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Abstract

A matrix A is said to be partition regular (PR) over a subset S of the positive integers if whenever S

is finitely coloured, there exists a vector x, with all elements in the same colour class in S, which satisfies
Ax = 0. We also say that S is PR for A. Many of the classical theorems of Ramsey Theory, such as van der
Waerden’s theorem and Schur’s theorem, may naturally be interpreted as statements about partition regu-
larity. Those matrices which are partition regular over the positive integers were completely characterised
by Rado in 1933.

Given matrices A and B, we say that A Rado-dominates B if any set which is PR for A is also PR
for B. One trivial way for this to happen is if every solution to Ax = 0 actually contains a solution to
By = 0. Bergelson, Hindman and Leader conjectured that this is the only way in which one matrix can
Rado-dominate another. In this paper, we prove this conjecture for the first interesting case, namely for
1 × 3 matrices. We also show that, surprisingly, the conjecture is not true in general.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A matrix A is said to be partition regular (PR) over a subset S of the positive integers if
whenever S is finitely coloured, there exists a vector x, with all elements in the same colour
class in S, which satisfies Ax = 0. We also say that S is PR for A, or that ‘the system of linear
equations Ax = 0’ is PR over S. All matrices considered in this paper will be finite.
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Many of the classical theorems of Ramsey Theory, such as van der Waerden’s theorem [9]
and Schur’s theorem [8], may naturally be interpreted as statements about partition regularity.
For example, Schur’s theorem states that whenever the positive integers are finitely coloured,
one can find x, y and z, all the same colour, with x + y = z. This is precisely the statement that
the matrix (1 1−1) is PR over the set N+ of positive integers.

When a matrix A is partition regular over N+, we simply say that the matrix A, or ‘the sys-
tem of linear equations Ax = 0,’ is partition regular. Those matrices which are partition regular
(over N+) were completely characterised by Rado in 1933 [7].

Given matrices A and B , we say that A Rado-dominates B if any set which is PR for A is also
PR for B . One trivial way for this to happen is if every solution to Ax = 0 actually contains a
solution to By = 0; when this happens we say that A solution-dominates B . Bergelson, Hindman
and Leader [1] conjectured that this is the only way in which one matrix can Rado-dominate
another:

Conjecture 1. [1] Let A and B be partition regular matrices. Then A Rado-dominates B if and
only if A solution-dominates B .

The first non-trivial case of this conjecture is that of 1 × 3 matrices. Recall that Rado’s char-
acterisation of PR matrices in the 1 ×n case states that the matrix A = (a1 a2 . . . an) is PR if and
only if there is some non-empty subset I ⊂ [n] with

∑
i∈I ai = 0, with not all ai (i ∈ I ) zero. So

in the 1 × 3 case, all PR equations take the form ax + by − (a + b)z = 0 or ax + by − az = 0
for some positive integers a and b.

The first of these two cases is uninteresting as it has the trivial solution x = y = z, and so
is solution-dominated by any PR matrix. So we need only consider the second case. Dividing
through by a, this becomes x + b

a
y − z = 0. In other words, the only non-trivial PR equations

in three variables are of the form x + λy = z for λ > 0 rational. So in this case, the conjecture
amounts to the statement that, for any distinct positive rationals λ and μ, there is some set S ⊂ N+
which is partition regular for the equation x + λy = z but not for the equation x + μy = z.

We shall prove that Conjecture 1 is true in this case by constructing a set S ⊂ N+ which is
partition regular for the equation x+λy = z, but which contains no solutions at all to the equation
x +μy = z. To achieve this aim, it will be enough to construct, for each positive integer k, a finite
subset Sk ⊂ N+ containing no solutions to x + μy = z such that whenever Sk is k-coloured, it
contains a monochromatic solution to x +λy = z. We may then ‘put copies of these sets together’
to make S, i.e. we take S = ⋃∞

k=1 ckSk , where c1, c2, c3, . . . , are positive integers chosen, in turn,
sufficiently large so as to create no solutions to the equation x + μy = z in S. Hence to establish
the 1 × 3 case of Conjecture 1, it is enough to prove that, given any distinct positive rationals λ

and μ, and given any positive integer k, there exists a finite subset S ⊂ N+ such that, whenever
S is k-coloured there exist positive integers a, x, a + λx ∈ S all the same colour, but such that
there are no positive integers b, y ∈ S with also b + μy ∈ S.

The case μ �= 1 was settled by Bergelson, Hindman and Leader in [1], where they produce a
‘fairly’ sparse subset S of N+, which we refer to as a tree-product (to be defined later), which
is PR for the system x + λy = z. In fact, whenever μ �= 1, this set S can be constructed in such
a way that it contains no solutions to x + μy = z at all. Unfortunately, it turns out to be rich
in solutions to x + y = z. This may seem like a mild technical difficulty. However, all known
methods of attack on the problem are based on the Hales–Jewett theorem, and create a set S with
many solutions to x + y = z. So it seems that there is, in fact, a genuine obstacle here. Indeed,
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this case of the problem has remained open for almost ten years. Our aim in Section 2 of this
paper is to prove Conjecture 1 in this case by establishing the following result:

Theorem 2. Let λ �= 1 be a positive rational and let k be a positive integer. Then there exists
a finite subset S ⊂ N+ such that whenever S is k-coloured, there are positive integers a, b,
a + λb ∈ S all the same colour, but such that S contains no solution to the equation x + y = z.

