1, qm) for any i ∈ [n]; otherwise

α(m + 1) = ∣Λm+1∣ − ∣Vm+1∣ < ∣Λm∣ − ∣Vm+1∣ ≤ ∣Λm∣ − ∣Vm∣ = α(m)

would contradict that the n-labeling of P respects altitude. An analogous argument 
guarantees that qi ∉ (qm+1 + 1, qm + 1) for any i ∈ [n].

Now take k to be the smallest natural number in [m] such that qj > qm+1 for all j ≥ k, 
and take σ = (k k+1 . . . m m +1) ∈ Sn. We will show that S = {[pi, pi + 1] ∣ 1 ≤ i ≤ n}, 
where pi = qσ(i), is an interval representation of P . Take i, j ∈ P such that i ≤P j. Since 
i and j are comparable in P , at least one of them must be fixed by σ; say σ(i) = i. If 
σ(j) = j, then pi + 1 = qi + 1 < qj = pj . Also, if σ(j) ≠ j, then qi + 1 < qj ∈ (qm+1, qm). 
It follows from qi + 1 < qm that pi + 1 = qi + 1 < qm+1 < qσ(j) = pj . The case of σ(j) = j

can be argued similarly. Thus, S is an interval representation of P . As q1 < ⋅ ⋅ ⋅ < qm, 
the definition of k implies that p1 < ⋅ ⋅ ⋅ < pm+1, which contradicts the maximality of m. 
Hence m = n, and the direct implication follows.

Conversely, note that if {[qi, qi + 1] ∣ 1 ≤ i ≤ n} is an interval representation of P
satisfying q1 < ⋅ ⋅ ⋅ < qn, then for every m ∈ [n − 1] we have

α(m) = ∣Λm∣ − ∣Vm∣ ≤ ∣Λm+1∣ − ∣Vm+1∣ = α(m + 1),

which means that the labeling of P is canonical. ◻
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If P is a canonically n-labeled unit interval order, and I = {[qi, qi + 1] ∣ 1 ≤ i ≤ n} is 
an interval representation of P satisfying q1 < ⋅ ⋅ ⋅ < qn, then we say that I is a canonical
interval representation of P .

Note that the image (as a multiset) of the altitude map does not depend on the labels 
but only on the isomorphism class of a poset. On the other hand, the altitude map αP

of a canonically n-labeled unit interval order P satisfies αP (1) ≤ ⋅ ⋅ ⋅ ≤ αP (n). Thus, if Q
is a canonically n-labeled unit interval order isomorphic to P , then

(αP (1), . . . , αP (n)) = (αQ(1), . . . , αQ(n)), (3.1)

where αQ is the altitude map of Q. Let AP and AQ be the antiadjacency matrices of P
and Q, respectively. As αP (1) = αQ(1), the first rows of AP and AQ are equal. Since the 
number of zeros in the i-th column (resp., i-th row) of AP is precisely ∣Vi(P ) − 1∣ (resp., 
∣Λi(P )∣ − 1), and similar statement holds for Q, the next lemma follows immediately by 
using (3.1) and induction on the row index of AP and AQ.

Lemma 3.4. If two canonically labeled unit interval orders are isomorphic, then they have 
the same antiadjacency matrix.

Now we can define a map ϕ∶ Un → Dn, by assigning to each unit interval order its 
antiadjacency matrix with respect to any of its canonical labellings. By Lemma 3.4, this 
map is well defined.

Theorem 3.5. For each natural number n, the map ϕ∶ Un → Dn is a bijection.

Proof. It follows by combining the proof of [16, Ch. 8, Proof of Thm. 2.11] and [15, 
Prop. 5]. ◻

4. Description of unit interval positroids

We proceed to describe the decorated permutation associated to a unit interval 
positroid. Throughout this section A is an n × n Dyck matrix and B = (bi,j) = ψ(A)
is as in Lemma 2.5. We will consider the indices of the columns of B modulo 2n. Fur-
thermore, let P be the unit interval positroid represented by B, and let IP and π−1 be 
the Grassmann necklace and the decorated permutation associated to P .

Lemma 4.1. For 1 < i ≤ 2n, the i-th coordinate set of IP does not contain i − 1.

Proof. It is not hard to verify that every matrix resulting from removing one column 
from B still has rank n. As the matrix obtained by removing the (i − 1)-st column from 
B has rank n, it contains n linearly independent columns. Therefore the lemma follows 
straightforwardly from the <i-minimality of the i-th coordinate set of IP . ◻
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For the rest of this section let Bj denote the j-th column of B. As a direct consequence 
of Lemma 4.1, we have that π does not have any counterclockwise fixed point. On the 
other hand, π cannot have any clockwise fixed point because every column of B is 
nonzero. Hence π (and therefore π−1) does not fix any point. The next lemma immediately 
follows from the way π−1 is produced from the Grassmann necklace IP (see the end of 
Section 2).

