
Journal of Combinatorial Theory, Series A 133 (2015) 261–279
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

A combinatorial formula for principal minors of 
a matrix with tree-metric exponents and its 

applications

Hiroshi Hirai, Akihiro Yabe
Graduate School of Information Science and Technology, The University of Tokyo, 
Tokyo 113-8656, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 January 2014
Available online 12 March 2015

Keywords:
Tree metric
Valuated matroid
M-convex function
Tropical geometry
Dissimilarity map
Half-plane property

Let T be a tree with a vertex set {1, 2, . . . , N}. Denote by 
dij the distance between vertices i and j. In this paper, we 
present an explicit combinatorial formula of principal minors 
of the matrix (tdij ), and its applications to tropical geometry, 
study of multivariate stable polynomials, and representation 
of valuated matroids. We also give an analogous formula for 
a skew-symmetric matrix associated with T .
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1. Introduction

Let T = (V, E) be a tree, where V = {1, 2, . . . , N}. For i, j ∈ V , denote by dij the 
number of edges of the unique path between i and j in T . With an indeterminate t, 
define the matrix A = (aij) by

aij := tdij (i, j ∈ V ).

This matrix appeared in the study of the q-distance matrix of a tree [2]. Yan and Yeh 
[27] showed that detA is given by the following simple formula:
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Theorem 1.1. (See Yan and Yeh [27].) detA = (1 − t2)N−1.

Our main result can be understood as an extension of Yan–Yeh’s formula to prin-
cipal minors of A. The motivation of our investigation, however, comes from study of 
multivariate stable polynomials [6,7,9], tropical geometry [11,25], and representation of 
valuated matroids [13,15]. To state our result, let us introduce some notions. For X ⊆ V , 
denote by A[X] the principal submatrix of A consisting of aij for i, j ∈ X. We say that a 
forest F = (VF , EF ) is spanned by X if X ⊆ VF and all leaves of F are contained in X. 
Note that the subtree of T spanned by X is the unique minimal subtree including X, 
which is denoted by TX = (VX , EX). Define c(F ) as the number of connected compo-
nents of F . Denote by degF (v) the degree of a vertex v in F . Then our main result is 
the following:

Theorem 1.2.

detA[X] =
∑
F

(−1)|X|+c(F )t2|EF |
∏

v∈VF \X
(degF (v) − 1), (1.1)

where the sum is taken over all subgraphs F of T spanned by X. In particular, the leading 
term is given by

(−1)|X|+1t2|EX |
∏

v∈VX\X
(degTX

(v) − 1). (1.2)

In the case X = V , the formula (1.1) coincides with the binomial expansion of Yan–
Yah’s formula.

Our formula brings a strong consequence on the signature of A[X]. Recall that the 
signature of a symmetric matrix is a pair (p, q) of the number p of positive eigenvalues 
and the number q of negative eigenvalues. When we substitute a sufficiently large value 
for t, the sign of detA[X] is determined by the leading term. By (1.2), detA[X] > 0 if 
|X| is odd, and detA[X] < 0 if |X| is even. From Sylvester’s law of inertia, the number 
of sign changes of leading principal minors is equal to the number of negative eigenvalues 
(see [17, Theorem 2 in Chapter X]). Therefore the signature of A[X] is (1, |X| − 1). This 
argument works on the field R{t} of Puiseux series (defined in Section 2). Thus we have 
the following.

Corollary 1.3. The signature of A[X] is (1, |X| − 1).

In particular, A[X] is nonsingular and defines the Minkowski inner product, i.e., a 
nondegenerate bilinear form with exactly one positive eigenvalue.

We also consider a skew-symmetric matrix B = (bij) defined by

bij = −bji = tdij (i < j).
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Denote by B[X] the principal submatrix of B as above. In contrast with the symmetric 
case, the Pfaffian Pf B[X] depends on the ordering of X. We give a simple formula for 
the case where X has a special ordering, though we do not know such a formula for 
general case. A vertex subset X = {i1, i2, . . . , ik} with i1 < i2 < · · · < ik is said to be 
nicely-ordered (with respect to a given tree T ) if the tour i1 → i2 → · · · → ik → i1 in T

passes through each edge in T at most twice. An edge e of T is said to be odd (with 
respect to X) if both two components obtained by the removal of e from T include an 
odd number of vertices in X. Let OX ⊆ E be the set of odd edges.

Theorem 1.4. If X is nicely-ordered and |X| is even, then

Pf B[X] = t|OX |. (1.3)

The both formulas are easily generalized to a tree metric, that is, a dissimilarity matrix 
that can be embeddable to an edge-weighted tree. More precisely a dissimilarity matrix
is a nonnegative symmetric matrix D ∈ Qn×n with zeros on diagonal, and a tree metric
is a dissimilarity matrix D such that there are a tree T = (V, E), a positive edge weight l
on E, and a map ϕ : {1, 2, . . . , n} → V such that Dij is equal to the sum of weights of 
edges of the unique path between ϕ(i) and ϕ(j). In this case, if ϕ is injective, then we can 
regard {1, 2, . . . , n} ⊆ V , and the formula of det(tDij ) is obtained by replacing |EF | and 
|OX | by weighted sums 

∑
e∈EF

l(e) and 
∑

e∈OX
l(e), respectively. (If ϕ is not injective, 

then det(tDij ) = 0.) The well-known tree metric theorem [8] says that a dissimilarity 
matrix D = (Dij) is a tree metric if and only if D satisfies

[4PC] Dij + Dkl ≤ max{Dik + Djl, Dil + Djk} (i, j, k, l ∈ {1, 2, . . . , n}).

