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99-graph
Moore graph

1. Introduction

Given a finite, connected graph I', one can construct an interesting graph invariant
K(T') called the critical group. This is a finite abelian group that captures nontrivial
graph-theoretic information of I', such as the number of spanning trees of I'; precise
definitions are given in Section 2. This group K (I') goes by several other names in the
literature (e.g., the Jacobian group and the sandpile group), reflecting its appearance in
several different areas of mathematics and physics; see [14] for a good introduction and
[12] for a recent survey. Correspondingly, the critical group can be presented and studied
by various methods. These methods include analysis of chip-firing games on the vertices
of T [13], framing the critical group in terms of the free group on the directed edges
of T subject to some natural relations [7], computing (e.g., via unimodular row/column
operators) the Smith normal form of a Laplacian matrix of the graph, and considering
the underlying matroid of T" [19].

Despite the variety of tools available, computing the critical group of an arbitrarily
chosen graph can be computationally expensive. Instead, one often searches for families
of graphs for which specific graph-theoretic knowledge can be used to streamline the
computations involved. From this perspective, the strongly regular graphs (srgs) are a
particularly interesting family. To paraphrase Peter Cameron, srgs lie on the boundary
of the highly structured yet seemingly random. Computations have born witness to this,
in that the critical groups of many subfamilies of srgs have been computed, while many
more remain unknown. Examples of interesting subfamilies of srgs that have proven to
be amenable to critical group computation include the Paley graphs [5], the n x n rook
graphs [9], Grassmann graphs on lines in projective space [11], and Kneser graphs on
2-element subsets [10] (and the complements of all these). Some very recent progress
deals with polar graphs [17] and the van Lint-Schrijver cyclotomic srgs [16].

To each srg, one can associate parameters (v, k, A\, 1) describing the number and va-
lence of the vertices, as well as adjacency information. The families of srgs listed above
are each such that these parameters vary over the family. An alternative approach for
studying srgs is to fix the parameters (v, k, A, 1) and explore what can be deduced about
an srg with these parameters. It is this technique that is taken here; see also [15, Section
3] and [1, Section 10] for similar approaches. More specifically, we show that the parame-
ter set (v, k, A\, pu) determines arithmetic conditions that constrain the Sylow p-subgroup
of K(I') for any strongly regular graph I' having these parameters.

The aforementioned Sylow p-subgroup constraints arise through an extension of the
analysis in [4] of the p-ranks of the Laplacian matrix L. The need for such an extension
stems from the observation that, though knowing the critical group of I" gives you the
p-rank of L for any prime p, the converse need not hold. That is, the p-rank of L may
not uniquely determine the Sylow p-subgroup of K (I"). The smallest counterexample is
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the 4 x 4 rook graph and the Shrikhande graph. These are both strongly regular graphs
with parameters (16, 6,2,2) and both of their Laplacian matrices have 2-rank equal to
6. However the critical group of the rook graph is

(Z/8Z)° ® (Z.)322Z)*
while the Shrikhande graph has critical group
727 & (Z/3Z) @& (Z/16Z)* & (Z/32Z)* .

Nevertheless, the critical groups of these graphs can be distinguished by considering
their Sylow 2-subgroups (it happens to be the case in these examples that the Sylow
2-subgroup equals the full critical group).

The approach we take here may be of limited use in distinguishing nonisomorphic srgs
with the same parameter set. However, as we demonstrate in Example 3.8, our approach
can be applied to show that there cannot exist srgs with certain parameter sets.

2. Preliminaries
2.1. Strongly reqular graphs

Let I' = T'(V, €) denote a connected, finite undirected graph, as in the introduction.
If every vertex in V is adjacent to k other vertices, we say that I' is k-regular. Fix an
ordering of the vertices. Then the adjacency matriz A = (a; ;) of T' is defined

1, if vertex ¢ and vertex j are adjacent
i,j = .
0, otherwise.

Let D denote the |V| x |V| diagonal matrix with (4, 4)-entry equal to the degree of vertex
i. The Laplacian matriz of I' is L = D — A. We use I and J to denote, respectively,
the identity matrix and the all-ones matrix of the appropriate size. Note that when I is
k-regular, we have L = kI — A.

A graph T is strongly regular with parameters (v, k, A, p) if:

e I has v vertices,

e I'is k-regular,

e any two adjacent vertices have exactly A common neighbors, and,
e any two non-adjacent vertices have exactly 4 common neighbors.

We sometimes abbreviate this by writing that T is an srg(v, k, A, ).
We now recall several formulas and standard facts about the Laplacian L of an
srg(v, k, A, 1); for more details, see, e.g., [3, Chapter 9]. The all-ones vector spans the
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kernel of L, so 0 is an eigenvalue of L with multiplicity one. Aside from this 0 eigen-
value, L has exactly two other distinct eigenvalues that we denote by r and s. These can
be computed directly from the parameters (v, k, A, 1), and can be shown to satisfy the
quadratic matrix equation

(L—rI)(L—sl)=pul. (2.1)

Example 3.8 in the next section shows how Equation (2.1) can be a powerful tool for
probing a particular graph. We will write f and g for the multiplicities of r and s,
respectively.

Of great interest is the existence question for strongly regular graphs. The Handbook
of Combinatorial Designs [6, Chapter 11] has a large list of feasible parameter sets, along
with adjacency spectra and known graph constructions. An up to date version of this
list, with more information, is available at Andries Brouwer’s website [2]. On Brouwer’s
list, the graph parameters are color coded green for those for which examples exist, red
for those for which it is known that no graph exists, and yellow if the question is not
yet decided. Excluded from these lists are the “boring” strongly regular graphs, which
are the disjoint unions of complete graphs or the complements of these. The disjoint
unions of multiple complete graphs are excluded for us as well, by our connectedness
assumption.

2.2. Critical groups

The Laplacian L can be viewed as defining a homomorphism of free abelian groups
L:ZV — ZV. Since L has a kernel of rank one, it follows that the cokernel has (free)
rank one as well. In particular, we have a decomposition of the form

2V /Im(L) = K(I') ® Z,

with K (T') a finite abelian group called the critical group of T'. (If T’ were not connected
there would be more copies of Z.) The order of K(T') is the number of spanning trees of
the graph. Isomorphic graphs have isomorphic critical groups; so the critical group is a
graph invariant.

