
Journal of Combinatorial Theory, Series A 172 (2020) 105183
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

The generating function of planar Eulerian 

orientations ✩

Mireille Bousquet-Mélou a, Andrew Elvey Price b

a CNRS, LaBRI, Université de Bordeaux, 351 cours de la Libération, F-33405 
Talence Cedex, France
b School of Mathematics and Statistics, University of Melbourne, Parkville, 
Victoria 3010, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 March 2018
Received in revised form 10 October 
2019
Accepted 28 November 2019
Available online xxxx

Keywords:
Planar maps
Eulerian orientations
Height functions
Differentially algebraic series

The enumeration of planar maps equipped with an Eulerian 
orientation has attracted attention in both combinatorics and 
theoretical physics since at least 2000. The case of 4-valent 
maps is particularly interesting: these orientations are in 
bijection with properly 3-coloured quadrangulations, while in 
physics they correspond to configurations of the ice model.
We solve both problems – namely the enumeration of 
planar Eulerian orientations and of 4-valent planar Eulerian 
orientations – by expressing the associated generating func-
tions as the inverses (for the composition of series) of simple 
hypergeometric series. Using these expressions, we derive 
the asymptotic behaviour of the number of planar Eulerian 
orientations, thus proving earlier predictions of Kostov, 
Zinn-Justin, Elvey Price and Guttmann. This behaviour, 
μn/(n logn)2, prevents the associated generating functions 
from being D-finite. Still, these generating functions are 
differentially algebraic, as they satisfy non-linear differential 
equations of order 2. Differential algebraicity has recently 
been proved for other map problems, in particular for maps 
equipped with a Potts model.
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Our solutions mix recursive and bijective ingredients. In 
particular, a preliminary bijection transforms our oriented 
maps into maps carrying a height function on their vertices. In 
the 4-valent case, we also observe an unexpected connection 
with the enumeration of maps equipped with a spanning 
tree that is internally inactive in the sense of Tutte. This 
connection remains to be explained combinatorially.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A planar map is a connected planar graph embedded in the sphere, and taken up to 
orientation preserving homeomorphism (see Fig. 1). The enumeration of planar maps is 
a venerable topic in combinatorics, which was born in the early sixties with the pioneer-
ing work of William Tutte [60,61]. Fifteen years later it started a second, independent, 
life in theoretical physics, where planar maps are seen as a discrete model of quantum 
gravity [22,10]. The enumeration of maps also has connections with factorizations of per-
mutations, and hence representations of the symmetric group [36,37]. Finally, 40 years 
after the first enumerative results of Tutte, planar maps crossed the border between 
combinatorics and probability theory, where they are now studied as random metric 
spaces [2,25,43,48]. The limit behaviour of large planar random maps is now well under-
stood, and gave birth to a variety of limiting objects, either continuous like the Brownian 
map [26,44,45,51], or discrete like the UIPQ (uniform infinite planar quadrangulation) [2,
24,27,49].

The enumeration of maps equipped with some additional structure (a spanning tree, a 
proper colouring, a self-avoiding-walk, a configuration of the Ising model...) has attracted 
the interest of both combinatorialists and theoretical physicists since the early days of 
this study [28,39,52,63,62]. At the moment, a challenge is to understand the limiting 
behaviour of maps equipped with one such structure [16,38,41,54,57].

The enumeration of these “decorated” maps, and understanding their structure, re-
main the very first building blocks towards the resolution of such challenges. Recently, 
the natural question of counting maps equipped with an Eulerian orientation (where all 
edges are oriented in such a way that every vertex has as many incoming as outgoing 
edges, see Fig. 1) was raised by Bonichon et al. [14]. They did not solve the problem, but 
gave sequences of lower bounds and upper bounds on the number of planar Eulerian ori-

Fig. 1. Left: a rooted planar map, which is 4-valent (or: quartic). Right: the same map, equipped with an 
Eulerian orientation.



M. Bousquet-Mélou, A. Elvey Price / J. Combin. Theory Ser. A 172 (2020) 105183 3
Fig. 2. The planar Eulerian orientations with at most two edges, in agreement with G(t) = t +5t2+O(t3). On 
the right are the four quartic Eulerian orientations with one vertex, in agreement with Q(t) = 4t + O(t2).

entations. They were followed by Elvey Price and Guttmann who, remarkably, were able 
to write an intricate system of functional equations defining the associated generating 
function [29]. This allowed them to compute the number gn of Eulerian orientations with 
n edges for large values of n, and led them to a conjecture on the asymptotic behaviour 
of gn.

Their study also included the special case of 4-valent (or: quartic) Eulerian orienta-
tions. This problem had already been studied around 2000 in theoretical physics, where 
it coincides with the ice model on a random lattice [42,65]. Another fact that makes 
this case particularly relevant is that the number of such orientations with n vertices is 
known to be the number of 3-coloured quadrangulations with n faces [64]. Elvey Price 
and Guttmann constructed a system of functional equations for this problem as well, and 
conjectured the asymptotic behaviour of the associated numbers qn. Their prediction had 
already been in the physics papers [42,65] for a while, but was probably less accessible 
to combinatorialists. The more experienced of us observed that the conjectured growth 
rate, 4

√
3π, already occurred when counting quartic maps equipped with a certain type 

of tree [17], and the more optimistic of us looked for, and discovered, an exact (though 
conjectural) relation between the two problems. This gave an (unpublished) conjecture 
for the generating function of quartic Eulerian orientations, soon completed by a similar 
conjecture for general Eulerian orientations. These are the conjectures that we prove in 
this paper, thus completely solving these two enumeration problems.

Let us now state our main two theorems. As is usual with maps, our orientations are 
rooted, which means that we mark one (oriented) edge (Fig. 1, right). Orientations of 
small size are shown in Fig. 2.

Theorem 1.1. Let R(t) ≡ R be the unique formal power series with constant term 0
satisfying

t =
∑
n≥0

1
n + 1

(
2n
n

)(
3n
n

)
Rn+1.

Then the generating function of quartic rooted planar Eulerian orientations, counted by 
vertices, is
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Q(t) = 1
3t2

(
t− 3t2 − R(t)

)
.

This is a differentially algebraic series, satisfying a non-linear differential equation of 
order 2 whose coefficients are polynomials in t. The number qn of such orientations 
having n vertices behaves asymptotically as

qn ∼ κ
μn+2

n2(log n)2

where

κ = 1/18 and μ = 4
√

3π.

The series Q(t) is not D-finite, which means that it does not satisfy any non-trivial linear 
differential equation.

The first coefficients of R and Q are

R(t) = t− 3t2 − 12t3 − 105t4 − 1206t5 − · · · , Q(t) = 4t + 35t2 + 402t3 + · · · .

Remarks. 1. As we will explain in Section 2.2, the series Q(t) also counts (by faces) 
quadrangulations equipped with a proper 3-colouring of the vertices (with prescribed 
colours on the root edge). It is worth noting that the generating functions of 3-coloured 
triangulations, and of 3-coloured planar maps, are both algebraic [7] (and thus D-finite), 
hence in a sense they are much simpler. The corresponding asymptotic estimates are 
κμnn−5/2 in both cases (for other values of μ and κ of course).

2. In Section 5, we will prove that Q(t) also counts, by edges, Eulerian partial orien-
tations of planar maps: that is, only some edges are oriented, with the condition that at 
any vertex there are as many incoming as outgoing edges.

3. As mentioned above, the series R(t) already occurs in the map literature, and more 
precisely in the enumeration of quartic maps M weighted by their Tutte polynomial 
TM (0, 1). However, our proof does not rely on this observation, and it remains an open 
problem to understand this connection combinatorially. We refer to the final section for 
more details.

The counterpart of Theorem 1.1 for all rooted planar Eulerian orientations reads as 
follows.

Theorem 1.2. Let R(t) ≡ R be the unique formal power series with constant term 0
satisfying

t =
∑ 1

n + 1

(
2n
n

)2

Rn+1.

n≥0
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Then the generating function of rooted planar Eulerian orientations, counted by edges, 
is

G(t) = 1
4t2

(
t− 2t2 − R(t)

)
.

This is a differentially algebraic series, satisfying a non-linear differential equation of 
order 2 whose coefficients are polynomials in t. The number gn of such orientations 
having n vertices behaves asymptotically as

gn ∼ κ
μn+2

n2(logn)2

where

κ = 1/16 and μ = 4π.

The series G(t) is not D-finite.

The first coefficients of R and G are

R(t) = t− 2t2 − 4t3 − 20t4 − 132t5 − · · · , G(t) = t + 5t2 + 33t3 + · · · .

Remark. In Section 5 we will prove that 2G(t) also has an interpretation in terms of 
3-coloured maps: it counts (by faces) properly 3-coloured quadrangulations having no 
bicoloured face. Equivalently, it counts Eulerian orientations of quartic maps with no 
alternating vertex (a vertex where the order of the edges would be in/out/in/out). This 
is the special case α = β of a two matrix model studied in [40], where the point α = β =
1/(4π) is indeed identified as critical.

Outline of the paper. In Section 2 we begin with basic definitions on maps, orientations, 
and generating functions. We also discuss various models related to quartic Eulerian 
orientations. In Section 3 we write a system of functional equations that defines the 
generating function of quartic Eulerian orientations. We solve it in Section 4, using a 
guess-and-check approach. Then comes a bijective intermezzo in Section 5, where we 
describe a bijection of Ambjørn and Budd [1]. A specialization of this bijection implies 
that general Eulerian orientations with n edges are in one-to-two correspondence with 
certain restricted quartic Eulerian orientations with n vertices. In Section 6 we give a 
system of equations for these orientations, which we solve in Section 7. In Section 8 we 
briefly discuss the nature of our generating functions and their singular behaviour, thus 
proving the asymptotic statements in Theorems 1.1 and 1.2. Section 9 finally raises some 
open problems.
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Fig. 3. Left: a rooted planar map, with the root edge and root corner shown. Right: the dual map, in dashed 
edges.

2. Definitions

2.1. Planar maps

A planar map is a proper embedding of a connected planar graph in the oriented 
sphere, considered up to orientation preserving homeomorphism. Loops and multiple 
edges are allowed (Fig. 3). The faces of a map are the connected components of its 
complement. The numbers of vertices, edges and faces of a planar map M , denoted by 
v(M), e(M) and f(M), are related by Euler’s relation v(M) + f(M) = e(M) + 2. The 
degree of a vertex or face is the number of edges incident to it, counted with multiplicity. 
A corner is a sector delimited by two consecutive edges around a vertex; hence a vertex 
or face of degree k is incident to k corners. The dual of a map M , denoted M∗, is the 
map obtained by placing a vertex of M∗ in each face of M and an edge of M∗ across 
each edge of M ; see Fig. 3, right. A map is said to be quartic if every vertex has degree 4. 
Duality transforms quartic maps into quadrangulations, that is, maps in which every face 
has degree 4. A planar map is Eulerian if every vertex has even degree. Its dual, with 
even face degrees, is then bipartite. We call a face of degree 2 (resp. 4) a digon (resp. 
quadrangle).

For counting purposes it is convenient to consider rooted maps. A map is rooted by 
choosing an edge, called the root edge, and orienting it. The starting point of this oriented 
edge is then the root vertex, the other endpoint is the co-root vertex. The face to the 
right of the root edge is the root face, and its edges are the outer edges. The face to the 
left of the root edge is the co-root face. Equivalently, one can root the map by selecting 
a corner. The correspondence between these two rooting conventions is that the oriented 
root edge follows the root corner in anticlockwise order around the root vertex. In figures, 
we usually choose the root face as the infinite face (Fig. 3). This explains why we often 
call the root face the outer face and its degree the outer degree (denoted od(M)). The 
other faces are called inner faces. Similarly, we call the corners of the outer face outer 
corners and all other corners inner corners.

