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1. Introduction

The class of k-trees may be defined recursively: a k-tree is either a complete graph on
k vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together
with k£ edges connecting it to a k-clique. Thus a 1-tree is an ordinary tree. Fig. 1 shows
a 2-tree.

Labeled k-trees may be counted by extensions of the same methods that can be used to
count labeled trees. (See, for example, Beineke and Pippert [1], Moon [19], and Foata [8].)
However, counting unlabeled k-trees is considerably more difficult.

Harary and Palmer [11] counted unlabeled 2-trees in 1968 (see also Harary and Palmer
[12, Section 3.5]) and unlabeled 2-trees were counted in a different way, using the theory
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Fig. 1. A 2-tree.

Table 1

The number of k-trees with n + k vertices.
k\n 0 1 2 3 4 5 6 7 8 9
1 1 2 3 6 11 23 47 106
2 1 1 1 2 5 12 39 136 529 2171
3 1 1 1 2 5 15 58 275 1505 9003
4 1 1 1 2 5 15 64 331 2150 15817
5 1 1 1 2 5 15 64 342 2321 18578
“stable” 1 1 1 2 5 15 64 342 2344 19137

of combinatorial species, by Fowler et al. in [9]. Many variations of 2-trees have also been
counted [3,7,11,13-15].

The enumeration of unlabeled k-trees for k£ > 2 was a long-standing unsolved problem
until the recent solution by Gainer-Dewar [10], also using the theory of combinatorial
species. We present here an alternative approach which results in a simpler description of
the generating function for unlabeled k-trees; this is given in Theorem 7. The asymptotic
growth of the number of k-trees has been analyzed by Drmota and Jin in [6] using our
results.

Table 1 gives the number K, , of k-trees with n + k vertices for small values of n
and k; larger tables can be found in [10]. The stability of these numbers for fixed n as k
increases and a relation concerning those stable numbers will be explained in Section 3;
these “stable k-tree numbers” are shown in the last row of the table. These sequences
are given to many more terms as [21, A000055, A054581, A078792, A078793, A201702,
A224917] (for k = 1,2,3,4,5 and the stable k-tree numbers respectively).

The usual approach to counting unlabeled trees or tree-like graphs consists of two
steps. (See, for example, Bergeron, Labelle, and Leroux |2, Chapters 3 and 4], and Harary
and Palmer [12, Chapter 3].)

First, one converts the problem to one of counting certain rootings of these graphs. To
do this, Otter [20] introduced the method of “dissimilarity characteristic theorems” in
counting unlabeled trees. His theorem relates the numbers of orbits of vertices and edges
under the automorphism group of the tree. We will instead use a “dissymmetry theorem”
in the style of those introduced by Leroux [16] (see also Leroux and Miloudi [17]); these
describe isomorphisms of species and thus may be used to study labeled and unlabeled
structures simultaneously. (We will discuss dissimilarity characteristic theorems for trees
and 2-trees in Sections 6 and 7.)
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Fig. 3. Decomposition of edge-rooted 2-trees.

Next, once the problem is reduced through a dissymmetry or dissimilarity character-
istic theorem to one of counting rooted graphs, one finds recursive decompositions for
the rooted graphs that give functional equations for their generating functions.

A dissymmetry theorem for k-trees is fairly straightforward, and it reduces the prob-
lem to counting k-trees rooted at a (k + 1)-clique, k-trees rooted at a k-clique, and
k-trees rooted at both a (k 4+ 1)-clique and a k-clique that it contains. (The dissimilarity
characteristic approach to k-trees is more complicated.)

For classical (1-)trees, the decomposition step is easy: removing the root of a vertex-
rooted tree yields a set of trees, each rooted at the vertex which was adjacent to the
original root, and similar decompositions are available for trees rooted in other ways.
However, for k > 1, this straightforward procedure is no longer sufficient. For example,
consider the two distinct edge-rooted 2-trees of Fig. 2.