From the matrix-tree theorem [3, Prop. 1.3.4], we have that the order of the critical
group is the product of the nonzero Laplacian eigenvalues, divided by the number of
vertices. In the case that T is an srg(v, k, A, i), this becomes the identity

rf. g9
[K(I)] =

v

Moreover, one can use Equation (2.1) to show that the product rs kills K(T'). (It is a
remarkable fact, proved by Lorenzini [15, Prop. 2.6], that the product of the distinct
nonzero Laplacian eigenvalues kills the critical group of any graph.)
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Let p be a prime and write K,(I") for the Sylow p-subgroup of K (I'). By the structure
theorem for finitely generated abelian groups, to determine K (I"), it suffices to determine
K, (T") for each p dividing the order of K (I'). A popular approach for identifying K,(I")
is to make use of the Smith normal form of L, which we review now: There is a unique
integer diagonal matrix S = diag(sy,...,s,) with (i) nonnegative diagonal entries s;
satisfying s;|s;+1 for 1 <4 < v, and (ii) so that there exist unimodular matrices U, V'
satisfying

ULV = S. (2.2)

Then S is the Smith normal form of L and the s; are the invariant factors. The name is
appropriate since the cokernel of L has invariant factor decomposition

coker(L) 2 Z/$1Z @ - ® L/, 7. (2.3)

It follows from our connectedness assumption that s, = 0, while s; # 0 for all 1 <14 < v;
in particular, the critical group can be read off from ((2.3)) by taking the first v — 1
terms.

Example 2.1. Let " denote the Petersen graph. There is an ordering of the vertices so
that the Laplacian matrix for I' is

(3 1 11 1
13 -1 1
~1 3 -1 ~1
1 3 -1 ~1
1 1 3 1
L=|_4 3 1 -1
1 3 1 -1
_1 1 3 1
1 1 -1 3
i 1 1 -1 3 |

This matrix has Smith normal form
diag(1,1,1,1,1,2,10, 10, 10,0)

from which it follows that K(I') = Z/2Z & (Z/10Z)®. Equivalently, the critical group
can be written relative to its elementary divisor decomposition as K(T') & (Z/2Z)* @
(z/ 5Z)3, which is easily read off by looking at the invariant factors. The two summands
appearing in this latter description are the Sylow 2- and 5-subgroups of K(T'), respec-
tively.

We will repeatedly use the following notation: For a fixed graph I'" and prime p, we
define e; to be the number of invariant factors of L that are divisible by p’ but not
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divisible by pi*!. Notice that eg is the p-rank of L (the rank when viewed as a matrix
over the field of p elements). For i > 0, the integer e; is the multiplicity of Z/p‘Z in
the elementary divisor decomposition of the critical group. We will refer to the e; as the
(p-elementary divisor) multiplicities, and note that they uniquely determine K,(T').

To compute these multiplicities we can use the following construction. For fixed p and
i >0, define

M;={z ¢ 2V | L is divisible by p'}
and
N;={p~'Lx|z € M;}.

We use bar notation to denote entry-wise reduction modulo p of vectors and matrices.
By considering the Z-bases of Z" defined by the unimodular matrices U, V in Equation
(2.2) one sees that

dim, M; =1+ ) e; (2.4)
Jj=i
dim, N; = Z ej. (2.5)
0<j<i

For a reference, see [3, Prop. 13.8.2, 13.8.3].
Our main tool is the following lemma, which relates the spectrum of L to the critical
group K (T'). Recall that p® || n means that p’ | n and p**! { n.

Lemma 2.1. Let T’ be a connected graph, fiz a prime p, and let e; be the multiplicity of p°
as an elementary divisor of the Laplacian L. Let n be an eigenvalue of L with multiplicity
m, and assume that n is an integer.

(1) prZ: |, thenm <1435, ¢€;.
(2) If p' || m, then m < Zogjgiej'

Proof. Let V,, denote the n-eigenspace of L, when viewed as a matrix over the rational
numbers Q. The intersection V; N 7" is a pure Z-submodule of Z"V of rank m, and so
dim, V;, N ZV = m. Since p* divides 7, we have V;, N 7V C M; and hence V,NZY C M;.
It follows that

m = dim, V,, N ZV gdimpﬁi:l—i—z:ej.

Jjzi

For the second claim, write p = zp’ for some integer 2. Then Vpn 7V C M; implies
z(V,NZ"V) C N;, and so z(V,, N ZV) C N;. The assumption that p’ ||  implies that z is
invertible mod p. Thus
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m = dim, V, N2V = dim, z(V;, N1 ZV) < dim, N; = » e;. O

0<j<i
3. Sylow p-subgroup structure

Throughout this section, I' denotes a connected srg(v, k, A, u) with Laplacian matrix
L. As we have discussed, L has two non-zero eigenvalues r and s, and we denote by f and
g their respective multiplicities. We assume that r and s are integers, which is the case
for any srg unless it is a conference graph [3, Theorem 9.1.3]. We fix a prime p dividing
|K ()| and we write K, (') for the Sylow p-subgroup of K (I"). Recall that e; denotes the
multiplicity of p’ as an elementary divisor of L; in particular, eqg is the p-rank of L.

Theorem 3.1. Suppose p 1 r, and let a,y be the (unique) nonnegative integers so that
p® || s and p7 || v. Then

K,(D) = Z/p* "2 & (Z/p°Z)".

The same statement holds if the roles of v and s are interchanged, and the roles of f and
g are interchanged.

Proof. We have assumed that p divides |K(T")| = r¥s9 /v, so the hypotheses imply that
a > 1. Similarly, since rs kills the critical group and p® || rs we have

K,(D) = (Z/p2)" @ (Z/p’L)" @ -~ (Z/p"L)"™ .

From the Smith normal form of L, we see that eg +e1 + -+ + e, + 1 = v is the number
of diagonal entries in the Smith normal form. Similarly, by diagonalizing L, we see
f+4+ g+ 1=wv. This gives

eoter+---+e,=f+g. (3.1)

The order of K,(I') we get from the matrix-tree theorem:

This order can be alternatively expressed in terms of the elementary divisor multiplicities,
from which we obtain

e1+2e+ - +ae, =ag — 7. (3.2)
Applying Lemma 2.1 part 1 to the s-eigenspace of L we have

g<eq+1L
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In fact, we always have
g—1<e,<g. (3.3)

For suppose that e, > ¢. Then ae, > ag > ag — v > ae,, where the last inequality
follows from Equation (3.2). This is impossible; therefore the bound (3.3) holds.