From now on, every map is planar and rooted, and these precisions will often be 
omitted. Our convention for rooting the dual of a map is illustrated on the right of 
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Fig. 4. A labelled map.

Fig. 3. Note that it makes duality of rooted maps a transformation of order 4 rather 
than 2. By convention, we include among rooted planar maps the atomic map having 
one vertex and no edge.

2.2. Orientations

A (planar) Eulerian orientation is a (rooted, planar) map in which all edges are 
oriented, in such a way that the in- and out-degrees of each vertex are equal. We require 
that the orientation chosen for the root edge is consistent with its orientation coming 
from the rooting (Fig. 1, right). Note that the underlying map must be Eulerian. We find 
it convenient to work with duals of Eulerian orientations, which turn out to be equivalent 
to certain labelled maps.

Definition 2.1. A labelled map is a rooted planar map with integer labels on its vertices, 
such that adjacent labels differ by ±1 and the root edge is labelled from 0 to 1. Such 
a map is necessarily bipartite. We also consider the atomic map, with a single vertex 
(labelled 0), to be a labelled map.

An example is shown in Fig. 4.

Lemma 2.2. The duality transformation between Eulerian maps and bipartite maps can 
be extended into a bijection between Eulerian orientations and labelled maps, which pre-
serves the number of edges and exchanges vertex degrees and face degrees.

The construction was already used in [29, Prop. 2.1]. It is illustrated in Fig. 5. The 
idea is that an Eulerian orientation of edges of a map gives a height function on its 
faces, or equivalently, on the vertices of its dual. Height functions on regular grids, like 
the square lattice, are much studied as models of discrete random surfaces, expected to 
converge to the Gaussian free field [23,35].

In the case of a quartic Eulerian orientation, the (quadrangular) faces of the dual 
map can only have two types of labelling, shown in Fig. 6. It is easily shown that, upon 
replacing every label by its value modulo 3, one obtains a proper 3-colouring of the 
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Fig. 5. An Eulerian orientation (solid edges) and the corresponding dual labelled map (dashed edges). The 
labelling rule is shown on the right.

Fig. 6. The two types of vertices in a quartic Eulerian orientation, shown with the associated quadrangles 
in the dual labelled map. In the six vertex model, alternating vertices are assigned the weight ω.

vertices of the quadrangulation. Conversely, given a 3-coloured quadrangulation such 
that the root edge is oriented from 0 to 1, all faces must be of one of the types shown 
in Fig. 6, and one can directly reconstruct an Eulerian orientation of the dual quartic 
map using the rule of Fig. 5. Then the associated labelled quadrangulation projects on 
the coloured quadrangulation modulo 3. Hence 4-valent Eulerian orientations with n
vertices are in bijection with 3-coloured quadrangulations with n faces (with the root 
edge oriented from 0 to 1), as claimed below Theorem 1.1. This correspondence between 
Eulerian orientations of a planar quartic graph and 3-colourings of its dual has been 
known for a long time. In the more general, non-planar case, the number of Eulerian 
orientations of a 4-valent graph is given by the value of its Tutte polynomial at the point 
(0, −2), with no interpretation in terms of colourings [64, Sec. 3.6].

More orientations. Obviously, quartic Eulerian orientations are orientations of a quartic 
map with exactly 2 outgoing edges at each vertex. It turns out that the number of oriented 
quadrangulations in which each vertex has outdegree 2 is known. The associated series 
is D-finite. A simple bijection transforms these orientations into bipolar orientations of 
planar maps (no cycle, one source, one sink, both on the outer face) [30]. We refer the 
reader to [4,13,30,34], and references therein. Analogous results exist for orientations of 
triangulations in which every vertex has outdegree 3, called Schnyder orientations [6,12]. 
Let us also mention recent progress regarding bipolar orientations with prescribed face 
degrees [19].

2.3. The 6-vertex model and fully packed loops

The enumeration of quartic Eulerian orientations has already been considered, and 
in some sense solved, in the mathematical physics literature, where it is called the ice 
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model on a 4-valent random lattice [42,65]. In this model an oxygen atom stands at 
every vertex, while the hydrogen atoms (two per oxygen in a water/ice molecule) lie on 
the edges, the arrows indicating with which oxygen they go. This is a special case of 
the six vertex model: in that model, the configurations are still Eulerian orientations, 
but a weight ω = 2 cos(λπ/2) is assigned to each vertex from which the two outgoing 
edges are opposite each other. We call these vertices alternating (see Fig. 6, right). The 
ice model then corresponds to ω = 1, or equivalently, λ = 2/3. In combinatorial terms, 
solving the six vertex model on a random lattice is equivalent to determining the refined 
generating Q(t, ω) of quartic Eulerian orientations, where t still counts vertices, and a 
weight ω is assigned to alternating vertices. Fig. 6 shows that Q(t, ω) also counts labelled 
quadrangulations by faces, with a weight ω per face having only two distinct labels.

Kostov exactly solved the problem for general λ, though his solution was not entirely 
rigorous [42]. Kostov’s solution relied on analysing the limiting eigenvalue distribution of 
a sequence of matrices, using results from complex analysis to determine this distribution. 
We had initially overlooked this solution, in part due to the unfamiliar language and 
techniques used. In a forthcoming paper, the second author and Zinn-Justin provide a 
rigorous version of Kostov’s derivation, while also fixing a mistake, resulting in a much 
simplified formula for Q(t, ω) compared to the (incorrect) formula that one could extract 
directly from [42]. This new formula is written parametrically in terms of Jacobi theta 
functions (see [18] for an extended abstract). In another forthcoming paper, the current 
authors generalise the methods in the present paper to rederive the same formula for 
Q(t, ω), with our new derivation staying (almost) entirely within the world of formal 
power series. Our exact formula for Q(t, 1) can also be shown to agree with the general 
formula for Q(t, ω) at ω = 1, though the equivalence is not obvious [18].

The quantity studied by Kostov is not exactly the series Q(t, ω), but the free energy
Z(t, ω) related to Q by

Q(t, ω) = 2t d
dt

log(Z(t, ω)).

Kostov, and also Zinn-Justin [65], predicted that for λ ∈ [0, 2), that is, ω ∈ (−2, 2], the 
dominant singularity of Z(t, ω) occurs at

ρ = 1
8λπ

sin(λπ/4)
cos(λπ/4)3 . (1)

In terms of ω, this is

ρ = 1
4 arccos(ω/2)

√
2 − ω

(2 + ω)3/2
.

Moreover, Kostov [42] predicted that the behaviour of the free energy around this sin-
gularity is
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Fig. 7. The transformation from vertices in a quartic Eulerian orientation to pairs of vertices in certain cubic 
Eulerian partial orientations. This transformation applies when ω = 2.

log(Z(t, ω)) ∼ (1 − t/ρ)2

log(1 − t/ρ) ,

up to some multiplicative constant. This would result in:

Q(t, ω) ∼ 1 − t/ρ

log(1 − t/ρ) ,

up to some multiplicative constant.
The generating function Q(t) of Theorem 1.1 is Q(t, 1), so the predictions of Zinn-

Justin and Kostov at ω = 1 are verified by Theorem 1.1 (see Proposition 8.2 for the 
singular behaviour of Q(t), from which the asymptotic behaviour of the numbers qn
stems). We also claim that our second theorem, Theorem 1.2, solves the case ω = 0 of 
the six vertex model. Indeed, we will show that the generating function G(t) of general 
Eulerian orientations satisfies 2G(t) = Q(t, 0) (see Corollary 5.2). Hence the predictions 
of Zinn-Justin and Kostov for ω = 0 follow from Theorem 1.2 and Proposition 8.3.

In our forthcoming paper, we analyse the exact formula for Q(t, ω). Our analysis 
strongly suggests that the prediction (1) does not hold on the entire segment (−2, 2], 
but only for ω > ωc, where ωc is around −0.76.

Fully packed loops. The case ω = 2 is also well-understood, and boils down to counting all 
planar maps weighted by their Tutte polynomial, evaluated at the point (3, 3). This can be 
justified as follows: starting from a quartic Eulerian orientation, we first transform each 
vertex into a pair of vertices with degree 3, as shown in Fig. 7. (This transformation has 
already been used in, e.g., [42,65].) The two possible choices for each alternating vertex 
account for the weight ω = 2 assigned to these vertices. The resulting map is a cubic 
map in which each vertex has one incoming edge, one outgoing edge and one undirected 
edge. This transformation can be reversed by simply contracting all undirected edges in 
the cubic map. The oriented edges must then form loops on the cubic map, where each 
loop is oriented one of two ways — either clockwise or anticlockwise. Moreover, every 
vertex must be visited by a loop. In [15, Sec. 2.1], this model of fully packed loops on 
cubic maps is shown to be equivalent to the 4-state Potts model on general planar maps, 
in which every monochromatic edge gets a weight 3, and every vertex a weight 1/2. 
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Finally, using the correspondence between the Potts model and the Tutte polynomial 
(see, e.g., [7, Sec. 3.3]), we conclude that

Q(t, 2) =
∑

M planar
te(M) TM (3, 3) = 6 t + 78 t2 + 1326 t3 + 25992 t4 + O(t5),

where TM (μ, ν) is the Tutte polynomial of M (see [64]). This series was proved to satisfy 
an (explicit) non-linear differential equation of order 3 (see [8, Thm. 16] for β = 2), but, 
to our knowledge, the singular behaviour of Q(t, 2) has not been derived from it. From 
this differential equation, one can in fact guess-and-prove a smaller differential equation 
for Q(t, 2), of order 2 and degree 2 (for ω = 0 or 1, we obtain DEs of order 2 but degree 3). 
Written in terms of the series S(t) = t2(1 + Q(t, 2)) of [8], it reads:

(1 − 32t) (6S − 2tS′ − t)S′′ + 2t(1 − 4S′)2 = 0.

2.4. Formal power series

Let A be a commutative ring and x an indeterminate. We denote by A[x] (resp. A[[x]]) 
the ring of polynomials (resp. formal power series) in x with coefficients in A. If A is a 
field, then A(x) denotes the field of rational functions in x. We will also consider Laurent 
series in x, that is, series of the form

∑
n≥n0

anx
n,

with n0 ∈ Z and an ∈ A. The coefficient of xn in a series F (x) is denoted by [xn]F (x).
This notation is generalised to polynomials, fractions and series in several indeter-

minates. For instance, the generating function of Eulerian orientations, counted by 
edges (variable t) and faces (variable z) belongs to Q[[t, z]]. For a multivariate series, 
say F (x, y) ∈ Q[[x, y]], the notation [xi]F (x, y) stands for the series Fi(y) such that 
F (x, y) =

∑
j Fj(y)xj . It should not be mixed up with the coefficient of xiy0 in F (x, y), 

which we denote by [xiy0]F (x, y). If F (x, x1, . . . , xd) is a series in the xi’s whose coeffi-
cients are Laurent series in x, say

F (x, x1, . . . , xd) =
∑

i1,...,id

xi1
1 · · ·xid

d

∑
n≥n0(i1,...,id)

a(n, i1, . . . , id)xn,

then we define the non-negative part of F in x as the following formal power series in 
x, x1, . . . , xd:

[x≥0]F (x, x1, . . . , xd) =
∑

i1,...,id

xi1
1 · · ·xid

d

∑
n≥0

a(n, i1, . . . , id)xn.

We define similarly the positive part of F in x, denoted [x>0]F .
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If A is a field, a power series F (x) ∈ A[[x]] is algebraic (over A(x)) if it satisfies a 
non-trivial polynomial equation P (x, F (x)) = 0 with coefficients in A. It is differentially 
algebraic (or D-algebraic) if it satisfies a non-trivial polynomial differential equation 
P (x, F (x), F ′(x), . . . , F (k)(x)) = 0 with coefficients in A. It is D-finite if it satisfies a 
linear differential equation with coefficients in A(x). For multivariate series, D-finiteness 
and D-algebraicity require the existence of a differential equation in each variable. We 
refer to [46,47] for general results on D-finite series, and to [9, Sec. 6.1] for D-algebraic 
series.