Lemma 4.2. For i ∈ {1, . . . , 2n}, π(i) equals the minimum j ∈ [2n] with respect to the 
i-order such that Bi ∈ span(Bi+1, . . . , Bj).

Now we find an explicit expression for the function representing the inverse π of the 
decorated permutation π−1 associated to P . In order to do so, we will find it convenient 
to associate an index set and a map to the matrix B. We define the set of principal 
indices of B to be the subset of {n + 1, . . . , 2n} defined by

J = {j ∈ {n + 1, . . . ,2n} ∣ Bj ≠ Bj−1}.

We associate to B the weight map ω∶ [2n] → [n] defined by ω(j) = max{i ∣ bi,j ≠ 0}; more 
explicitly, we obtain that

ω(j) = { j if j ∈ {1, . . . , n}
∣b1,j ∣ + ⋅ ⋅ ⋅ + ∣bn,j ∣ if j ∈ {n + 1, . . . ,2n}.

Since the last row of the antiadjacency matrix A has all its entries equal to 1, the map 
ω is well defined. If j ∈ {n + 1, . . . , 2n}, then ω(j) is the number of nonzero entries in the 
column Bj . Now we have the following formula for π.

Proposition 4.3. For i ∈ {1, . . . , 2n}, we have

π(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i + 1 if n < i < 2n and i + 1 ∉ J,
ω(i) if n < i < 2n and i + 1 ∈ J, or i = 2n,
n + 1 if i = 1,
i − 1 if 1 < i ≤ n and i − 1 ∉ ω(J),
j if 1 < i ≤ n and i − 1 = ω(j) for some j ∈ J.

The index j in the final case is necessarily unique.

Proof. First, suppose that n < i < 2n and i + 1 ∉ J . Then we have Bi = Bi+1 and the set 
{Bi, Bi+1} is linearly dependent. Lemma 4.2 then implies that π(i) = i + 1.

Now suppose that n < i < 2n and i +1 ∈ J . Then Bi+1 results from replacing m (m > 0) of 
the last nonzero entries of Bi by zeros. Since i +1 ∈ J , the indices i and i +1 both appear in 
the i-th coordinate set of IP . Also, because the columns Bi, Bi+1, Bω(i+1)+1, . . . , Bω(i) are 
linearly dependent, not all the indices ω(i +1) +1, . . . , ω(i) appear in the i-th coordinate 
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set of IP . On the other hand, at most one index in ω(i + 1) + 1, . . . , ω(i) is missing 
from the i-th coordinate of IP ; this is because the submatrix of B determined by the 
row-index set {ω(i + 1) + 1, . . . , ω(i)} and the column-index set {n + 1, . . . , 2n} has rank 
1. By the minimality of the i-th coordinate set of IP with respect to the i-order, the 
index of {ω(i + 1) + 1, . . . , ω(i)} missing in the i-th coordinate set of IP is ω(i). As a 
result, we have π(i) = ω(i); otherwise, in the submatrix of B whose columns are indexed 
by the (i + 1)-st coordinate set of IP , the ω(i)-th row would consist entirely of zeros, 
which, in turn, would contradict the fact that such a coordinate set represents a basis of 
the positroid P .

The above argument also applies when i = 2n provided that we extend the domain of 
ω to [2n + 1] and set ω(2n + 1) = 0.

Note that π(1) = n + 1 follows immediately from the minimality of the second coordi-
nate set of IP and the fact that B2, . . . , Bn, Bn+1 are linearly independent.

Now suppose that 1 < i ≤ n and i − 1 ∉ ω(J). The minimality of the coordinate sets of 
IP implies that all the indices i, . . . , n appear in the i-th coordinate set. Furthermore, 
Lemma 4.1 implies that i − 1 does not belong to the i-th coordinate set of IP . Since 
no j ∈ J has weight i − 1, the (i − 1)-st and i-th rows of the maximal submatrix of B
determined by the column index set {n + 1, . . . , 2n} are equal. Consequently, we have 
π(i) = i −1; otherwise the associated maximal submatrix of B determined by the indices 
of the i-th coordinate set of IP would have the i-th and (i + 1)-st rows identical, which 
would contradict the fact that the i-th coordinate set of IP represents a basis of P .

Finally, suppose that 1 < i ≤ n and i − 1 ∈ ω(J). Since not two elements of J have the 
same weight, there is at most one j ∈ J such that ω(j) = i − 1. As before, all the indices 
i, . . . , n + 1 appear in the i-th coordinate set of IP (because i > 1). Each column Bk, for 
n < k ≤ 2n such that ω(k) = i − 1, is a linear combination of the columns Bi, . . . , Bn+1. 
Therefore such indices k do not appear in the i-th coordinate set of IP . By Lemma 4.1, 
it follows that i −1 does not appear in the i-th coordinate set of IP . Thus, π(i) = j, where 
j ∈ [2n] satisfies that ω(j) = i − 1; otherwise, in the submatrix of B whose columns are 
indexed by the (i +1)-st coordinate set of IP , the (i −1)-st row would consist entirely of 
zeros, which would contradict that the (i − 1)-st coordinate set of IP represents a basis 
of P . By minimality of the (i + 1)-st coordinate set of IP one finds that j ∈ J . ◻

As the next theorem indicates, π−1 is a 2n-cycle satisfying a very special property.