Next we will see that the p-rank ey must equal f or f 4 1. In the case that e, = g,
Equation (3.1) gives

cot - +ear =]

and so ey < f. By Lemma 2.1 part 2 applied to the r-eigenspace, we have f < dim Ny =
eo. Thus eg = f and we see e; = 0 for i # 0,a by Equation (3.1). So in this case

Ky(T) = (Z/p"2)7,

which agrees with the statement of the theorem since Equation (3.2) forces « to be zero.
Now consider the case e, = g — 1. From Equation (3.1) we get

€0+ a1 =f+1

and so eg < f 4 1. As before we also have f < eg. It turns out that both eg = f and
eo = f+1 are possible (more about this in the next corollary). In the case that eg = f+1,
we are forced to have e; = 0 for i # 0,a and we get

K,(T) = (2 /p"2)"""

which agrees with the statement of the theorem, since now Equation (3.2) forces v = a.
Finally, if e, = g — 1 and eg = f, we see that Equation (3.1) becomes

€1+"‘+6a_1:1.

This means that there is some 7 # 0,a with e; = 1 and e; = 0 for j # 0,¢,a. We can
identify the distinguished subscript ¢ by looking carefully at Equation (3.2):

e1+2e+ -+ (a—1)eg—1 =ag—vy— ae,
=ag—7—alg—1)
=a—1.

Thus we see that ¢ = a — . We have shown in this case that
E,(T) = Z/p" & (Z/p"2)" ",

as desired. O
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The statement of Theorem 3.1 is simple, but as the proof shows, the distinguished
summand Z/p® 7Z can be absorbed into the others (when v = 0) or can disappear
entirely (when v = a). We also saw that v is forced by the values of e, and eg. In [4,
Section 3], the authors calculate the p-ranks of matrices in a class that includes our L
(under the hypotheses of Theorem 3.1) and they show that eg is determined by whether
or not p divides . We record this information in case it is of organizational value to the
reader.

Corollary 3.1. Suppose p 1 r and let a, be the (unique) nonnegative integers so that
p® || s and p7 || v. Then exactly one of the following holds:

(1) v=0,p|p, eo=f and K(T) = (Z/p"Z)*,
(2) 0<y<a,p|u e=fand KI)=2Z/p* L& (Z/p"L)" ",
(3) y=a,ptu eo=f+1 and K(I) = (Z/p*Z)"".

The same statement holds if the roles of v and s are interchanged, and the roles of f and
g are interchanged.

Let’s apply these theorems with a few examples.

Example 3.1. It is unknown whether there exists a strongly regular graph I'" with pa-
rameters (190,84, 33,40). If such a graph exists then its nonzero Laplacian eigenvalues
and multiplicities would have to be rf = 8033 and s9 = 956 (we are writing the mul-
tiplicities as exponents, as is custom in much of the literature). Since r = 16 - 5 and
s =5-19, we can use the theorem above to compute the Sylow 2- and 19-subgroups of
K(T') (though it is easy to see that K19(T") is elementary abelian). Let’s compute K5(T'):

K1) =2/ 'z (2/2'2)

= 787 @ (Z/16Z)"? .

Example 3.2. Conway’s 99-graph problem asks whether there exists a strongly regular
graph I" with parameters (99, 14,1, 2). The nonzero Laplacian eigenvalues and multiplic-
ities of such a graph would have to be r/ = 11° and s9 = 18*. Since r and s are

relatively prime, we can apply our theorems to obtain the complete critical group. We
find

K() = (2/112)* & (2)22)** & (2./97)* .

When p divides both r and s, it can occur that the critical group depends on the
structure of the graph. Our next theorem shows that, in the simplest such case, this
dependence is encoded entirely in the value of eg.

Theorem 3.2. Suppose p || r and p || s, and let v be the (unique) nonnegative integer so
that p" || v. Then
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K, (D) = (2 /pz)! T9T772 ¢ (2. /p*2) .

Proof. The matrix-tree theorem gives us |K,(I')| = p/t977, and since p? || rs we have

K,(T) = (Z/p2)" & (Z/p°Z)" .
In terms of the elementary divisor multiplicities, this can be expressed as

eot+ert+e=f+g
e1+2e=f+g-—1.

Thus knowing any one of eg, e1, e5 determines the others. Taking eg to be free we compute

er=[f+g+7—2e

€2 =€y — 7
and the theorem is proved. O

Example 3.3. Consider the parameter set (25,12,5,6). We have that »/ = 10'2 and
59 = 152, so the prime p = 5 is of particular interest. This is, in fact, the first parameter
set for which the hypotheses of Theorem 3.2 are satisfied and for which there is more
than one graph with these parameters. There are exactly 15 strongly regular graphs with
these parameters and adjacency matrices for them can be found at Ted Spence’s website
[18]. We let T'; denote the graph having adjacency matrix given by the first matrix on
Spence’s list, which we reproduce here for convenience:

CO00O0ORRRHRHOOOOOORRHRHOR
HHERRRRO0000000000ORHHRORF
OO0 HHOOORHHOOOHRHOOOORHH
O OOHOHHOORORHOOROOOO R H
HOROHOROROROROROROOOOOKH R
HROROORHROHOORHOROOOOOOH
HFRHOOOROOHOHOORF—OOORFROOR
HFROOHOORHFOROO—OROROROROOR
OOHHOFRHFHHFOOOHOOORHHFOOHOOH
HOOHORHOOORHKHHOOOHOHRFOOOH
OHOORHOHORKOROROROROROOOK
CORFRHOOORHOHORRHOORROOOOR
HOOFRHOORFHOOROROOROORRORO
OO ORFORHROOORHOROOHOHORO
OFRHOFHOFOOOHKFHHOOOHHOOHOHO
ORHHOOOHOOHKHHOOHHOORHOORO
HOOORRHOROOHOHORROROROORO
HOHOORORORFROOORHORRROOORO
OORHFORHOOROORHROOOORHRFOO
HOFROOHOHORORHHOOROOHORRFROO
HHROOOHOOFOHHHOFHOOROORKHOO
OHOORHHORFOOHOOHOHORHOHOO
HORFOOOORHFHOOHOORHHOROROO
OFROFRHORHOOOHOORORRHROOROO

COO0O0O0O0O0OOOOO k= = i e e o o o ek et ©

For another srg(25,12,5,6), we let I's be the Paley graph on 25 vertices. Using SAGE,
we compute:

K5(Ty) 2 (Z/52)% & (2)252)"°  (so eg = 12)

and



J.E. Ducey et al. / Journal of Combinatorial Theory, Series A 180 (2021) 105424 11

Ks(T9) = (Z/52)% @ (2)25Z)"  (s0 eg = 9).
Our Theorem 3.2 predicts
Ks5(T) = (Z/52)" 7% @ (2,/252)° 7,
which agrees with these computations.
Example 3.4. It is unknown whether there exists a strongly regular graph I with param-
eters (88,27,6,9). By the results above, the critical group would be specified uniquely
by 3-rank. Indeed, if such a graph existed, we would have r/ = 24%> and s9 = 3332
Theorem 3.1 specifies the Sylow 2- and 11-subgroups, so the only mystery in knowing
K(T') is knowing K3(I"), which is given in terms of the 3-rank by Theorem 3.2:
Ky(T) = (Z/32)% 7% & (Z./9Z) .