The main idea of the proof is to replace the use of the Hales–Jewett theorem in the construction
by iterated application of some appropriate ‘sparse’ Hales–Jewett theorem, which will enable us
to eliminate the unwanted solutions to x + y = z. As we explain below, a reasonable first idea
might be to prove an ‘intersecting-families’ Hales–Jewett theorem. Unfortunately, this result
turns out to be false. Our next hope would be an ‘antichain’ Hales–Jewett theorem, which we
are able to prove. This is proved in Section 3. Our proof of this antichain Hales–Jewett theorem
makes use of some extensions of the idea of Nešetřil–Rödl amalgamation.

Rather surprisingly, it turns out that Conjecture 1 is false in general. In Section 4, we present
a counterexample and make some concluding remarks.

We generally use standard notation throughout the paper. We denote by N the set {0,1,2, . . .}
of natural numbers, and by N+ the set N − {0} = {1,2,3, . . .} of positive integers. For n ∈ N+,
we write [n] to denote the finite set {1,2, . . . , n}.

2. Avoiding x + y = z

Our main aim in this section is to present a proof of Theorem 2. We make extensive use of
the Hales–Jewett theorem, of which we shall remind the reader after some necessary definitions.
This theorem can be thought of as an ‘abstract’ version of van der Waerden’s theorem.

Let A be a finite set and d a positive integer. We work in Ad , the d-dimensional Hales–Jewett
cube on alphabet A. A combinatorial line in the cube Ad is a set L of the form

L = {
(x1, x2, . . . , xd) ∈ Ad : xi = xj for i, j ∈ I, xi = ci for i ∈ [d] − I

}
where I is a non-empty subset of [d] and the ci (i ∈ [d] − I ) are elements of the alphabet A. We
call I the set of active coordinates of L and [d] − I the set of inactive coordinates of L. We are
now ready to state the Hales–Jewett theorem.

Theorem 3 (The Hales–Jewett theorem [4]). Let A be a finite set and k a positive integer. Then
there exists a positive integer d such that whenever Ad is k-coloured, it contains a monochro-
matic line.

Observe that van der Waerden’s theorem follows easily from the Hales–Jewett theorem. It is
possible to map the Hales–Jewett cube [n]d into the positive integers N+ in such a way that each
combinatorial line in [n]d is taken to an arithmetic progression of length n in N+: for example,
define φ : [n]d → N+ by

φ(x1, x2, . . . , xd) = x1 + x2 + · · · + xd .

Then a k-colouring of N+ induces a k-colouring of [n]d , which, assuming d is sufficiently large,
gives a monochromatic line in [n]d , which in turn gives a monochromatic arithmetic progression
of length n in N+.
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We shall also require a multi-dimensional extension of this theorem. An m-dimensional com-
binatorial subspace of a Hales–Jewett cube Ad (m = 1, 2, 3, . . .) is a set L of the form

L =
{

(x1, x2, . . . , xd) ∈ Ad : for each j = 1,2, . . . ,m, xi = xh for i, h ∈ Ij ,

xi = ci for i ∈ [d] −
m⋃

j=1

Ij

}

where I1, I2, . . . , Im are disjoint non-empty subsets of [d] and the ci (i ∈ [d] − ⋃m
j=1 Ij ) are

elements of the alphabet A. We call I1, I2, . . . , Im the active coordinate sets of L and [d] −⋃m
j=1 Ij the set of inactive coordinates of L. Note that a 1-dimensional combinatorial subspace

is simply a combinatorial line.

Theorem 4 (The multi-dimensional Hales–Jewett theorem [4]). Let A be a finite set, and let
k and m be positive integers. Then there exists a positive integer d such that whenever Ad is
k-coloured, it contains a monochromatic m-dimensional subspace.

While this result does not appear explicitly in [4], it follows immediately from Theorem 1 by
applying it to the alphabet Am (see, for example, [3]).

We begin with the aforementioned result of Bergelson, Hindman and Leader. We give a proof
in our language as it will be necessary to modify this proof to deal with the case μ = 1. Thus we
urge the reader not to skip the proof of Theorem 5.

Before stating the theorem, we need some notation. In what follows, we take λ to be a fixed
positive rational.

A λ-line is a set of the form {x, y, x + λy}, where x and y are non-zero elements of N (or,
more generally, of Ne for some e � 1).

A λ-tree of height 0 is a set of the form {y} for some non-zero y ∈ N. A λ-tree of height 1 is a
set of the form T = {x, y, x + λy} for non-zero x, y ∈ N with x �= y. We say that the λ-tree {y}
of height 0 is a pre-tree of T . A λ-tree of height h (h � 2) is a set T of the form

T = R ∪
⋃

y∈S−R

{xy, y, xy + λy}

where S is a λ-tree of height h− 1 with pre-tree R and the xy (y ∈ S −R) are non-zero elements
of N chosen so that all the xy and all the xy + λy (y ∈ S − R) are distinct and not contained in
S and so that no unnecessary λ-lines are created in T : in other words, the only λ-lines in T are
those in S together with those of the form {xy, y, xy + λy} for y ∈ S − R. We say that S is a
pre-tree of T . Note that it is possible to find a λ-tree of any given height h: first construct such a
tree in Q+ by selecting each xy , in turn, sufficiently large, then multiply every element by some
appropriate constant to bring the tree into N.

If T is a tree of height h, we say that (T0, T1, . . . , Th) is a tree-sequence for T if Ti is a tree of
height i (0 � i � h), Ti is a pre-tree of Ti+1 (0 � i � h− 1), and Th = T . (The reader may check
that, except in the case λ = 1, the tree-sequence for a given tree is unique.)