Theorem 4.4. π−1 is a 2n-cycle (1 j1 . . . j2n−1) satisfying the next two conditions:

(1) in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear in increasing order 
while the elements n + 1, . . . , 2n appear in decreasing order;

(2) for every 1 ≤ k ≤ 2n − 1, the set {1, j1, . . . , jk} contains at least as many elements of 
the set {1, . . . , n} as elements of the set {n + 1, . . . , 2n}.
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Proof. From Proposition 4.3 we immediately deduce that if π(i) = j for 1 < i ≤ 2n, then 
ω(i) = ω(j) when i > n and ω(i) = ω(j) + 1 when i ≤ n. This implies, in particular, that 
ω(i) ≥ ω(j). Suppose, by way of contradiction, that π−1, and so π, is not a 2n-cycle. 
Then there is a cycle (i1 i2 . . . ik) in the canonical cycle-type decomposition of π that 
does not contain 1. Therefore one has

ω(i1) ≥ ω(i2) ≥ ⋅ ⋅ ⋅ ≥ ω(ik) ≥ ω(i1),

which implies ω(i1) = ω(i2) = ⋅ ⋅ ⋅ = ω(ik). Since {i1, . . . , ik} does not contain 1, it fol-
lows that {i1, . . . , ik} ⊆ {n + 1, . . . , 2n}, which is a contradiction. Hence the cycle-type 
decomposition of π−1 contains only one cycle, which has length 2n.

Since π(1) = n + 1, one gets that π = (1 n +1 i1 i2 . . . i2n−2), where {i1, . . . , i2n−2} is 
precisely the set [2n] ∖ {1, n + 1}. As

ω(i1) ≥ ω(i2) ≥ ⋅ ⋅ ⋅ ≥ ω(i2n−2),

and ω(i) = i for every i ∈ [n], the elements of the set {2, . . . , n} appear in the cycle 
(1 n +1 i1 i2 . . . i2n−2) in decreasing order. On the other hand, by Proposition 4.3 the 
indices of equal columns of B (but perhaps the first one) show in increasing order and 
consecutively in the sequence (1, n + 1, i1, i2, . . . , i2n−2). Also, as the weight map ω is 
strictly decreasing when restricted to J , the elements of the set {n + 1, . . . , 2n} must 
appear in increasing order in the cycle (1 n +1 i1 i2 . . . i2n−2). Thus, condition (1) holds.

To show condition (2), write π = (n +1 i1 i2 . . . i2n−2 1) and suppose, by way of 
contradiction, that there exists m ∈ {1, . . . , 2n − 2} such that

∣{1 ≤ j ≤m ∣ ij ∈ {2, . . . , n}}∣ − 1 > ∣{1 ≤ j ≤m ∣ ij ∈ {n + 1, . . . ,2n}}∣. (4.1)

Let m be the minimal such index. By the minimality of m, one obtains that im ∈
{2, . . . , n}. Let k be the maximum index such that m ≤ k and ij ∈ {2, . . . , n} for each 
j =m, . . . , k. Note that k < 2n − 2 and π(ik) ∈ {n + 2, . . . , 2n}. Since

∣{j ≤ k ∣ 2 ≤ ij ≤ n}∣ = ∣{ik, . . . , n}∣

and

∣{j ≤ k ∣ n + 2 ≤ ij ≤ 2n}∣ = ∣{n + 2, . . . , π(ik) − 1}∣,

it follows by (4.1) that (n − ik + 1) − 1 > (π(ik) − 1) − (n + 2) + 1 = π(ik) − n − 2, which 
implies 2n −π(ik) +1 > ik −1. On the other hand, the fact that all the entries of A below 
and on the main diagonal equal 1 implies that ω(j) ≥ 2n − j + 1 for every n + 1 ≤ j ≤ 2n. 
Since 1 < ik ≤ n, one finds that ik = ω(ik) = ω(π(ik)) + 1. As n + 1 ≤ π(ik) ≤ 2n, we have

ik − 1 = ω(π(ik)) ≥ 2n − π(ik) + 1 > ik − 1,
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which is a contradiction. Hence, writing π−1 = (1 j1 . . . j2n−1), we obtain that for 
k = 1, . . . , 2n − 1, the set {1, j1, . . . , jk} contains at least as many elements of the set [n]
as elements of the set {n + 1, . . . , 2n}, which is condition (2). ◻

5. A direct way to read the unit interval positroid

Throughout this section, let P be a canonically n-labeled unit interval order with 
antiadjacency matrix A. Also, let I = {[qi, qi + 1] ∣ 1 ≤ i ≤ n} be a canonical interval 
representation of P (i.e., q1 < ⋅ ⋅ ⋅ < qn); Proposition 3.3 ensures the existence of such 
an interval representation. In this section we describe a way to obtain the decorated 
permutation associated to the unit interval positroid induced by P directly from either 
A or I. Such a description will reveal that the function ρ ○ψ ○ϕ∶ Un → Pn introduced in 
Section 2 is a bijection (Theorem 5.4).