To summarize thus far: under the hypotheses of Theorem 3.1 the structure of K,(I")
is forced, and under the hypothesis of Theorem 3.2 the p-rank of L determines K,(T").
Under the hypotheses of the next theorem, the p-rank of L determines K,(I") to within

two possibilities.

Theorem 3.3. Suppose p || 7 and p? || s, and let v be the (unique) nonnegative integer so
that p" || v. Then either:

K,(T) = (2/p2)’ = & (2/p°2)"" " @ (2/p°2)" "
or
K,(T) = (Z/p2) "= & (2/p°2)" " 2 & (2/p°2) .
Furthermore, if v =0 then
Ko (T) = (2/p2) ™~ & (2/5°2)° " & (2/5°Z).

The same statement holds if the roles of v and s are interchanged, and the roles of f and
g are interchanged.

Proof. Since p || 7 and p? || s, we have p? || rs and so
K1) = @/p2)" & (2)5°T)" & (2/5°2)°

From this general form and the matrix-tree theorem we get the equations
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eotertextes=f+g
e1+2ex+3e3=f+29—1. (3.4)

Applying Lemma 2.1, we have the bounds

f<dimN =ep+e;
g <dimM; =ey+ez+1.

The left sides of the above inequalities sum to f+ g, while the right sides sum to f+g+1.
Thus we have our two possibilities:

f=e+erandg+1=ey+e3+1
or
f+1l=ey+e and g=ey+e3+1.

In either case, with these two equations and Equation (3.4) we see that knowing one of
€0, €1, €2, eg forces the values of the others. The first part of the theorem follows.

Now assume that v = 0. We just want to show that K,(I') must be the first possibility
in the statement of the theorem. Let Z,) be the ring of p-local integers, i.e. rational
numbers that can be written as fractions with denominators coprime to p. We can view
L has having entries coming from Z,) and if we do this, then L defines a homomorphism
of free Z ,)-modules

.7V v
L: 7y — Zgy.-

The Smith normal form of L over this ring is the same as over the integers, but as
primes different from p are now units we may ignore them. One advantage of this point
of view is the following. Since the number of vertices is not divisible by p, we have the
decomposition

%
L) =Lpl@Y,
where Y = {3} cyawv € Z&) | > ,ev aw = 0}. The Laplacian map respects this de-
composition and this means that the p-elementary divisor multiplicities are the same for
both L and the restricted map

Lly:Y =Y.

The transformation defined by the all-ones matrix J is zero on Y; therefore we get from
Equation (2.1)
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L|Y (Lly — (7“ + S)I) = —rsl.

Since p? || rs, the equation above shows a symmetry of Smith normal forms: the mul-

tiplicity of p’ as an elementary divisor of L|y is equal to the multiplicity of p3~% as an

elementary divisor of L|y — (r+s)I. Since L|y and L|y — (r+ s)I are congruent modulo
p, they must have the same p-rank. The last two sentences imply that ey = e3 for our
Laplacian L; so K,(I") must take the first form in the statement of the theorem. O

Example 3.5. The famous missing Moore graph would have to be an srg(3250,57,0,1),
if it exists. From these parameters, we have rf = 50172° and s9 = 65'°2°, and the
interesting prime is p = 5. From Theorem 3.3, we get

K5(T) = (Z/52)"°%° 7% @ (2./252)" 7 & (2./125Z)°
or

Ks(T) = (Z/52)"°' % @ (2/252)" ™"~ @ (2 /1252)°° 2.
(Note v = 3.) This example first appeared in [8].

Example 3.6. The Schlifli graph is the unique srg(27, 16, 10, 8); denote it by I'. We have
rf =126 and s9 = 18%°. We can apply Theorem 3.3 to the prime p = 2, and since v = 0
we must have

Ko(T) = (Z/22)*°° @ (Z/AZ)° ™ @ (Z/SZ)*° .
Using SAGE we find that the 2-rank of L is 6 and also that
K,(T) = (2/22)" & (2/8Z)°
which matches our prediction.

Example 3.7. Let I'; denote the complement of any one of the three Chang graphs. Let
I’y denote the Kneser graph on the 2-subsets of an 8-element set (so adjacent when
disjoint). Both of these graphs are examples of an srg(28,15,6,10). We have rf = 1420
and s9 = 207, and so Theorem 3.3 applies to the prime p = 2 (note vy = 2).

According to SAGE, the Laplacian of I'; has 2-rank equal to 8 and

Ko(Th) = (2)22)? & /A7 @ (Z./8Z)° .
Similarly, for I's, the computer tells us that the Laplacian 2-rank is 7 and
Ky (Ty) = (Z/22)" & (2/87)° .

This illustrates that both of the cases described in Theorem 3.3 can occur.



14 J.E. Ducey et al. / Journal of Combinatorial Theory, Series A 180 (2021) 105424

Remark. Checking many strongly regular graphs on up to 36 vertices (we did not check
all of the 32548 graphs with parameters (36, 15,6,6)) the authors have not found a pair
of graphs with the same parameters, the same p-rank, and demonstrating the separate
cases of Theorem 3.3 (note the 2-ranks are different in Example 3.7). So maybe, even
under the hypotheses of Theorem 3.3, the p-rank does determine K, (T').

Our final example applies the theory to give an elementary proof that no srg(28,9,0,4)
exists.

Example 3.8. Suppose that a strongly regular graph with parameters (28,9,0,4) exists.
Denote it by I'; and let L be its Laplacian, which we may view as a matrix by ordering
the vertices. We must have rf = 82! and s = 14%. The matrix equation (2.1) reads

(L —14I)(L — 81) = 4J, (3.5)

where J is the matrix of all-ones.

To motivate our choices below, we note that this graph is red on Brouwer’s list. We
know it does not actually exist since it contradicts the ‘absolute bound’ 28 < 6(6 + 3)/2
(it also contradicts one of the Krein inequalities). If we are looking for a Smith normal
form or p-rank argument, this suggests that we might look at the prime 7, which divides
the eigenvalue with multiplicity that is too small according to this bound.