We can decompose each of these 2-trees by first separating the triangles containing the
root edge, and then from each of these triangles, removing the root edge and separating
the two remaining edges, as shown in Fig. 3.

We would like to recover the original 2-trees from these collections of components.
However, it will not suffice (as in the case of 1-trees) to treat each collection of compo-
nents as simply a set; in particular, this would fail to distinguish between the two 2-trees
in the example. In fact, each pair of 2-trees is ordered (so the two decompositions in
Fig. 3 really are different), but switching the order of all pairs simultaneously does not
change the 2-tree.

To deal with this problem, we may orient the root edge. Extending the orientation
of the root edge to an orientation of the triangles containing it orients the root edges of
the component 2-trees, as shown in Fig. 4.

Then 2-trees rooted at an oriented edge can be counted easily. The two-element group
acts on these oriented rooted 2-trees by reversing the orientation, and 2-trees rooted at
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Fig. 4. Decomposition of edge-rooted 2-trees.
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an unoriented edge are obtained as orbits under this group action. This is essentially
the approach taken by Fowler et al. [9]. Gainer-Dewar [10] took a similar approach to
counting k-trees by cyclically orienting the (k+1)-cliques in a k-tree. This is significantly
more complicated than in the case of 2-trees, since there is no simple analogue in this
context of reversing the cyclic order of a triangle.

Here we take a somewhat different, though related approach. We color the vertices of
a k-tree in k 4+ 1 colors, with all the vertices in each (k + 1)-clique colored differently.
This coloring breaks the symmetry of the k-tree, allowing the decomposition to work.
Then we take orbits under the symmetric group Sy41 acting on colors.

2. Enumerative lemmas

In this section we describe two enumerative tools that we will need for counting k-trees.
The reader may skip this section for now and come back to it when it is needed.

Suppose that a finite group G acts on a weighted set S. We do not require S to
be finite, but we do require that the sum of the weights of all the elements of S is
well-defined as a formal power series, and we require that weights are constant on orbits.
Thus we may define the weight of an orbit to be the weight of any of its elements. For
each g € G we denote by fix(g) the sum of the weights of the elements of S fixed by
g. Then Burnside’s lemma (also called the Cauchy—Frobenius theorem) asserts that the
sum of the weights of the orbits of G is equal to

ﬁ 3 fix(g). (1)

geG

Since fix(g) depends only on the conjugacy class of g, the sum in (1) may be rewrit-
ten as a sum over conjugacy classes. We will be applying Burnside’s lemma to the
case of a symmetric group &,,, where the conjugacy classes correspond to cycle types,
which may be described by partitions of m: a permutation with [; cycles of length
i for each i corresponds to the partition in which the multiplicity of i as a part is
l;. The number of permutations of cycle type A = (1112%2...mlm) is m!/z\, where
zy = 1112200 .mbn],. 1. Using the notation A F m to mean that X is a parti-
tion of m, we may restate Burnside’s lemma for symmetric groups in the following
way.
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Lemma 1. Let the symmetric group S,, act on the weighted set S so that weights are
constant on orbits. For each partition A\ of m let fx be the sum of the weights of the
elements of S fized by a permutation of cycle type X\. Then the sum of the weights of the
orbits of S under &, is Y\, fr/2x-

For our second lemma, we return to the general case of a finite group G acting on a
weighted set S’ (though we will only apply it to symmetric groups). We now assume that
each weight is a product of powers of variables. (In our application each weight will be
a power of x.)

Let M(S) be the set of multisets of elements of S. The action of G on S extends
naturally to an action on M (S). We define the weight of a multiset in M (S) to be the
product of the weights of its elements. As before, for any ¢ € G, we denote by fix(g)
the sum of the weights of the elements of S fixed by g. For any formal power series « in
the variables that occur in the weights, we denote by p,[u] the result of replacing each
variable in u by its nth power.

