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Kuo introduced his 4-point condensation in 2003 for bipartite 
planar graphs. In 2006 Kuo generalized this 4-point conden-
sation to planar graphs that are not necessarily bipartite. His 
formula expressed the product between the number of perfect 
matchings of the original graph G and that of the subgraph 
obtained from G by removing the four distinguished vertices 
as a Pfaffian of order 4, whose entries are numbers of perfect 
matchings of subgraphs of G obtained by removing various 
pairs of vertices chosen from among the four distinguished 
ones. The compelling elegance of this formula is inviting of 
generalization. Kuo generalized it to 2k points under the spe-
cial assumption that the subgraph obtained by removing some 
subset of the 2k vertices has precisely one perfect matching. 
In this paper we prove that the formula holds in the general 
case. We also present a number of applications.

© 2015 Published by Elsevier Inc.

1. Introduction

In [8] Kuo introduced the method of graphical condensation as a powerful way to 
obtain recurrences for the number of perfect matchings of planar bipartite graphs. Let 
G be a plane bipartite graph with the same number of vertices in its two color classes 
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V1 and V2. Let a, b, c, d be vertices appearing in cyclic order on some face of G, with 
a, c ∈ V1 and b, d ∈ V2. Then Theorem 2.1 of [8] states that

M(G) M(G \ {a, b, c, d}) = M(G \ {a, b}) M(G \ {c, d}) + M(G \ {a, d}) M(G \ {b, c}),
(1.1)

where M(H) stands for the number of perfect matchings of the graph H.
Kuo then generalized this in [9] to planar graphs that are not necessarily bipartite. 

Namely, for any planar graph G and any four vertices a, b, c, d that appear in cyclic 
order on some face of G, one has by Proposition 1.1 of [9] that

M(G) M(G \ {a, b, c, d}) = M(G \ {a, b}) M(G \ {c, d}) − M(G \ {a, c}) M(G \ {b, d})
+ M(G \ {a, d}) M(G \ {b, c}),

(1.2)

which, as Kuo points out in [9], can also be written in the compelling form

M(G) M(G \ {a, b, c, d})

= Pf

⎡
⎢⎢⎣

0 M(G \ {a, b}) M(G \ {a, c}) M(G \ {a, d})
−M(G \ {a, b}) 0 M(G \ {b, c}) M(G \ {b, d})
−M(G \ {a, c}) −M(G \ {b, c}) 0 M(G \ {c, d})
−M(G \ {a, d}) −M(G \ {b, d}) −M(G \ {c, d}) 0

⎤
⎥⎥⎦ . (1.3)

The striking elegance of this formula is inviting of generalization. Kuo generalized it to 
2k points under the special assumption that the subgraph obtained by removing some 
subset of the 2k vertices has precisely one perfect matching (see Theorem 3.1 of [9]).

In this paper we prove that the formula holds in the general case. As applications of 
it, we present a conceptual proof of a theorem of Eisenkölbl and a generalization of it. 
For three recent applications of Kuo’s original formula to enumerate lozenge tilings of 
various regions on the triangular lattice see [1–3].

2. The general Pfaffian graphical condensation

Our generalization of Kuo’s graphical condensation (1.3) is the following. A weighted
graph is a graph with weights (that could be considered as indeterminates) on its edges. 
For a weighted graph G, M(G) denotes the sum of the weights of the perfect matchings 
of G, where the weight of a perfect matching is taken to be the product of the weights 
of its constituent edges.

Theorem 1. Let G be a planar graph with the vertices a1, . . . , a2k appearing in that cyclic 
order among the vertices of some face of G. Consider the skew-symmetric matrix A =
(aij)1≤i,j≤2k with nonzero entries given by
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aij :=
{

M(G \ {ai, aj}), if i < j

−M(G \ {ai, aj}), if i > j

Then we have that

[M(G)]k−1 M(G \ {a1, . . . , a2k}) = Pf(A). (2.1)

We note that situations when the considered face of the graph looks like one of those 
pictured in Fig. 1 are allowed. This is discussed is detail in Remark 1 below.

In our proof of the above theorem we make use of the following auxiliary result that 
presents some interest on its own. This result was inspired by the circle of ideas presented 
by Fulmek in his comprehensive overview [6] of the method of overlapping Pfaffians, while 
the author was teaching a graduate course based on it. The assertion of Proposition 1
follows also from a Pfaffian identity due to Ohta by the Kasteleyn–Percus method (see 
Theorem 5 and Section 5 in [6]).

Proposition 1. Let G be a planar graph with the vertices a1, . . . , a2k appearing in that 
cyclic order among the vertices of some face of G. Then

M(G) M(G \ {a1, . . . , a2k}) + M(G \ {a1, a3}) M(G \ {a1, a3}) + · · ·
+ M(G \ {a1, a2k−1}) M(G \ {a1, a2k−1})

= M(G \ {a1, a2}) M(G \ {a1, a2}) + M(G \ {a1, a4}) M(G \ {a1, a4}) + · · ·
+ M(G \ {a1, a2k}) M(G \ {a1, a2k}), (2.2)

where {ai, aj} stands for the complement of {ai, aj} in the set {a1, . . . , a2k}.