Returning to our argument, let F' = Z/7Z be the field of 7 elements, and write L for
the matrix L with entries viewed as coming from F. From Corollary 3.1, the rank of L
is 22, and so the dimension of ker L is 6. We can thus arrive at a contradiction if we
exhibit more than 6 independent vectors in ker L.

Fix two adjacent vertices, call them x and y. Let X denote the 8 vertices other than
y that are adjacent to z, and let Y denote the 8 vertices other than x adjacent to y.
Since A = 0, the sets X and Y have empty intersection. Let Z consist of the ten other
vertices not in {x}U{y} UX UY . Let z be a vertex in Z. Since pu = 4, four edges from z
must enter X and four edges must enter Y. This leaves one edge to connect z to another
vertex in Z. It follows that the induced subgraph on Z is five disjoint copies of P, the
path graph on two vertices (i.e., an edge between two vertices). Adding in vertices x and
1y, the induced subgraph is then six copies of Ps.

Each of these copies of P» can be used to build a vector in ker L. The matrix equation
(3.5) shows us how: Working modulo 7, the equation reads: L(L —I) = 4.J. Thus L maps
any column of L — I to 41, where 1 is the vector of all-ones. Thus, the difference of any
two columns of L — I will be in ker L. To be concrete, supposed we built our Laplacian
matrix by ordering the vertices as follows: x, y, then the vertices in Z, then the vertices
in X, then the vertices in Y. Take the column of L — I that is indexed by z and the
column that is indexed by y and subtract them. The result, still working modulo 7, is
expressed in the first column of the following matrix (we discuss the remaining columns
momentarily).
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Here kg denotes 8 repeated vertical entries of the number k, and ?g denotes 8 vertical
entries with unknown value.

Suppose further that we ordered the vertices so that the next two vertices (which are
in Z) are adjacent, and the two vertices after that (still in Z) are adjacent, etc. Then
as we just considered the difference between the first and second columns of L — I, also
consider the difference between the third and fourth, fifth and sixth, ..., eleventh and
twelfth. If we throw all of these six columns into a matrix, we obtain the matrix C' above.

Clearly these six columns are independent and so form a basis for ker L. But don’t
forget that 1 is also in ker L, and (as is not hard to check) is not an F-linear combination
of these six vectors. Thus we have seven vectors in the kernel, which is a contradiction
to our dimension count above.

In the example above, all that was really used was the 7-rank of L (which can be
obtained from [4]); we did not need the full information given by the critical group.
Perhaps a more sophisticated use of these strategies can employ the other information
in the Smith normal form to eliminate further parameter sets.
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Appendix A

We include in this appendix feasible parameter sets for strongly regular graphs with
nonzero integer Laplacian eigenvalues rp and sp, for graphs with less than 200 vertices,
so that the reader may easily apply the results of the paper. See Andries Brouwer’s
website [2] or the Handbook of Combinatorial Designs [6] for more detailed information,
including graph constructions and existence data. Note that in those sources, r and s
refer to eigenvalues of an adjacency matrix of such a graph.
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v kA p r, f sL g v kA op ry f sL g

9 4 1 2 3 4 6 4 63 22 1 11 21 55 33 7

10 3 0 1 2 5 5 4 63 40 28 20 30 7 42 55
10 6 3 4 5 4 8 5 63 30 13 15 27 35 35 27
15 6 1 3 5 9 9 5 63 32 16 16 28 27 36 35
15 8 4 4 6 5 10 9 64 14 6 2 8 14 16 49
16 5 0 2 4 10 8 5 64 49 36 42 48 49 56 14
16 10 6 6 8 5 12 10 64 18 2 6 16 45 24 18
16 6 2 2 4 6 8 9 64 45 32 30 40 18 48 45
16 9 4 6 8 9 12 6 64 21 O 10 20 56 32 7

21 10 3 6 9 14 14 6 64 42 30 22 32 7 44 56
21 10 5 4 7 6 12 14 64 21 8 6 16 21 24 42
25 8 3 2 5 8 10 16 64 42 26 30 40 42 48 21
25 16 9 12 15 16 20 8 64 27 10 12 24 36 32 27
25 12 5 6 10 12 15 12 64 36 20 20 32 27 40 36
26 10 3 4 8 13 13 12 64 28 12 12 24 28 32 35
26 15 8 9 13 12 18 13 64 35 18 20 32 35 40 28
27 10 1 5 9 20 15 6 64 30 18 10 20 8 32 55
27 16 10 8 12 6 18 20 64 33 12 22 32 55 44 8

28 9 0 4 8 21 14 6 66 20 10 4 12 11 22 54
28 18 12 10 14 6 20 21 66 45 28 36 44 54 54 11
28 12 6 4 8 7 14 20 69 20 7 5 15 23 23 45
28 15 6 10 14 20 20 7 69 48 32 36 46 45 54 23
35 16 6 8 14 20 20 14 70 27 12 9 21 20 30 49
35 18 9 9 15 14 21 20 70 42 23 28 40 49 49 20
36 10 4 2 6 10 12 25 75 32 10 16 30 56 40 18
36 25 16 20 24 25 30 10 75 42 25 21 35 18 45 56
36 14 4 6 12 21 18 14 76 21 2 7 19 56 28 19
36 21 12 12 18 14 24 21 76 54 39 36 48 19 57 56
36 14 7 4 9 8 16 27 76 30 8 14 28 57 38 18
36 21 10 15 20 27 27 8 76 45 28 24 38 18 48 57
36 15 6 6 12 15 18 20 76 35 18 14 28 19 38 56
36 20 10 12 18 20 24 15 76 40 18 24 38 56 48 19
40 12 2 4 10 24 16 15 77 16 0 4 14 55 22 21
40 27 18 18 24 15 30 24 77 60 47 45 55 21 63 55
45 12 3 3 9 20 15 24 78 22 11 4 13 12 24 65
45 32 22 24 30 24 36 20 78 55 36 45 54 65 65 12
45 16 8 4 10 9 18 35 81 16 7 2 9 16 18 64
45 28 15 21 27 35 35 9 81 64 49 56 63 64 72 16
49 12 5 2 7 12 14 36 81 20 1 6 18 60 27 20
49 36 25 30 35 36 42 12 81 60 45 42 54 20 63 60
49 16 3 6 14 32 21 16 81 24 9 6 18 24 27 56
49 32 21 20 28 16 35 32 81 56 37 42 54 56 63 24
49 18 7 6 14 18 21 30 81 30 9 12 27 50 36 30
49 30 17 20 28 30 35 18 81 50 31 30 45 30 54 50
49 24 11 12 21 24 28 24 81 32 13 12 27 32 36 48
50 7 0 1 5 28 10 21 81 48 27 30 45 48 54 32
50 42 35 36 40 21 45 28 81 40 13 26 39 72 54 8