Recall that the north and east borders of the Young diagram formed by the nonzero 
entries of A give a path of length 2n that we call the semiorder path of A. Let B =
(In∣A′) = ψ(A), where ψ is the map introduced in Lemma 2.5. We will also associate a 
second path to A. Let the inverted path of A be the path consisting of the south and 
east borders of the Young diagram formed by the nonzero entries of A′. Note that the 
inverted path of A is just the reflection in a horizontal line of the semiorder path of A. 
Example 5.2 sheds light upon the statement of the next theorem, which describes a way 
to find the decorated permutation associated to the unit interval positroid induced by 
P directly from A.

Theorem 5.1. If we number the n vertical steps of the semiorder path of A from bottom 
to top in increasing order with {1, . . . , n} and the n horizontal steps from left to right in 
increasing order with {n +1, . . . , 2n}, then by reading the semiorder path in the northwest 
direction, we obtain the decorated permutation associated to the unit interval positroid 
induced by P .

Proof. Let π−1 be the decorated permutation associated to the unit interval positroid 
induced by P . Label the n vertical steps of the inverted path of P from top to bottom 
in increasing order using the label set [n], and we label the n horizontal steps from left 
to right in increasing order using the label set {n +1, . . . , 2n} (see Example 5.2). Proving 
the theorem amounts to showing that we can obtain π (the inverse of the decorated 
permutation) by reading the inverted path in the northeast direction. Let (s1, s2, . . . , s2n)
be the finite sequence obtained by reading the inverted path in the northeast direction. 
Since the first step of the inverted path is horizontal and the last step of the inverted 
path is vertical, s1 = n + 1 and s2n = 1. Thus, it suffices to check that π(sk) = sk+1 for 
k = 1, . . . , 2n − 1.

Suppose first that the k-th step of the inverted path is horizontal, and so located 
right below the last nonzero entry of the sk-th column of B. If the (k + 1)-st step is also 
horizontal, then sk+1 = sk + 1, which means that π(sk) = sk + 1 and so π(sk) = sk+1. On 
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Fig. 4. Dyck matrix A and its image ψ(A) exhibiting the decorated permutation π along their semiorder 
path and inverted path, respectively.

the other hand, if the (k + 1)-st step is vertical, then sk = 2n or sk + 1 is in the set of 
principal indices J of B; in both cases, π(sk) = ω(sk), the number of vertical steps from 
the top to sk, namely, sk+1. Hence π(sk) = sk+1.

Suppose now that the k-th step of the inverted path is vertical. This implies that 
1 ≤ sk ≤ n. If the (k + 1)-st step is also vertical, then sk+1 = sk − 1. Because steps k and 
k + 1 are both vertical, A′ does not contain any column with weight sk − 1. As a result, 
π(sk) = sk−1 = sk+1. Finally, if the (k+1)-st step is horizontal, then {sk+1} = J∩ω−1(sk−1)
and, by Proposition 4.3, we find that π(sk) = sk+1. ◻

Example 5.2. Fig. 4 displays the antiadjacency matrix A of the canonically 5-labeled 
unit interval order P introduced in Example 1.2 and the matrix ψ(A) both showing 
their respective semiorder and inverted path encoding the decorated permutation π =
(1 2 10 3 9 4 8 7 5 6) associated to the positroid induced by P .

As a consequence of Theorem 5.1, we can deduce that the map ρ ○ ψ ○ ϕ∶ Un → Pn, 
where ρ, ψ, and ϕ are as defined in Section 2 and Section 3, is indeed a bijection.

Lemma 5.3. The set of 2n-cycles (1 j1 . . . j2n−1) satisfying conditions (1) and (2) of 
Theorem 4.4 is in bijection with the set of Dyck paths of length 2n.

Proof. We can assign a Dyck path D of length 2n to the 2n-cycle (1 = j0 j1 . . . j2n−1)
by thinking of the entries ji ∈ {1, . . . , n} as ascending steps of D and the entries ji ∈
{n + 1, . . . , 2n} as descending steps of D. The fact that such an assignment yields the 
desired bijection is straightforward. ◻

Theorem 5.4. The map ρ ○ψ ○ϕ∶ Un → Pn is a bijection.