This condition is called the four-point condition [4PC]. A symmetric matrix W = (wij) ∈
Qn×n satisfying [4PC] (not necessarily a dissimilarity matrix) can be represented with 
a tree metric D = (Dij) and a vector p = (pi) ∈ Qn (defined by pi := wii/2) as

wij = Dij + pi + pj . (1.4)

Then we have

det(twij ) = t2
∑n

k=1 pk det(tDij ). (1.5)

Therefore our formulas are applicable to matrices with exponents satisfying [4PC].
The organization of this paper is as follows. In Section 2, we present applications of the 

formulas. The space of tree metrics (called the space of phylogenetic trees in [4]), and re-
lated spaces arise ubiquitously from the literature of tropical geometry: examples include 
the tropical grassmannian of rank 2 [25], the Bergman fan of the matroid of a complete 
graph [1], and the space of matrices with tropical rank 2 [11]. In Section 2.1, we present 
yet another appearance of the space of tree metrics from tropicalization of the space of 
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Hermite matrices of signature (1, n −1). This type of matrix also has interest from theory 
of multivariate stable polynomials [9, Theorem 5.3]. Recent studies [6,7,9] explored an 
interesting link between stable polynomials, matroids, and related discrete concave func-
tions. In Section 2.2, utilizing the formula (1.1), we establish a correspondence between 
tree metrics (Dij) and quadratic stable polynomials z�(tDij )z in R{t}. Our formula also 
sheds a new light on the dissimilarity map X �→ |EX | of a tree T = (V, E) [23]. The dis-
similarity map of a tree has a significance in phylogenetic analysis as well as has interests 
from tropical geometry and representation of valuated matroids [10,18,20]. Observe that 
our leading term formula (1.2) gives a new type of representation of the dissimilarity 
map by the degree of principal minors of a symmetric matrix. In Section 2.3, we address 
this subject. In Section 3, we prove Theorems 1.2 and 1.4.

2. Applications

To describe applications of our formulas, let us recall the notion of Puiseux series. 
A Puiseux series in the indeterminate t and a field K(= R, C) is a formal series of 
the form 

∑−∞
i=i0

ait
i/k, where i0 and k > 0 are integers and each coefficient ai is an 

element in K. Let K{t} denote the field of all Puiseux series in the indeterminate t and 
a field K. Define a binary relation > on R{t} by x > y if the leading coefficient of 
x − y is positive. By this relation, R{t} becomes an ordered field. Any statement in R is 
naturally formulated in R{t}. From Tarski’s principle, any true (first order) statement 
in R is also true in R{t}; see Appendix A. Hence Corollary 1.3 is true in R{t}.

Let Q̄ := Q ∪ {−∞}. The valuation val : K{t} → Q̄ is defined by

val(x) := max{j/k | aj 	= 0}
(
x =

∑
ait

i/k ∈ K{t}
)
,

where val(0) := −∞. Namely val(x) is the degree of the leading term of x. Define 
val : K{t}n → Q̄n as val(z) := (val(z1), . . . , val(zn)) for z ∈ K{t}n. Through this map, 
an algebraic object V in K{t}n is transformed to a polyhedral object val(V) in Q̄n, 
and an algebraic condition c0zb0 =

∑
i ciz

bi satisfied by V is transformed to a max-plus 
condition val(c0) + 〈b0, v〉 ≤ maxi{val(ci) + 〈bi, v〉} satisfied by val(V), which is obtained 
by replacing (+, ×) with (max, +) in the original condition. We will refer to this process 
as a tropicalization. This is a basic idea in tropical geometry; see [25].

For x = y+
√
−1z ∈ C{t} where y, z ∈ R{t}, the complex conjugate x of x is defined 

as x := y −
√
−1z, and xx is denoted by |x|2. By a Hermite matrix we mean a matrix 

A = (aij) with aij = aji ∈ C{t}.

2.1. Tropicalizing Hermite matrices with nonnegative diagonals and signature (1, n − 1)

Let Mn be the set of n ×n Hermite matrices on C{t} having signature (1, n − 1) and 
nonnegative diagonal entries. Let M̄n be the closure of Mn, that is, the set of Hermite 
matrices having nonnegative diagonal entries and at most one positive eigenvalue. We 
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regard a symmetric matrix M = (mij) of size n as a vector of dimension n(n + 1)/2. 
Then the tropicalization of Mn is essentially the space of tree metrics as follows.

Theorem 2.1. For a symmetric matrix W = (wij) ∈ Q̄n(n+1/2), the following conditions 
are equivalent:

(1) W belongs to val(M̄n).
(2) W satisfies [4PC].

In particular, (twij ) ∈ M̄n if and only if W satisfies [4PC].

Proof. (1) ⇒ (2). Since W ∈ val(M̄n), there is a matrix M = (mij) ∈ M̄n such that 
wij = val(mij) for i, j = 1, 2, . . . , n. Every principal submatrix M [X] has at most one 
positive eigenvalue, and if M [X] has no positive eigenvalue, then M [X] must be a zero 
matrix (since all diagonal entries of M must be zero, and all 2 ×2 principal minors of M
must be nonnegative). From this we have the following:

(∗) detM [X] ≥ 0 if |X| is odd, and detM [X] ≤ 0 if |X| is even.

We show that W satisfies [4PC]:

(i) wii + wkk ≤ 2wik for distinct i, k.
(ii) wii + wkl ≤ wik + wil for distinct i, k, l.
(iii) wij + wkl ≤ max{wik + wjl, wil + wjk} for distinct i, j, k, l.

(i): By (∗) we have detM [{i, k}] = miimkk − |mik|2 ≤ 0. Since mii and mkk are 
nonnegative, it must hold that wii + wkk = val(miimkk) ≤ val(|mik|2) = 2wik.