Lemma 2. Let g be an element of G. Then the sum of the weights of the elements of
M(S) fixed by g is

exp< 3 W) @)

m=1

Proof. Let Fj;(S) be the sum of the weights of the elements of M (S) fixed by g and let
E,4(S) be the expression in (2). A multiset of elements of S is fixed by g if and only if
it is a multiset union of orbits of S under g (i.e., orbits of the subgroup of G generated
by g). Thus Fy(S) = [[, F4(O) where O runs over the orbits of S under g, and it is easy
to check that E4(S) =[], E4(O).

Thus it is sufficient to prove the lemma in the case in which g acts transitively on S.
We may assume without loss of generality that g acts as an n-cycle on the n-element
set S, where every weight is . Then fix(¢™) = nz if n divides m and fix(¢™) = 0
otherwise. In this case we have

E4(S) :exp<z W) :exp<z me> =7 _13:” = F,(9). a

i=1

3. Coding trees

Following the terminology introduced in [10], we call a (k + 1)-clique in a k-tree a
hedron and we call a k-clique in a k-tree a front. We may think of a k-tree as made up
of hedra joined along fronts. A k-tree with n hedra has n + k vertices, so we will count
k-trees by the number of hedra rather than the number of vertices.

A colored k-tree is a k-tree in which the vertices are colored in the colors 1,2,...,k+1
so that adjacent vertices are colored differently. Thus the k 4 1 vertices of any hedron
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Fig. 5. A colored 2-tree.

are colored with all k£ + 1 colors, and the k vertices of any front are colored in all but
one of the colors. It is not hard to see that a coloring of a k-tree is determined by its
restriction to any one of its hedra. (See Fig. 5.) Then the symmetric group Gj11 acts
on colored k-trees by permuting the colors, and k-trees may be identified with orbits of
colored k-trees under this action.

We will label the hedra of k-trees. More precisely, a colored hedron-labeled k-tree with
hedron-label set L is a colored k-tree together with a bijection from the set of its hedra
to L. It is not hard to see that the only automorphism of a colored hedron-labeled k-tree
that preserves hedra and colors is the identity automorphism. (This is because any vertex
is determined by its color and a hedron that contains it.) Therefore we may ignore the
labels on the vertices.

We will encode colored hedron-labeled k-trees by certain (ordinary) trees that we call
coding trees (or k-coding trees if k needs to be specified). Coding trees have two kinds
of vertices: black vertices and colored vertices. Every edge joins a black vertex and a
colored vertex. Each colored vertex is colored in one of the colors 1,2,...,k 4+ 1 but is
otherwise unlabeled, and the black vertices are labeled. (The colored vertices correspond
to the white vertices of [10], which uses a related but different construction under the
same name.) Every black vertex has k 4+ 1 colored neighbors, one of each color, but a
colored vertex may have any number of neighbors.

To construct a coding tree from a colored k-tree, we first color each front of the k-tree
with the unique color not assigned to any of its vertices. The coding tree then has a black
vertex for each hedron of the k-tree (from which it takes its label) and a colored vertex
for each front of the k-tree (from which it takes its color), and a black vertex is adjacent
to a colored vertex if and only if the corresponding hedron contains the corresponding
front.

Fig. 6 shows colored versions of the 2-trees previously shown in Fig. 2. Their associated
2-coding trees may be seen to be distinct in Fig. 7.

It is not hard to see that this encoding is a bijection from colored hedron-labeled
k-trees to k-coding trees; the proof is essentially identical to that of Theorem 3.4 of [10].
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Fig. 6. Two colored 2-trees.

Fig. 7. The corresponding coding trees.

The symmetric group &,, acts on colored hedron-labeled k-trees with hedron-label set
[n] by permuting the labels of the hedra, and &,, acts on k-coding trees with black vertex
set [n] by permuting the labels of the black vertices, and these actions are compatible
with the encoding of colored k-trees as coding trees. The orbits under the action of G,, are
unlabeled colored k-trees and coding trees. The symmetric group G41 acts compatibly
on colored k-trees and on coding trees by permuting the colors. These actions of &,, and
Gk41 commute, so G acts compatibly? on unlabeled colored k-trees and on coding
trees, and the orbits of unlabeled colored k-trees, which are simply unlabeled k-trees,
are in bijection with orbits of unlabeled coding trees under the action of Gy1. Our goal
then is to count orbits under G, of unlabeled coding trees, which we call color-orbits
of coding trees.