Proof. By definition of Pn, it follows that ρ ○ ψ ○ ϕ is surjective. Since ∣Un∣ is the n-th 
Catalan number, it suffices to show that ∣Pn∣ ≥ 1

n+1(
2n
n
). To see this, take a 2n-cycle 

σ = (1 j1 . . . j2n−1) satisfying conditions (1) and (2) of Theorem 4.4, and consider 
the Dyck path D specified by σ as in Lemma 5.3. By Theorem 1.1, the Dyck matrix 
whose semiorder path is the reverse of D induces a unit interval positroid with decorated 
permutation σ. Because the decorated permutation associated to a positroid is unique, 
Lemma 5.3 guarantees that ∣Pn∣ ≥ 1 (2n). Hence ρ ○ ψ ○ϕ is bijective. ◻
n+1 n
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Fig. 5. Dyck matrix and canonical interval representation of P encoding the 10-tuple 
(−, +, −, −, +, −, +, −, +, +).

Corollary 5.5. The number of unit interval positroids on the ground set [2n] equals the 
n-th Catalan number.

We conclude this section by describing how to decode the decorated permutation 
associated to the unit interval positroid induced by P directly from its canonical interval 
representation I. Labeling the left and right endpoints of the intervals [qi, qi + 1] ∈ I by 
− and +, respectively, we obtain a 2n-tuple consisting of pluses and minuses by reading 
from the real line the labels of the endpoints of all such intervals. On the other hand, we 
can have another plus-minus 2n-tuple if we replace the horizontal and vertical steps of 
the semiorder path of A by − and +, respectively, and then read it in southeast direction 
as indicated in the following example.

Example 5.6. Fig. 5 above shows the antiadjacency matrix of the canonically 5-labeled 
unit interval order P from Example 1.2 and a canonical interval representation of P , both 
encoding the plus-minus 10-tuple (−, +, −, −, +, −, +, −, +, +), as described in the previous 
paragraph.

Lemma 5.7. Let an = (a1, . . . , a2n) and bn = (b1, . . . , b2n) be the 2n-tuples with entries in 
{+, −} obtained by labeling the steps of the semiorder path of A and the endpoints of all 
intervals in I, respectively, in the way described above. Then an = bn.

Proof. Let us proceed by induction on the cardinality n of P . When n = 1, both a1 and 
b1 are equal to (−, +) and so a1 = b1. Suppose now that the statement of the lemma 
is true for every canonically n-labeled unit interval order, and assume that P is a unit 
interval order canonically labeled by [n + 1] with antiadjacency matrix A and canonical 
interval representation I. Set m = ∣Λn+1∣ − 1. By Proposition 3.2, the poset P ∖{n + 1}
is a unit interval order canonically labeled by [n]; therefore its associated plus-minus 
2n-tuples a′n and b′n are equal. Observe, in addition, that bn+1 can be recovered from b′n
by inserting the − corresponding to the left endpoint of qn+1 (labeled by 2n + 2) in the 
position m +n +1 (there are n left interval endpoints and m right interval endpoints to the 
left of qm+1 in I) and adding the + corresponding to the right endpoint of qn+1 (labeled 
by 1) at the end. On the other hand, an+1 can be recovered from a′n by inserting the −
corresponding to the rightmost horizontal step of the semiorder path of A in the position 
m + n + 1 (there are n horizontal steps and m vertical steps before the last horizontal 
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Fig. 6. Decorated permutation π encoded in a canonical interval representation of P .

step of the semiorder path) and placing the + corresponding to the vertical step labeled 
by 1 in the last position. Hence an+1 = bn+1, and the lemma follows by induction. ◻

As a consequence of Theorem 5.1 and Lemma 5.7, one obtains a way of reading the 
decorated permutation associated to the unit interval positroid induced by P directly 
from I.

Corollary 5.8. Labeling the left and right endpoints of the intervals [qi, qi + 1] by n + i

and n +1 − i, respectively, we obtain the decorated permutation associated to the positroid 
induced by P by reading these 2n labels from right to left on the real line.

Proof. By Lemma 5.7, the 2n-tuple resulting from reading the set {1, . . . , 2n} as indi-
cated in Corollary 5.8 equals the 2n-tuple resulting from reading the same set from the 
semiorder path of A in northwest direction, as described in Theorem 5.1. Hence the 
corollary follows immediately from Theorem 5.1. ◻

Example 5.9. The diagram in Fig. 6 illustrates how to label the endpoints of a canonical 
interval representation of the 6-labeled unit interval order P shown in Fig. 1 to obtain 
the decorated permutation π = (1 12 2 3 11 10 4 5 9 6 8 7) associated to the positroid 
induced by P by reading such labels from the real line (from right to left).

6. The Le-diagram of a unit interval positroid

The set consisting of all d-dimensional subspaces of Rn, denoted by Grd,n, is called 
the real Grassmannian. Elements in Grd,n can also be understood as the orbits of the 
set of full-rank d × n real matrices under the left action of GLd(R). For A ∈ Matd,n and 
I ∈ ([n]

d
), the Plücker coordinate ΔI(A) is the maximal minor of A determined by the 

column set I. The embedding Grd,n ↪ RP
(n
d
)−1 induced by the map A ↦ (ΔI(A)) makes 

Grd,n a projective variety. Let GL+d(R) denote the set of real d × d matrices of positive 
determinant, and recall that Mat≥0d,n is the set of real d × n matrices of rank d having 
nonnegative maximal minors.
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Definition 6.1. The totally nonnegative Grassmannian, denoted by Gr+d,n, is the set of 
orbits of Mat≥0d,n under the left action of GL+d(R), i.e., Gr+d,n = GL+d(R) ∖Mat≥0d,n.