Proof. Denote by M(G) the set of perfect matchings of the graph G. Patterned on the 
two sides of Eq. (2.2), consider the disjoint unions of Cartesian products

M(G) ×M(G \ {a1, . . . , a2k}) ∪M(G \ {a1, a3}) ×M(G \ {a1, a3}) ∪ · · ·
∪M(G \ {a1, a2k−1}) ×M(G \ {a1, a2k−1})

(2.3)

and

M(G \ {a1, a2}) ×M(G \ {a1, a2}) ∪M(G \ {a1, a4}) ×M(G \ {a1, a4}) ∪ · · ·
∪M(G \ {a1, a2k}) ×M(G \ {a1, a2k}).

(2.4)

For any element (μ, ν) of (2.3) or (2.4), think of the edges of μ as being marked by solid 
lines, and of the edges of ν as marked by dotted lines, on the same copy of the graph G
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(any edge common to μ and ν will be marked both solid and dotted, by two parallel 
arcs).

Define the weight of (μ, ν) to be the product of the weight of μ and the weight of ν. 
Then the total weight of the elements of the set (2.3) is equal to the left hand side of 
Eq. (2.2), while the total weight of the elements of the set (2.4) equals the right hand side 
of (2.2). Therefore, to prove (2.2) it suffices to construct a weight-preserving bijection 
between the sets (2.3) and (2.4).

We construct such a bijection as follows. Let (μ, ν) be an element of (2.3). Our con-
struction depends upon the particular set of the union (2.3) that (μ, ν) belongs to.

If (μ, ν) ∈ M(G) ×M(G \{a1, . . . , a2k}), map (μ, ν) to what we get from it by “shifting 
along the path containing a1.” More precisely, note that when considering the edges of 
μ and ν together on the same copy of G, each of the vertices a1, . . . , a2k is incident to 
precisely one edge (namely, a solid edge), while all the other vertices of G are incident to 
one solid edge and one dotted edge. This implies that μ ∪ν is the disjoint union of paths 
connecting the ai’s to one another in pairs, and cycles covering the remaining vertices 
of G. Consider the path containing a1, and change each solid edge in it to dotted, and 
each dotted edge to solid. Denote the resulting pair of matchings by (μ′, ν′).

Since before the reversal of type the end edges of this path were solid, after the reversal 
they are both dotted. In addition, this path must connect a1 to one of a2, a4, . . . , a2k, 
because if it connected a1 to an odd-indexed a2i+1 that would isolate the 2i − 1 vertices 
a2, a3, . . . , a2i from the other aj ’s, making it impossible for them to be connected up by 
disjoint paths. Therefore, (μ′, ν′) is an element of (2.4).

Suppose now that (μ, ν) ∈ M(G \ {a1, a3}) ×M(G \ {a1, a3}). Then we map (μ, ν) to 
the pair of matchings (μ′, ν′) obtained from it by reversing “solid” and “dotted” along 
the path P in μ ∪ν containing a3. By the argument in the previous paragraph, this path 
must connect a3 to one of a2, a4, . . . , a2k. Note that, before the reversal, the end edge of 
this path incident to a3 was dotted, and the other end edge was solid. Therefore, after 
the reversal, the other end point of the path P (which is one of a2, a4, . . . , a2k) swaps 
places with a3 from the point of view of being matched by a solid line versus a dotted 
line, and thus (μ′, ν′) is an element of (2.4).

Finally, if (μ, ν) ∈ M(G \ {a1, a2i+1}) × M(G \ {a1, a2i+1}) with i > 1, use the 
construction in the previous paragraph with a3 replaced by a2i+1.

The map (μ, ν) �→ (μ′, ν′) described above can easily be inverted. Indeed, given an 
element (μ′, ν′) of the union (2.4), the pair (μ, ν) that gets mapped to it is obtained by 
shifting along the path in μ′ ∪ ν′ that contains the vertex a2i, where i is the index for 
which (μ′, ν′) ∈ M(G \ {a1, a2i}) ×M(G \ {a1, a2i}). Since the map (μ, ν) �→ (μ′, ν′) is 
also clearly weight-preserving, this completes the proof. �

We will also need the following classical Pfaffian analog of the expansion of a deter-
minant along a row.
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Lemma 1. For any 2n × 2n skew-symmetric matrix A = (aij), we have

Pf(A) =
2n∑
i=2

(−1)ia1i Pf(A1i), (2.5)

where A1i denotes the matrix obtained from A by deleting rows 1 and i, and columns 1
and i.

Proof of Theorem 1. We prove the statement by induction on k. For k = 1 it follows 

from the fact that Pf
[

0 a

−a 0

]
= a.

For the induction step, let k ≥ 2 and assume that the statement holds for k − 1. Let 
A be the matrix
⎡
⎢⎢⎢⎢⎢⎢⎣

0 M(G \ {a1, a2}) M(G \ {a1, a3}) · · · M(G \ {a1, a2k})
−M(G \ {a1, a2}) 0 M(G \ {a2, a3}) · · · M(G \ {a2, a2k})
−M(G \ {a1, a3}) −M(G \ {a2, a3}) 0 · · · M(G \ {a3, a2k})

...
...