(ii): detM [{i, k, l}] is equal to

miimkkmll + (mikmilmkl + mikmilmkl) −mii|mkl|2 −mkk|mil|2 −mll|mik|2. (2.1)

From (i), val(miimkkmll) ≤ val(mikmilmkl) = val(mikmilmkl). Since detM [{i, k, l}] ≥ 0
by (∗), and since the last three terms in (2.1) are nonpositive, it must hold that

val(mii|mkl|2) ≤ max{val(miimkkmll), val(mikmilmkl + mikmilmkl)}
≤ val(mikmilmkl).

Therefore we obtain (ii).
(iii): Consider the expansion of detM [{i, j, k, l}]. For a term containing mi′i′mj′k′ in 

the expansion, the term obtained by replacing mi′i′mj′k′ with mi′j′mi′k′ also appears in 
the expansion and has degree at least the original by (i) and (ii). From this we see that 
the degree of a term including a diagonal element mi′i′ is no more than the degree of 
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mi′j′mj′k′mk′l′ml′i′ for some different i′, j′, k′, l′. Observe that val(mi′j′mj′k′mk′l′ml′i′)
is equal to (val(|mi′j′ |2|mk′l′ |2) + val(|mi′l′ |2|mj′k′ |2))/2. Therefore, if [4PC] is violated, 
say, wij +wkl > max{wik+wjl, wil+wjk}, then |mij |2|mkl|2 becomes the unique leading 
term in detM [{i, j, k, l}]. This implies that detM [{i, j, k, l}] > 0, which contradicts (∗). 
Thus W satisfies [4PC].

(2) ⇒ (1). It suffices to show that M := (twij ) belongs to M̄n. We use the induction 
on n. If n = 1, then the statement obviously holds. Suppose n > 1. If M is singular, 
then some i-th column (row) can be represented as a linear combination of other column 
(row). Hence the signature of M is equal to that of the matrix M ′ obtained by deleting 
i-th column and row; we can apply the induction. We can assume that M is nonsingular. 
If wij = −∞ for distinct i, j, then [4PC] implies wik + wjl ≤ wil + wjk. Exchanging 
the role of k and l, we have wik + wjl = wil + wjk. This means mikmjl = milmjk. 
Hence the i-th row and the j-th row are linearly dependent, and this contradicts the 
nonsingularity assumption of M . Thus W has −∞ only on diagonals (if it exists). By 
replacing −∞ by a sufficiently small σ ∈ Q, we obtain W ′ = (w′

ij). Then W ′ satisfies 
[4PC] (when σ < mini�=j{wij}). Similarly, M ′ is defined by M ′ := (tw

′
ij ). Then we 

have ‖M −M ′‖∞ ≤ tσ. From Tarski’s principle, the continuity of eigenvalue also holds 
on R{t}. Therefore the signatures of M and M ′ must be the same. Hence it is enough to 
consider the case that M is nonsingular and W has no −∞ entry. Then as Eq. (1.4), there 
are a tree metric D and a vector p such that wij = Dij +pi+pj . The signatures of M and 
(tDij ) are the same. Since M is nonsingular, the embedding map to the corresponding 
tree must be injective. Thus we can apply Corollary 1.3 for (tDij ), and conclude that the 
signature of M is (1, n − 1). �
2.2. Quadratic polynomials with the half-plane property

A real multivariate polynomial P ∈ R[z1, z2, . . . , zn] is said to have the half-plane 
property if P has no root z = (z1, z2, . . . , zn) with Re(zi) > 0 (i = 1, 2, . . . , n). Such a 
polynomial is also called an HPP polynomial. Choe, Oxley, Sokal and Wagner [9] and 
Brändén [6,7] explored an interesting link between the half-plane property and matroidal 
convexity. A set B of integer vectors in Zn

+ is called M-convex [22] if B satisfies the 
following property:

[EXC] For u, v ∈ B and i ∈ {1, 2, . . . , n} with ui < vi, there exists j ∈ {1, 2, . . . , n}
such that uj > vj and

u + ei − ej , v + ej − ei ∈ B.

An M-convex set is nothing but the base set of an integral polymatroid [16]. In addition, 
if B belongs to {0, 1}n, then B is the set of characteristic vectors of bases of a matroid.1

1 [9, Section 7.1] refers to an M-convex set as a constant sum jump system.
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An M-convex set B lies on a hyperplane {x ∈ Rn |
∑n

i=1 xi = k} for some k ∈ Z+, and 
this k is called the rank of B. The support of a polynomial P (z) =

∑
auz

u is the set of 
vectors u ∈ Zn

+ such that au 	= 0, where zu := zu1
1 · · · zun

n .

Theorem 2.2. (See Choe, Oxley, Sokal and Wagner [9, Theorem 7.2].) For every homo-
geneous HPP polynomial P , the support of P is an M-convex set.

The converse of this theorem is not true in general: there is no HPP polynomial having 
Fano matroid support [6]. In rank-2 case, however, the following is known.

Theorem 2.3. (See Choe, Oxley, Sokal and Wagner [9, Corollary 5.4].) For every M-
convex set B of rank 2, the polynomial PB(z) =

∑
1≤i,j≤n:ei+ej∈B zizj has the half-plane 

property.

A key ingredient of their proof is the following.

Theorem 2.4. (See Choe, Oxley, Sokal and Wagner [9, Theorem 5.3].) For a nonnegative 
real symmetric matrix A, the following conditions are equivalent:

(1) z�Az has the half-plane property.
(2) A has at most one positive eigenvalue.

Brändén [7] considered HPP polynomials on the field of Puiseux series. Since R{t}
is an ordered field, the half-plane property is also defined on C{t}. Namely, P ∈
R{t}[z1, z2, . . . , zn] is said to have the half-plane property if P has no root z with 
Re(zi) > 0 (i = 1, 2, . . . , n). For a polynomial P =

∑
auz

u, define a function valP
on Zn

+ by

valP (u) := val(au) (u ∈ Zn
+).