2 This ‘equivariance’ of the action of Sp4+1 can also be exploited for species-theoretic analysis; cf. [10].
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Before proceeding with the enumeration, we show how coding trees give a simple way
to explain the stability property for the numbers K, , apparent in Table 1.

Proposition 3. Let K, . be the number of k-trees with n+k vertices. Then K, 1 = Ky i
fork>n-—1.

Proof. We first note that K, ; is the number of k-trees with n hedra, and is thus the
number of color-orbits of coding trees with n black vertices.

From any coding tree we may obtain a “pruned coding tree” by deleting its leaves,
all of which are colored vertices. In a pruned k-coding tree every leaf is black and every
black vertex has at most k£ 4 1 colored neighbors, whose colors are distinct integers from
1tok+1.

From a pruned k-coding tree we can recover the original k-coding tree by adding a
leaf of color 7 adjacent to every black vertex with no neighbor of color 4, for ¢ from 1
to k + 1. But every pruned (k — 1)-coding tree is also a pruned k-coding tree, so there
is an injection from color-orbits of (k — 1)-coding trees to color-orbits of k-coding trees.
The only color-orbits of k-coding trees not in the image of this injection will be those
corresponding to pruned coding trees with at least k + 1 different colors. In order for
a pruned coding tree to have k + 1 different colors, it must have at least k + 1 colored
vertices. Now suppose that a pruned coding tree has ¢ colored vertices, where ¢ > k + 1.
Since the colored vertices of a pruned coding tree are not leaves, each has degree at least
2, and since every edge of the tree is incident with one colored vertex, the tree has at
least 2c edges, and therefore at least 2c+ 1 vertices. Since ¢ vertices are colored, at least
c+12>Fk+2are black. Thus K, p—1 = Ky unlessn > k+2. O

It seems unlikely that there is any simple formula for the “stable k-tree numbers”
1, 1, 1, 2, 5, 15, 64, 342, 2344, ..., which are listed in [21, A224917]. It seems to be a
coincidence that the second through sixth terms of this sequence are the first five Bell
numbers.

We also note that coding trees explain the differences between the “stable k-tree
numbers” and the final non-stable number in the columns of Table 1.

Proposition 4. For n > 4 we have
Kn,n72 - Kn,n73 = anl,l'

Proof. In the terminology of the proof of Proposition 3, Ky, ,—2 — Ky n—3 counts color-
orbits of pruned (n — 2)-coding trees with n black vertices in which there are colored
vertices of all colors from 1 to n — 1.

In the proof of Proposition 3 we showed that a pruned coding tree with ¢ colored
vertices must have at least ¢+ 1 black vertices, with equality if and only if every colored
vertex has degree 2. It follows that the pruned coding trees whose color-orbits are counted



A. Gainer-Dewar, I.M. Gessel / J. Combin. Theory Ser. A 126 (2014) 177-193 185

by K n—2— K, »n—3 have exactly n—1 colored vertices, all of degree 2, and all of different
colors.

Since the colored vertices all have different colors, we can ignore colors in constructing
the color-orbits, and since each colored vertex has degree two, we can merge every colored
vertex with its two incident edges to obtain an ordinary unlabeled tree on the n black
vertices; the number of such objects is K,,_1,1 and the desired equality follows. O

4. A dissymmetry theorem

We now prove a dissymmetry theorem that reduces the problem of counting unlabeled
coding trees to that of counting rooted unlabeled coding trees.