...
...

−M(G \ {a1, a2k}) −M(G \ {a2, a2k}) −M(G \ {a3, a2k}) · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.6)

By Lemma 1, we have

Pf(A) =
2k∑
i=2

(−1)i M(G \ {a1, ai}) Pf(A1i) (2.7)

(recall that A1i is the matrix obtained from A by deleting rows 1 and i, and columns 1
and i).

Note that the induction hypothesis applied to the graph G and the 2k− 2 vertices in 
{a1, ai} yields

[M(G)]k−2 M(G \ {a1, ai}) = Pf(A1i), (2.8)

with precisely the same matrices A1i as in (2.7). It follows from (2.7) and (2.8) that

Pf(A) = [M(G)]k−2
2k∑
i=2

(−1)i M(G \ {a1, ai}) M(G \ {a1, ai}). (2.9)

However, by Proposition 1, the sum above equals M(G) M(G \{a1, . . . , a2k}). Thus (2.9)
implies (2.1). �
Remark 1. One special situation is when the face F of G containing the vertices 
a1, . . . , a2k has some pending edges pointing to its interior (see the picture on the left in 



226 M. Ciucu / Journal of Combinatorial Theory, Series A 134 (2015) 221–241
Fig. 1. Circular order on a face with pending edges (left); circular order on a face with “pending graphs” 
(right).

Fig. 1), at least one of which has both endpoints in the set {a1, . . . , a2k}. For definiteness, 
suppose that {a1, a2} is such a pending edge, with a2 having degree one. The unusual 
feature of this situation is that as one moves cyclically around the vertices of F , the 
vertex a1 is visited twice — once just before encountering a2, and once just after that. 
We define circular order in such a circumstance by moving cyclically around the vertices 
of the face F , and recording each ai at its first visit. The statement of Theorem 1 holds 
then without change.

While this situation suffices for the applications presented below, we point out that 
the more general situation depicted on the right in Fig. 1 is also possible, namely when 
instead of pending edges pointing to the interior of the face there are more general graphs 
connected by single edges to the outside boundary of the face. In this case circular order 
is defined in the same way, simply ignoring all the visits to any ai that occur after the 
initial visit. Then Theorem 1 still holds without change.

Corollary 1. Let G be a planar bipartite graph with the same number of vertices in its 
two color classes. Let the vertices a1, . . . , ak, bk, . . . , b1 appear in that cyclic order on a 
face of G, and suppose that all the ai’s belong to one color class, and all the bj’s to the 
other. Then

[M(G)]k−1 M(G \ {a1, . . . , ak, b1, . . . , bk}) = det [M(G \ {ai, bj})]1≤i,j≤k . (2.10)

Proof. Use Theorem 1 to express the left hand side of (2.10) as the Pfaffian of a 2k× 2k
matrix. Since G is bipartite, the top left and bottom right quarters of this matrix consist 
of 0’s. Furthermore, if

B = [M(G \ {ai, bk−j+1})]1≤i,j≤k

is the top right quarter, then the bottom left quarter is −BT . Since the Pfaffian is 
the square root of the determinant, (2.10) follows, up to sign. The sign turns out to 
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Fig. 2. H4,3,2
3,5,4 .

be precisely offset by reversing the order of the columns in the determinant (see e.g. 
Corollary 1 of [6]). This completes the proof. �
3. A conceptual proof of Eisenkölbl’s theorem

In [5], Eisenkölbl proved the following formula for the number of lozenge tilings of a 
hexagon with three unit dents along alternating sides.

Recall that the Pochhammer symbol (a)k is defined by

(a)k = a(a + 1) · · · (a + k − 1). (3.1)

Theorem 2. Let Hr,s,t
a,b,c be the region obtained from the hexagon of side lengths a, b +3, c, a +

3, b, c + 3 (clockwise, starting with the northern side) by deleting three up-pointing unit 
triangles from along its boundary as indicated in Fig. 2. Then we have

M(Hr,s,t
a,b,c) = (r + 1)b(s + 1)c(t + 1)a(a + 3 − r)c(b + 3 − s)a(c + 3 − t)b

×
∏a

k=0 k!
∏b

k=0 k!
∏c

k=0 k!
∏a+b+c+2

k=0 k!∏b+c+2
k=0 k!

∏a+c+2
k=0 k!

∏a+b+2
k=0 k!

×
[
(a + 1)(b + 1)(c + 1)(a + 2 − r)(b + 2 − s)(c + 2 − t) + (a + 1)(b + 1)(c + 1)rst

−(a + 2 − r)(b + 2 − s)(c + 2 − t)rst + (a + 1)(c + 1)(b + 2 − s)(c + 2 − t)rs

+ (b + 1)(a + 1)(a + 2 − r)(c + 2 − t)st + (c + 1)(b + 1)(a + 2 − r)(b + 2 − s)rt
]
.