3. Functional equations for quartic Eulerian orientations

In this section we will characterise the generating function Q(t) of labelled quadran-
gulations by a system of functional equations.

Theorem 3.1. There exists a unique 3-tuple of series, denoted P(t, y), C(t, x, y) and 
D(t, x, y), belonging respectively to Q[[y, t]], Q[x][[y, t]] and Q[[x, y, t]], and satisfying 
the following equations:

P(t, y) = 1
y
[x1]C(t, x, y),

D(t, x, y) = 1
1 − C

(
t, 1

1−x , y
) ,

D(t, x, y) = 1 + y [x≥0]
(

D(t, x, y)
(

[y1]D(t, x, y) + 1
x

P
(
t,

t

x

)))
,

together with the initial condition

[y1]D(t, x, y) = 1
1 − x

(
1 + 2t[y2]D(t, x, y) − t([y1]D(t, x, y))2

)
.

The generating function Q(t) that counts labelled quadrangulations by faces is

Q(t) = [y1]P(t, y) − 1.

By Lemma 2.2, the series Q(t) also counts quartic Eulerian orientations by vertices.

Remarks. 1. With the conditions on the series P, C and D, the operations that occur in 
the above equations are always well defined:

• the coefficient of x in C(t, x, y) lies in Q[[y, t]],
• the series C(t, 1/(1 − x), y) indeed lies in Q[[x, y, t]] (upon expanding the powers of 

1/(1 − x) as series in x),
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Fig. 8. Left: a patch which contributes t5y4 to the generating function P(t, y). It does not satisfy the first 
condition of a C-patch. Right: a D-patch which contributes t6x3y3 to the generating function D(t, x, y).

• denoting by pj,n ∈ Q the coefficient of yjtn in P(t, y), and by dj,n(x) ∈ Q[[x]] the 
coefficient of yjtn in D, the quantity

1
x

D(t, x, y) P
(
t,

t

x

)
=

⎛
⎝ ∑

j,n≥0
dj,n(x)yjtn

⎞
⎠

⎛
⎝ ∑

i,m≥0
pi,m

1
xi+1 t

i+m

⎞
⎠

=
∑

j,N≥0
yjtN

∑
i+m+n=N

pi,m dj,n(x) 1
xi+1

is a series in y and t whose coefficients are Laurent series in x (because i, m and n
are bounded). It thus makes sense to extract its non-negative part in x, which will 
lie in Q[[x, y, t]].

2. In [29], another system was given to characterise the series Q(t). It is more compli-
cated than the one above. In particular, it involves three additional variables (other than 
the main size variable t) rather than two. We could not solve that complicated system, 
but we solve the one above in the next section.

The series C, D and P of Theorem 3.1 count certain labelled maps, which we now 
define. See Fig. 8 for an illustration.

Definition 3.2. A patch is a labelled map in which each inner face has degree 4, and the 
vertices around the outer face are alternately labelled 0 and 1.

A C-patch is a patch satisfying two additional conditions: all neighbours of the root 
vertex are labelled 1, and the root corner is the only outer corner at the root vertex. By 
convention, the atomic patch is not a C-patch.

D-patches resemble patches but may include digons. More precisely, a D-patch is a 
labelled map in which each inner face has degree 2 or 4, those of degree 2 being incident 
to the root vertex, and the vertices around the outer face are alternately labelled 0 and 1. 
We also require that all neighbours of the root vertex are labelled 1.
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Fig. 9. The transformation of C into P used in the proof of Lemma 3.3.

We define P(t, y), C(t, x, y) and D(t, x, y) to be respectively the generating functions of 
patches, C-patches and D-patches, where t counts inner quadrangles, y the outer degree 
(halved), and x either the degree of the root vertex (for C-patches) or the number of inner 
digons (for D-patches). Comparing with the previous paper giving functional equations 
for this problem [29], we see that one parameter, namely the degree of the co-root vertex, 
is no longer involved here. The series P, C and D actually belong to the rings prescribed 
by Theorem 3.1:

• for P it suffices to observe that there are finitely many patches with n inner quad-
rangles and outer degree 2j,

• for D we observe that there are finitely many D-patches with n inner quadrangles, i
inner digons and outer degree 2j,

• finally for C, we note that a C-patch with n inner quadrangles cannot have a root 
vertex of degree larger than 1 + 4n, because all non-root corners at the root vertex 
must belong to an inner quadrangle (by the second condition of Definition 3.2). 
This explains the polynomiality of [tn]C in x (and yields in fact a smaller ring than 
Q[x][[y, t]], namely (Q[[y]][x]) [[t]], but this won’t be needed).

In the next 5 lemmas, we prove that the series that we have defined satisfy the 5 
equations of Theorem 3.1. We will finish the section by proving that the system has a 
unique solution in the prescribed rings of series.

Lemma 3.3. The generating functions P(t, y) and C(t, x, y) satisfy the equation

P(t, y) = 1
y
[x1]C(t, x, y).

Proof. Let C be any C-patch counted by [x1]C(t, x, y), that is, in which the root vertex 
has degree 1. We construct a new patch P from C, as illustrated in Fig. 9: we delete the 
root edge and root vertex of C, replace each label 
 with 1 − 
, and finally root P at the 
outer edge of C following the root edge of C anticlockwise. Then the new labelled map 
P is indeed a patch. If C contains only one edge then P is the atomic map. The outer 
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Fig. 10. A sequence of C-patches gives rise to a B-patch, as in Lemma 3.4.

Fig. 11. The transformation from a B-patch to a D-patch, as in Lemma 3.4.

degree has decreased by 2, while the number of inner quadrangles is unchanged. Finally, 
the transformation from C to P is reversible. This proves the lemma. �
Lemma 3.4. The generating functions D(t, x, y) and C(t, x, y) satisfy the equation

D(t, x, y) = 1
1 − C

(
t, 1

1−x , y
) .

Proof. Recall that C-patches satisfy two conditions: all neighbours of the root vertex 
have label 1, and the root vertex is only incident once to the root face. By attaching 
a sequence of C-patches at their root vertex, as shown in Fig. 10, we form a B-patch, 
that is, a patch satisfying only the first of these conditions. The associated generating 
function is

B(t, x, y) = 1
1 − C(t, x, y) .

As before, t counts inner quadrangles, x the degree of the root vertex and y the outer 
degree (halved).

Now in order to construct a D-patch, it suffices to take a B-patch and inflate every 
edge which is incident to the root vertex into a sequence of digons, as shown in Fig. 11. 
This explains the transformation x �→ 1/(1 − x) occurring in the lemma. In this way the 
variable x now counts digons of D-patches. �
Lemma 3.5. The generating function D(t, x, y) satisfies the equation

[y1]D(t, x, y) = 1
1 − x

(
1 + 2t[y2]D(t, x, y) − t([y1]D(t, x, y))2

)
.



16 M. Bousquet-Mélou, A. Elvey Price / J. Combin. Theory Ser. A 172 (2020) 105183
Fig. 12. The four different types of patches which contribute to the generating function [y1]C(t, x, y). In the 
third and fourth cases it is possible that u1 = v1. The shaded area represents a labelled quadrangulation.

Proof. We will show that

[y1]C(t, x, y) = x
(
1 + 2t[y2]C(t, x, y) + t([y1]C(t, x, y))2

)
, (2)

from which the desired result follows using Lemma 3.4, while observing that C(t, x, 0) =
0. Let C be any C-patch counted by [y1]C(t, x, y), that is, having outer degree 2. Let e
be the root edge of C, let e′ be the other outer edge of C and let v0 and v1 be the root 
vertex and co-root vertex respectively. We consider four cases, illustrated in Fig. 12.

In the first case e = e′. Since the outer degree of C is 2, this is only possible if e
is the only edge in C, so this case simply contributes x to [y1]C(t, x, y). For the other 
three cases, let Q be the map remaining when e′ is removed (this is the shaded area in 
Fig. 12). Then the outer degree of Q must be 4, so that Q is a quadrangulation. Let the 
vertices around the outer face of Q be v0, v1, u and u1 in anticlockwise order. Note that 
v1 and u1 must both be labelled 1 since they are adjacent to v0 and C is a C-patch.

The second case we consider is when u = v0. Then Q can be separated into two 
C-patches with outer degree 2, hence this case contributes

xt([y1]C(t, x, y))2

to [y1]C(t, x, y). The factor xt appears because the number of inner quadrangles in Q
and the degree of the root vertex of Q are each one less than the equivalent numbers in 
C.

The third case is when u �= v0, but u is labelled 0. Then Q can be any C-patch with 
outer degree 4. Hence this case contributes

xt[y2]C(t, x, y).

In the fourth and final case, u is labelled 2, and therefore it cannot be equal to v0. In 
this case Q is not a patch because of this label 2 on its outer face. But we construct a 
new map Q′ from Q by replacing every label 
 in Q with 2 − 
, except for the label at 
the root vertex, which remains 0. Then Q′ is still a labelled map, all neighbours of the 
root vertex are still labelled 1, and the root face is only incident once to the root vertex. 
Hence, Q′ can be any C-patch with outer degree 4, so this case contributes

xt[y2]C(t, x, y).
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Fig. 13. The three different types of D-patches. In the third case it is possible that the two displayed vertices 
labelled 1 are the same vertex.

Adding the contributions from the four cases yields (2), which, in turn, yields the 
desired result using Lemma 3.4. �

In order to prove the most complex equation of our system,

D(t, x, y) = 1 + y [x≥0]
(

D(t, x, y)
(

[y1]D(t, x, y) + 1
x

P
(
t,

t

x

)))
, (3)

we will consider three types of D-patches, illustrated in Fig. 13, and we will enumerate 
the D-patches of each type separately. The first type is just the atomic map, which 
contributes 1 to D(t, x, y). For any other D-patch D, let v0 be the root vertex, let c0 be 
the outer corner labelled 0 that follows the root corner clockwise around the outer face, 
and let u0 be the vertex associated with c0. We define D-patches of type 2 as those that 
satisfy u0 = v0, while D-patches of type 3 satisfy u0 �= v0.

Lemma 3.6. The contribution to D(t, x, y) from D-patches of type 2 is given by

y
(
[y1]D(t, x, y)

)
D(t, x, y).

Proof. The result follows from the fact that any D-patch of type 2 can be split into two 
D-patches at v0 where one has outer degree 2 and the other can be any D-patch. �

Note that this contribution can be written y[x≥0] 
(
D(t, x, y)[y1] D(t, x, y)

)
as in (3). It 

remains to determine the contribution from D-patches of type 3.

Proposition 3.7. There is a bijection between D-patches D of type 3 and pairs (P, D′) of 
a patch P and a D-patch D′ such that the number of digons in D′ is larger than half 
the outer degree of P . More precisely, if D has n inner quadrangles, d inner digons and 
outer degree 2j,

• the total number of inner faces of P and D′ is n + d + 1,
• the outer degree of D′ is 2j − 2,
• the number of inner digons in D′ is d + k + 1, where 2k is the outer degree of P .

Before proving the proposition, let us show that it completes the proof of (3).
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Corollary 3.8. The contribution to D(t, x, y) from D-patches of type 3 is given by

D(t, x, y) = y [x≥0]
(

1
x

D(t, x, y)P
(
t,

t

x

))
.

Proof. We use the bijection of Proposition 3.7, and express the statistics of D in terms 
of those of M and D′:

• the outer degree of D is the outer degree of D′ plus 2,
• the number d of inner digons in D is the number of inner digons in D′, minus half 

the outer degree of P , minus 1,
• finally, the number of inner quadrangles of D is the sum of the corresponding numbers 

in P and D′, plus half the outer degree of P .