50 21 4 12 20 42 30 7 81 40 25 14 27 8 42 72
50 28 18 12 20 7 30 42 81 40 19 20 36 40 45 40
50 21 8 9 18 25 25 24 82 36 15 16 32 41 41 40
50 28 15 16 25 24 32 25 82 45 24 25 41 40 50 41
55 18 9 4 11 10 20 44 85 14 3 2 10 34 17 50
55 36 21 28 35 44 44 10 85 70 57 60 68 50 75 34
56 10 O 2 8 35 14 20 85 20 3 5 17 50 25 34
56 45 36 36 42 20 48 35 85 64 48 48 60 34 68 50
56 22 3 12 21 48 32 7 8 30 11 10 25 34 34 50
56 33 22 15 24 7 35 48 85 54 33 36 51 50 60 34
57 14 1 4 12 38 19 18 88 27 6 9 24 55 33 32
57 42 31 30 38 18 45 38 88 60 41 40 55 32 64 55
57 24 11 9 19 18 27 38 91 24 12 4 14 13 26 77
57 32 16 20 30 38 38 18 91 66 45 55 65 77 77 13
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v kA p ry f s, g v k Ao r,  f sL g
95 40 12 20 38 75 50 19 120 85 60 60 80 51 90 68
95 54 33 27 45 19 57 75 120 35 10 10 30 56 40 63
96 19 2 4 16 57 24 38 120 &4 58 60 80 63 90 56
96 76 60 60 72 38 80 57 120 42 8 18 40 99 54 20
96 20 4 4 16 45 24 50 120 77 52 44 66 20 80 99
96 75 58 60 72 50 80 45 120 51 18 24 48 85 60 34
96 35 10 14 32 63 42 32 120 68 40 36 60 34 72 85
96 60 38 36 54 32 64 63 120 56 28 24 48 35 60 84
96 38 10 18 36 76 48 19 120 63 30 36 60 84 72 35
96 57 36 30 48 19 60 76 121 20 9 2 11 20 22 100
96 45 24 18 36 20 48 75 121 100 81 90 99 100 110 20
96 50 22 30 48 75 60 20 121 30 11 6 22 30 33 90
99 14 1 2 11 54 18 44 121 90 65 T2 88 90 99 30
99 84 71 T2 81 44 88 54 121 36 7 12 33 84 44 36
99 42 21 15 33 21 45 7 121 84 59 56 7 36 88 84
99 56 28 36 54 77 66 21 121 40 15 12 33 40 44 80
99 48 22 24 44 54 54 44 121 80 51 56 77 80 88 40
99 50 25 25 45 44 55 54 121 48 17 20 44 72 55 48
100 18 8 2 10 18 20 81 121 72 43 42 66 48 7 72
100 81 64 72 80 81 90 18 121 50 21 20 44 50 55 70
100 22 0O 6 20 77 30 22 121 70 39 42 66 70 77 50
100 77 60 56 70 22 80 77 121 56 15 35 55 112 77 8
100 27 10 6 20 27 30 72 121 64 42 24 44 8 66 112
100 72 50 56 70 72 80 27 121 60 29 30 55 60 66 60
100 33 8 12 30 66 40 33 122 55 24 25 50 61 61 60
100 66 44 42 60 33 70 66 122 66 35 36 61 60 72 61
100 33 14 9 25 24 36 75 125 28 3 7 25 84 35 40
100 66 41 48 64 75 75 24 125 96 74 T2 90 40 100 &4
100 33 18 7 20 11 35 88 125 48 28 12 30 10 50 114
100 66 39 52 65 88 80 11 125 76 39 57 75 114 95 10
100 36 14 12 30 36 40 63 125 52 15 26 50 104 65 20
100 63 38 42 60 63 70 36 125 72 45 36 60 20 75 104
100 44 18 20 40 55 50 44 126 25 8 4 18 35 28 90
100 55 30 30 50 44 60 55 126 100 78 84 98 90 108 35
100 45 20 20 40 45 50 54 126 45 12 18 42 90 54 35
100 54 28 30 50 54 60 45 126 80 52 48 72 35 84 90
105 26 13 4 15 14 28 90 126 50 13 24 48 105 63 20
105 78 55 66 77 90 90 14 126 75 48 39 63 20 78 105
105 32 4 12 30 &4 42 20 126 60 33 24 48 21 63 104
105 72 51 45 63 20 75 84 126 65 28 39 63 104 78 21
105 40 15 15 35 48 45 56 130 48 20 16 40 39 52 90
105 64 38 40 60 56 70 48 130 81 48 54 78 90 90 39
105 52 21 30 50 84 63 20 133 24 5 4 19 56 28 76
105 52 29 22 42 20 55 84 133 108 87 90 105 76 114 56
111 30 5 9 27 74 37 36 133 32 6 8 28 76 38 56
111 80 58 56 74 36 84 74 133 100 75 75 95 56 105 76
111 44 19 16 37 36 48 74 133 44 15 14 38 56 49 76
111 66 37 42 63 74 74 36 133 88 57 60 84 76 95 56
112 30 2 10 28 90 40 21 135 64 28 32 60 84 72 50
112 81 60 54 72 21 84 90 135 70 37 35 63 50 75 84
112 36 10 12 32 63 42 48 136 30 8 6 24 51 34 84
112 75 50 50 70 48 80 63 136 105 80 &4 102 &4 112 51
115 18 1 3 15 69 23 45 136 30 15 4 17 16 32 119
115 96 &80 80 92 45 100 69 136 105 78 91 104 119 119 16
117 36 15 9 27 26 39 90 136 60 24 28 56 85 68 50
117 80 52 60 78 90 90 26 136 75 42 40 68 50 80 85
119 54 21 27 51 &4 63 34 136 63 30 28 56 51 68 84
119 64 36 32 56 34 68 84 136 72 36 40 68 84 80 51
120 28 14 4 16 15 30 104 143 70 33 35 65 7 77 65
120 91 66 78 90 104 104 15 143 72 36 36 66 65 78 77
120 34 8 10 30 68 40 51 144 22 10 2 12 22 24 121