A λ-tree-product of dimension d is a set F ⊂ Nd of the form

F = {
(t1, t2, . . . , td): ti ∈ Ti ∪ {0}, ti not all 0

}
where T1, T2, . . . , Td are λ-trees. We say that F is the tree-product of the trees T1, T2, . . . , Td .
A λ-tree-product is said to be of height h if each λ-tree in the definition is of height h.
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We are now ready to give the construction of the set required for the 1×3 case of Conjecture 1
in the case μ �= 1. The proof of the following theorem is simply a rephrasing of the proof from [1].
(While this result does not appear explicitly in [1], it may be read out of Theorem 2.5 of [1] using
Lemma 2.6 and Theorem 2.7 of [1].)

Theorem 5. [1] Let λ be a positive rational. Then there exists some λ-tree-product F such that
whenever F is k-coloured it contains a monochromatic λ-line.

Proof. For the remainder of this proof, ‘line,’ ‘tree’ and ‘tree-product’ will mean ‘λ-line,’
‘λ-tree’ and ‘λ-tree-product,’ respectively.

Let T be a tree of height k + 1 with tree-sequence (T0, T1, . . . , Tk+1). Define a finite sequence
d0, d1, d2, . . . , dk+1 of positive integers inductively as follows:

• d0 = 1;
• for 1 � n � k + 1, take dn sufficiently large that whenever T

dn
n is k-coloured, there exists a

monochromatic combinatorial subspace of dimension dn−1.

Note that dn is guaranteed to exist by the Hales–Jewett theorem.
Now take F to be the tree product of dk+1 copies of T .
Suppose F is k-coloured. This induces a k-colouring of the subset T

dk+1
k+1 and so, by our

choice of dk+1, we may find a monochromatic dk-dimensional subspace Gk . We may as-
sume without loss of generality that the active coordinates of Gk are [dk], i.e. that there exist
zdk+1, zdk+2, . . . , zdk+1 ∈ Tk+1 such that

Gk = {
(t1, t2, . . . , tdk

, zdk+1, zdk+2, . . . , zdk+1): t1, t2, . . . , tdk
∈ Tk+1

}
.

[The conscientious reader may be concerned at this point that some of the active coordinate
sets of Gk may contain two or more coordinates varying together. But this does not cause a
problem—we may simply identify such coordinates by a suitable isomorphism. This will result
in a smaller number of inactive coordinates in the set Gk , but the number of inactive coordinates
has no bearing on the remainder of the proof. It will, however, be necessary to take more care
over keeping track of the coordinates when we come to deal with the case μ = 1.]

Now, write

Fk = {
(t1, t2, . . . , tdk

,0,0, . . . ,0︸ ︷︷ ︸
dk+1−dk

): t1, t2, . . . , tdk
∈ Tk ∪ {0}, ti not all 0

}
.

Note that we may think of Fk as a tree-product of height k by considering it as the tree product
of dk copies of Tk ; i.e. we identify Fk with the set{

(t1, t2, . . . , tdk
): t1, t2, . . . , tdk

∈ Tk ∪ {0}, ti not all 0
}
.

Now, our original colouring induces a k-colouring of Fk , which in turn gives a k-colouring
of the subset T

dk

k . By our choice of dk , we may find a monochromatic dk−1-dimensional sub-
space Gk−1. We may assume without loss of generality that the active coordinate set of Gk−1
is [dk−1]. So there exist zdk−1+1, zdk−1+2, . . . , zdk

∈ Tk such that

Gk−1 = {
(t1, t2, . . . , tdk−1 , zdk−1+1, zdk−1+2, . . . , zdk

): t1, t2, . . . , tdk−1 ∈ Tk

}
.

Now, write

Fk−1 = {
(t1, t2, . . . , tdk−1 ,0,0, . . . ,0︸ ︷︷ ︸

d −d

): t1, t2, . . . , tdk−1 ∈ Tk−1 ∪ {0}, ti not all 0
}
.

k k−1
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Note that we may think of Fk−1 as a tree-product of height k − 1 by considering it as the tree
product of dk−1 copies of Tk−1; i.e. we identify Fk−1 with the set{

(t1, t2, . . . , tdk−1): t1, t2, . . . , tdk−1 ∈ Tk−1 ∪ {0}, ti not all 0
}
.

And so we continue. After k + 1 applications of Hales–Jewett, we have obtained sequences
F0,F1, . . . ,Fk of subsets of F and z1, z2, . . . , zdk+1 of elements of T satisfying:

• Fi = {
t1, t2, . . . , tdi

,0,0, . . . ,0︸ ︷︷ ︸
dk+1−di

: t1, t2, . . . , tdi
∈ Ti ∪ {0}, ti not all 0

};
• the set

Gi = {
t1, t2, . . . , tdi

, zdi+1, zdi+2, . . . , zdi+1 ,0,0, . . . ,0︸ ︷︷ ︸
dk+1−di+1

: t1, t2, . . . , tdi
∈ Ti+1

}
is monochromatic, with colour ci , say;

• zi ∈ Ti for i � di .

Now, by the pigeonhole principle, some two of the sets G0,G1, . . . ,Gk must have the same
colour; say cm = cn for some 0 � m < n � k. Choose arbitrarily

a = (
a1, a2, . . . , adm+1 ,0,0, . . . ,0︸ ︷︷ ︸

dk+1−dm+1

) ∈ Gm.

Note that for each i, 1 � i � dm+1, we have ai ∈ Tm+1 and so there is some xi such that xi ,
xi + λai ∈ Tm+2 ⊂ Tn+1. So, choosing xdm+1+1, xdm+1+2, . . . , xdn ∈ Tn+1 arbitrarily, and setting
xi = zi for dn + 1 � i � dn+1, we may take

x = (
x1, x2, . . . , xdn+1 0,0, . . . ,0︸ ︷︷ ︸

dk+1−dn+1

) ∈ Gn.