Hence, the contribution from D-patches of type 3 is

y

x
[x>0]

(
D(t, x, y) P

(
t,

t

x

))
= y [x≥0]

(
1
x

D(t, x, y) P
(
t,

t

x

))
. �

To prove Proposition 3.7, we need to introduce minus-patches, subpatches and a 
contraction operation. This contraction operation was already used in [29], on a slightly 
different class of patches.

Definition 3.9. A minus-patch is a map obtained from a patch by replacing each label 

with −
.

Clearly these are equinumerous with patches. We now describe a way to extract a 
minus-subpatch from a D-patch of type 3. This definition is illustrated on the left of 
Fig. 14. Recall the notation c0 for the outer corner labelled 0 that follows the root corner 
in clockwise order around the outer face, and u0 for the associated vertex.

Definition 3.10. Let D be a D-patch of type 3. We define the minus-subpatch of D as 
follows. First, let M ′ be the maximal submap of D that contains u0 and consists of 
vertices labelled 0 or less. Let M be the submap of D that contains M ′ and all edges 
and vertices within its boundary (assuming the root face is drawn as the infinite face). 
The map M , which we root at the corner inherited from c0, is the minus-subpatch of D.

The following lemma justifies the terminology minus-subpatch.

Lemma 3.11. The minus-subpatch of a D-patch of type 3 is a minus-patch.

Proof. In the above definition, it is clear that M and M ′ share the same outer face. 
Moreover, all inner faces of M are also inner faces of D. Since the root vertex of D
is only adjacent to vertices labelled 1, it cannot be a vertex of M ′, so it cannot be a 
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Fig. 14. Left: a D-patch of type 3. The minus-subpatch M of D is highlighted in D and shown separately 
in the middle. The submap M ′ is obtained from M by deleting the dashed vertex and edges. Right: the 
labelled map L constructed from D by contracting M to a single vertex u0.

vertex of M either. Hence all inner faces of M are quadrangles, since all digons in D are 
incident to its root. All outer vertices of M must also be outer vertices of M ′, so they 
have non-positive labels. Let us prove that these labels can only be 0 and −1. For any 
outer vertex u of M , there is some face F of D, containing u, which is not a face of M . If 
F is the outer face of D, with labels 0 and 1, then the label of u, being non-positive, can 
only be 0. The face F cannot be a digon, otherwise u would be the vertex labelled 0 in 
this digon, and thus would be the root vertex of D, while we have shown that this vertex 
is not in M . Finally, if F is an inner quadrangle of D, then it must contain a vertex u′

with label at least 1 (otherwise F would be contained in M). Since u and u′ are incident 
to the same quadrangle F , and u has a non-positive label, this label can only be −1 or 0. 
Hence the outer vertices of M are all labelled 0 or −1, so M is a minus-patch, in the 
sense of Definition 3.9. �

The patch P associated with a D-patch D of type 3 in Proposition 3.7 will simply be 
obtained by negating the labels in the minus-patch M .

Let us now describe how D′ is constructed. Every edge in D which connects a vertex 
in M to a vertex not in M must have endpoints labelled 0 (in M) and 1 (not in M). We 
can thus contract all of M to a single vertex labelled 0, still denoted u0, to form a new 
labelled map L (Fig. 14, right). The vertex u0 is still distinct from the root vertex v0. 
Finally, we move u0 towards v0 in the outer face of L until these two vertices merge into 
a new root vertex w0 (Fig. 15). This creates an extra inner digon at w0, in addition to 
those that were incident to u0 and v0. Note that we do not merge any edges. This gives 
a new labelled map, denoted D′.

Lemma 3.12. The labelled map D′ obtained by the above construction is a D-patch. If D
has d inner digons, outer degree 2j, and its minus-patch M has outer degree 2k, then 
D′ has d + k + 1 inner digons and outer degree 2j − 2. Finally, D′ and M have together 
one more finite face than D.
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Fig. 15. The transformation of L into a D-patch D′.

Proof. Since L is obtained by contracting the submap M into a single vertex, its inner 
faces cannot be bigger than the inner faces of D. Hence they are quadrangles or digons. 
Moreover, all digons are attached either to v0 (as in D), or to u0 (because they result 
from the contraction of two edges of an inner quadrangle). Hence, once u0 and v0 are 
merged to form the map D′, all digons are incident to the new root vertex w0. Finally, 
all neighbours of v0 in L are labelled 1 (as in D), and the same holds for all neighbours of 
u0, because they were neighbours of M , and all edges joining a vertex in M to a vertex 
not in M join label 0 to label 1. Hence, in D′, the root vertex is only adjacent to vertices 
labelled 1, and D′ is a D-patch.

Let us now prove the statements dealing with the statistics. Clearly, no outer edge of 
D lies in M , hence the outer degrees of L and D are the same. The transformation of L
into D′ reduces the outer degree by 2. The statement involving the number of finite faces 
is also clear: every finite face of D results in a finite face of M or L, and transforming L
into D′ creates a new inner digon. The number of inner digons in D′ is d + k + 1, where 
d is the number of inner digons in D, and k is the number of inner digons attached to 
the vertex u0 in the contracted map L. We claim that k is also half the outer degree of 
M . This comes from the fact that, from every corner c labelled 0 on the outer face of M , 
there must start (in D) at least one edge ending at a vertex labelled 1. Otherwise, the 
face of D that contains c would contain two corners labelled −1 and would have degree 
larger than 4, which is impossible. Hence every pair of two consecutive outer edges of M
with labels 0, −1, 0 occurs in a unique quadrangle, outside M , and this quadrangle will 
be contracted to form a digon of L adjacent to u0. �
Proof of Proposition 3.7. Starting from a D-patch D of type 3, we construct the minus-
patch M , the labelled map L and the D-patch D′ as described above. We take for P the 
patch obtained by negating labels in M . The statements that deal with the statistics of 
D, M (or P ) and D′ then follow from Lemma 3.12. We denote f(D) = (P, D′).

Conversely, we need to show how to construct a D-patch D of type 3 from a pair 
(P, D′) satisfying the conditions of the proposition. Let 2k and 2j − 2 be the outer 
degrees of P and D′, respectively, and let d′ be the number of digons of D′. Define 
d := d′ − k − 1. This is non-negative by the assumption d′ > k. Split the root vertex w0
of D′ into two vertices v0 and u0 so that exactly d digons remain attached to v0, and k
to u0. This gives a labelled map L, in which all digons are attached to the root vertex 
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Fig. 16. How to reconstruct the D-patch D from the minus-patch M (dashed edges) and the map L. Here, 
M has outer degree 2k = 6, the vertex u0 of L has degree δ = 7 and is incident to k = 3 digons.

v0 or to u0. Moreover, all neighbours of these vertices are labelled 1. The outer degree 
of L is 2j, and it has one inner face less than D′.

Next, we negate the labels of the patch P to obtain a minus-patch M . We now want 
to insert M at the vertex u0 in L to construct a D-patch D. If M is atomic, then we 
take D = L. Otherwise, let c0 be the outer corner labelled 0 following the root corner 
in clockwise order around the outer face in L. The vertex at this corner is u0. Roughly 
speaking, we need to place the root corner of M at c0, and to distribute the edges attached 
to u0 in L around the minus-patch M . Let e1, e2, . . . , eδ be the edges of L attached to 
u0, in anticlockwise order starting from the corner c0 (Fig. 16). We now erase the vertex 
u0 from L, so that the half-edges ei are dangling. We connect them to the outer corners 
of M labelled 0 in the following way: we first attach e1 to the root corner of M , and 
then proceed anticlockwise around M , connecting ei+1 to the next corner of M labelled 
0 if the corner of L at u0 defined by ei and ei+1 belongs to an inner digon of L (this 
creates a new quadrangle), and to the same corner as ei otherwise. Recall that M has 
outer degree 2k, so it has k corners labelled 0, which is the same as the number of digons 
incident to u0 in L. Hence this construction connects the final edge eδ to the root corner 
of M , and we thus obtain a map D, which we define to be g(P, D′). Note also that all 
vertices of M labelled −1 end up on the interior of g(P, D′), away from the outer face.

Let us explain why D is a D-patch of type 3. It is clearly a labelled map, and zeroes and 
ones alternate on its outer face (as in L). When inserting M in L, we have transformed 
every inner digon that was incident to u0 in L into an inner quadrangle: hence all inner 
faces of D have degree 2 or 4. Finally, all neighbours of v0 in D are labelled 1, as in D′

and L. Hence D is a D-patch. Since we have split the vertex w0 into two distinct vertices 
v0 and u0, it has type 3.
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Note that M is the minus-subpatch of D: indeed, it is a minus-patch, it contains u0, 
and it is only connected to the rest of D by edges labelled 0 at one end (in M) and 1 at 
the other end (out of M). This is the key point in proving that f ◦ g(P, D′) = (P, D′).

Finally, to prove that g ◦ f(D) = D for any D-patch D of type 3, it suffices to observe 
that in the application of g, our choices for where to attach the edges e1, e2, . . . , eδ
(Fig. 16) are the only choices that ensure that the resulting map is a D-patch in which 
c0 is contained in the root corner of M . Indeed, the condition on the root corner of M
forces e1 to be attached to this corner, while the rest of the choices are then forced by 
requirement that the inner faces of g(P, D′) that are incident to u0 must be quadrangles. 
Hence, when applying g to (P, D′) = f(D), we must obtain the map D. �
Lemma 3.13. The generating function Q(t) is given by

Q(t) = [y1]P(t, y) − 1.

Proof. Let Q be any labelled quadrangulation. The outer face may contain a label −1 or 
2, hence Q is not necessarily a patch. Let P be the map constructed from Q by adding 
an edge e′ between the root vertex and co-root vertex in the outer face of Q, so that 
e′ and the root edge e are the only outer edges of P . Then P can be any patch with 
outer degree 2, except for the patch with only one edge. Hence the possible patches P
are counted by ([y1]P(t, y) − 1). Since the number of inner faces of P is equal to the 
total number of faces of Q, this expression is exactly equal to Q(t). This concludes the 
proof. �
Proof of Theorem 3.1. We have now proved the five functional equations. It remains to 
prove that, together with the conditions on the rings that contain P, C and D, they 
determine these three series. Let us denote by pj,n the coefficient of yjtn in P(t, y), and 
similarly for C and D. These quantities should be thought of respectively as elements of 
Q (for P), of Q[x] (for C) and of Q[[x]] (for D). We will prove by induction on N ≥ 0
that

• pj,n is completely determined for j + n < N ,
• cj,n and dj,n are completely determined for j + n ≤ N .

When N = 0, there is nothing to prove for P. The third equation of the system shows 
that D − 1 is a multiple of y. That is, not only d0,0 = 1, but in fact we also know that 
d0,n = 0 for n ≥ 1. The second equation then tells us that C is a multiple of y, so that 
c0,n = 0 for n ≥ 0. Now assume that the induction hypothesis holds for some N ≥ 0, 
and let us prove it for N + 1.

We begin with the series D. Of course it suffices to determine the coefficients dj,n
for j + n = N + 1. We have already explained that d0,N+1 = 0, so we take j ≥ 1. 
The third equation of the system expresses dj,N+1−j in terms of the series dj−1,m (for 
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m ≤ N + 1 − j), pk,� (for k + 
 ≤ N + 1 − j) and d1,m (for m ≤ N + 1 − j). If j ≥ 2, 
these series are known, by the induction hypothesis, and thus dj,N+1−j is completely 
determined. As argued below Theorem 3.1, it belongs to Q[[x]]. To determine the final 
coefficient d1,N , we resort to the fourth equation, which expresses d1,N in terms of d2,N−1
(which we have just determined) and the series d1,m for m ≤ N − 1 (which are known 
by the induction hypothesis). Again, d1,N belongs to Q[[x]].