(continued on next page)
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v k A H ry,  f s, g v k A H ry,  f sL, g
144 121 100 110 120 121 132 22 169 60 23 20 52 60 65 108
144 33 12 6 24 33 36 110 169 108 67 72 104 108 117 60
144 110 82 90 108 110 120 33 169 70 27 30 65 98 78 70
144 39 6 12 36 104 48 39 169 98 57 56 91 70 104 98
144 104 76 72 96 39 108 104 169 72 31 30 65 72 78 96
144 44 16 12 36 44 48 99 169 96 53 56 91 96 104 72
144 99 66 72 96 99 108 44 169 84 41 42 78 84 91 84
144 52 16 20 48 91 60 52 170 78 35 36 72 85 85 84
144 91 58 56 84 52 96 91 170 91 48 49 85 84 98 85
144 55 22 20 48 55 60 88 171 34 17 4 19 18 36 152
144 88 52 56 84 88 96 55 171 136 105 120 135 152 152 18
144 65 16 40 64 135 90 8 171 50 13 15 45 95 57 75
144 78 52 30 54 8 80 135 171 120 84 84 114 75 126 95
144 65 28 30 60 78 72 65 171 60 15 24 57 132 72 38
144 78 42 42 72 65 84 78 171 110 73 66 99 38 114 132
144 66 30 30 60 66 72 v 175 30 5 5 25 84 35 90
144 77 40 42 72 T 84 66 175 144 118 120 140 90 150 84
147 66 25 33 63 110 7T 36 175 66 29 22 55 42 70 132
147 80 46 40 70 36 84 110 175 108 63 72 105 132 120 42
148 63 22 30 60 111 74 36 175 72 20 36 70 153 90 21
148 84 50 44 74 36 88 111 175 102 65 51 85 21 105 153
148 70 36 30 60 37 74 110 176 25 O 4 22 120 32 55
148 77 36 44 74 110 88 37 176 150 128 126 144 55 154 120
153 32 16 4 18 17 34 135 176 40 12 8 32 55 44 120
153 120 91 105 119 135 135 17 176 135 102 108 132 120 144 55
153 56 19 21 51 84 63 68 176 45 18 9 33 32 48 143
153 96 60 60 90 68 102 84 176 130 93 104 128 143 143 32
154 48 12 16 44 98 56 55 176 49 12 14 44 98 56 7
154 105 72 70 98 55 110 98 176 126 90 90 120 77 132 98
154 51 8 21 49 132 66 21 176 70 18 34 68 154 88 21
154 102 71 60 88 21 105 132 176 105 68 54 88 21 108 154
154 72 26 40 70 132 88 21 176 70 24 30 66 120 80 55
154 81 48 36 66 21 84 132 176 105 64 60 96 55 110 120
155 42 17 9 31 30 45 124 176 70 42 18 44 10 72 165
155 112 78 88 110 124 124 30 176 105 52 78 104 165 132 10
156 30 4 6 26 90 36 65 176 85 48 34 68 22 88 153
156 125 100 100 120 65 130 90 176 90 38 54 88 153 108 22
160 54 18 18 48 75 60 84 183 52 11 16 48 122 61 60
160 105 68 70 100 84 112 75 183 130 93 90 122 60 135 122
162 21 0 3 18 105 27 56 183 70 29 25 61 60 75 122
162 140 121 120 135 56 144 105 183 112 66 72 108 122 122 60
162 23 4 3 18 69 27 92 184 48 2 16 46 160 64 23
162 138 117 120 135 92 144 69 184 135 102 90 120 23 138 160
162 49 16 14 42 63 54 98 189 48 12 12 42 90 54 98
162 112 76 80 108 98 120 63 189 140 103 105 135 98 147 90
162 56 10 24 54 140 72 21 189 60 27 15 45 28 63 160
162 105 72 60 90 21 108 140 189 128 82 96 126 160 144 28
162 69 36 24 54 23 72 138 189 88 37 44 84 132 99 56
162 92 46 60 90 138 108 23 189 100 55 50 90 56 105 132
165 36 3 9 33 120 45 44 190 36 18 4 20 19 38 170
165 128 100 96 120 44 132 120 190 153 120 136 152 170 170 19
169 24 11 2 13 24 26 144 190 45 12 10 38 75 50 114
169 144 121 132 143 144 156 24 190 144 108 112 140 114 152 75
169 36 13 6 26 36 39 132 190 84 33 40 80 133 95 56
169 132 101 110 130 132 143 36 190 105 60 55 95 56 110 133
169 42 5 12 39 126 52 42 190 84 38 36 76 75 90 114
169 126 95 90 117 42 130 126 190 105 56 60 100 114 114 75
169 48 17 12 39 48 52 120 190 90 45 40 80 57 95 132
169 120 83 90 117 120 130 48 190 99 48 55 95 132 110 57
169 56 15 20 52 112 65 56 195 96 46 48 90 104 104 90
169 112 75 72 104 56 117 112 195 98 49 49 91 90 105 104
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v k A Iz ry,  f s, g
196 26 12 2 14 26 28 169
196 169 144 156 168 169 182 26
196 39 2 9 36 147 49 48
196 156 125 120 147 48 160 147
196 39 14 6 28 39 42 156
196 156 122 132 154 156 168 39
196 45 4 12 42 150 56 45
196 150 116 110 140 45 154 150
196 52 18 12 42 52 56 143
196 143 102 110 140 143 154 52
196 60 14 20 56 135 70 60
196 135 94 90 126 60 140 135
196 60 23 16 49 48 64 147
196 135 90 99 132 147 147 48
196 65 24 20 56 65 70 130
196 130 &4 90 126 130 140 65
196 75 26 30 70 120 84 75
196 120 74 72 112 75 126 120
196 78 32 30 70 78 84 117
196 117 68 72 112 117 126 78
196 81 42 27 63 24 84 171
196 114 59 76 112 171 133 24
196 85 18 51 84 187 119 8
196 110 75 44 7 8 112 187
196 90 40 42 84 105 98 90
196 105 56 56 98 90 112 105
196 91 42 42 84 91 98 104
196 104 54 56 98 104 112 91

References

[1] N.L. Biggs, Chip-firing and the critical group of a graph, J. Algebraic Comb. 9 (1) (1999) 25-45,
MR 1676732.

[2] Andries E. Brouwer, Parameters of strongly regular graphs, https://www.win.tue.nl/~aeb/graphs/
srg/srgtab.html, 2019.

[3] Andries E. Brouwer, Willem H. Haemers, Spectra of Graphs, Universitext, Springer, New York,
2012, MR 2882891.

[4] A.E. Brouwer, C.A. van Eijl, On the p-rank of the adjacency matrices of strongly regular graphs,
J. Algebraic Comb. 1 (4) (1992) 329-346, MR 1203680.