Lemma 5. Let n be a positive integer and let Wy, be the set of coding trees with black
vertex set [n]. Let W be the set of rooted coding trees obtained by rooting a tree in W,
at a colored vertex, let W, be the set of rooted coding trees obtained by rooting a tree in
W, at a black vertex, and let W be the set of rooted coding trees obtained by rooting
a tree in Wy, at an edge. Then there is a bijection © from W7 UW? to W, UWS™" that
commutes with the actions of &,, on vertex labels and of G111 on colors.

Proof. Every coding tree has a unique center vertex, either black or colored, which is
the midpoint of every longest path in the tree, and the center is fixed by both group
actions. Let T be a rooted tree in W; U W, If T' is rooted at its center then we define
O(T) to be the underlying unrooted tree of T'. Otherwise, there is a unique path from
the root r of T to the center, and we take @(T) to be the underlying tree of T rooted
at the first edge on the path from r to the center. It is easily seen that @ is a bijection
that commutes with the actions of G,, and &iy;. O

Since the bijection @ of Lemma 5 commutes with the action of &, on vertices, it
is well-defined on unlabeled coding trees, and its application to coding trees commutes
with the action of &1, so it gives a corresponding bijection for color-orbits of coding
trees, which are equivalent to k-trees.

5. Counting unlabeled coding trees

From now on we work with unlabeled (but colored) coding trees. We define the weight
of a coding tree with n black vertices to be x™; then the generating function for a set of
trees is the sum of the weights of its elements.

We call a coding tree rooted at a black vertex a black-rooted tree and we call a coding
tree rooted at a colored vertex a colored-rooted tree. We call a colored-rooted tree with
root of color j a j-rooted tree.

Our next lemma follows directly from Lemma 5.
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Lemma 6. Let U be the generating function for (unlabeled) color-orbits of coding trees, let
B be the generating function for color-orbits of black-rooted trees, let C be the generating
function for color-orbits of colored-rooted trees, and let E be the generating function for
color-orbits of coding trees rooted at an edge. Then

U=B+C-E.

It is clear that B, C, and E may also be interpreted in terms of rooted unlabeled
k-trees.

Our goal in the remainder of this section is to compute the generating functions B, C,
and E appearing in Lemma 6.

Let us introduce some notation. For each m € G41 let B, = B, (z) be the generating
function for black-rooted trees that are fixed by m. It is clear that B, depends only on
the cycle type of m, so for any partition A of k + 1 we may set By = B,, where 7 is a
permutation of cycle type A.

For our decompositions we will need to consider a variation of black-rooted trees. If we
delete the root from a j-rooted tree, we obtain trees rooted at black vertices that are like
black-rooted trees, but in which the roots have neighbors of all colors except j. We call
these trees j-reduced black-rooted trees. If a j-reduced black-rooted tree is fixed by 7 then
4 must be a fixed point of 7, but as long as j is a fixed point of 7, the generating function
for j-reduced black-rooted trees fixed by 7 depends only on the cycle type of 7, and is
zero if 7 has no fixed points. So for any permutation 7 € &1, we define B, = B,r(x)
to be the generating function for j-reduced black-rooted trees fixed by 7, where j is any
fixed point of m (and B, = 0 if 7 has no fixed points). For any partition A of k + 1, we
may define B to be B, where 7 is a permutation of [k + 1] of cycle type A.

Similarly, if a colored-rooted tree with root of color j is fixed by m then j must be
a fixed point of 7. For a permutation 7 of [k + 1], we define C; = Cr(z) to be the
generating function for colored-rooted trees fixed by m with root of color j, where j is
any fixed point of 7 (and C; = 0 if 7 has no fixed points). For any partition A of k + 1,
we define C), to be Cy where 7 is a permutation of [k + 1] of cycle type A. Note that B
and C) are zero if 1 is not a part of A. It will be convenient in the subsequent discussion
to define B,, and C,, for p a partition of k by B,, = B and C,, = C) where ) is obtained
from p by adding an additional part 1.

If X is a partition, then by A’ we mean the cycle type of 7, where 7 is a permutation
of cycle type A\. We note that each p-cycle of 7 contributes (p,4) cycles, each of length
p/(p,i) to ©*, where (p,i) is the greatest common divisor of p and i.