Hence for j + n ≤ N + 1, the coefficients dj,n are uniquely determined and hence 
must count D-patches with outer degree 2j and n quadrangles. Since we know that the 
generating functions of C-patches and D-patches are related by the second equation (see 
Lemma 3.4), this forces the coefficients cj,n, for j+n ≤ N +1, to count C-patches. Hence 
they are also fully determined (and are polynomials in x). Finally, the first equation of 
the system shows that the numbers pj,n are also determined for j + n ≤ N (we cannot 
go up to N + 1 because of the division by y).

This concludes our induction. �
4. Solution for quartic Eulerian orientations

We are now about to solve the system of Theorem 3.1, thus proving, in particular, 
that the generating function Q(t) of quartic Eulerian orientations is indeed given by 
Theorem 1.1. The third equation of the system suggests that we should consider the 
series P(t, ty) rather than P(t, y). In turn, this leads us to apply the same transformation 
to the series C and D. More precisely, let us consider

P(t, y) = tP(t, ty), C(t, x, y) = C(t, x, ty), D(t, x, y) = D(t, x, ty). (4)

Of course, if we determine P, C and D, then P, C and D are completely determined as 
well.

The solution below has been guessed, and then of course checked. The first step was the 
discovery of the connection between the generating function Q and the series R coming 
from [17]. Next, writing the auxiliary series P(t, y), C(t, x, y) and D(t, x, y) as series in 
R, x and y, we noticed that the coefficients of P(t, y) were simple products of binomial 
coefficients. Next, by chance we found that the series D(t, 0, 1) appeared in the On-line 
Encyclopedia of Integer Sequences as the exponential of a much nicer sequence [53, 
A229452], so we tried taking the log of D(t, x, y). We were pleasantly surprised to see 
that log(D(t, x, y)) had very nice coefficients when written as a series in R, x and y, 
which allowed us to guess its exact form as well as that of C(t, x, y). To our knowledge, 
this is the first time that series of this form appear in combinatorial enumeration.

Theorem 4.1. Let R(t) ≡ R be the unique formal power series with constant term 0
satisfying

t =
∑ 1

n + 1

(
2n
n

)(
3n
n

)
Rn+1. (5)
n≥0
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Then the above series P, C and D are:

P(t, y) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n− j

n

)(
3n− j

n

)
yjRn+1, (6)

C(t, x, y) = 1 − exp

⎛
⎝−

∑
n≥0

n∑
j=0

2n−j∑
i=0

1
n + 1

(
2n− j

n

)(
3n− i− j

n

)
xi+1yj+1Rn+1

⎞
⎠ ,

D(t, x, y) = exp

⎛
⎝∑

n≥0

n∑
j=0

∑
i≥0

1
n + 1

(
2n− j

n

)(
3n + i− j + 1

2n− j

)
xiyj+1Rn+1

⎞
⎠ . (7)

The generating function of quartic Eulerian orientations, counted by vertices, is

Q(t) = 1
3t2

(
t− 3t2 − R(t)

)
.

Proof. We take for P, C and D the above series, and define P, C and D by (4). Since 
R = O(t), these three series are easily seen to belong respectively to the rings Q[[y, t]], 
Q[x][[y, t]] and Q[[x, y, t]], as required by Theorem 3.1. Thus it suffices to check that the 
first four equations of Theorem 3.1 hold, or, equivalently, that

P(t, y) = 1
y
[x1]C(t, x, y),

D(t, x, y) = 1
1 − C

(
t, 1

1−x , y
) ,

D(t, x, y) = 1 + y [x≥0]
(
D(t, x, y)

(
1
x
P
(
t,

1
x

)
+ [y1]D(t, x, y)

))
, (8)

[y1]D(t, x, y) = 1
1 − x

(
t + 2[y2]D(t, x, y) − ([y1]D(t, x, y))2

)
.

Note that the first three equations do not involve explicitly the variable t: we will prove 
them without resorting to the definition (5) of R.

The first equation is straightforward. For the second one, it suffices to prove that for 
all j ≤ n,

2n−j∑
i=0

(
3n− i− j

n

)
1

(1 − x)i+1 =
∑
i≥0

(
3n + i− j + 1

2n− j

)
xi.

This follows by expanding the left-hand side in x and using the classical identity, taken 
for k = 3n − j:

k−n∑(
k − i

n

)(

 + i




)
=

(
k + 
 + 1
n + 
 + 1

)
=

(
k + 
 + 1
k − n

)
. (9)
i=0
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We now come to the third, and most interesting, equation. Our first observation is 
that, in the expression (7) of D(t, x, y), the sum over i is a rational function of x:

∑
i≥0

(
3n + i− j + 1

2n− j

)
xi =

∑
k≥n+1

(
2n− j + k

2n− j

)
xk−n−1

= 1
xn+1(1 − x)2n−j+1 −

n∑
�=0

(
3n− 
− j

2n− j

)
1

x�+1 . (10)

We note that the sum over 
 in the above expression is a polynomial in 1/x, with no 
constant term. Let us denote it by Lj,n(1/x). The expression of D thus reads

D(t, x, y) = exp

⎛
⎝∑

n≥0

n∑
j=0

1
n + 1

(
2n− j

n

)
yj+1Rn+1

(
1

xn+1(1 − x)2n−j+1 − Lj,n(1/x)
)⎞⎠

= exp
(
A(U, z) −B(R, 1/x, y)

)
, (11)

where

U = R
x(1 − x)2 , z = (1 − x)y,

A(u, z) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n− j

n

)
zj+1un+1 (12)

and

B(r, 1/x, y) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n− j

n

)
Lj,n(1/x)yj+1rn+1.

By extracting the coefficient of y from (11), we find

[y1]D(t, x, y) = (1 − x)
∑
n≥0

1
n + 1

(
2n
n

)
Un+1 −

∑
n≥0

1
n + 1

(
2n
n

)
L0,n(1/x)Rn+1,

= (1 − x) U Cat(U) − 1
x
P
(
t,

1
x

)
, (13)

where Cat(u) is the Catalan series 
∑(2n

n

)
un

n+1 and P is given by (6) (we have used the 

fact that 
(2n
n

)(3n−�
2n

)
=

(2n−�
n

)(3n−�
n

)
). The identity (8) that we have to prove thus reads

1 = [x≥0]
(
D(t, x, y)(1 − zU Cat(U))

)
,

where we still denote z = (1 − x)y. Equivalently, in view of (11):
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1 = [x≥0]
(

exp(A(U, z)) (1 − zU Cat(U)) exp
(
−B

(
R, 1/x, y

)) )
.

We will prove below in Lemma 4.2 that

exp(A(U, z)) (1 − zU Cat(U)) = 1,

which, given that B(R, 1/x, y) only involves negative powers of x, concludes the proof of 
the third identity.

Consider now the fourth equation of the system. Given that the second equation holds, 
what we need to prove can be rewritten as:

[y1]C(t, x, y) = x
(
t + 2[y2]C(t, x, y) + ([y1]C(t, x, y))2

)
.

Let us write C(t, x, y) = 1 − exp(−T (t, x, y)). Then the above identity reads:

[y1]T (t, x, y) − 2x[y2]T (t, x, y) = tx.

A direct calculation gives

[y1]T (t, x, y) − 2x[y2]T (t, x, y) = x
∑
n≥0

1
n + 1

(
2n
n

)(
3n
n

)
Rn+1,

which is precisely xt, by definition (5) of the series R.

We have thus proved the announced expressions of the series P, C and D, which in turn 
characterise the generating functions P, C and D of patches of various types (see (4)). 
We still have to express the generating function Q(t) of quartic Eulerian orientations in 
terms of R(t). The last equation of Theorem 3.1 now reads

Q(t) = 1
t2

[y1]P(t, y) − 1

= 1
t2

∑
n≥1

1
n + 1

(
2n− 1

n

)(
3n− 1

n

)
Rn+1 − 1

= 1
3t2

∑
n≥1

1
n + 1

(
2n
n

)(
3n
n

)
Rn+1 − 1

= 1
3t2

(
t− R − 3t2

)

by definition of R. �
It remains to prove the following lemma, used in the above proof.
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Lemma 4.2. For any indeterminates u and z, the Catalan series Cat(u) =
∑

n≥0
(2n
n

)
un/

(n + 1) and the series A(u, z) defined by (12) are related by:

exp(A(u, z)) (1 − zuCat(u)) = 1.

Proof. Equivalently, what we want to prove reads

A(u, z) = log 1
1 − zuCat(u) =

∑
j≥0

zj+1

j + 1(uCat(u))j+1.

Comparing with the expansion in z of A(u, z) (see (12)), what we want to show is

[un+1](uCat(u))j+1 = j + 1
n + 1

(
2n− j

n

)
.

This follows from the Lagrange inversion formula [33, p. 732], applied to

F (u) := uCat(u) = u

1 − F (u) . �
Remark. The above lemma is a special case of a general identity which relates the enu-
meration of two classes of one-dimensional lattice paths, sharing the same step set, both 
constrained to end at a non-negative position. For the first class there is no other condi-
tion, while for the second class the path is not allowed to visit any negative point. The 
generating functions of these two classes, counted by the number of steps (variable z) 
and the final position (variable u) are respectively denoted by W+(z, u) and F (z, u). 
Then, on p. 51 of [3], the following identity appears

F (z, u) = exp

⎛
⎝

z∫
0

(
W+(t, u) − 1

) dt
t

⎞
⎠ .

When the only allowed steps are +1 and −1, this reads, using a standard factorization 
on non-negative paths into Dyck paths (counted by Cat(z2)):

Cat(z2)
1 − zuCat(z2) = exp

⎛
⎝∑

n≥1

n∑
j=0

1
2n− j

(
2n− j

n

)
z2n−juj

⎞
⎠ .

Upon dividing this identity by its specialization at u = 0, we obtain

1
1 − zuCat(z2) = exp

⎛
⎝∑

n≥1

n∑
j=1

1
2n− j

(
2n− j

n

)
z2n−juj

⎞
⎠ .

Now some elementary transformations (involving replacing u by uz, then z by 
√
z, and 

finally swapping u and z) shows that this is equivalent to our lemma.
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Fig. 17. Left: Construction of Φ in a face of Q. Right: A labelled quadrangulation Q (dashed edges) and the 
associated map M = Φ(Q) (solid edges) superimposed. Two white vertices of Q, namely its local minima, 
shown in dashed disks, disappear when constructing M .

5. A bijection

In this short section, we first recall a bijection of Ambjørn and Budd [1] that sends 
labelled quadrangulations onto certain maps carrying integer labels on vertices (these 
maps are more general than the labelled maps of Definition 2.1). A specialization of 
this bijection sends certain labelled quadrangulations (those in which every face con-
tains three labels) onto labelled maps, which, as we have seen, are equinumerous with 
general Eulerian orientations. This is one of the key steps in the proof of Theorem 1.2. 
The Ambjørn and Budd bijection, which generalizes the Cori-Vauquelin-Schaeffer bijec-
tion between quadrangulations and certain labelled trees [56,25], can also be seen to be 
equivalent to an earlier bijection of Miermont [50]. We refer to [21] for a rich overview 
of Schaeffer-like bijections.

The Ambjørn and Budd bijection, which we denote by Φ, starts from a labelled quad-
rangulation Q. The edges of Q are dashed in our figures. The construction, illustrated 
on the left of Fig. 17, takes place independently in every face of Q, and in each face, 
coincides with Schaeffer’s construction of labelled trees [25]: a new (solid) edge is created 
in every face of Q, and its position depends on whether the face contains three of two 
distinct labels.1 A complete example is shown on the right of Fig. 17.