We now have a ∈ Gm and x, x + λa ∈ Gn, and so the line {a, x, x + λa} is monochromatic with
colour cm = cn. �

This immediately gives us:

Corollary 6. [1] Let λ and μ be distinct positive rationals with μ �= 1, and let k be a positive
integer. Then there exists a subset S ⊂ N+ such that

• whenever S is k-coloured, it contains a monochromatic λ-line; and
• S contains no μ-line.

Proof. The construction in the proof of Theorem 5 furnishes us with a λ-tree-product F ⊂ ND

such that whenever F is k-coloured, it contains a monochromatic λ-line. This tree-product F is
the tree-product of D copies of some λ-tree T of height k + 1. Furthermore, it is clear from the
proof of Theorem 5 that if we replace T by any λ-tree of the same height then F will still have
this Ramsey property.

When constructing a λ-tree, it is clearly possible to avoid creating any μ-lines: when one is
called upon to choose an element, one simply takes it to be sufficiently large. Hence we may
assume that T has no μ-lines. Similarly, we may also assume that T contains no set of the form
{w,μw} for w ∈ N.
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Now suppose that F contains a μ-line, say x, y and z with x + μy = z. It is clear that x and
y must have disjoint support, as otherwise we could obtain a μ-line in T from x, y and z by
projecting onto a coordinate on which x and y were both non-zero. Furthermore, y and z must
have disjoint support, as otherwise we could find a set of the form {w,μw} in T by projecting
onto an appropriate coordinate. But this is impossible, as x + μy = z.

So F contains no μ-line. It simply remains to embed F linearly into N+ in such a way that
no new μ-lines are created; for example, it suffices to take

S = {
c1t1 + c2t2 + · · · + cDtD: (t1, t2, . . . , tD) ∈ F

}
,

where c1, c2, . . . , cD are positive integers selected, in turn, sufficiently large. �
We now turn to the case μ = 1.
Given a positive rational λ �= 1, it is of course possible to construct λ-trees of arbitrary height

containing no x, y and z with x + y = z. Unfortunately, when we then take tree-products of such
structures, the resulting λ-tree-product F is rich in solutions to x + y = z: indeed, whenever x,
y ∈ F have disjoint support then also x + y ∈ F .

However, this is the only way in which things can go wrong. In other words, whenever we
have a solution to x + y = z in F then x and y have disjoint support. So it will suffice to exclude
such triples from our structure.

Our method begins by taking a large tree-product F . We then try to construct a subset S of F

which is sufficiently sparse that it does not contain x, y and z such that x and y have disjoint
support whose union is the support of z, but which is sufficiently rich in structure that the proof
of Theorem 5 can still be pushed through.

How can this be achieved? The proof of Theorem 5 begins by applying the Hales–Jewett
theorem to T dk+1 to extract a dk-dimensional subspace Gk , so we will need S to contain the
whole of T dk+1 . So far, so good—every point of T dk+1 is supported on the whole of [dk+1].

After extracting our monochromatic subspace Gk , we need to consider points of F whose
support is the union of the active coordinate sets of Gk . This is where the trouble starts: we can
easily find three possible candidates for our monochromatic Gk , say G

(1)
k , G

(2)
k and G

(3)
k , whose

active coordinate sets have unions I1, I2 and I3, respectively, such that I1 and I2 are disjoint with
union I3. Then for the proof to go through as before, we need to consider points supported on
each of I1, I2 and I3, and the construction has failed. A similar problem arises if we have I1 and
I2 disjoint with union the whole of [dk+1].

We come here to the key idea in our construction: what if we were somehow able to restrict
the possible candidates for Gk so that this undesirable situation could not arise? In other words,
instead of considering all dk-dimensional subspaces of T dk+1 , what if we only consider some
suitable subcollection G of subspaces?

For the proof that whenever S is k-coloured it contains a monochromatic solution to x +
λy = z to go through, we will need one of the subspaces in G to be monochromatic whenever
T dk+1 is k-coloured.

Let I denote the multi-set of subsets IG ⊂ [dk+1] each of which is the union of the active
coordinate sets of some G ∈ G. An obvious way to avoid the problem above would be to insist
that I be an intersecting family, i.e. that IG ∩ IH �= ∅ for all G, H ∈ G. So our first hope would be
to prove an ‘intersecting-family’ Hales–Jewett theorem. In the one-dimensional case (i.e. when
we are looking for a monochromatic line), this would say that given positive integers n and k

we can find a positive integer d and a collection L of lines in [n]d such that whenever [n]d is
k-coloured one of the lines in L is monochromatic, and such that the active coordinate sets of the
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lines in L form an intersecting family. Unfortunately, this is not true. For suppose that we have
n and d and a collection L of lines whose active coordinate sets form an intersecting family. If
any two lines L, L′ ∈ L intersect in a point x, say, and x is the ith point on L then also x is the
ith point on L′ (as L and L′ have an active coordinate in common). So we can 2-colour [n]d in
such a way that all x which are the first point of some line in L are red, and all x which are the
second point of some line in L are blue.

After this failure, our next hope would be to prove an ‘antichain’ Hales–Jewett theorem, which
at least is not trivially false. It would suffice to have I an antichain, with the additional two
properties that [dk+1] /∈ I and that there are no IG, IH ∈ I disjoint with IG ∪ IH = [dk+1].
Fortunately, this result does turn out to be true. In the one-dimensional (monochromatic line)
case, what we need is:

Theorem 7 (Antichain Hales–Jewett theorem). Let n � 3 and k be positive integers. Then there
exists some positive integer d and a collection L of lines in the Hales–Jewett cube [n]d such that

• whenever [n]d is k-coloured, one of the lines in L is monochromatic;
• the active coordinate sets of distinct lines in L are incomparable—in other words, if L and

L′ are distinct lines in L with active coordinate sets I and I ′, respectively, then I �⊂ I ′ and
I ′ �⊂ I .