(3.2)

Our original observation which sparked the current paper was that the 6-term factor 
above can be written in terms of a 3 by 3 determinant as

rstr′s′t′(a + 1)(b + 1)(c + 1) det

⎡
⎣

1
r′

1
b+1

1
t

−1
r

1
s′

1
c+1

1 1 1

⎤
⎦ ,
−a+1 − s t′
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Fig. 3. The region H∗
3,5,4 and its chosen vertices.

where for brevity of notation we wrote r′ = a + 2 − r, s′ = b + 2 − s and t′ = c +
2 − t.

The reason for this is apparent from our proof of Eisenkölbl’s theorem, presented 
below.

Proof. Denote by H∗
a,b,c the region obtained from Hr,s,t

a,b,c by filling back the three unit 
dents along its sides, and adding three additional unit triangles sticking out next to the 
bottom left, right, and top left corners as indicated in Fig. 3.

Apply Theorem 1 to the planar dual graph1 G of H∗
a,b,c, with k = 3, and the six 

removed vertices chosen to correspond to the three dents in the statement of the theorem 
and the three unit triangles that stick out2 (see Fig. 4). Let a1, a2 and a3 be the dents 
along the sides of lengths a + 3, b + 3 and c + 3, respectively, and let b1, b2 and b3 be 
the unit triangles that stick out from the corresponding edges. Then b1, a1, b2, a2, b3, a3
occur in cyclic order along the unbounded face of G (see the convention in Remark 1
for the case when an ai shares an edge with a bj). Thus, by Theorem 1, we obtain that 
[M(G)]2 M(G \ {b1, a1, b2, a2, b3, a3} is equal to the Pfaffian of the matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 M(Gb1,a1) M(Gb1,b2) M(Gb1,a2) M(Gb1,b3) M(Gb1,a3)
−M(Gb1,a1) 0 M(Ga1,b2) M(Ga1,a2) M(Ga1,b3) M(Ga1,a3)
−M(Gb1,b2) −M(Ga1,b2) 0 M(Gb2,a2) M(Gb2,b3) M(Gb2,a3)
−M(Gb1,a2) −M(Ga1,a2) −M(Gb2,a2) 0 M(Ga2,b3) M(Ga2,a3)
−M(Gb1,b3) −M(Ga1,b3) −M(Gb2,b3) −M(Ga2,b3) 0 M(Gb3,a3)
−M(Gb1,a3) −M(Ga1,a3) −M(Gb2,a3) −M(Ga2,a3) −M(Gb3,a3) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where for brevity of notation we wrote Gu,v for G \ {u, v}. However, since G is bipartite 
with the same number of vertices in the two color classes, all entries in the above matrix 
corresponding to removing two ai’s or two bj ’s are zero. Thus we obtain

1 The planar dual graph of a region R on the triangular lattice is the graph whose vertices are the unit 
triangles in R, and whose edges connect vertices corresponding to unit triangles that share an edge.
2 Note that, by Remark 1, we do not need to treat separately the cases when some of r, s, t are 0; if that 

happens, we have a “pending edge” situation, and Theorem 1 still applies.
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[M(G)]2 M(G \ {b1, a1, b2, a2, b3, a3}) =

Pf

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 M(Gb1,a1) 0 M(Gb1,a2) 0 M(Gb1,a3)
−M(Gb1,a1) 0 M(Ga1,b2) 0 M(Ga1,b3) 0

0 −M(Ga1,b2) 0 M(Gb2,a2) 0 M(Gb2,a3)
−M(Gb1,a2) 0 −M(Gb2,a2) 0 M(Ga2,b3) 0

0 −M(Ga1,b3) 0 −M(Ga2,b3) 0 M(Gb3,a3)
−M(Gb1,a3) 0 −M(Gb2,a3) 0 −M(Gb3,a3) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

Reordering rows and columns — each simultaneous interchange of two rows and the cor-
responding two columns results in a sign change for the Pfaffian — we obtain from (3.3)
that

[M(G)]2 M(G \ {b1, a1, b2, a2, b3, a3}) = −Pf
[

0 B

−BT 0

]
, (3.4)

where

B =

⎡
⎣ M(G \ {b1, a1}) M(G \ {b1, a2}) M(G \ {b1, a3})
−M(G \ {b2, a1}) M(G \ {b2, a2}) M(G \ {b2, a3})
−M(G \ {b3, a1}) −M(G \ {b3, a2}) M(G \ {b3, a3})

⎤
⎦ .