Observe that each vertex of Q that is not a local minimum is joined to at least one 
other vertex. Since the root edge of Q is oriented from 0 to 1, the co-root vertex must 
be joined to another vertex v by an edge located in the co-root face of Q. We orient this 
edge towards v: this will be the root edge of the new object. Finally, we delete all edges 
of Q, and also all vertices of Q that have become isolated: they are those whose label 
is a local minimum. We denote by Φ(Q) the resulting object, which is a planar graph 
embedded in the plane, with a root edge that starts from a vertex labelled 1.

1 If the outer face has three distinct labels and is drawn as the infinite face, the solid edge that we add 
still has an edge from � + 1 to � + 2 on its right, now in clockwise order around the outer face.
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Proposition 5.1 (Thm. 1 in [1]). The transformation Φ bijectively sends labelled quad-
rangulations to planar maps carrying integer labels on vertices, differing by 0, ±1 along 
edges, having root vertex labelled 1. Moreover, if Φ(Q) = M , then the number of edges 
and faces in M are given by

e(M) = f(Q), f(M) = vmin(Q),

where vmin(Q) denotes the number of local minima in Q. The first identity can be refined 
as follows: a face of Q in which only two different labels occur gives rise to an edge of 
M with increment 0, while a face where three different labels occur gives rise to an edge 
with increment ±1.

Of particular importance will be labelled quadrangulations in which every face (in-
cluding the outer one) contains three distinct labels: we call them colourful. Take a 
colourful labelled quadrangulation Q. By the above proposition, the map M := Φ(Q)
has all increments equal to ±1. Its root vertex is labelled 1, hence the root edge is la-
belled either from 1 to 0, or from 1 to 2. In the former case, reversing the direction of 
the root edge gives a labelled map (in the sense of Definition 2.1). In the latter case, 
subtracting 1 from every label gives a labelled map. Conversely, take a labelled map 
L, and reverse the orientation of its root edge: this gives a map of the form Φ(Q), in 
which the root edge has labels 1 and 0 (Fig. 18, left). Alternatively, one can add 1 to 
every label of L: the resulting map is of the form Φ(Q′), and its root edge has labels 
1 and 2 (Fig. 18, right). This gives a 2-to-1 correspondence between colourful labelled 
quadrangulations and labelled maps. This will be the key in our enumeration of general 
Eulerian orientations.

Corollary 5.2. The number of colourful labelled quadrangulations with n faces and k local 
minima equals twice the number of labelled maps with n edges and k faces, or equivalently, 
twice the number of Eulerian orientations with n edges and k vertices.

If we start from a general labelled quadrangulation Q, possibly containing faces with 
only two labels, then we can still apply the duality rule of Fig. 5 to the map Φ(Q)
(carrying labels), with the additional rule that we do not orient an edge that lies between 
two faces with the same label.

In this way we obtain an Eulerian partial orientation, that is, a map in which some
edges are oriented, in such a way that there are as many incoming as outgoing edges at 
any vertex (Fig. 19).

Corollary 5.3. There is a bijection between quartic Eulerian orientations with n vertices 
(in which the root edge is oriented canonically) and Eulerian partial orientations with n
edges (with no orientation requirement on the root edge).
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Fig. 18. One labelled map gives two maps with root vertex 1, which are the images by Φ of two colourful 
labelled quadrangulations Q and Q′ (in dashed edges). They only differ by a shift of labels and a change 
in the root edge.

Fig. 19. From quartic Eulerian orientations to Eulerian partial orientations. Left: a quartic Eulerian ori-
entation, shown by solid edges, and the dual labelled quadrangulation Q (dashed edges). This is the 
quadrangulation of Fig. 17, which also shows the map M = Φ(Q). Right: upon re-applying duality to 
M (shown in solid lines), one obtains an Eulerian partial orientation of its dual (dashed edges).
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6. Functional equations for general Eulerian orientations

In this section we will characterise the generating function Qc(t) of colourful labelled 
quadrangulations (which, by Corollary 5.2, is twice the generating function of Eulerian 
orientations) by a system of functional equations. As one might expect, we adapt the 
system of Theorem 3.1 to the colourful setting. However, the third equation and the 
initial conditions are simpler in the colourful case.

Theorem 6.1. There exists a unique 3-tuple of series, denoted P(t, y), C(t, x, y) and 
D(t, x, y), belonging respectively to Q[[y, t]], Q[x][[y, t]] and Q[[x, y, t]], and satisfying 
the following equations:

P(t, y) = 1
y
[x1]C(t, x, y),

D(t, x, y) = 1
1 − C

(
t, 1

1−x , y
) ,

C(t, x, y) = xy[x≥0]
(

P(t, tx)D
(
t,

1
x
, y

))
,

together with the initial condition P(t, 0) = 1.
The generating function that counts colourful labelled quadrangulations by faces is

Qc(t) = [y1]P(t, y) − 1.

By Corollary 5.2, Qc(t) = 2G(t), where G(t) counts Eulerian orientations by edges.

Remark. As with the system of Theorem 3.1, the conditions on the series P, C and D
make the operations that occur in the above equations well defined. The extraction of the 
coefficient of x1, and the replacement of x by 1/(1 − x), are justified as for the previous 
system. In the third equation, the term P(t, tx)D 

(
t, 1

x , y
)

must be seen as a power series 
in t and y whose coefficients are Laurent series in 1/x. The extraction of the non-negative 
part in x then yields an element of Q[x][[y, t]].

As before, the series P, C and D of Theorem 6.1 count certain labelled maps. Recall 
the definition of patches, C-patches and D-patches (Definition 3.2). Generalizing the 
definition of colourful quadrangulations introduced in Section 5, we say that a patch 
(or a D-patch) is colourful if each inner quadrangle contains 3 distinct labels. We define 
P(t, y), C(t, x, y) and D(t, x, y) to be respectively the generating functions of colourful 
patches, colourful C-patches and colourful D-patches, where t counts inner quadrangles, 
y the outer degree (halved), and x either the degree of the root vertex (for C-patches) 
or the number of inner digons (for D-patches). The equations
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Fig. 20. A colourful C-patch C with outer degree 2 and the corresponding patch P .

P(t, y) = 1
y
[x1]C(t, x, y)

D(t, x, y) = 1
1 − C

(
t, 1

1−x , y
) ,

Qc(t) = [y1]P(t, y) − 1,

have identical proofs to those in Section 3, except that the patches, D-patches and 
quadrangulations in the proofs are restricted to being colourful (see Lemmas 3.3, 3.4
and 3.13).

Remark. The third equation of Theorem 3.1,

D(t, x, y) = 1 + y [x≥0]
(

D(t, x, y)
(

1
x

P
(
t,

t

x

)
+ [y1]D(t, x, y)

))
(14)

also holds in the colourful setting, with the same proof as before (because in the proof 
of Lemma 3.8, all quadrangles that come from digons are automatically colourful). Its 
natural complement, which is the fourth equation of Theorem 3.1 (the initial condition) 
has no clear colourful counterpart: indeed, the relabelling of vertices that we use in 
Lemma 3.5, and more precisely in the fourth case of Fig. 12, transforms the colourful 
quadrangles incident to the root vertex into bicoloured quadrangles (and vice versa). 
We could instead use the initial condition [y1]C(t, x, y) = xP(t, tx), which can be proved 
by taking a colourful C-patch of outer degree 2 and deleting the root vertex and all 
incident edges, then decreasing each label by 1 (Fig. 20). However, the third equation of 
Theorem 6.1 is simpler than (14), and also relies on a simpler construction.

In order to prove the third equation of Theorem 6.1, we need some analogues of 
minus-patches from Section 3, which we call shifted patches.

Definition 6.2. A shifted patch is a map obtained from a patch by replacing each label 

with 
 + 1.

We now describe a way to extract a shifted subpatch from a patch, which parallels the 
extraction of a minus-patch of Definition 3.10. One minor difference is that we do not 
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Fig. 21. On the left is a C-patch C. The other maps shown are the shifted subpatch S, the contracted map 
L and the D-patch D obtained by deleting v0, as described in the proof of Lemma 6.4.

need conditions on the neighbours of the root vertex, so that we define shifted subpatches 
for any patch (although we will only extract them from C-patches later).

Definition 6.3. Let P be a patch and let c be an outer corner of P at a vertex v labelled 1. 
We define the shifted subpatch of P rooted at c as follows. First, let S′ be the maximal 
connected submap of P that contains v and consists of vertices labelled 1 or more. Let 
S be the submap of P that contains S′ and all edges and vertices within its boundary 
(assuming the root face is drawn as the infinite face). The map S, which we root at the 
corner inherited from c, is the shifted subpatch of P rooted at c.

An example is shown on the left of Fig. 21, where the shifted subpatch S is drawn with 
thick lines. It is easily shown that S is, as it should be, a shifted patch. The argument is 
the same as for minus-subpatches (in that case, the condition on the neighbours of the 
root having labels 1 was there to prevent the minus-subpatch to absorb the root vertex; 
this cannot happen with the shifted subpatch, whose boundary only contains positive 
labels). Every edge in P that connects a vertex in S to a vertex not in S must have 
endpoints labelled 1 (in S) and 0 (not in S), and conversely every vertex labelled 1 on 
the boundary of S is joined to a vertex labelled 0 out of S. We can contract S it into 
a single vertex v1 labelled 1. This vertex is only adjacent to vertices labelled 0 in the 
resulting map L, and the number of digons incident to v1 is half the outer degree of S. 
The outer degrees of L and P coincide, because no edge of the boundary of P has been 
contracted.

As in the case of minus-subpatches, we can uniquely reconstruct the patch P and its 
marked corner c if we are given the shifted patch S and the contracted map L, together 
with its outer corner inherited from c. The idea is again to attach the edges incident 
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to v1 in L around the shifted patch S, as illustrated (in the case of minus-patches) in 
Fig. 16.

We are now ready to prove the third equation of Theorem 6.1.

Lemma 6.4. The generating functions P, C and D satisfy the equation

C(t, x, y) = xy[x≥0]
(

P(t, tx)D
(
t,

1
x
, y

))
.

Proof. Let C be any colourful C-patch. Let v0 and v1 be the root vertex and co-root 
vertex of C, and let c be the outer corner of v1 that is immediately anticlockwise of the 
root edge (we refer to Fig. 21 for an illustration). Let S be the shifted subpatch of C
rooted at c and let L be the labelled map obtained from C by contracting the subpatch 
S to a single vertex, still denoted v1. Then in L, the root vertex v0 is only adjacent to 
vertices labelled 1 (because this was already true in C), and the co-root vertex v1 is only 
adjacent to vertices labelled 0 (because of the contraction).

Recall that all inner faces of L are either digons or quadrangles. We want to prove 
that in L, the root vertex v0 is not incident to any inner quadrangle. Assume that such 
a quadrangle exists. Since v0 only shares one corner with the outer face of L (this was 
the case for C already), and since v0 is adjacent to v1, one such quadrangle must be 
incident to v1. But the above label conditions on the neighbours of v0 and v1 force this 
quadrangle to have labels 0 and 1 only, in L and thus in C. This contradicts the fact 
that C is colourful. Hence v0 is only adjacent to inner digons (and to the outer face), 
and since it shares only one corner with the outer face, its only neighbour in L is v1 (see 
Fig. 21).

Let D be the labelled map constructed from L by moving the root edge anticlockwise 
one place around the outer face, removing the old root vertex v0 of L and all incident 
edges, and replacing each vertex label 
 with 1 − 
. Now the root vertex has label 0, 
and all its neighbours have label 1. The outer face still has labels 0 and 1. Each inner 
quadrangle of D corresponds to an inner quadrangle of C, and is therefore colourful. 
Hence D is a colourful D-patch.