We defer the proof of Theorem 7 to Section 3. For now, we continue with our discussion of
how to construct the required set S using Theorem 7.

We of course need the further conditions that no line in L has active coordinate set the whole
of [d], and that no two lines in L have disjoint active coordinate sets whose union is the whole
of [d]. But this is easy: once we have constructed [n]d and L satisfying the conclusions of
Theorem 7, we may simply add an extra dimension to our Hales–Jewett cube.

More generally, what we need is a multi-dimensional antichain Hales–Jewett theorem rather
than the one-dimensional version stated above. It is a trivial matter to deduce such a result from
the one-dimensional version, by exactly the same method as the multi-dimensional version of the
standard Hales–Jewett theorem is deduced from the one-dimensional version.

Corollary 8 (Multi-dimensional antichain Hales–Jewett theorem). Let n � 3, k and m be positive
integers. Then there exists some positive integer d (divisible by m) and a family A ⊂ P[d/m]
such that

• whenever [n]d is k-coloured, it contains a monochromatic m-dimensional subspace whose
active coordinate sets I1, I2, . . . , Im are of the form

Ij = {
m(i − 1) + j : i ∈ I

}
for some I ∈A;

• A is an antichain; and
• there are no two disjoint sets in A with union the whole of [d/m], and [d/m] /∈ A.

Proof. Apply Theorem 7 with alphabet [n]m. �
What remains is to check that this procedure can be iterated. In other words: if we apply this

antichain Hales–Jewett theorem at each stage of the proof, and take S to consist of only those
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points of F necessary for the argument that there is a monochromatic solution to x + λy = z,
then does S remain free of solutions to x + y = z?

Fix a positive rational λ �= 1. Throughout this construction, and throughout the following
proof that the set constructed does indeed have the properties that we claim, we use ‘line,’ ‘tree,’
and ‘tree-product’ to mean ‘λ-line,’ ‘λ-tree’ and ‘λ-tree-product,’ respectively.

As before, we begin by constructing a tree T of height k + 1 with tree-sequence (T0, T1, . . . ,

Tk+1), and we can of course do this in such a way that T contains no x, y and z with x + y = z.
Next, we inductively construct sequences d0, d1, . . . , dk+1 of positive integers (with di−1 | di

for i = 1,2, . . . , k + 1) and sets Ai−1 ⊂ P[di/di−1] (i = 1,2, . . . , k + 1) as follows:

• d0 = 1;
• for 1 � i � k+1, take di sufficiently large (and divisible by di−1) and Ai−1 ⊂ P[di/di−1] an

antichain containing no two disjoint sets with union the whole of [di/di−1], with [di/di−1] /∈
Ai−1, such that whenever T

di

i is k-coloured, it contains a monochromatic di−1-dimensional
subspace with active coordinate sets I1, I2, . . . , Idi−1 given by

Ij = {
di−1(l − 1) + j : l ∈ I

}
for some I ∈Ai−1. (Note that this is of course possible by Corollary 8.)

For convenience, we define Ak+1 = {{1}}.
Now, take F to be the tree-product of dk+1 copies of T . As this definition is stated, we cur-

rently have F ⊂ Ndk+1 . However, in a similar manner to the proof of Corollary 6, it is easy to
linearly embed F into N+ in such a way that the only solutions of x + y = z in this embedded
copy of F are images of solutions in F ⊂ Ndk+1 .

We now proceed to construct S ⊂ F containing no solutions to x + y = z, but still PR for the
equation x + λy = z.

For each integer j with 0 � j � k + 1, and for each Ak+1 ∈ Ak+1, Ak ∈ Ak , . . . , Aj ∈ Aj ,
define SAk+1,Ak,...,Aj

to consist of those x ∈ F which satisfy

• xα �= 0 precisely when α can be written in the form

α = (ak+1 − 1)dk+1 + (ak − 1)dk + · · · + (aj − 1)dj + r

with ak+1 ∈ Ak+1, ak ∈ Ak , . . . , aj ∈ Aj and 1 � r � dj ;
• xα ∈ Tj ∪ {0} for all α; and
• xα depends only on the residue class of α modulo dj .

We take S to be the union of all the SAk+1,Ak,...,Aj
.

We write supp(x) for the set of coordinates α with α �= 0. Given j with 0 � j � k + 1, and
given Ak+1 ∈Ak+1, Ak ∈Ak , . . . , Aj ∈Aj , note that supp(x) is constant for x ∈ SAk+1,Ak,...,Aj

;
hence we may write supp(SAk+1,Ak,...,Aj

) to mean supp(x) for x ∈ SAk+1,Ak,...,Aj
.

Given j with 0 � j � k + 1, Ak+1 ∈ Ak+1, Ak ∈ Ak , . . . , Aj ∈ Aj and

f : [dj+1] − ⋃
a∈Aj

[(a − 1)dj + 1, adj ] → Tj+1, let S
f
Ak+1,Ak,...,Aj

be the collection of points
x ∈ SAk+1,Ak,...,Aj+1 satisfying

• if α ∈ supp(x) and α ≡ r (mod dj+1) for some r ∈ dom(f ) then xα = f (r); and
• if α, β ∈ supp(SAk+1,Ak,...,Aj

) with α ≡ β (mod dj ) then xα = xβ .
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Observe that

• the SAk+1,Ak,...,Aj
are pairwise disjoint;

• we have supp(SAk+1,Ak,...,Aj
) ⊂ supp(SA′

k+1,A
′
k,...,A

′
j ′ ) if and only if (Ak+1,Ak, . . . ,Aj ) is an

initial segment of (A′
k+1,A

′
k, . . . ,A

′
j ), and the containment is strict when it is a proper initial

segment;
• whenever SAk+1,Ak,...,Aj

(j � 1) is k-coloured, we can find Aj−1 ∈ Aj−1 and f : [dj ] −⋃
a∈Aj−1

[(a −1)dj−1 +1, adj−1] → Tj such that the set S
f
Ak+1,Ak,...,Aj−1

is monochromatic.