For a full-rank d × n real matrix A, let M(A) denote the matroid represented by A, 
and let [A] denote the element of Grd,n represented by A. The matroid stratification or 
Gelfand–Serganova stratification of Grd,n is the collection of all strata

SM ∶= {[A] ∈ Grd,n ∣M(A) =M},

where M runs over the set of rank k representable matroids on the ground set [n]. For 
each stratum SM, we define a positroid cell in Gr+d,n by

S+M = SM ∩Gr+d,n.

Note that a representable matroid M is a positroid precisely when S+M is nonempty. The 
collection of nonempty positroid cells is called the cellular decomposition of Gr+d,n. See 
[12, Sections 2 and 3] for further details.

Positroids, and therefore positroid cells, can be parameterized by a family of com-
binatorial objects called Le-diagrams. In this section, we characterize the Le-diagrams 
corresponding to unit interval positroids.

Definition 6.2. Let d, n ∈ N and let Yλ be the Young diagram associated to a given 
partition λ. A L-diagram (or Le-diagram) L of shape λ and type (d, n) is a Young 
diagram Yλ contained in a d × (n − d) rectangle, whose boxes are filled with zeros and 
pluses such that there is no zero entry which has simultaneously a plus entry above it in 
the same column and a plus entry to its left in the same row.

The left picture in Fig. 7 shows a L-diagram of square shape and type (6, 12). As 
mentioned before, L-diagrams of type (d, n) parameterize rank d positroids on the ground 
set [n]. The next lemma yields a method to find the decorated permutation of a positroid 
given its corresponding L-diagram.

Lemma 6.3. ([2, Lemma 4.8]) The following algorithm is a bijection between L-diagrams 
D of type (d, n) and decorated permutations π on n letters with d weak excedances.

(1) Replace each + in the L-diagram D with an elbow joint , and each 0 in D with a 

cross .
(2) Note that the south and east border of Yλ gives rise to a length-n path from the 

northeast corner to the southwest corner of the d × (n − d) rectangle. Label the edges 
of this path with the numbers 1 through n.

(3) Now label the edges of the north and west border of Yλ so that opposite horizontal 
edges and opposite vertical edges have the same label.
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Fig. 7. A Le-diagram and its corresponding “pipe dream” as described in Lemma 6.3.

(4) View the resulting “pipe dream” as a permutation π ∈ Sn by following the “pipes” 
from the northwest border to the southeast border of the Young diagram. If the pipe 
originating at label i ends at the label j, we define π(i) = j.

(5) If π(j) = j and j labels two horizontal (respectively, vertical) edges of Yλ, then 
π(j) ∶= j (respectively, π(j) ∶= j).

The picture on the left of Fig. 7 shows the L-diagram corresponding to the positroid in-
duced by the unit interval order displayed in Fig. 1. The “pipe dream” of this L-diagram, 
as described in Lemma 6.3, is depicted on the right.

The next theorem provides a characterization of the L-diagrams corresponding to unit 
interval positroids.

Theorem 6.4. A L-diagram L of type (n, 2n) parameterizes a unit interval positroid on 
[2n] if and only if its shape λ is a square of size n and L satisfies the following two 
conditions:

(1) every column has exactly one plus except the last one that has n pluses;
(2) the horizontal unit steps right below the bottom-most pluses are the horizontal steps 

of a length 2n Dyck path supported on the main diagonal of L.

Proof. Suppose first that L satisfies (1) and (2). To verify that L corresponds to a unit 
interval positroid, let us use Lemma 6.3 to compute its decorated permutation π and 
show that π−1 satisfies Proposition 4.3. Note that π−1(1) = n + 1. For i ∈ [2n] ∖{1}, we 
find π−1(i).

Assume first that i ∈ {2, . . . , n}. If there is only one plus in the (i −1)-st row of L (which 
means that ω(j) ≠ i − 1 for each j ∈ J), it follows by Lemma 6.3 that π−1(i) = i − 1. On 
the other hand (which means that there is exactly one principal element j in ω−1(i −1)), 
one obtains that π−1(i) is the label of the first column (from right to left) of L having a 
plus in the (i − 1)-st row (which means π−1(i) = j).

Assume now that i ∈ {n + 1, . . . , 2n}. If the bottom-most plus in the column of L
labeled by i is the last plus from right to left in its row, which is labeled by ω(i), then 
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Fig. 8. Chord diagram of the decorated permutation in Example 1.2.

by Lemma 6.3 it follows that π−1(i) = ω(i) (note, in this case, that i = 2n or i + 1 is a 
principal index). On the other hand, the columns of L labeled by i and i +1 are identical 
(i.e., i + 1 is not a principal index), and Lemma 6.3 yields π−1(i) = i + 1.