Let 2j be the outer degree of S. Then j is also the number of inner digons in L. Let 
i ≤ j be the number of inner digons left in D after deleting v0. Then the number of inner 
digons in L that are incident to v0 (and v1) is j − i. Therefore, the degree of v0 in both 
L and C is j − i + 1.

Conversely, taking a colourful D-patch D with i inner digons and a colourful shifted 
patch S of outer degree 2j with j ≥ i we construct the corresponding C-patch C as 
follows:

• we first construct a map D′ by replacing each label 
 in D with 1 − 
,
• next we construct a map L with a new vertex v0, joined to the root vertex of D′ by 

j − i + 1 edges,
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• finally we insert S into L to create the corresponding patch C (the choice of the 
corner where the subpatch extraction takes place being canonical).

As already explained, the degree of the root vertex in C is j− i + 1. The outer degree of 
C is the outer degree of D plus 2, and the number of inner quadrangles in C is j plus 
the number of inner quadrangles in S and D. Hence, with the obvious notation,

C(t, x, y) =
∑

od(S)≥dig(D)

xod(S)−dig(D)+1y1+od(D)tqu(S)+qu(D)+od(S),

and this gives the equation of the lemma, since shifted patches are counted by P(t, y). �
Proof of Theorem 6.1. Given that the initial condition P(t, 0) = 1 is obvious (it accounts 
for the atomic patch), we have now proved all functional equations. It remains to prove 
that, together with the conditions on the rings that contain P, C and D, they determine 
a unique 3-tuple of series. Let us denote by pj,n the coefficient of yjtn in P(t, y), and 
similarly for C and D. These quantities should be thought of as elements of Q (for P), of 
Q[x] (for C) and of Q[[x]] (for D). We will prove by induction on N ≥ 0 that pj,n, cj,n
and dj,n are completely determined for j + n ≤ N — we say up to order N .

First take N = 0. The third equation of the system shows that C is a multiple of y. 
In particular, c0,0 = 0. The second equation then implies that D − 1 is also a multiple 
of y. In particular, d0,0 = 1. Finally, the initial condition P(t, 0) = 1 gives p0,0 = 1. Now 
assume that the induction hypothesis holds for some N ≥ 0, and let us prove it for N+1.

The third equation, with its factor y, allows us to determine C(t, x, y) up to order 
N + 1. By construction, the coefficients cj,N+1−j will be polynomials in x. Then the 
second equation gives D(t, x, y) up to the same order. The first equation seems to raise 
a problem, because of the division by y. But, combined with the third equation, it reads

P(t, y) = [x0]P(t, tx)D(t, 1/x, y)

= [x0]P(t, tx) + [x0]P(t, tx)(D(t, 1/x, y) − 1)

= P(t, 0) + [x0]P(t, tx)(D(t, 1/x, y) − 1).

Now P(t, 0) = 1 is known, and since D(t, 1/x, y) − 1 is a multiple of y, knowing P(t, tx)
up to order N and D(t, 1/x, y) up to order N +1 suffices to determine P(t, y) up to order 
N + 1. This completes our induction. �
7. Solution for general Eulerian orientations

We are now about to solve the system of Theorem 6.1, thus proving, in particular, that 
the generating function G(t) of Eulerian orientations is indeed given by Theorem 1.2. As 
in Section 4, the third equation of the system leads us to introduce variants of the series 
P, C and D, defined again by
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Fig. 22. An example of the transformation from a colourful C-patch C to a colourful labelled quadrangulation 
C′ from the remark below Theorem 7.1.

P(t, y) = tP(t, ty), C(t, x, y) = C(t, x, ty), D(t, x, y) = D(t, x, ty). (15)

Of course, if we determine P, C and D, then P, C and D are completely determined as 
well.

Theorem 7.1. Let R(t) ≡ R be the unique formal power series with constant term 0
satisfying

t =
∑
n≥0

1
n + 1

(
2n
n

)2

Rn+1.

Then the above series P, C and D are:

P(t, y) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n
n

)(
2n− j

n

)
yjRn+1,

C(t, x, y) = 1 − exp

⎛
⎝−

∑
n≥0

n∑
j=0

n∑
i=0

1
n + 1

(
2n− i

n

)(
2n− j

n

)
xi+1yj+1Rn+1

⎞
⎠ ,

D(t, x, y) = exp

⎛
⎝∑

n≥0

n∑
j=0

∑
i≥0

1
n + 1

(
2n− j

n

)(
2n + i + 1

n

)
xiyj+1Rn+1

⎞
⎠ .

The generating function of Eulerian orientations, counted by edges, is

G(t) = 1
4t2

(
t− 2t2 − R(t)

)
.

Remark. Observe that the series C(t, x, y) is symmetric in x and y. Let us give a combi-
natorial explanation for this, illustrated in Fig. 22. Consider a colourful C-patch C with 
root vertex v0, and form a colourful labelled quadrangulation C ′ by adding a vertex v2
with label 2 to the outer face of C and joining it to each outer corner of C labelled 1. 
The generating function C(t, x, y) = C(t, x, ty) then counts the possible objects C ′ by 
the number of quadrangles (variable t), the degree of the root vertex v0 (variable x) 
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and the degree of the new vertex v2 (variable y). Moreover, the object C ′ can be any 
colourful quadrangulation in which the outer face has labels 0, 1, 2, 1 and each vertex 
that neighbours either v0 or v2 is labelled 1. The transformation 
 �→ 2 − 
 then explains 
why the generating function C(t, x, y) is symmetric in x and y.

Proof of Theorem 7.1. We argue as in the proof of Theorem 4.1. Defining P, C and D
as above, we first observe that the series P, C and D defined by (15) belong respectively 
to the rings Q[[y, t]], Q[x][[y, t]] and Q[[x, y, t]], as prescribed in Theorem 6.1. Hence it 
suffices to prove that they satisfy the desired system, which reads

P(t, y) = 1
y
[x1]C(t, x, y),

D(t, x, y) = 1
1 − C

(
t, 1

1−x , y
) ,

C(t, x, y) = xy[x≥0]P(t, x)D(t, 1/x, y),

P(t, 0) = t.

Note that the first three equations do not explicitly involve the variable t: we will prove 
them without resorting to the definition of R. But the fourth equation, namely the initial 
condition P(t, 0) = t, does involve t, and in fact holds precisely by definition of R.

The first equation is again straightforward, and the second follows from (9) again. 
Now consider the third one. Since it is more natural to handle series in x rather than in 
1/x, we will show instead that

C(t, 1/x, y) = y/x[x≤0]P(t, 1/x)D(t, x, y)

= [x<0] (y/xP(t, 1/x)D(t, x, y)) . (16)

In order to prove (16), we use identities that are similar to those used in the proof of (8). 
The counterpart of (10) is:

∑
i≥0

(
2n + i + 1

n

)
xi = 1

xn+1(1 − x)n+1 −
n∑

�=0

(
2n− 


n

)
1

x�+1 .

The counterpart of (11) is:

D(t, x, y) = exp (A(U, y))
(
1 − C(t, 1/x, y)

)
, (17)

with U = R
x(1−x) and A(u, y) is still given by (12). This is indeed an analogue of (11), 

since

1 − C(t, 1/x, y) = exp

⎛
⎝−

∑ n∑
j=0

n∑
i=0

1
n + 1

(
2n− i

n

)(
2n− j

n

)
1

xi+1 y
j+1Rn+1

⎞
⎠

n≥0
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can be written as exp(−B(R, 1/x, y)) where B(R, 1/x, y) only involves negative powers 
of x. By extracting the coefficient of y from (17), we find the counterpart of (13):

[y]D(t, x, y) = U Cat(U) − 1
x
P
(
t,

1
x

)
, (18)

where Cat(u) is still the Catalan series 
∑

n≥0
un

n+1
(2n
n

)
.

With these identities at hand, we can now prove (16):

[x<0] (y/xP(t, 1/x)D(t, x, y)) = [x<0] (yD(t, x, y) (U Cat(U) − [y]D(t, x, y))) by (18),

= [x<0] (yD(t, x, y) U Cat(U))

= [x<0] (−D(t, x, y)(1 − yU Cat(U)))

= [x<0] (−D(t, x, y) exp(−A(U, y))) by Lemma 4.2,

= [x<0] (−1 + C(t, 1/x, y)) by (17),

= C(t, 1/x, y).

We have thus proved the announced expressions of P, C and D, which in turn char-
acterise the generating functions P, C and D of colourful patches of various types. Now 
the last equation of Theorem 6.1 gives

2G(t) = Qc(t) = 1
t2

[y1]P(t, y) − 1

= 1
t2

∑
n≥1

1
n + 1

(
2n
n

)(
2n− 1

n

)
Rn+1 − 1

= 1
2t2

∑
n≥1

1
n + 1

(
2n
n

)2

Rn+1 − 1

= 1
2t2

(
t− R − 2t2

)
.

The expression given in Theorem 7.1 (and in Theorem 1.2) for G(t) follows. �
8. Nature of the series and asymptotics

8.1. Nature of the series

We begin by proving that the series Q(t) and G(t) that count respectively quartic 
and general Eulerian orientations satisfy non-linear differential equations of order 2, as 
claimed in Theorems 1.1 and 1.2. Both series are expressed in terms of a series R that 
satisfies

Ω(R) = t,
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for some hypergeometric series Ω. In the quartic case (Theorem 1.1),

Ω(r) =
∑
n≥0

1
n + 1

(
2n
n

)(
3n
n

)
rn+1 (19)

satisfies

6Ω(r) + r(27r − 1)Ω′′(r)= 0,

from which we derive that

R(27 R − 1)R′′ = 6tR′ 3.

Using 3t2Q(t) = t − 3t2 −R(t), this gives indeed a second order DE for Q(t), of degree 3.
For general Eulerian orientations (Theorem 1.2), we still have Ω(R) = t, with

Ω(r) =
∑
n≥0

1
n + 1

(
2n
n

)2

rn+1 (20)

satisfies

4Ω(r) + r(16r − 1)Ω′′(r)= 0,

from which we derive that

R(16 R − 1)R′′ = 4tR′ 3.

Using 4t2G(t) = t − 2t2 − R(t), this gives a second order DE for G(t), of degree 3.
The fact that neither Q(t) nor G(t) solve a non-trivial linear DE will follow from the 

asymptotic behaviour of their coefficients, established in the next subsection: indeed, the 
logarithm occurring at the denominator prevents this behaviour from being that of the 
coefficients of a D-finite series [33, p. 520 and 582].

We can also describe the nature of the multivariate series counting patches.

Proposition 8.1. The generating functions P(t, y), C(t, x, y) and D(t, x, y) counting 
patches of various types, and expressed in Theorem 4.1 through the identities (4), are 
D-algebraic. The same holds for their colourful counterparts, expressed in Theorem 7.1.

Proof. This follows by composition of D-algebraic series (see, e.g., [9, Prop. 29]). �
Note that both series P(t, y) (in the general and colourful cases) are even D-finite as 

functions of y and R. The other two series C(t, x, y) and D(t, x, y) are clearly D-algebraic 
as functions of x, y and R, and it is natural to wonder if they might be D-finite. After all, 
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in Lemma 4.2 we have met a series that is written as the exponential of a hypergeometric 
series and is not only D-finite, but even algebraic.

In the one-variable setting, it is known that if F (t) is D-finite, then exp(
∫
F (t)) is 

D-finite if and only if F (t) is in fact algebraic [58]. We can use this criterion to prove, 
for instance, that the series D(t, 0, 1) of Theorem 4.1 is not D-finite as a function of R. 
Indeed, D(t, 0, 1) = D(R) with

D(r) = exp

⎛
⎝∑

n≥0

n∑
j=0

1
n + 1

(
2n− j

n

)(
3n− j + 1

2n− j

)
rn+1

⎞
⎠

= exp

⎛
⎝∑

n≥0

3n + 2
2(n + 1)2

(
2n
n

)(
3n + 1

2n

)
rn+1

⎞
⎠

= exp
(∫

F (r)
)

where

F (r) =
∑
n≥0

3n + 2
2(n + 1)

(
2n
n

)(
3n + 1

2n

)
rn.