Again valP has a matroidal concavity. A function f : Zn
+ → Q̄ is called M-concave [22] if

[M-EXC] for u, v ∈ Zn
+ and i ∈ {1, 2, . . . , n} with ui < vi, there exists j ∈ {1, 2, . . . , n}

such that uj > vj and

f(u) + f(v) ≤ f(u + ei − ej) + f(vj + ej − ei).

Note that if f is an M-concave function, then the domain of f is the M-convex set [22, 
Proposition 6.1], where the domain is the set of elements u such that f(u) > −∞. 
Therefore we define the rank of an M-concave function as the rank of the domain. If the 
domain of f is contained in {0, 1}n, then f is a valuated matroid [15]; see Section 2.3.

Theorem 2.5 (A corollary of Brändén). (See [7, Theorem 4].) For every homogeneous 
HPP polynomial P , valP is an M-concave function.
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We consider the rank-2 case. A function f on {ei + ej | 1 ≤ i, j ≤ n} is identified with 
a symmetric matrix (fij) by the correspondence

f(ei + ej) ←→ fij .

By this correspondence, the condition [M-EXC] for f is equivalent to [4PC] for (fij). This 
fact was observed by Dress and Terhalle [13], Hirai and Murota [19]. Thus Theorem 2.1
implies that A := (tfij ) has at most one positive eigenvalue. Theorem 2.4 is true in R{t}
by Tarski’s principle (Appendix A). Therefore we have the following.

Corollary 2.6. For every M-concave function f of rank 2, the polynomial Pf (z) =∑
i,j∈[n](tf(ei+ej))zizj has the half-plane property.

Remark 2.7. For a valuated matroid f of rank 2, the existence of an HPP polynomial P
with valP = f can also be derived from a combination of the following two facts: (i) every 
valuated matroid of rank 2 is representable in R{t} [25], and (ii) for a representable
valuated matroid f represented by a k×n matrix M , the polynomial Q(z) = detMZM�

is an HPP polynomial with valQ = f , where Z = diag(z1, z2, . . . , .zn) [9, Theorem 8.2]; 
see Section 2.3 for a valuated matroid and its representability.

2.3. Valuated matroid and dissimilarity map on tree

Our formulas shed some light on valuated (Δ-)matroids arising from weights of sub-
trees in a tree. Denote by 

(
V
k

)
the set of all subsets of V with cardinality k. For a matrix 

M , denote by MX the submatrix of M consisting of the i-th columns over i ∈ X, and 
by MX,Z the submatrix consisting of the i-th rows and the j-th column over i ∈ X and 
j ∈ Z.

A valuated matroid of rank k is a map ω :
(
V
k

)
→ Q̄ satisfying

ω(X) + ω(Y ) ≤ max
j∈Y \X

{ω(X \ {i} ∪ {j}) + ω(Y \ {j} ∪ {i})} (X,Y ∈
(
V
k

)
, i ∈ X \ Y ).

This condition is the tropicalization of the Grassmann–Plücker relation of the Plücker 
coordinate vX := val(detMX) for a k × n matrix M :

vX · vY =
∑

j∈Y \X
σij · vX\{i}∪{j} · vY \{j}∪{i} (X,Y ∈

(
V
k

)
, i ∈ X \ Y ),

where σij ∈ {1, −1} depends on the ordering of the elements i, j. In particular for any 
k × n matrix M , the map X �→ val(detMX) is a valuated matroid. Such a valuated 
matroid is called representable. In tropical geometry, a representable valuated matroid 
is a point of the tropical grassmannian [25].

In study on phylogenetic trees, Pachter and Speyer [23] found that weight of subtrees 
in a tree yields a class of valuated matroids. Let T = (V, E) be a tree with a positive 
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edge weight l. For a vertex set Y , define the dissimilarity D(Y ) of Y by the sum of edge 
weights l(e) over edges e in the minimal subtree in T containing Y . Let X = {1, 2, . . . , n}
be the set of leaves of T . The k-dissimilarity map Dk is a function on the k-leaf set 

(
X
k

)
defined by Dk(Y ) := D(Y ).

Theorem 2.8. (See Pachter and Speyer [23].) The k-dissimilarity map is a valuated ma-
troid.

Pachter and Speyer [23] asked whether a k-dissimilarity map is in the tropical grass-
mannian, or equivalently, is a representable valuated matroid (in our terminology). 
Recently this problem was affirmatively solved:

Theorem 2.9. (See Cools [10], Giraldo [18], Manon [20].) The k-dissimilarity map is a 
representable valuated matroid.

Compared with this theorem, our formula (1.1) gives another type of a representation 
of the dissimilarity map D — a representation by the degree of principal minors of 
a symmetric matrix. Combinatorial properties of the map X �→ val(detA[X]) for a 
symmetric matrix A are not well-studied and not well-understood, though it is known 
that the nonzero support {X | detA[X] 	= 0} forms a Δ-matroid [5,12]. A natural 
question is: Does the map X �→ val(detA[X]) have a kind of a matroidal concavity? We 
hope that our new representation of dissimilarity maps will stimulate this line of research.

Giraldo [18] proved Theorem 2.9 by showing that the total length of a tree is repre-
sented as the degree of the determinant of a certain matrix associated with the tree. His 
formula is somewhat similar to our formula, although we could not find a relationship 
between them.