It remains now to show that this S does indeed have the promised properties.

Theorem 9. Let λ �= 1 be a positive rational, and let k be a positive integer. Then there exists a
subset S ⊂ N+ such that

• whenever S is k-coloured, it contains a monochromatic λ-line; and
• S does not contain x, y and z with x + y = z.

Proof. We construct F and S as above. As this definition stands, S is a subset of Ndk+1 rather
than of N; but this is unimportant because, precisely as in the proof of Corollary 6, we can embed
S linearly in N+ in such a way that no solutions to x + y = z are created.

The proof that a k-colouring of S always yields a monochromatic λ-line is almost identical to
the proof of Theorem 5. The only change needed is that wherever the multi-dimensional Hales–
Jewett theorem was applied before, we now replace it with Corollary 8.

To be more precise, suppose that S is k-coloured. By our construction of S using Corollary 8,
there exist Ak+1 ∈ Ak+1, Ak ∈ Ak , . . . , A0 ∈ A0 and, for 0 � j � k, a function fj : [dj+1] −⋃

a∈Aj
[(a − 1)dj + 1, adj ] such that for each j with 0 � j � k the set

Gj = S
fj

Ak+1,Ak,...,Aj

is monochromatic.
Now there must be i and j with 0 � i < j � k such that Gi and Gj have the same colour;

precisely as in the proof of Theorem 5, we find y ∈ Gi and x ∈ Gj such that also x + λy ∈ Gj .
So we have found a monochromatic λ-line as required.

We now come to the second assertion of our theorem. Assume for a contradiction that there
do exist x, y, z ∈ S with x + y = z. Then x and y must have disjoint support as otherwise,
by considering a coordinate on which both x and y are non-zero, we find x′, y′, z′ ∈ T with
x′ + y′ = z′. Hence we have supp(x) ∩ supp(y) = ∅ and supp(x) ∪ supp(y) = supp(z).

As supp(x), supp(y) � supp(z), we must have

z ∈ SAk+1,Ak,...,Aj
,

x ∈ SAk+1,Ak,...,Aj ,Aj−1,...,Ai
,

y ∈ SAk+1,Ak,...,Aj ,A′
j−1,...,A

′
i′

for some integers i, i′, j with 0 � i, i′ < j � k + 1 and some Ak+1 ∈ Ak+1, Ak ∈ Ak , . . . ,
Ai ∈Ai , A′

j−1 ∈Aj−1, A′
j−2 ∈Aj−2, . . . , A′

i′ ∈Ai′ .
As supp(x) ∪ supp(y) = supp(z), we must have Aj−1 �= A′

j−1; for otherwise

supp(x), supp(y) ⊂ supp(SAk+1,Ak,...,Aj−1) � supp(SAk+1,Ak,...,Aj
) = supp(z).
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Furthermore, Aj−1 ∪ A′
j−1 = [dj /dj−1]. Hence Aj−1 ∩ A′

j−1 �= ∅.
As Aj−1 is an antichain, we may assume without loss of generality that there is some aj−1 ∈

Aj−1 − A′
j−1. Choose ak+1 ∈ Ak+1, ak ∈ Ak , . . . , aj ∈ Aj , and for 1 � r � dj−1 consider

αr = (ak+1 − 1)dk+1 + (ak − 1)dk + · · · + (aj−1 − 1)dj−1 + r.

Then for each r , αr ∈ supp(z) but αr /∈ supp(y), and so αr ∈ supp(x). But this implies that
x ∈ SAk+1,Ak,...,Aj−1 .

Now choose a′
j−1 ∈ Aj−1 ∩ A′

j−1, and for 1 � r � dj−1 consider

α′
r = (ak+1 − 1)dk+1 + (ak − 1)dk + · · · + (aj − 1)dj + (a′

j−1 − 1)dj−1 + r.

Then α′
r ∈ supp(x) for all r , but also α′

r ∈ supp(y) for some r . But this contradicts supp(x) ∩
supp(y) = ∅.

So indeed we cannot have x, y, z ∈ S with x + y = z. This concludes our proof. �
3. Proof of the antichain Hales–Jewett theorem

We now turn to the proof of Theorem 7. The ideas of the proof are based on the notion of
‘amalgamation’ introduced by Nešetřil and Rödl [5], and developments of this work by Frankl,
Graham and Rödl [2]. (See also Prömel and Voigt [6].)

It will be convenient for the proof to insist not only that the active coordinate sets of lines in
L form an antichain, but that the same is true if we consider all lines contained within the union
of the lines in L. In other words, we shall prove Theorem 7 in the following stronger form:

Theorem 10. Let n � 3 and k be positive integers. Then there exists some positive integer d and
a subset S of the Hales–Jewett cube [n]d such that

• whenever S is k-coloured it contains a monochromatic line; and
• the multi-set A(S) of active coordinate sets of lines in S is an antichain.

We note that Theorem 7 follows instantly from Theorem 10.
We begin by fixing some d0 such that whenever [n]d0 is k-coloured, it contains a monochro-

matic line. We can of course do this by the ordinary Hales–Jewett theorem. The Hales–Jewett
cube [n]d0 will be used to index the sets in the forthcoming amalgamation.