We may now state our final result. Although our formula for U consists of functional
equations for a number of different power series, it is fairly easy to compute the coeffi-
cients of these series by successive substitution.

Theorem 7. The generating function U for unlabeled k-trees is given by

U=B+C-E,
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where

B: Z B)\/Z)\, (3&)

AFEk+1

C=3 Cul (3b)
pEk

E=Y B,Cpu/z, (3¢)
pk

B)\ZZ‘HCAi(xi), (3d)

B, xHCw (z4), (3e)

C, = exp(Z w> (3f)

m=1

In (3d), X is a partition of k+ 1 and in (3e) and (3f), u is a partition of k. In the
products in (3d) and (3e), i runs through the parts of A and p with multiplicities; i.e., if
i occurs m times as a part then i is taken m times in the product.

Proof. Formula (3a) follows directly from Lemma 1 (Burnside’s lemma).

The generating function C' for color-orbits under &1 of colored-rooted trees is the
same as the generating function for color-orbits under the action of &y, permuting the
colors 1 through k, of k 4+ 1-rooted trees, since every color-orbit of colored-rooted trees
contains a k + 1-rooted tree. Then (3b) follows from Lemma 1.

Similarly, the generating function E for color-orbits under G4 1 of coding trees rooted
at an edge is the same as the generating function for color-orbits under the action of
&y, permuting the colors 1 through k, of coding trees rooted at an edge incident with
a vertex of color k + 1. Removing the root edge from such a tree leaves a k + 1-rooted
tree together with a k + 1-reduced black-rooted tree. Thus, if 7 € Gy 1 fixes k + 1, the
generating function for such pairs fixed by 7 is C B, so (3c) follows.

Next, for m € G471 we find an equation for B, which counts black-rooted trees fixed
by . The root of such a tree has k + 1 children, one of each of the colors from 1 to
k + 1. If we delete the root, we are left with trees T1,...,Tk41, where tree T} is rooted
at a vertex of color j. Now suppose that j is in a cycle of 7 of length ¢. Then the orbit

of Ty under 7 consists of Ty, Tr(jy = 7(Tj),..., Tri-1¢jy = 7i=1(Ty), and we must have

J)
7'(T}) = T;. Thus to determine a black-rooted tree fixed by m, we choose from each cycle
of  an arbitrary element j, and take 7} to be a j-rooted tree that is fixed by 7’, where i

is the length of the cycle of 7 containing j. Then T%(jy,. .., Tri-1(;) are determined and

)
all have the same weight as T}. The generating function for j-rooted trees fixed by 7* is
Ci(z) (independently of the choice of j), so the contribution to B, from a cycle of 7 of

length i is Cy:i(z?). Thus
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Bﬂ— =x H C7r|c| (LL'IC‘) (4)
(&)

where ¢ runs over the cycles of 7 and |¢| is the size of the cycle ¢. Thus (3d) follows, and
a similar argument gives (3e¢).

Next we need to find a formula for C. Since C; = 0 if 7 has no fixed points, we may
assume without loss of generality that k + 1 is a fixed point of w. Suppose that T is a
k + 1-rooted tree that is fixed by the permutation 7. Removing the root from 7" leaves a
multiset of k4 1-reduced black-rooted trees that is fixed by 7. Thus C is the generating
function for these multisets, and applying Lemma 2 gives

> Eﬂnt(l'm)
]
m=1 m

and (3f) follows. O
6. Counting trees

Here we consider in detail the case k = 1, where we are counting ordinary trees by
the number of edges. There are only two elements of G5, and two partitions of k41 = 2,
only one of which has 1 as a part.

We have

BQ = 1’01 (Iz)

B, = xC(x)

Cy = exp i 517(:’”)>
= 5 (C1@)* + €1 («?))

C = C4(x)

E = zCy(z)?