Then D(r) is D-finite if and only if F (r) is algebraic. But this is not the case, as the 
coefficient of rn in F (r) is asymptotic to c 27n/n, which reveals a logarithmic singularity 
in F (r) (see [31]). The same argument proves that C(t, 1, 1) is not a D-finite function 
of R.

In the colourful case (Theorem 7.1), we have

D(t, 0, 1) = exp

⎛
⎝∑

n≥0

1
n + 1

(
2n + 1

n

)2

Rn+1

⎞
⎠ ,

and a similar asymptotic argument proves that this cannot be a D-finite function of R. 
The same holds for C(t, 1, 1).

8.2. Asymptotics

As mentioned in the introduction, the series R of Theorem 1.1 already occurred in 
the map literature, more precisely in the enumeration of quartic maps equipped with a 
spanning forest [17]. Its singular structure has been studied in details, and the first part 
of the following result is the case u = −1 of [17, Prop. 8.4]. As in [33, Def. VI.1, p. 389], 
we call Δ-domain of radius ρ any domain of the form

{z : |z| < r, z �= ρ and |Arg(z − ρ)| > φ}

for some r > ρ and φ ∈ (0, π/2).
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Proposition 8.2. The series R of Theorem 1.1 has radius ρ =
√

3
12π . It is analytic in a 

Δ-domain of radius ρ, and the following estimate holds in this domain, as t → ρ:

R(t) − 1
27 ∼ 1

6
1 − t/ρ

log(1 − t/ρ) .

Consequently, the nth coefficient of R satisfies, as n → ∞,

rn := [tn]R ∼ −1
6

μn

n2 log2 n

with μ = 1/ρ = 4
√

3π.

Observe that this provides the asymptotic behaviour of the numbers qn of Theorem 1.1
since qn = −rn+2/3. The correspondence between the singular behaviour of R(t) near its 
dominant singularity ρ and the asymptotic behaviour of its coefficients relies on Flajolet 
and Odlyzko’s singularity analysis of generating functions [32,33]. The singular behaviour 
of R near ρ is obtained using the inversion relation Ω(R(t)) = t, where the series Ω, given 
by (19), has radius 1/27 and satisfies

Ω
(

1
27(1 − ε)

)
=

√
3

12π +
√

3
54πε log ε + O(ε)

as ε → 0.
For general Eulerian orientations, we have a similar result.

Proposition 8.3. The series R of Theorem 1.2 has radius ρ = 1
4π . It is analytic in a 

Δ-domain of radius ρ, and the following estimate holds in this domain, as t → ρ:

R(t) − 1
16 ∼ 1

4
1 − t/ρ

log(1 − t/ρ) .

Consequently, the nth coefficient of R satisfies, as n → ∞,

rn := [tn]R ∼ −1
4

μn

n2 log2 n

with μ = 1/ρ = 4π.

As above, this gives the asymptotic behaviour of the numbers gn of Theorem 1.1 since 
gn = −rn+2/4.

The proof closely follows the proof of Proposition 8.2 given in [17, Sec. 8.3], and we 
will not give any details. The series Ω is now given by (20), has radius of convergence 
1/16 and satisfies
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Ω
(

1
16

(1 − ε)
)

= 1
4π

+ 1
16π

ε log ε + O(ε).

One key ingredient is that t − R(t) has non-negative coefficients, which simply follows 
from the fact that this series equals 2t2 + 4t2G(t), by Theorem 1.2.

9. Final comments and perspectives

We have exactly solved the problem of counting planar Eulerian orientations, both 
in the general and in the quartic case. Our proof, based on a guess-and-check approach, 
should not stay the only proof. One should seek a better combinatorial understanding 
of our results. Can one explain why the series R of Theorem 1.1 also appears in the 
enumeration of quartic maps M weighted by their Tutte polynomial TM (0, 1)? Can 
one explain the forms of the series C and D in Theorems 4.1 and 7.1? What about more 
general vertex degrees? Can one interpolate between the results of Theorems 1.1 and 1.2, 
given that the second also counts a subclass of quartic Eulerian orientations (those with 
no alternating vertex)? In this final section we discuss the quest for bijections, and some 
aspects of interpolation.

9.1. Bijections

Our results reveal an unexpected connection between Eulerian orientations of quartic 
maps (counted by the specialization | T(0, −2)| of their Tutte polynomial if we do not 
force the orientation of the root edge [64, Sec. 3.6]) and the specialization T(0, 1) of 
slightly larger maps. Let us be more precise: one of the series considered in [17] is

F (t) =
∑

M quartic
tf(M) TM (0, 1),

which, in the classical interpretation of the Tutte polynomial [11,59], counts quartic maps 
M equipped with an internally inactive spanning tree. Observe that t records here the 
number of faces, which exceeds the number of vertices by 2. Then it is proved that

F ′(t) = 4
∑
i≥1

1
i + 1

(
3i

i− 1

)(
2i + 1

i

)
Ri+1,

where R is the series of Theorem 1.1. There is also an interpretation of F (t) in terms 
of spanning forests rather than spanning trees, but then some forests have a negative 
contribution:

F (t) =
∑

M quartic
tf(M)(−1)c(F )−1
F forest
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Fig. 23. Left: the only rooted quartic graph with 1 vertex has 2 Eulerian orientations (the orientation of the 
root is forced) and 2 embeddings as a rooted map (with 3 faces). Right: the three rooted quartic graphs 
with 2 vertices, shown with the (signed) number of spanning forests avoiding the root edge. The number of 
embeddings as rooted planar maps is shown between parentheses.

Fig. 24. The trees with 2 and 3 white leaves involved in the expansion of t − R = 3t2 + 12t3 + O(t4), for the 
series R of Theorem 1.1. The multiplicities indicate the number of embeddings in the plane.

where c(F ) is the number of connected components of the forest F . One of the advantages 
of this description in terms of forests is that it gives a direct interpretation of t −R. Indeed, 
if we restrict the summation to forests not containing the root edge, then we obtain a 
new series, denoted H(t) in [17], which satisfies

H ′(t) = 2(t− R).

Comparing with Theorem 1.1 leads to the following statement: the number of Eulerian 
orientations of quartic maps with n faces is (n +1)/6 times the (signed) number of quartic 
maps with n + 1 faces equipped with a spanning forest not containing the root edge, 
every forest F being weighted by (−1)c(F )−1. This is illustrated in Fig. 23 for n = 3.

There is also an interpretation (and generalization) of t − R(t) in terms of certain 
trees [17, Sec. 5.1]. It involves a parameter u, which is −1 for our series R. In the forest 
setting, u counts the number of connected components (minus 1).

Proposition 9.1. Consider rooted plane ternary trees with leaves of two colours (say black 
and white, see Fig. 24). Define the charge of such a tree to be the number of white leaves 
minus the number of black leaves. Call a tree of charge 1 balanced. Then the series 
t − R(t) of Theorem 1.1 counts, by the number of white leaves, balanced trees in which 
no proper subtree is balanced.

More generally, let R(t, u) ≡ R be the only power series in t with constant term 0
satisfying

R = t + u
∑ 1

n + 1

(
2n
n

)(
3n
n

)
Rn+1,
n≥1
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Fig. 25. The trees with at most 4 leaves involved in the expansion of t − R = 2t2 + 4t3 + 20t4 + O(t5), for 
the series R of Theorem 1.2. The multiplicities take into account the number of embeddings in the plane 
and the exchange of the two colours.

so that R(t, −1) = R(t). Then (R − t)/u counts balanced trees by the number of white 
leaves, with an additional weight (u + 1) per proper balanced subtree.

Here, a subtree of a tree T consists of a vertex of T and all its descendants, and 
is proper if the chosen vertex is neither the root of T nor a leaf. This proposition is 
illustrated in Fig. 24.

In the case of general Eulerian orientations (Theorem 1.2), we also have a similar 
combinatorial interpretation and generalization of t − R(t).

Proposition 9.2. Consider rooted plane binary trees with edges of two colours (say solid 
and dashed, see Fig. 25). Define the charge of such a tree to be the number of solid edges 
minus the number of dashed edges. Call a tree of charge 0 balanced. Then the series 
t − R(t) of Theorem 1.2 counts, by leaves, balanced trees in which no proper subtree is 
balanced.

More generally, let R(t, u) ≡ R be the only power series in t with constant term 0
satisfying

R = t + u
∑
n≥1

1
n + 1

(
2n
n

)2

Rn+1, (21)

so that R(t, −1) = R(t). Then (R − t)/u counts balanced trees by the number of leaves, 
with an additional weight (u + 1) per proper balanced subtree.

This proposition is illustrated in Fig. 25.

Proof. Define a marked balanced tree as a balanced tree in which a number of inner 
vertices are marked, in such a way that:

• the root vertex is marked (unless the tree consists of a single vertex)
• the subtree attached at any marked vertex is balanced.
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Let R̄(t, u) be the generating function of marked balanced trees with a weight t per 
leaf and a weight u per marked vertex. We claim that R̄ satisfies (21). Indeed, take a 
marked balanced tree with at least one edge, and consider the tree obtained by deleting 
all subtrees attached to a (non-root) marked vertex. Then this tree must be balanced. If 
it has n inner vertices, it can be chosen and coloured in

1
n + 1

(
2n
n

)(
2n
n

)

ways: the Catalan number accounts for the choice of the tree, and the second binomial 
coefficient for the colouring of its 2n edges. To reconstruct the marked balanced tree, 
we now need to attach to each of the n + 1 leaves a marked balanced tree, and this 
gives (21). Hence the series R̄(t, u) coincides with R(t, u).

Now consider a balanced tree. The total weight of all marked trees that can be con-
structed from it by marking certain vertices is u(u +1)b, where b is the number of proper 
balanced subtrees. This completes the proof. �

The problem of understanding these equidistributions bijectively is wide open. Let us 
mention that deep connections are known to exist between certain families of orientations 
(e.g., acyclic) of a graph and certain families of subgraphs (e.g., spanning forests) of the 
same graph (see [5] for a survey, and references therein).

Let us finish with another bijective question. There exist two main bijections that 
transform Eulerian maps into trees: one of them takes the dual bipartite map, and 
transforms it into a mobile-tree using the distance labelling of the vertices [20]. This is the 
Bouttier–Di-Francesco–Guitter bijection that we have generalised in Section 5 to more 
general labellings, and thus to Eulerian orientations (rather than Eulerian maps). The 
second classical bijection, due to Schaeffer [55], transforms Eulerian maps into blossoming 
trees. Underlying this construction is a canonical Eulerian orientation of the map. Is there 
an extension of this bijection to all Eulerian orientations?

9.2. Interpolating between quartic Eulerian orientations and general Eulerian 
orientations

Given that the form of our solution for general Eulerian orientations is so similar to 
that for quartic Eulerian orientations, one may wonder whether these are two special 
cases of a more general series. In a forthcoming paper we describe two possible ways to 
simultaneously generalise G(t) and Q(t). The first series that we consider counts general 
Eulerian orientations by edges and vertices. This is an obvious generalisation of G(t), 
which only records the number of edges. Moreover, Q(t) can be extracted from this refined 
generating function by directly utilising the fact that quartic Eulerian orientations form 
a subclass of general Eulerian orientations (those having, in a sense, many vertices). The 
second generalisation concerns labelled quadrangulations, and interpolates between the 
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series Q(t) and Qc(t) = 2G(t) by keeping track of the number of quadrangles that only 
contain two labels (such quadrangles are forbidden in colourful quadrangulations). This 
corresponds to the six vertex model discussed in Section 2.3.
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