We define a picture S inside some Hales–Jewett cube [n]d to be a collection of pairwise
disjoint sets Sv ⊂ [n]d (v ∈ [n]d0 ). We call the set

⋃
v∈[n]d0 Sv the ground-set of S, and often

denote it simply by S. For any picture S, we denote the multi-set of active-coordinate-sets of
lines in S by A(S).

Our first task is to construct our starting picture S inside some large [n]d . We consider [n]d as
coming equipped with the pointwise ordering; in other words, given a = (a1, a2, . . . , ad) ∈ [n]d
and b = (b1, b2, . . . , bd) ∈ [n]d , we write a � b to mean ai � bi for all i = 1,2, . . . , d . This
starting picture S must satisfy

• ‘for every line in [n]d0 there is a corresponding line in S,’ i.e. if {x1, x2, . . . , xn} is a line
in [n]d0 with x1 < x2 < · · · < xn then there is a line {y1, y2, . . . , yn} in S with y1 < y2 <

· · · < yn and yi ∈ Sxi
for each i (1 � i � n);

• each Sv is an antichain (in the pointwise ordering on [n]d ); and
• the multi-set A(S) of active-coordinate-sets of lines in S is an antichain in P[d].



836 I. Leader, P.A. Russell / Journal of Combinatorial Theory, Series A 114 (2007) 825–839
Such a picture is easy to find if we take d sufficiently large: for each line in [n]d0 , select a line
in [n]d , the active coordinate sets of these lines all disjoint, and do so in such a way that no two
points are related unless they are both in one of the lines we select.

We now come to the amalgamation.
Suppose that we have some picture S, inside a Hales–Jewett cube [n]d , satisfying the final

two conditions above, namely that each Sv is an antichain and that A(S) is an antichain. Suppose
also that we are given some fixed u ∈ [n]d0 . We want to find a picture S′ inside some large Hales–
Jewett cube which also satisfies these two conditions, and such that whenever S′ is k-coloured,
it contains a copy of S with Su monochromatic. We call S′ the amalgamation of S over Su, and
define it as follows:

First fix some e such that, whenever (Su)
e is k-coloured, it contains a monochromatic Su-

line. (We can obviously do this by applying the Hales–Jewett theorem to the alphabet Su.)
Note that such an Su-line is a copy of Su inside [n]de . Denote all of the Su-lines in (Su)

e

by S
(1)
u , S

(2)
u , . . . , S

(D)
u . For each v ∈ [n]d0 and each i with 1 � i � D, let S

(i)
v denote the

copy of Sv corresponding to S
(i)
u ; in other words, S

(i)
v is the image of Sv under that canonical

embedding of [n]d as a d-dimensional subspace of [n]de which maps Su onto S
(i)
u .

We now define our goal picture S′ inside ([n]d0)D × [n]de by setting

S′
v
(i) = (

u,u, . . . , u︸ ︷︷ ︸
i−1

, v, u,u, . . . , u︸ ︷︷ ︸
D−i

, S(i)
v

)

for each v ∈ [n]d0 and 1 � i � D, and defining

S′
v =

D⋃
i=1

S′
v
(i).

Note in particular that

S′
u = (

u,u, . . . , u︸ ︷︷ ︸
D

, (Su)
e
)
.

Note also that for each i with 1 � i � D we may define a picture S(i) by (S(i))v = S
(i)
v , and that

each such picture S(i) is a copy of the picture S. It is also easy to see precisely the structure of
these copies of S: given S(i), there exists a non-empty set I ⊂ [e], and constants cj ∈ Su for each

j ∈ [e] − I , such that S
(i)
v contains precisely those x ∈ ([n]d0)D × Se for which

• xi = v;
• xj = u for 1 � j � D and j �= i;
• xD+j = cj for j ∈ [e] − I ; and
• xD+j = xD+j ′ ∈ Sv for j , j ′ ∈ I .

It remains to show that S′ does indeed have the properties that we claim.

Lemma 11. Let S be a picture inside some [n]d such that each of the sets Sv is an antichain, and
such that the multi-set A(S) is an antichain. Let S′ be the amalgamation of S over Su for some
u ∈ [n]d0 . Then
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(i) whenever S′ is k-coloured, it contains a copy of S with Su monochromatic;
(ii) each of the sets S′

v is an antichain; and
(iii) the multi-set A(S′) is an antichain.

Proof. (i) Suppose that S′ is k-coloured. This induces a k-colouring of (Su)
e—we simply restrict

the given colouring to S′
u, which is a copy of (Su)

e . Now, by choice of e, we can find a mono-

chromatic Su-line inside (Su)
e, say S

(i)
u . But then the copy S(i) of S has S

(i)
u monochromatic as

required.
(ii) There are two cases to consider.
In the case v �= u, each S

(i)
v is an antichain by assumption. Moreover, if x ∈ S

(i)
v and y ∈ S

(j)
v

for some i, j with i �= j then x has v and u in coordinates i and j , respectively, while y has u and
v in these positions, so x and y are incomparable. Hence S′

v = ⋃D
i=1 S

(i)
v is itself an antichain.

In the other case, where v = u, we know that Su is an antichain, and so Se
u is an antichain, and

so S′
u = (u,u, . . . , u︸ ︷︷ ︸

D

,Se
u) is an antichain.

(iii) Finally, we must show that the active coordinate sets of the lines in S′ form an antichain.
So let L and L′ be distinct lines in S′, with active coordinate sets J and J ′, respectively.

We begin by showing that L is contained entirely within a single copy of S. For this purpose,
we think of S′ as a subset of ([n]d0)D × Se; i.e. we consider each point of S′ to have D + e coor-
dinates, the first D drawn from [n]d0 and the final e drawn from S. Note that, in each coordinate,
L must either form a line (in [n]d0 or S as appropriate) or be constant.