Representation of rooted k-dissimilarity map. Nevertheless our formula gives a linear 
representation for a special class of dissimilarity maps. Fix a root vertex 0 ∈ V \X. The 
rooted k-dissimilarity map Dk

0 is a function on 
(
X
k

)
defined by Dk

0 (Y ) := D(Y ∪ {0}). 
A linear representation of Dk

0 is constructed as follows.
Define an n × n matrix M = (mij) by mij := tdij − td0i+d0j . Namely M is the Schur 

complement of the 0-th diagonal element in A[X ∪ {0}] = (tdij ). Hence we have

(1) detM [Y ] = detA[Y ∪ {0}] for Y ⊆ X, and
(2) M is negative definite.

We see (2) from the sign pattern of detM [{1, 2, . . . , k}] = detA[{0, 1, 2, . . . , k}]. By (2) 
and the Cholesky factorization, there is an n × n matrix Q with −M = Q�Q. Take 
an arbitrary k × n matrix J in R whose entries have no algebraic dependence. By the 
Binet–Cauchy formula we have

2 val(det(JQ)Y ) = 2 val(
∑

detJZ detQZ,Y ) = 2 max
Z

val(detQZ,Y )

Z
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= max
Z

val((detQZ,Y )2) = val(
∑
Z

(detQZ,Y )2) = val(det(QY )�QY )

= val(detM [Y ]) = val(detA[Y ∪ {0}]) = Dk
0 (Y ),

where Z ranges all elements in 
(
X
k

)
, and the second equality follows from the algebraic 

independence of elements in J . Hence let R := JQ and replace t by t1/2 in R. Then 
Dk

0 (Y ) = val(detRY ), and we obtain a linear representation of Dk
0 .

Valuated Δ-matroid and odd-dissimilarity map. A valuated Δ-matroid [14,26] is a func-
tion ω : 2V → Q̄ satisfying

ω(X) + ω(Y ) ≤ max
j∈(X	Y )\i

{ω(X�{i, j}) + ω(Y�{i, j})} (X,Y ⊆ V, i ∈ X�Y ).

This is the tropicalization of the Wick relation of principal minors bX := Pf B[X] (X ⊆
V ) of a skew-symmetric matrix B:

bX · bY =
∑

j∈(X	Y )\i
σ′
ij · bX	{i,j} · bY	{i,j} (X,Y ⊆ V, i ∈ X�Y ),

where σ′
ij ∈ {1, −1} depends on the ordering of the elements i, j. Hence the map X �→

val(bX) is a valuated Δ-matroid [26]; see also [21, Section 7.3]. Such a valuated Δ-matroid 
is called representable.

Let T = (V, E) be a tree where V = {1, 2, . . . , N}. For any tree T , the odd-dissimilarity 
map Do ∈ 2V is defined as follows.

Do(X) :=
{
|OX | if |X| is even,
−∞ if |X| is odd, (X ⊆ V ),

where OX is the set of odd edges with respect to X, defined in Section 1. After reordering, 
we suppose that V is nicely-ordered. One can easily see that any subset X ⊆ V is also 
nicely-ordered. By (1.3), we have

Do(X) = val(Pf B[X]) (X ⊆ V ).

Moreover, let B∨ be the matrix obtained by replacing t by t−1 in B. Then we have

−Do(X) = val(Pf B∨[X]) (X ⊆ V ).

Therefore we obtain the following.

Corollary 2.10. The odd-dissimilarity map and its negative are both representable valuated 
Δ-matroids.



H. Hirai, A. Yabe / Journal of Combinatorial Theory, Series A 133 (2015) 261–279 271
This theorem implies that the odd-dissimilarity map is a nontrivial example of a 
valuated Δ-matroid whose negative is also a valuated Δ-matroid.

An algebraic variety determined by the Wick relation is called the spinor variety. 
The spinor variety parametrizes maximal isotropic vector subspaces in a vector space 
with an antisymmetric bilinear form, analogous to the grassmannian that parametrizes 
vector subspaces. Rincón [24] considered the tropical spinor variety (a tropicalization of 
the spinor variety). A representable valuated Δ-matroid is nothing but a point of the 
tropical spinor variety in his sense. Corollary 2.10 is therefore an isotropic analogue of 
Theorem 2.9.

3. Proof

3.1. Proof of Theorem 1.2

Let T = (V, E) be a tree, and X ⊆ V . Let us recall the formula for the determinant 
of A[X]. Without loss of generality, we can assume that X = {1, 2, . . . , n}.

detA[X] =
∑
σ∈Sn

sign(σ)
n∏

i=1
aiσ(i),

where Sn is the symmetric group of degree n. Our first step is to identify each permu-
tation of this formula with a path on the corresponding tree. Let us define the following 
terminology.

• A cycle of X is a cyclic sequence (x1, x2, . . . , xk) (k ≥ 1) of a subset {x1, x2, . . . , xk} ⊆
X, where we do not distinguish (x1, x2, . . . , xk) and (xk, x1, x2, . . . , xk−1), and indices 
are considered modulo k.

• A cycle partition W of X is a set of cycles of X such that every element of X belongs 
to exactly one cycle.

• The support supp(C) of a cycle C = (x1, x2, . . . , xk) is a function on E defined 
by: supp(C)(e) is the number of indices i such that e belongs to the unique path 
between xi and xi+1 in T . The support supp(W ) of a cycle partition W is defined 
as 

∑
C∈W supp(C). Note that the support is even-valued.

• sign(W ) :=
∏

C∈W (−1)|C|+1.
• ‖W‖ :=

∑
e∈E supp(W )(e).

For a cycle C = (i1, i2, . . . , ik), this definition means that

k∑
j=1

dijij+1 =
∑
e∈E

supp(C)(e). (3.1)

By using these notions, the formula of the determinant can be rephrased as follows.
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Lemma 3.1.

detA[X] =
∑{

sign(W )t‖W‖ | W : cycle partition of X
}
. (3.2)

Proof. Observe that there is a one-to-one correspondence between permutations and 
cycle partitions: a permutation is uniquely represented as the product of (disjoint) cyclic 
permutations, and each cyclic permutation (i1, i2, . . . , ik) is naturally identified with a 
cycle in our sense. In this correspondence, the sign of a permutation σ is equal to sign(W )
of the corresponding W , and by Eq. (3.1), we have

∏
i∈X

aiσ(i) = t
∑

i∈X diσ(i) = t‖W‖.