Since for any k × k matrix C

Pf
[

0 C

−CT 0

]
= (−1)

(k
2
)
det(C) (3.5)

(see e.g. Corollary 1 of [6]), we obtain from (3.4) that

[M(G)]2 M(G \ {b1, a1, b2, a2, b3, a3})

= det

⎡
⎣ M(G \ {b1, a1}) M(G \ {b1, a2}) M(G \ {b1, a3})
−M(G \ {b2, a1}) M(G \ {b2, a2}) M(G \ {b2, a3})
−M(G \ {b3, a1}) −M(G \ {b3, a2}) M(G \ {b3, a3})

⎤
⎦ . (3.6)

Note that by the way we set things up, M(G \ {b1, a1, b2, a2, b3, a3}) is precisely the 
left hand side of (3.2), which we want to determine. The fortunate situation is that all 
the remaining perfect matching counts in (3.6) can be readily obtained. Indeed, due to 
forced3 tiles, we have that

M(G) = M(H∗
a,b,c) = M(Ha+1,b+1,c+1),

3 When considering the lozenge tilings of a region on the triangular lattice, a forced tile is a lozenge that 
is contained in all the tilings of that region. Upon the removal of the forced tiles, the number of tilings of 
the leftover region is the same as the number of tilings of the original region.
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Fig. 4. Removing the forced tiles in H∗
a,b,c.

Fig. 5. Removing forced tiles in the H∗
a,b,c \ {ai, bj}’s.

where Ha+1,b+1,c+1 is the hexagon of sides a + 1, b + 1, c + 1, a + 1, b + 1, c + 1 (clockwise 
from top; see Fig. 4); hence by MacMahon’s classical theorem on boxed plane partitions 
[10] (which are well-known to be equivalent to lozenge tilings of hexagons) we have

M(Ha+1,b+1,c+1) =
∏a

k=0 k!
∏b

k=0 k!
∏c

k=0 k!
∏a+b+c+2

k=0 k!∏b+c+1
k=0 k!

∏a+c+1
k=0 k!

∏a+b+1
k=0 k!

. (3.7)

Furthermore, for all i, j ∈ {1, 2, 3}, after removing the forced tiles, the region corre-
sponding to G \{ai, bj} is a hexagon with a single unit dent along one of its sides (Fig. 5
illustrates the two types of regions that arise this way). The number of its lozenge tilings 
follows thus from the general formula in Proposition 2 below — in addition to an isolated 
dent around the middle, include consecutive runs of xi’s at the extreme left and right in 
Fig. 6 to turn the trapezoidal region into a hexagon with a single dent (see the picture 
on the right in Fig. 6 for an illustration of this; in it, m = 6, n = 5, x1 = 1, x2 = 2, 
x3 = 3, x4 = 7 and x5 = 11). It is routine to verify that plugging in the above explicit 
formulas into (3.6) one obtains (3.2). �

The following formula is Cohn, Larsen and Propp’s [4] translation to lozenge tilings 
of a classical result of Gelfand and Tsetlin [7].
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Fig. 6. T6,5(1, 3, 4, 7, 10) (left); single dent hexagon as a T -region (right).

Fig. 7. Placing k dents on the region Hk
x,y,z (here x = 4, y = 7, z = 5 and k = 7).

Proposition 2. Let Tm,n(x1, . . . , xn) be the region obtained from the trapezoid of side 
lengths m, n, m + n, n (clockwise from bottom) by removing the down-pointing unit 
triangles from along its top that are in positions x1, x2, . . . , xn as counted from left to 
right.4 Then

M(Tm,n(x1, . . . , xn)) =
∏

1≤i<j≤n

xj − xi

j − i
. (3.8)

4. A generalization

We generalize Eisenkölbl’s regions Hr,s,t
x,y,z of the previous section as follows. Let Hk

x,y,z

be the hexagon on the triangular lattice whose sides have lengths x, y+k, z, x +k, y, z+k, 
in clockwise order starting at the top. There are precisely x + y + z + 3k up-pointing 
unit lattice triangles in it that share an edge with the boundary — x + k, y + k, resp. 
z + k along the southern, northeastern, resp. northwestern sides. Choose k of them, and 
denote them by a1, . . . , ak. Our generalization of Eisenkölbl’s regions is the family of 
regions of type Hk

x,y,z \ {a1, . . . , ak} (see Fig. 7 for an example).

4 For short, we sometimes refer to a region of this kind as a T -region, or a T -type region.
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Fig. 8. (a). Region to which we apply condensation. (b). Choosing the vertices.

Theorem 3. Let H�
x,y,z be the region obtained from Hk

x,y,z by augmenting it with 
three strings of contiguous down-pointing unit triangles along its boundary as shown 
in Fig. 8(a); the length of the string on each side is equal to the number of ai’s in 
Hk

x,y,z \ {a1, . . . , ak} along that side. Denote the k down-pointing unit triangles in these 
strings by b1, . . . , bk. Let c1, . . . , c2k be the elements of the set {a1, . . . , ak} ∪ {b1, . . . , bk}
listed in a cyclic order,5 as explained in Remark 1. Then we have

M(Hk
x,y,z \ {a1, . . . , ak}) = 1[

M(H�
x,y,z)

]k−1 Pf
[
M(H�

x,y,z \ {ci, cj})
]
1≤i<j≤2k (4.1)

where the quantities on the right hand side are given by explicit formulas: M(H�
x,y,z) by

(3.7), M(H�
x,y,z \ {ai, bj}) by (3.8) if ai and bj are along the same side and by Propo-

sition 3 if ai and bj are along different sides, and M(H�
x,y,z \ {ai, aj}) = M(H�

x,y,z \
{bi, bj}) = 0.