Consider the first D coordinates. If x ∈ L has v �= u in any of these positions, it must lie in S′
v ;

but S′
v is an antichain, so for each such v this can happen for at most one x ∈ L. Hence when

L is constant, it must be constant with value u. But if x ∈ L has u in every one of the first D

positions then it must lie in S′
u; but S′

u is an antichain, so this can happen for at most one x ∈ L.
Hence L forms a line in at least one of the first D coordinates. Call this coordinate i. Then any
x ∈ L with x /∈ S′

u must lie in S(i). As n � 3 and L can contain at most one point from S′
u, this

means that L contains at least two points of S(i). But it is immediate from the structure of S(i)

as described above that any line with two points in S(i) must lie entirely in S(i). So L is entirely
contained within the single copy S(i) of S.

Similarly, L′ lies entirely inside some copy S(j) of S.
We now return to thinking of S′ as a subset of [n]Dd0+ed . Amongst the first D blocks of d0

coordinates, L has active coordinates within the ith block but in no other, and L′ has active
coordinates in the j th block but no other. So if i �= j then J and J ′ are incomparable.

Finally, assume that i = j . Take I ⊂ [e] as in the description of the structure of S(i) imme-
diately before this lemma. Pick β ∈ I , and consider the projections of L and L′ onto the block
B of coordinates corresponding to the βth copy of S in the Cartesian product ([n]d0)D × Se =
[n]Dd0+ed , i.e. B = [d0D + (β −1)d +1, d0D +βd]. Each of these two projections is a line in S,
and these lines must be distinct, as otherwise L and L′ would be identical. But as A(S) is an an-
tichain, this implies that J ∩ B and J ′ ∩ B are incomparable, and so J and J ′ are incomparable.

Hence A(S′) is an antichain. �
We are now ready to prove our antichain Hales–Jewett theorem.

Proof of Theorem 10. We first take a starting picture S in [n]d , and some u ∈ [n]d0 , and amal-
gamate over Su to form a picture S′. We next choose some v ∈ [n]d0 with v �= u and form the
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amalgamation S′′ of S′ over S′
v . Then we take some w ∈ [n]d0 with w �= u, v and form the amal-

gamation S′′′ of S′′ over S′′
w . Continuing in this way, and amalgamating nd0 times in total (once

for each element t ∈ [n]d0 ), we eventually obtain a picture S∗, say. By the preceding lemma, the
ground-set of S∗ has the properties we require and the theorem is proved. �
4. A counterexample

We now present a counterexample to Conjecture 1. Specifically, we show that the system
x + y + u = z is Rado-dominated by the system x + y = z. The main idea of the construction is
to ‘augment’ a colouring in a certain useful way.

Theorem 12. Let S be a set which is PR for the equation x + y = z. Then S is also PR for the
equation x + y + u = z.

Proof. Let c be a k-colouring of S. Define a 2k-colouring c′ of S by setting

c′(z) =
{

(c(z),1) if there exist x, y ∈ S of colour c(z) with x + y = z,

(c(z),0) otherwise.

As S is PR for the equation x + y = z, we can find x, y, z ∈ S with c′(x) = c′(y) = c′(z) and
x+y = z. In particular, c(x) = c(y) = c(z) = c, say, and so c′(z) = (c,1). But then c′(x) = (c,1)

and so there exist u, v ∈ S with c(u) = c(v) = c and u + v = x. But now we have u + v + y = z

and c(u) = c(v) = c(y) = c(z) as required. So S is also PR for the equation x + y + u = z. �
This still leaves open the question of precisely when one PR matrix Rado-dominates another.
There are many cases where, given PR matrices A and B with B not solution-dominated by A,

it is easy to modify the proof of Theorem 2 to show that A does not Rado-dominate B . Indeed,
[1] provides an appropriate definition of a tree corresponding to any given PR matrix A, so that
k-colouring a large tree-product always leaves a monochromatic solution to Ax = 0.

In certain cases, some more work is required to allow this approach to succeed. For example,
suppose we wish to construct S ⊂ N+ which is partition regular for the equation x + λy = z

(λ �= 1) but not for the equation x + y + z = w + t . This is still possible, but more extensive
modifications to the proof of Theorem 2 are necessary. In particular, we need a stronger Hales–
Jewett-style theorem: specifically, in Theorem 7 we must replace the condition ‘A is an antichain’
with the stronger ‘if I , J , K ∈ A with I ⊂ J ∪ K then either I = J or I = K .’ This stronger
result can be proved similarly to Theorem 7.

Unfortunately, there are other cases where it appears that a similar method of proof cannot
succeed. For example, suppose that A is the matrix (1 2 3−1) and B is the matrix (1 2−1). Note
that A does not solution-dominate B . However, taking the definition of a tree corresponding to
A from [1], one finds that even a single tree will always contain solutions to By = 0. We do not
know whether or not A Rado-dominates B .

In the other direction, one can write down many counterexamples to Conjecture 1, but all the
counterexamples we have found are derived from the same basic idea as Theorem 12. We do not
know whether or not this phenomenon represents the only ‘obstruction’ to Conjecture 1.
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[5] J. Nešetřil, V. Rödl, Sparse Ramsey graphs, Combinatorica 4 (1984) 71–78.
[6] H.-J. Prömel, B. Voigt, A sparse Graham–Rothschild theorem, Trans. Amer. Math. Soc. 309 (1985) 113–137.
[7] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933) 242–280.
[8] I. Schur, Über die Kongruenz xm + ym ≡ zm (mod p), Jahresber. Deutsch. Math.-Verein. 25 (1916) 114–117.
[9] B.L. van der Waerden, Beweis einer Baudet’schen Vermutung, Nieuw. Arch. Wisk. 15 (1927) 212–216.