Hence we have

detA[X] =
∑
σ∈Sn

sign(σ)
∏
i∈X

aiσ(i) =
∑
W

sign(W )t‖W‖. �

A cycle partition W of X is said to be tight if the support of W is {0, 2}-valued. In 
fact, non-tight cycle partitions vanish in (3.2).

Lemma 3.2.

detA[X] =
∑{

sign(W )t‖W‖ | W : tight cycle partition of X
}
.

Proof. Let us first introduce an operation on cycle partitions, called a flip. Let W be a 
cycle partition of X, and let e = xy be an edge of T . Suppose that supp(W )(xy) ≥ 4. 
Then (i) there are two cycles C, C ′ passing through e in order x → y, or (ii) there is 
a single cycle C ′′ passing through in order x → y twice. For the case (i), suppose that 
C = (v1, v2, . . . , vk), C ′ = (u1, u2, . . . , ul), the unique path from vi to vi+1 passes through 
xy in order vi → x → y → vi+1, and the unique path from uj to uj+1 passes through xy
in order uj → x → y → uj+1. Replace C and C ′ by

C ′′ = (v1, . . . , vi, uj+1, . . . , ul, u1 . . . , uj , vi+1, . . . , vk). (3.3)

Then we obtain a cycle partition W ′ = W \ {C, C ′} ∪ {C ′′}. Similarly, for the case (ii), 
there is a single cycle C ′′ as in (3.3). By reversing the operation above, we obtain two 
cycles C, C ′. Replacing C ′′ by C and C ′, we obtain a cycle partition W ′ = W \ {C ′′} ∪
{C, C ′}. In this way, we obtain an operation W �→ W ′ on cycle partitions, which we call 
a flip.

If a cycle partition W ′ is obtained by applying a flip to another cycle partition W , 
then supp(W ′) = supp(W ) and sign(W ′) = − sign(W ). The former equation is obvious 
from the definition of a flip. The latter equation holds since |W | − |W ′| ∈ {1, −1} and

sign(W ) =
∏

(−1)|C|+1 = (−1)|X|+|W |.

C∈W
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For l : E → 2Z+, let Wl be the set of all cycle partitions W with supp(W ) = l. Let W+
l

denote the set of cycle partitions W in Wl with sign(W ) = 1, and let W−
l := Wl \ W+

l . 
Then, from (3.2), we have

detA[X] =
∑

l:E→2Z+

(|W+
l | − |W−

l |)t‖l‖, (3.4)

where ‖l‖ :=
∑

e∈E l(e). It suffices to show that if there is an edge e ∈ E with l(e) ≥ 4, 
then |W+

l | = |W−
l |.

Let Γ be the graph on Wl such that two vertices W, W ′ ∈ Wl are adjacent if and only 
if W can be obtained from W ′ by a single flip on e. The graph Γ is a bipartite graph 
of bipartition {W+

l , W−
l }, since a flip operation changes the sign, and Γ cannot have an 

edge joining vertices of the same sign. Moreover Γ is a regular graph, since the number of 
different flips on e is determined only by l(e) (which is equal to 2

(
l(e)/2

2
)
), and different 

flips yield different cycle partitions. Thus Γ is a regular bipartite graph with bipartition 
{W+

l , W−
l }, which implies |W+

l | = |W−
l |. �

For any set W of cycle partitions, define the number 〈W〉 by

〈W〉 :=
∑

W∈W
sign(W ).

For a forest F (not necessarily a subgraph of T ) spanned by X, define WX,F by the 
set of cycle partitions W on X such that each cycle C ∈ W belongs to some connected 
component of F , and each edge in F is traced by cycles in W exactly twice. By using 
this notation, we have the following.

Lemma 3.3.

detA[X] =
∑
F

〈WX,F 〉t2|EF |, (3.5)

where F ranges all subgraphs in T spanned by X.

Proof. This immediately follows from Lemma 3.2 and the fact that for any tight cycle 
partition W the forest formed by edges e with supp(W )(e) = 2 is spanned by X. �

Hence, to prove Theorem 1.2, it suffices to show the following:

Lemma 3.4.

〈WF,X〉 = (−1)|X|+c(F )
∏

v∈VF \X
(degF (v) − 1).

This lemma is an easy corollary of the following properties of 〈WX,F 〉.
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Lemma 3.5.

(i) Suppose that F is the vertex-disjoint union of two forests H, H ′. Then we have

〈WF,X〉 = 〈WH,X∩VH
〉〈WH′,X∩VH′ 〉.

(ii) For e = xy ∈ EF , let F ′ be the forest obtained from F by adding new vertices x′, y′

and by replacing e by new edges xy′, x′y. Then F ′ is spanned by X ∪ {x′, y′}, and 
we have

〈WF,X〉 = −〈WF ′,X∪{x′,y′}〉.

(iii) If F is a star with the center vertex v, then

〈WF,X〉 =
{

(−1)|X|+1 if v ∈ X,

(−1)|X|+1(degF (v) − 1) otherwise.