Remark 2. After simultaneous reorderings of rows and columns (which preserve the 
Pfaffian, up to sign), the matrix in (4.1) can always be brought to the form

[
0 B

−BT 0

]
,

where B is a k× k matrix. Thus, by (3.5), formula (4.1) yields a determinant expression 
for M(Hk

x,y,z \ {a1, . . . , ak}).

5 If a1 (resp., b1) is the leftmost ai (resp., bi) along the bottom side in Fig. 8(b), and a1, . . . , a7
(resp., b1, . . . , b7) occur in counterclockwise order, then a cyclic order of the union of the ai’s and bi’s 
is b1, b2, a1, b3, b4, a2, a3, a4, b5, a5, b6, b7, a6, a7.
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Fig. 9. Region obtained by removing the forced lozenges (a) from H�
x,y,z and (b) from H�

x,y,z \{ai, bj} when 
ai, bj are on the same side.

The subtlety is that the entries of B are signed M(H�
x,y,z \ {ai, bj})’s. For instance, 

for the example in Fig. 8(b), the resulting matrix B is

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ma1,b1 −ma1,b2 ma1,b3 ma1,b4 ma1,b5 ma1,b6 ma1,b7

−ma2,b1 −ma2,b2 −ma2,b3 −ma2,b4 ma2,b5 ma2,b6 ma2,b7

−ma3,b1 −ma3,b2 −ma3,b3 −ma3,b4 ma3,b5 ma3,b6 ma3,b7

−ma4,b1 −ma4,b2 −ma4,b3 −ma4,b4 ma4,b5 ma4,b6 ma4,b7

−ma5,b1 −ma5,b2 −ma5,b3 −ma5,b4 −ma5,b5 ma5,b6 ma5,b7

−ma6,b1 −ma6,b2 −ma6,b3 −ma6,b4 −ma6,b5 −ma6,b6 −ma6,b7

−ma7,b1 −ma7,b2 −ma7,b3 −ma7,b4 −ma7,b5 −ma7,b6 −ma7,b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where for brevity of notation we wrote mai,bj for M(H�
x,y,z \ {ai, bj}).

Proof. Formula (4.1) follows directly from Theorem 1, with G chosen to be the planar 
dual graph of the region H�

x,y,z, and a1, . . . , ak and b1, . . . , bk chosen to be the vertices of 
G corresponding to the unit triangles a1, . . . , ak, b1, . . . , bk in the statement of Theorem 3.

In order to see how the quantities on the right hand side of (4.1) are given by the 
indicated formulas, let us consider first the region H�

x,y,z. The three strings of bi’s in it 
force many lozenges to be part of every tiling of H�

x,y,z. After all these forced lozenges 
are removed, the resulting region is a lattice hexagon (see Fig. 9(a)). Since H�

x,y,z is 
balanced (i.e., has the same number of up-pointing and down-pointing unit triangles), 
so is the resulting hexagon. Then the lengths of opposite sides must be the same, and 
the number of lozenge tilings is indeed given by formula (3.7).

We turn next to the entries of type M(H�
x,y,z \ {ai, bj}), where ai and bj are along 

the same side of H�
x,y,z. Here we distinguish two cases. If in H�

x,y,z \ {ai, bj}, below the 
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Fig. 10. The two types of regions obtained from H�
x,y,z \ {ai, bj} by removing the forced lozenges, when ai, 

bj are on different sides.

removed unit triangle ai, there is an unremoved unit triangle bk, then there is no way to 
cover bk by a lozenge, so M(H�

x,y,z \ {ai, bj}) = 0 in this case.
Otherwise, either ai and bj share an edge, or ai does not share an edge with any of the 

bk’s. Fig. 9(b) illustrates the latter situation. Clearly, after removing the forced lozenges, 
the resulting region is of the type covered by Proposition 2, so M(H�

x,y,z \ {ai, bj}) is 
given in this case by formula (3.8). One readily sees that the same holds in the former 
situation.

The remaining entries of type M(H�
x,y,z \ {ai, bj}) are those for which ai and bj were 

removed from along different sides of H�
x,y,z. There are two different situations to dis-

tinguish, corresponding to the cases when the side from which ai was removed is the 
next nearest neighbor of the side from which bj was removed in the counter-clockwise 
direction, or in the clockwise direction (these are illustrated in Figs. 10(a) and (b), re-
spectively). After removing the forced lozenges, the resulting regions are readily seen to 
be of the types covered by Proposition 3(a) and (b), respectively.

Since H�
x,y,z \ {ai, aj} and H�

x,y,z \ {bi, bj} are not balanced (i.e., they do not contain 
the same number of up-pointing and down-pointing unit triangles), they have no lozenge 
tilings. This completes the proof. �
Proposition 3. (a). Let Hx,y,z(k, l) be the region obtained from the hexagon of side lengths 
x, y+k+1, z, x +k+1, y, z+k+1 (clockwise from top) by removing an up-pointing unit 
triangle from its northwestern side, l units above the western corner, and an up-pointing 
triangle of side k from its northeastern side, one unit above the eastern corner (see the 
picture on the left in Fig. 11 for an illustration).
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Fig. 11. The hexagons with two notches H4,7,3(2, 2) (left) and H′
4,7,3(2, 2) (right).