Thus, π−1 is as described in Proposition 4.3, and so π is the decorated permutation of 
a unit interval positroid on the ground set [2n]. As the number of L-diagrams satisfying 
the conditions above and the number of decorated permutations corresponding to unit 
interval positroids on the ground set [2n] are equal to the n-th Catalan number, the 
proof follows. ◻

As a result of Theorem 6.4, each unit interval positroid cell in Gr+k,n can be indexed 
by a L-diagrams described in the same theorem. Postnikov proved that the positroid 
cell indexed by a L-diagram L has dimension equal to the number of pluses of L [12, 
Theorem 4.6]. This immediately implies the following corollary.

Corollary 6.5. The positroid cell of a unit interval positroid on the ground set [2n] inside 
the cell decomposition of Grn,2n has dimension 2n − 1.

7. Adjacency of unit interval positroid cells

Given a decorated permutation π on n letters, its chord diagram is constructed in the 
following way. First, place n points labeled by [n] in clockwise order around a circle. 
For all i, j ∈ [n] with i ≠ j and π(i) = j, draw a directed chord from i to j. If π fixes i, 
then draw a directed chord from i to i, oriented counterclockwise if and only if π(i) = i. 
For i, j ∈ [n], let Arc(i, j) denote the set of points in the boundary circle of the chord 
diagram from i to j (both included) in clockwise order. Fig. 8 shows an example of a 
chord diagram.

Let AD and CB be two chords in the chord diagram of a decorated permutation π. We 
say that AD and CB form a crossing if they intersect inside the circle or on its boundary, 
and this crossing is simple if there are no other chords from Arc(C, A) to Arc(B, D). The 
left diagram in Fig. 9 shows a simple crossing. On the other hand, two chords AB and 
CD form an alignment if they do not intersect and have a parallel orientation as shown 
in the right diagram of Fig. 9. Notice that if A and B coincided in the right diagram 
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Fig. 9. A simple crossing on the left and a simple alignment on the right.

Fig. 10. A covering relation.

below, then in order for AB and CD to have parallel orientation AB must be a loop 
oriented counterclockwise. An alignment, as shown in the right side of the picture below, 
is said to be simple if there are no other chords from Arc(C, A) to Arc(B, D).

Let π1 and π2 be two decorated permutations of the same size n. We say that π1
covers π2, and write π1 → π2, if the chord diagram of π2 is obtained by turning a simple 
crossing of π1 into a simple alignment. This is depicted in Fig. 10.

If the points A and B happen to coincide, then the chord from A to B in the chord 
diagram of π2 degenerates to a counterclockwise loop. Similarly, if the points C and D
coincide, then the chord from C to D in the chord diagram of π2 becomes a clockwise 
loop. Finally, if A = B or C = D, then the loops at A and C in the chord diagram of 
π2 must be counterclockwise and clockwise, respectively. These three types of covering 
relations, illustrated in Fig. 11, are said to be degenerate.

Two positroid cells are adjacent if the decorated permutation parameterizing them 
cover a common decorated permutation. Here is a necessary and sufficient condition for 
two unit interval positroid cells to be adjacent.

Proposition 7.1. Let P1 and P2 be two distinct rank n unit interval positroids and π1 and 
π2 their respective decorated permutations. Then P1 and P2 label adjacent positroid cells 
if and only if there exists i ∈ [2n] ∖{1, n + 1} such that when i is removed from the cycle 
decomposition of π1 and π2 the resulting cycles are equal.

Proof. Let C1 and C2 be the chord diagrams of π1 and π2, respectively. Assume first 
that P1 and P2 label adjacent positroid cells whose decorated permutations both cover a 
permutation π. Let C denote the chord diagram of π. Theorem 4.4 ensures that C1 and 
C2 have a directed edge from n + 1 to 1 and their non-degenerate simple crossings occur 
only along this edge. Unlike non-degenerate coverings, degenerate coverings increase the 
number of fixed points; therefore π1 → π is a degenerate covering relation if and only if so 
is π2 → π. If π1 → π and π2 → π were both non-degenerate coverings, then the fact that 
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Fig. 11. The three degenerate covering relations.

both covering relations uncross the chord from n + 1 to 1 would imply that both π1 and 
π2 can be uniquely recovered from π, as the other chord being uncrossed in both covering 
relations must be the chord from π−1(1) to π(n +1). This, in turn, would contradict that 
π1 ≠ π2. As a result, both π1 → π and π2 → π are degenerate coverings. As π1 and π2

are 2n-cycles, π fixes exactly one element i ∈ [2n] ∖{1, n + 1}. Moreover, π is the result 
of removing i from the cycle decomposition of any of the permutations π1 or π2.