Proof of Lemma 3.4. By Lemma 3.5 (i), it suffices to prove the formula for the case 
where F is connected. We use the induction on the number k of non-leaf vertices. If 
k = 0 or 1, then F is a star, and the corresponding formula follows from (iii). Let k > 1. 
Since F is connected, there exists an edge e joining two non-leaf vertices. Applying (ii) 
for e, we have 〈WF,X〉 = −〈WF ′,X∪{x′,y′}〉, where F ′ has two connected components H, 
H ′, each of which has less non-leaf vertices than F has. Let Y := (X ∪ {x′, y′}) ∩ VH , 
and Y ′ := (X ∪ {x′, y′}) ∩ VH′ . From (i) and inductive hypothesis, we get

〈WF,X〉 = −〈WF ′,X∪{x′,y′}〉 = −〈WH,Y 〉〈WH′,Y ′〉

= −(−1)|X∪{x′,y′}|+|VH |+|VH′ |+|EH |+|EH′ |
∏

v∈VF ′\(X∪{x′,y′})
(degF (v) − 1)

= (−1)|X|+|VF |−|EF |
∏

v∈VF \X
(degF (v) − 1),

where |VH | + |VH′ | = |VF | + 2 and |EH | + |EH′ | = |EF | + 2. Since c(F ) = |VF | − |EF |, 
we have the desired equation. �
Proof of Lemma 3.5. (i) Since every cycle partition W ∈ WF,X is uniquely decomposed 
into cycle partitions Z ∈ WH,X∩VH

and Z ′ ∈ WH′,X∩VH′ with W = Z ∪ Z ′, and vice 
versa, we have

〈WF,X〉 =
∑

W∈WF,X

sign(W ) =
∑

Z∈WH,X∩VH

∑
Z′∈WH′,X∩V

H′

(sign(Z))(sign(Z ′))

= 〈WH,X∩VH
〉〈WH′,X∩V ′ 〉.
H



H. Hirai, A. Yabe / Journal of Combinatorial Theory, Series A 133 (2015) 261–279 275
(ii) For every cycle partition W ∈ WF,X , there is the unique cycle

C = (u, v, α1, . . . , αi, v
′, u′, β1, . . . , βj) ∈ W

such that the path between u, v and the path between v′, u′ include xy in order u →
x, y → v and v′ → y, x → u′, respectively. Define two cycles C ′, C ′′ by

C ′ := (u, y′, u′, β1, . . . , βj), C ′′ := (v′, x′, v, α1, . . . , αi). (3.6)

Let W ′ := W \ {C} ∪ {C ′, C ′}. Then W ′ is a cycle partition in WF ′,X∪{x′,y′} with 
sign(W ) = − sign(W ′). Thus we obtain a map from WF,X to WF ′,X∪{x′,y′} such that 
W �→ W ′. Observe that this map is a bijection; any cycle partition W ′ ∈ WF ′,X∪{x′,y′}
includes cycles C, C ′ with property (3.6), and the reverse operation is definable on every 
cycle partition. Hence we obtain

〈WF,X∩VF
〉 =

∑
W∈WF,X

sign(W ) = −
∑

W ′∈WF ′,X∪{x′,y′}

sign(W ′) = −〈WF ′,X∪{x′,y′}〉.

(iii) Let k := |X|. In the both cases, 〈WF,X〉 depends only on the cardinality of X. 
We may denote WF,X by Ak if v /∈ X, and denote WF,X by Bk if v ∈ X. We will prove 
the following two claims.

(∗1) 〈Ak〉 = −(k − 1)(〈Ak−1〉 + 〈Ak−2〉), (k > 3).
(∗2) 〈Bk〉 = 〈Ak〉 + 〈Ak−1〉, (k > 2).

By 〈A2〉 = −1, 〈A3〉 = 2, and the recursion (∗1), we have

〈Ak〉 = (−1)k+1(k − 1) = (−1)|X|+1(degF (v) − 1).

Also we have 〈B1〉 = 1, 〈B2〉 = −1, and from (∗2), 〈Bk〉 = 〈Ak〉 + 〈Ak−1〉 = (−1)|X|+1.
For (∗1), fix an arbitrary vertex u ∈ X. Let A′

k denote the set of cycle partitions W
in Ak such that the unique cycle in W containing u has length at least three. We will 
show that

〈A′
k〉 = −(k − 1)〈Ak−1〉, (3.7)

(〈Ak〉 − 〈A′
k〉 =)〈Ak \ A′

k〉 = −(k − 1)〈Ak−2〉. (3.8)

To see (3.7), for a cycle partition W ∈ Ak−1, take a consecutive pair x, y in some 
cycle C in W . Replace x, y by x, u, y in C. Then we get a cycle partition W ′ in A′

k with 
sign change. There are k− 1 ways of choosing a consecutive pair in each cycle partition. 
Also every cycle partition in A′

k is obtained in this way. Hence we have (3.7).
To see (3.8), observe that Ak \A′

k is the disjoint union, over x ∈ X \u, of the sets Wx

of cycle partitions including (u, x). Delete (u, x) from each cycle partition of Wx. Then 
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we get a cycle partition in Ak−2 with sign change. Also, every cycle partition in Wx

is obtained by adding the cycle (u, x) to cycle partitions in Ak−2. Hence 〈Ak \ A′
k〉 =∑

x∈X\u〈Wx〉 = −(k − 1)〈Ak−2〉, and we have (3.8).
Consider (∗2). Let B′

k denote the set of cycle partitions W in Bk such that W includes 
the singleton cycle (v). It suffices to show that 〈B′

k〉 = 〈Ak−1〉 and 〈Bk \ B′
k〉 = 〈Ak〉.

The first equation follows from the observation that the deletion of (u) from cycle 
partitions in B′

k makes a one-to-one correspondence between B′
k and Ak−1. For the 

latter equation, add a new leaf v′ to F , and replace v by v′ in each cycle partition in 
Bk \ B′

k. This procedure maps cycle partitions in Bk \ B′
k to ones in Ak bijectively, and 

thus we have the latter equation. �
3.2. Proof of Theorem 1.4

Suppose that X = {1, 2, . . . , 2n} and X is nicely-ordered with respect to T . We denote 
Pf B[X] by Pf[X] for simplicity. Let us recall the recursive definition of Pfaffian:

Pf[X] =
∑
j∈X

(−1)i+j+1bij Pf[X \ {i, j}] (i ∈ X). (3.9)

Since the deletion of an element in X only omits paths of the corresponding tour, we 
have the following lemma.