Let m = min(x, y) and M = max(x, y). Then we have

M(Hx,y,z(k, l)) = M(Hx,y,k)
p(z, l)
p(0, 0) , (4.2)

where M(Hx,y,k) is given by (3.7), and the polynomial p(z, l) is defined to be

p(z, l) := (l + 1)y(z + k − l + 1)x

×
m∏
i=1

(z + k + i + 1)i
M∏

i=m+1
(z + k + i + 1)m

M+m−1∏
i=M+1

(z + k + i + 1)M+m−i

×
k+1∑
i=1

(−1)i−1

(i− 1)!(k − i + 1)! (l − k + i)k−i+1(l + y + 1)i−1(z + 1)i−1(z + i + 1)k−i+1.

(4.3)

(b). Let H ′
x,y,z(k, l) be the region defined precisely as Hx,y,z(k, l), with the one excep-

tion that the up-pointing triangle of side k is one unit below the northeastern corner, 
rather than one unit above the eastern corner (see the picture on the right in Fig. 11 for 
an illustration).

Let ν = min(y − 1, k), and define d(z) by

d(z) :=

⎧⎪⎪⎨
⎪⎪⎩

(z + 2)1 · · · (z + ν + 1)ν · · · (z + y + k − ν)ν · · · (z + y + k − 1)1, ν ≥ 1
1, ν = 0
1

(z + 1)k
, ν = −1

(4.4)

(in the first branch the bases are incremented by 1 from each factor to the next; the 
exponents are incremented by one until they reach ν, stay equal to ν across the middle 
portion, and then they decrease by one unit from each factor to the next).
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Then we have

M(H ′
x,y,z(k, l)) =

(
x + k

k

)
q(z, l)
q(0, 0) , (4.5)

where the polynomial q(z, l) is defined to be

q(z, l) := d(z) (l + 1)y(z + k − l + 1)x

×
m∏
i=1

(z + k + i + 1)i
M∏

i=m+1
(z + k + i + 1)m

M+m−1∏
i=M+1

(z + k + i + 1)M+m−i

×
k+1∑
i=1

(−1)i−1

(i− 1)!(k − i + 1)! (l − k + i)k−i+1(l + y + 1)i−1(l − k − z)i−1

× (l − k − z + i)k−i+1 (4.6)

(as in part (a), m = min(x, y) and M = max(x, y)).

Note that the formulas giving p(z, l) and q(z, l) are very closely related: except for the 
factor d(z) in the latter, the linear parts are precisely the same, and the sum factor in 
the latter is obtained from the sum factor in the former by replacing z by l− k − 1 − z.

Furthermore, the constant multiple 
(
x+k
k

)
in the formula for M(H ′

x,y,z(k, l)) arises in 
fact as M(Hx,1,k) (the two are equal by (3.7)), and is thus analogous to the constant 
multiple in the formula for M(Hx,y,z(k, l)).

Our proof of the above result is based on Kuo’s original graphical condensation re-
currence (see [8]). For ease of reference, we state below the particular instance of Kuo’s 
general results that we need for our proofs.

Theorem 4. (See [8, Theorem 2.4].) Let G = (V1, V2, E) be a plane bipartite graph in 
which |V1| = |V2| + 1. Let vertices a, b, c and d appear cyclically on a face of G. If 
a, b, c ∈ V1 and d ∈ V2, then

M(G− b) M(G− {a, c, d}) = M(G− a) M(G− {b, c, d}) + M(G− c) M(G− {a, b, d}).
(4.7)

Proof of Proposition 3. We prove part (a) by induction, using Kuo condensation. Aug-
ment the region Hx,y,z(k, l) by placing on its top a trapezoidal band consisting of 2x − 1
unit triangles as illustrated on the left in Fig. 12 (which shows the region obtained this 
way from the region on the left in Fig. 11); denote the resulting region by H̃x,y,z(k, l). 
We apply Kuo condensation to the dual graph of H̃x,y,z(k, l), with the vertices a, b, c, d
corresponding to the unit triangles indicated on the left in Fig. 12.

In the graphs resulting this way from Eq. (4.7) there are many edges that are forced 
to be part of every perfect matching. The situation is illustrated — for the corresponding 
dual lattice regions — in Fig. 13.
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Fig. 12. The augmented region H̃4,7,3(2, 2) (left) and F4,6,5(2) (right).

Eq. (4.7) states that the product of the number of lozenge tilings of the two regions on 
top in Fig. 13 is equal to the product of the number of lozenge tilings of the two regions 
in the middle, plus the product of the number of lozenge tilings of the two regions on 
the bottom.

After removing the forced lozenges, it is clear that the region resulting from the region 
on the top left in Fig. 13 is Hx,y,z(k, l).