[5] David B. Chandler, Peter Sin, Qing Xiang, The Smith and critical groups of Paley graphs, J.
Algebraic Comb. 41 (4) (2015) 1013-1022, MR 3342710.

[6] Charles J. Colbourn, Jeffrey H. Dinitz (Eds.), Handbook of Combinatorial Designs, second ed.,
Discrete Mathematics and Its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL,
2007, MR 2246267.

[7] Madina Deryagina, Ilia Mednykh, On the Jacobian group for Mobius ladder and prism graphs,
in: Geometry, Integrability and Quantization XV, Avangard Prima, Sofia, 2014, pp. 117-126, MR
3287752.

[8] Joshua E. Ducey, On the critical group of the missing Moore graph, Discrete Math. 340 (5) (2017)
1104-1109, MR 3612450.

[9] Joshua E. Ducey, Jonathan Gerhard, Noah Watson, The Smith and critical groups of the square
rook’s graph and its complement, Electron. J. Comb. 23 (4) (2016) 4.9, MR 3577656.

[10] Joshua E. Ducey, Ian Hill, Peter Sin, The critical group of the Kneser graph on 2-subsets of an
n-element set, Linear Algebra Appl. 546 (2018) 154-168, MR 3771877.

[11] Joshua E. Ducey, Peter Sin, The Smith group and the critical group of the Grassmann graph of
lines in finite projective space and of its complement, Bull. Inst. Math. Acad. Sin. (N.S.) 13 (4)
(2018) 411442, MR 3888880.

[12] Darren B. Glass, Nathan Kaplan, Chip firing games and critical groups, in: Pamela Harris, Erik
Insko, Aaron Wootton (Eds.), A Project-Based Guide to Undergraduate Research in Mathematics,
Birkhauser Basel, Cham, 2020, pp. 107-152.


http://refhub.elsevier.com/S0097-3165(21)00023-6/bib1F2258947D56E35C72C1791372B63A02s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib1F2258947D56E35C72C1791372B63A02s1
https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibA710FE03582A0F953E1276AE1C0758F4s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibA710FE03582A0F953E1276AE1C0758F4s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib57CBF282105CA4852B059779F9664146s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib57CBF282105CA4852B059779F9664146s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibC38FCAACABB4A79AB8FADF8486FEDBD2s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibC38FCAACABB4A79AB8FADF8486FEDBD2s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib91E5E3BAD15912505C8EA6E8A2FA121Cs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib91E5E3BAD15912505C8EA6E8A2FA121Cs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib91E5E3BAD15912505C8EA6E8A2FA121Cs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibD63765FE49E1997073690A527EDA0481s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibD63765FE49E1997073690A527EDA0481s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibD63765FE49E1997073690A527EDA0481s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibDCC0E529EF1A80581F7C8C81E50CD71Bs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibDCC0E529EF1A80581F7C8C81E50CD71Bs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibDC281D39F6E0B745A5FB11AB742CC75Fs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibDC281D39F6E0B745A5FB11AB742CC75Fs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibDCAA2340CA7DE2B3B7162641E6004AC0s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibDCAA2340CA7DE2B3B7162641E6004AC0s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib4ED4D43F97A0EEECE52F9AE6AAA4B1B7s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib4ED4D43F97A0EEECE52F9AE6AAA4B1B7s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib4ED4D43F97A0EEECE52F9AE6AAA4B1B7s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib2570C919F5EF1D7091F0F66D54DAC974s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib2570C919F5EF1D7091F0F66D54DAC974s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib2570C919F5EF1D7091F0F66D54DAC974s1

20 J.E. Ducey et al. / Journal of Combinatorial Theory, Series A 180 (2021) 105424

[13] Alexander E. Holroyd, Lionel Levine, Karola Mészaros, Yuval Peres, James Propp, David B. Wilson,
Chip-firing and rotor-routing on directed graphs, in: In and Out of Equilibrium. 2, in: Progr. Probab.,
vol. 60, Birkhauser, Basel, 2008, pp. 331-364, MR 2477390.

[14] Dino J. Lorenzini, A finite group attached to the Laplacian of a graph, Discrete Math. 91 (3) (1991)
277-282, MR 1129991.

[15] Dino Lorenzini, Smith normal form and Laplacians, J. Comb. Theory, Ser. B 98 (6) (2008)
1271-1300, MR 2462319.

[16] Venkata Raghu Tej Pantangi, Critical groups of van Lint—Schrijver cyclotomic strongly regular
graphs, Finite Fields Appl. 59 (2019) 32-56, MR 3957505.

[17] Venkata Raghu Tej Pantangi, Peter Sin, Smith and critical groups of polar graphs, J. Comb. Theory,
Ser. A 167 (2019) 460-498, MR 3959750.

[18] Ted Spence, Strongly regular graphs on at most 64 vertices, http://www.maths.gla.ac.uk/~es/
srgraphs.php, 2019.

[19] A. Vince, Elementary divisors of graphs and matroids, Eur. J. Comb. 12 (5) (1991) 445-453, MR
1129815.


http://refhub.elsevier.com/S0097-3165(21)00023-6/bibE6AF33EE774D8FC4E174E862DC139430s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibE6AF33EE774D8FC4E174E862DC139430s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibE6AF33EE774D8FC4E174E862DC139430s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib0B251EDBD85FEDA75122CFF6E676CF8Ds1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib0B251EDBD85FEDA75122CFF6E676CF8Ds1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib2E067E1741CFA3FD7AAB031400DBA326s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib2E067E1741CFA3FD7AAB031400DBA326s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib137933B7ED1FB3DDF7519D1639D93586s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bib137933B7ED1FB3DDF7519D1639D93586s1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibD6D472F64F700F604231731E2B6E963Ds1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibD6D472F64F700F604231731E2B6E963Ds1
http://www.maths.gla.ac.uk/~es/srgraphs.php
http://www.maths.gla.ac.uk/~es/srgraphs.php
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibD1D73D7BD6B463D7C31F6AE54B56F2DDs1
http://refhub.elsevier.com/S0097-3165(21)00023-6/bibD1D73D7BD6B463D7C31F6AE54B56F2DDs1

	Critical group structure from the parameters of a strongly regular graph
	1 Introduction
	2 Preliminaries
	2.1 Strongly regular graphs
	2.2 Critical groups

	3 Sylow p-subgroup structure
	Acknowledgments
	References