Conversely, suppose that for some i ∈ [2n] ∖{1, n + 1}, removing i from the cycle de-
composition of either π1 or π2 produces the same (2n − 1)-cycle π. In this case, π1 → π

and π2 → π are degenerate covering relations. Hence π1 and π2 are adjacent and the 
proof follows. ◻

Example 7.2. There are a total of five unit interval positroids on the ground set [6]. 
Let π1, . . . , π5 be their five corresponding decorated permutations. These permutations 
are illustrated in the top row of Fig. 12 via their chord diagrams. The bottom row of 
the same figure shows the chord diagrams of four of the decorated permutations covered 
by the πi’s. Although there are more than four decorated permutations covered by the 
πi’s, those depicted below are enough to obtain all possible adjacency relations between 
the positroid cells parameterized by the πi’s. The exterior long arrows below represent 
covering relations.
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Fig. 12. Subposet of CB3,6 illustrating the adjacency relations among the unit interval positroid cells of 
dimension 5.

It was proved in [12] that if π1 and π2 are two decorated permutations such that 
π1 → π2, then they both have the same number of weak excedances. Thus, the set of all 
decorated permutations of [2n] having n excedances can be regarded as a poset with 
order given by the transitive closure of the covering relation “→”; this poset is called 
the cyclic Bruhat order and is denoted by CBn,2n. Given that the adjacency relations of 
unit interval positroid cells can be described so nicely, we believe the subposet of CBn,2n
consisting of those decorated permutations representing positroids in the closures of unit 
interval positroid cells of Gr+n,2n may have an interesting description. Here we propose a 
problem stemming from Proposition 7.1.

Problem 7.3. Describe the subposet of CBn,2n consisting of those decorated permutations 
representing positroids in the closures of unit interval positroid cells of Gr+n,2n.

8. An interpretation of the f -vector of a unit interval order

In hopes of a more thorough understanding of the f -vectors of (3 + 1)-free posets, 
Skandera and Reed in [15] posed the following open problem: characterize the f -vectors 
of unit interval orders. In this aim, we provide a combinatorial interpretation for the 
f -vector of a naturally labeled poset in terms of its antiadjacency matrix. Through this 
section, P is assumed to be a naturally labeled poset of cardinality n with antiadjacency 
matrix AP = (ai,j).

Definition 8.1. The f -vector of P is the sequence f = (1, f0, f1, . . . , fn−1), where fk is the 
number of (k + 1)-element chains of P .
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Fig. 13. A valley Dyck path with three peaks inside the antiadjacency matrix of the poset displayed in 
Fig. 14.

Fig. 14. A naturally labeled poset P , along with three distinct valley Dyck paths drawn inside its antiadja-
cency matrix AP .

We wish to interpret the k-element chains of P in terms of some special Dyck paths 
inside AP . To do this, define a valley Dyck path of AP to be a Dyck path drawn inside 
AP that has its endpoints and all its valleys on the main diagonal and all its peaks in 
positions (i, j) such that ai,j = 0. Fig. 13 illustrates a valley Dyck path with three peaks.

Proposition 8.2. The entries of the f -vector of P are f0 = n and fk equals the number of 
valley Dyck paths of AP having exactly k peaks.

Proof. To each (k + 1)-element chain c ∶ i1 <P ⋅ ⋅ ⋅ <P ik+1 we can assign a valley Dyck 
path vc with k peaks as follows: the j-th peak begins at (ij, ij), heads east to (ij , ij+1), 
and then heads south to (ij+1, ij+1). To see that vc is a valley Dyck path, it suffices 
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to notice that every peak of vc occurs at a zero entry of AP since ij <P ij+1 for each 
j = 1, . . . , k. On the other hand, suppose that v is a valley Dyck path with k peaks, 
namely (i1, i′1), . . . , (ik, i′k). Then every valley of v is supported on the main diagonal, 
which means that i′j = ij+1 for each j = 1, . . . , k. Setting ik+1 = i′k, we obtain that v = vc, 
where c is the (k + 1)-element chain i1 <P ⋅ ⋅ ⋅ <P ik+1. Thus, we have established a 
bijection that yields the desired result. ◻

Example 8.3. The naturally labeled poset P depicted below has f -vector

f = (1,7,12,8,2,0,0,0).

Examples of valley Dyck paths realized on AP are also shown below.

Remark. Proposition 8.2 provides, in particular, an interpretation of the f -vector of 
any unit interval order. Given that a unit interval order can be labeled so that its 
antiadjacency matrix is a Dyck matrix, we think that the interpretation of the f -vector 
in Proposition 8.2 might be useful to find an explicit formula for the fk’s. This is because 
zero and one entries in a Dyck matrix are nicely separated, which could facilitate counting 
the valley Dyck paths having exactly k peaks.

Problem 8.4. Given an n × n Dyck matrix A, let ri be the number of one entries in the 
i-th row of A. For k ∈ [n − 1], can we find, in terms of the ri’s, an explicit formula for 
the number of valley Dyck paths of A containing exactly k peaks?
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