Here everything can be expressed in terms of C7, which is the generating function for
vertex-rooted unlabeled trees by the number of edges, and we can simplify the result
to

Ci = exp( Z %), (5a)

m=1

U= Ci(a) - 5 (Cr(@)* = C1(?)), (5b)
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which is equivalent to the well-known formula found by Otter [20]. (Unlabeled trees had
been counted earlier using different methods by Cayley [4,5].)

We sketch here a version of Otter’s dissimilarity characteristic interpretation of (5b),
as in the next section we will discuss a related, but more complicated, dissimilarity
characteristic formula for 2-trees.

We define a symmetry edge of a tree to be an edge e such that some automorphism
of the tree reverses the endpoints of e. We say that two vertices u and v of a tree are
similar if there is some automorphism of the tree that takes u to v, and similar edges
are defined analogously. Otter’s dissimilarity characteristic theorem is the following.

Lemma 8. The number of dissimilar vertices of a tree (i.e., the number of equivalence
classes under similarity) is one more than the number of dissimilar edges that are not
symmetry edges.

Proof. Let T be a tree. Then T has a center which is either a vertex or an edge and
is fixed by every automorphism of T'. To each vertex v that is neither a center vertex
nor an endpoint of a center edge we associate the first edge on the path from v to the
center. This is an equivariant bijection (with respect to the automorphism group of the
tree) from the vertices of T to the edges of T' other than center vertices, center edges,
and vertices of center edges, and so among the paired vertices and edges there are as
many dissimilar vertices as edges. Then the unpaired vertices and edges consist of one of
the following: (i) a center vertex; (ii) a center edge which is not a symmetry edge, and
its two dissimilar endpoints; (iii) a center edge which is a symmetry edge, and its two
similar endpoints. In each case, among the unpaired vertices and edges the number of
dissimilar vertices is one more than the number of dissimilar non-symmetry edges. O

As a consequence, for any unlabeled tree, the number of dissimilar ways to root it at
a vertex is one more than the number of dissimilar ways to root it at a non-symmetry
edge. The generating function for unlabeled rooted trees is Ci(z) and the generating
function for unlabeled trees rooted at a non-symmetry edge is $2(Ci(z)? — Ci(z?)), so
their difference counts every (unrooted) tree once.

7. Counting 2-trees

Next we look in detail at the case k = 2. Here we have

Bl,1,1 = xCil
By = ng(x)CM(xz)
B3 = xC’l,l(x?’)
By =201 4(2)?
B, = xC’l,l(xQ)
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>, Biq(z™
Cia exp(Z %)

m=1
i} Bae™) , g~ Buale™)
B= %(Cl,l(x)g +3C11(2%) Ca(x) + 2C1 1 (2%))
1 1
C= 50171 + 502

E = g(CLl(’JJ)S -+ 0171(172)02(1‘)).

These formulas simplify to

1 1
U=C=a(Cfy = Cra(e?)), with C=2(Cra+C), (6)
where
Cl 1= exp(Z %Cl’l(.%'m)2>
m=1
and

02 = exp( Z %0171 (me) + Z %Cl,l(ﬂim)z)_

m odd m even

We can also interpret (6) by a dissimilarity theorem, and this approach could be used
to give a shorter self-contained derivation of the generating function for 2-trees. It is
not hard to see that C' counts (unlabeled) 2-trees rooted at an edge (by the number of
triangles) and that C4 ;1 counts 2-trees rooted at a directed edge.

For any (labeled) 2-tree T', a directed triangle of T is a cyclic orientation of a triangle
of T. A symmetry triangle is a directed triangle whose directed edges are all in the
same orbit under the automorphism group of T'. A nonsymmetry triangle is a directed
triangle that is not a symmetry triangle. The generating function for 2-trees rooted
at a symmetry triangle is xCLl(:v?’), so the generating function for 2-trees rooted at a
nonsymmetry triangle is 3z(C; — C11(2?)). (See Fig. 8.)