Lemma 3.6. If X is nicely-ordered, then every subset Y of X is nicely-ordered.

In the following, we tacitly use this lemma. For distinct i, j ∈ X, define Pij ⊆ E as 
the set of edges which belong to the unique path from i to j.

Lemma 3.7. OX\{i,j} = OX�Pij.

Proof. Let e ∈ E, and let T ′, T ′′ be the two components obtained by the removal of e. 
If e /∈ Pij , then either T ′ or T ′′ must include both i and j, and hence e ∈ OX\{i,j} ⇔
e ∈ OX . If e ∈ Pij , then T ′ must include just one of i and j, and hence e ∈ OX\{i,j} ⇔
e /∈ OX . These imply the statement. �

The following lemma gives a pairing of elements of X via odd edges.

Lemma 3.8. There is a partition {{i1, j1}, {i2, j2}, . . . , {in, jn}} of X such that

(i) ik + jk is odd for all k = 1, . . . , n, and
(ii) OX is the disjoint union of Pi1j1 , . . . , Pinjn . In particular, it follows that

Puik \OX = Pujk \OX (u ∈ X, k = 1, 2, . . . , n).
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Proof. We first show that there exists i with Pi(i+1) ⊆ OX , where the indices are con-
sidered modulo 2n. We may assume that all leaves of T belong to X. Consider the 
subgraph H of T formed by OX . There exists a connected component T ′ of H incident 
to (at most) one edge e ∈ E \ OX in T . Necessarily T ′ contains at least two vertices 
i, j in X. Then i − 1 or i + 1 also belongs to T ′; otherwise the edge e is traced at least 
four times by the tour 1 → 2 → · · · → 2n → 1; contradiction to the fact that X is 
nicely-ordered. This implies P(i−1)i ⊆ OX or Pi(i+1) ⊆ OX .

We prove the statement of this lemma by induction on the cardinality of X. Pick a 
vertex i with Pi(i+1) ⊆ OX . Let {i1, j1} := {i, i + 1}. Then OX is the disjoint union of 
Pi(i+1) and OX\{i,i+1}, and i1+j1 is odd. We can renumber X \{i, i +1} with keeping the 
parity of the indices. By induction, X \ {i, i + 1} has a partition {{i2, j2}, . . . , {in, jn}}
such that ik + jk is odd for all k = 2, . . . , n and OX\{i,i+1} is the disjoint union of 
Pi2j2 , . . . , Pinjn . Then {{i1, j1}, {i2, j2}, . . . , {in, jn}} is a desired partition of X, and the 
proof is complete. �

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We prove the statement by the induction on the cardinality of X. 
If X = {1, 2}, then Pf[{1, 2}] = b12 = td12 = t|O{1,2}|. Suppose |X| > 2. Fix a partition 
{{i1, j1}, . . . , {in, jn}} of X satisfying the condition in Lemma 3.8. We can assume that 
i1 = 1. Since j1 is even and ik + jk is odd for all k, from the formula (3.9) we have

Pf[X] = b1j1 Pf[X \ {1, j1}]

+
n∑

k=2

(−1)ik
(
b1ik Pf[X \ {1, ik}] − b1jk Pf[X \ {1, jk}]

)
. (3.10)

Since OX is the disjoint union of P1j1 and OX\{1,j1}, by inductive hypothesis we have

b1j1 Pf[X \ {1, j1}] = t|P1j1 |+|OX\{1,j1}| = t|OX |,

b1ik Pf[X \ {1, ik}] = t|P1ik |+|OX\{1,ik}|,

b1jk Pf[X \ {1, jk}] = t|P1jk |+|OX\{1,jk}|.

From Lemma 3.7, we have |P1ik | + |OX\{1,ik}| = |P1ik | + |OX�P1ik | = |OX | + 2|P1ik \
OX | = |OX | + 2|P1jk \OX | = |P1jk | + |OX\{1,jk}|. Hence the sum of Eq. (3.10) vanishes, 
and we have (1.3). �
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Appendix A. Tarski’s principle for real closed fields

A field K is a real closed field if K is an ordered field such that every positive element 
is a sum of squares in K, and every polynomial on K of odd degree has at least one root 
in K (see [3, p. 34]). It is known that R{t} is a real closed field (see [3, Theorem 2.91]). 
An important fact in a real closed field is the following:

Theorem A.1 (Tarski’s principle). (See [3, Theorems 2.80, 2.81].) A first-order statement 
is true in a real closed field if and only if it is true in every real closed field.

Here a first-order statement is a predicate constructed from addition, multiplication, 
equality, inequality, and the standard logical connectives and quantifiers. Hence any 
true first order statement in R is also true in R{t}. For example, the statement “a 
polynomial P (z) in R{t} is HPP” can be written as a first-order statement in R{t} as 
follows. Substitute u + iv to z in P (z), and represent P as P (u + iv) = Q(u, v) + iR(u, v), 
where Q, R are polynomials in R{t}. Then the HPP statement is equivalent to

∀u∀v(Q(u, v) = 0 ∧R(u, v) = 0 → ¬(u ≥ 0)).

In this way, any polynomial relation in C{t} can be written in polynomial relations 
in R{t}. Therefore the statement “a Hermite matrix has real eigenvalues only” and 
Sylvester’s law hold in C{t}, which were used in Section 2.1. Also Theorem 2.4 in Sec-
tion 2.2 holds in R{t}.
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