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Simion had a unimodality conjecture concerning the number of lattice paths in a

rectangular grid with the Ferrers diagram of a partition removed. Hildebrand

recently showed the stronger result that these numbers are log concave. Here we

present a simple proof of Hildebrand’s result. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let l ¼ ðl1; l2; . . . ; lrÞ be an integer partition where l15l25 � � �5lr50
and l0 the conjugate of l: Let Rðm; nÞ denote the rectangular grid with m

rows and n columns where m5l01 and n5l1: Consider the grid with the
Ferrers diagram of l removed from the upper left corner of Rðm; nÞ: Let
Nðm; n; lÞ denote the number of paths in Rðm; nÞ such that the path starts at
the lower left corner, the path ends at the upper right-hand corner, and at
each step the path goes up one unit or to the right one unit but never inside
the removed Ferrers diagram of l: It is well known that there would be ðmþn

n
Þ

such paths if there were no Ferrers diagram removed. Simion [5] proposed a
unimodality conjecture for Nðm; n; lÞ: This conjecture is also described in
[2, 4]. The description in here is based on that in [4].

Conjecture 1 (Simion). For each integer ‘ and each partition l; the
sequence

Nðl01; l1 þ ‘; lÞ;Nðl01 þ 1; l1 þ ‘� 1; lÞ; . . . ;Nðl01 þ ‘; l1; lÞ

is unimodal.

A sequence of positive numbers x0; x1; . . . ; x‘ is unimodal if x04x14 � � �
4xk5 � � �5x‘ for some k and is log concave in i if xi�1xiþ14x2

i for 0oio‘:
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It is well known that a log-concave sequence is also unimodal. Very recently,
Hildebrand [3] showed the following stronger result.

Theorem 1 (Hildebrand). The sequence in Simion’s conjecture is log

concave.

The key idea behind Hildebrand’s proof is to show

Nðm; n þ 1; lÞNðm þ 1; n; lÞ4Nðm; n; lÞNðm þ 1; n þ 1; lÞ ð1Þ

and

Nðm � 1; n þ 1; lÞNðm þ 1; n þ 1; lÞ4N2ðm; n þ 1; lÞ: ð2Þ

Note that (1) and (2) yield

Nðm � 1; n þ 1; lÞNðm þ 1; n; lÞ4Nðm; n; lÞNðm; n þ 1; lÞ: ð3Þ

By symmetry, this implies

Nðm þ 1; n � 1; lÞNðm; n þ 1; lÞ4Nðm; n; lÞNðm þ 1; n; lÞ: ð4Þ

Further, (3) and (4) yield

Nðm þ 1; n � 1; lÞNðm � 1; n þ 1; lÞ4N2ðm; n; lÞ;

the desired result. So, to show Theorem 1, it suffices to show (1) and (2).

2. PROOF OF (1) AND (2)

A matrix A is said to be totally positive of order 2 (or a TP2 matrix, for
short) if all the minors of order 2 of A have nonnegative determinants. A
sequence of positive numbers x0; x1; x2; . . . ; x‘ is log concave if and only if
the matrix

x0 x1 x2 � � � x‘

0 x0 x1 � � � x‘�1

 !

is TP2 (see, e.g., [1, Proposition 2.5.1]). The following lemma is a special case
of [1, Theorem 2.2.1].

Lemma 1. The product of two finite TP2 matrices is also TP2:
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Corollary 1. Let a0; a1; . . . ; a‘ be nonnegative and x0; x1; . . . ; x‘ posi-

tive. Denote Am ¼
Pm

i¼0 ai and Xm ¼
Pm

i¼0 xi for m ¼ 0; 1; . . . ; ‘:

(i) Assume aixiþ14aiþ1xi for all i: Then AmXmþ14Amþ1Xm for all m:

(ii) If the sequence x0; x1; . . . ; x‘ is log concave, then so is the sequence

X0;X1; . . . ;X‘:

Proof. Note that

x0 x1 x2 � � � x‘

a0 a1 a2 � � � a‘

 !
1 1 1 � � � 1

1 1 � � � 1

1 � � � 1

. .
. ..

.

1

0
BBBBBBB@

1
CCCCCCCA

¼
X0 X1 X2 � � � X‘

A0 A1 A2 � � � A‘

 !

and

x0 x1 x2 � � � x‘

0 x0 x1 � � � x‘�1

 !
1 1 1 � � � 1

1 1 � � � 1

1 � � � 1

. .
. ..

.

1

0
BBBBBBB@

1
CCCCCCCA

¼
X0 X1 X2 � � � X‘

0 X0 X1 � � � X‘�1

 !
:

The statement follows immediately from Lemma 1. ]

We now prove (1) and (2) by induction on l1; the largest part of l: If
l1 ¼ 0; i.e., l ¼ |; then both (1) and (2) are easily verified since Nðm; n; lÞ ¼
ðmþn

n
Þ; so we proceed to the induction step. Let l151 and r ¼ l01: Denote by

m the partition ðl1 � 1; . . . ; lr � 1Þ: Then

Nðm; n; lÞ ¼
Xm

k¼l01

Nðk; n � 1; mÞ:

However, the sequence Nðk; n � 1; mÞ is log concave in k by the induction
hypothesis. Hence Nðm; n; lÞ is log concave in m by Corollary 1(ii). This
proves (2). On the other hand, we have by the induction hypothesis

Nðk; n; mÞNðk þ 1; n � 1; mÞ4Nðk þ 1; n; mÞNðk; n � 1; mÞ:
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Thus by Corollary 1(i),

Xm

k¼l01

Nðk; n; mÞ
Xmþ1

k¼l01

Nðk; n � 1; mÞ4
Xm

k¼l01

Nðk; n � 1; mÞ
Xmþ1

k¼l01

Nðk; n; mÞ:

This gives (1).
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