Then just as Otter’s formula (5b) follows from Lemma 8, formula (6) follows from a
dissimilarity characteristic theorem for 2-trees:

Lemma 9. The number of dissimilar edges of a 2-tree is one more than the number of
dissimilar nonsymmetry triangles.

Proof. Let T be a 2-tree. Then T has a center which is either an edge or a triangle and
is fixed by every automorphism of 7. Let e be an edge of T that is neither a center edge
nor an edge of a center triangle. We will associate to e a nonsymmetry triangle of 7'
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Fig. 8. A nonsymmetry-triangle-rooted 2-tree.

v

v

(¢
L4

Fig. 9. Edges to directed triangles (with centers labeled f).

There is a “path” from e to the center passing alternatingly through edges and trian-
gles that starts at e, enters a triangle A containing e and then visits another edge f of A
(which may be the center). Then we associate to e the triangle A oriented so that edge
e is followed by edge f. (See Fig. 9 for an example in which the center is the edge f.)

The only unpaired edges and directed triangles are center edges, edges of center tri-
angles, and center triangles. We consider four cases: (i) the center is an edge; (ii) the
center is a triangle in which all three edges are similar; (iii) the center is a triangle with
two dissimilar edges; and (iv) the center is a triangle with three dissimilar edges. In each
case the number of dissimilar unpaired edges is one more than the number of dissimilar
unpaired nonsymmetry triangles: In case (i) there is one unpaired edge and no unpaired
directed triangle; in case (ii) there are three unpaired edges, all of which are similar, and
thus one dissimilar unpaired edge, and no unpaired nonsymmetry triangles; in case (iii)
there are two dissimilar unpaired edges and two unpaired nonsymmetry triangles which
are similar; and in case (iv) there are three dissimilar unpaired edges and two dissimilar
unpaired directed triangles. 0O

Harary and Palmer [11] counted 2-trees with the help of the following dissimilarity
characteristic theorem: In a 2-tree, let ¢* be the number of dissimilar edges, let r* be
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the number of dissimilar triangles, let s; be the number of dissimilar triangles with two
similar edges, let so be the number of dissimilar triangles with all three edges similar,
and let s = s1 + 2s5. Then ¢* + s —2r* = 1.

It is not difficult to see that the number of dissimilar nonsymmetry triangles in a 2-tree
is 2r* — s, so Harary and Palmer’s dissimilarity characteristic theorem is equivalent to
ours. They applied their dissimilarity characteristic theorem to derive a more complicated
formula for the generating function for 2-trees:

L(z) + s1(x) 4+ 2s2(z) — 24 (),

which is equal to our U(z) — 1, where in our notation, L(z) = C(z) — 1, si(z) =
z(C11(2?)C2(z) — Co(a?)), sa(x) = zC(x?), and A(x) = B(z). They expressed these
series in terms of auxiliary series M (z), N1(x), M (z), and N(z), which in our notation
are Mi(z) = 2zCy1(2?), Ni(z) = 32(C11(x)? — Cr1(2?)), M(z) = Ca(z) — 1, and
N(z) = (C1a(z) - Cala)).

There are formulas similar to (5b) and (6) for all k, which we can find by expressing
U in terms of the C),. For k = 3 the formula is

1 1 1
U=C— x<§01,1,1(15)4 + 101,1,1(152)02,1(33)2 - —017171(332)2 —-Ci1a ($4)>
and for k =4 it is
1 1 1
U=C - x(%CLLM(xf + 601,1,1,1(5E3)C3,1(5E)2 + 601,1,1,1(302)02,1,1(%)3

1 1
- 602,1,1(!133)03,1(332) - 501,1,1,1($5)>~

Although (6), as noted earlier, can be used to give a shorter proof of the formula for
2-trees, it does not seem likely that these formulas can be used to simplify the counting
of k-trees for k > 2.

We note that a dissimilarity characteristic theorem for 3-trees, analogous to that of
Harary and Palmer [11] for 2-trees, has been given by Liang and Liu [18], but they did
not use it to count 3-trees.
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