Denote by Fx,y,z(l) the region obtained from a hexagon of sides x, y+1, z, x +1, y, z+1
by removing the up-pointing unit triangle from its boundary that is l units above the 
western corner (see the picture on the right in Fig. 12). Then what is left from the region 
on the top right in Fig. 13 after removing the forced lozenges is precisely the region 
Fx−1,y,z+k(l − 1).

Similarly, one sees that the regions resulting from the two regions in the middle of 
Fig. 13 after removing the forced lozenges are Hx−1,y+1,z(k, l − 1) and Fx,y−1,z+k(l). 
The two regions on the bottom in Fig. 13 lead similarly to Fx−1,y,z+k+1(l) and 
Hx,y,z−1(k, l − 1), respectively.

Therefore, by Eq. (4.7) we obtain

M
(
Hx,y,z(k, l)

)
M

(
Fx−1,y,z+k(l − 1)

)
= M

(
Hx−1,y+1,z(k, l − 1)

)
M

(
Fx,y−1,z+k(l)

)

+ M
(
Hx,y,z−1(k, l − 1)

)
M

(
Fx−1,y,z+k+1(l)

)
. (4.8)

All the regions in this recurrence are well-defined provided x ≥ 1, z ≥ 1, and l ≥ 1.
For x = 0 we can verify formula (4.2) directly. Indeed, in this case the region 

H0,y,z(k, l) looks as illustrated in Fig. 14(a). Note that after removing the forced lozenges, 
the path of lozenges6 connecting the portion of length 1 of the boundary just above the 

6 We are using here the well-known encoding of lozenge tilings as families of non-intersecting paths of 
lozenges. To recall it briefly, consider a lozenge tiling of the region illustrated in Fig. 14(a). Focus on the 
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Fig. 13. Obtaining the recurrence for the regions Hx,y,z(k, l).

segment s0 indicated by the curly brace labeled 1. Consider the lozenge in the chosen tiling that touches 
it, and let s1 be its side opposite s0. Now s1 bounds two lozenges: the one that also bounds s0, and a 
new one. Let s2 be the side of the new lozenge opposite s1. There is again a new lozenge bounding s2, 
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Fig. 14. The case x = 0.

eastern corner to the southwestern side (which necessarily ends at the bottommost unit 
segment of the latter) must cross the thick dotted line in Fig. 14(b). This dotted line 
has length k + 1 (or possibly less, in case it meets the boundary at an interior point 
of the southern side). The number of tilings of H0,y,z(k, l) for which the segment s at 
which this path of lozenges meets the dotted line is fixed is readily seen to be the same 
as the number of tilings of H0,y,z(k, l) which contain all the lozenges that straddle the 
remaining unit segments of the dotted line, but not the lozenge that straddles the unit 
segment s (see Fig. 14(c)). However, the latter is just the product of the number of 
tilings of the two T -type regions indicated in Fig. 14(c). Therefore, by Proposition 2, 
M(H0,y,z(k, l)) is equal to a sum of (at most) k+1 simple products. It is straightforward 
to check that the resulting expression agrees with the right hand side of (4.2).

For z = 0, we can verify formula (4.2) as follows. The region Hx,y,0(k, l) looks as 
illustrated in Fig. 15(a). After removing the forced lozenges, we obtain from it a T -type 
region, whose number of tilings is given by Proposition 2. It is not hard to check that 
the resulting formula agrees with the z = 0 specialization of the expression on the right 
hand side of (4.2). Indeed, by construction z + k − l ≥ 0 (see the picture on the left in 
Fig. 11), and since we are in the case z = 0, we have l ≤ k. If l < k, due to the factor 
(l − k + i)k−i+1 in the summand of the sum in (4.3), this summand is non-0 only for 
i = k + 1. Thus verification of (4.2) amounts to checking that two explicit products of 
linear factors have the same value, which is readily checked.

For l = k, the sum in (4.3) becomes

k+1∑
i=1

(−1)i−1

(i− 1)!(k − i + 1)! (i)k−i+1(k + y + 1)i−1(z + 1)i−1(z + i + 1)k−i+1.

and so on. This defines the path of lozenges starting at s0. Similar paths start from the y unit segments 
of the portion of the northeastern boundary spanned by the curly brace labeled y. Of these y + 1 paths 
of lozenges, y end on the southwestern side of the region, and one on the northeastern side of the dent of 
side 1. The fundamental fact is that lozenge tilings are in bijection with such families of non-intersecting 
paths of lozenges.
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Fig. 15. The case z = 0.

One readily sees that for z = 0 (which is the case under consideration) the above ex-
pression can be written as

k!
k∑

i=0

(
−k − y − 1

i

)(
k + 1
k − i

)
,

which in turn, by the Chu–Vandermonde identity, evaluates to k!
(−y

k

)
. Thus the verifi-

cation of case z = 0, l = k also amounts to checking that two explicit products of linear 
factors agree, which is easily done.

We may assume therefore that x ≥ 1 and z ≥ 1. We prove formula (4.2) by induction 
on l, using recurrence (4.8) at the induction step.

The base case is l = 0. It is clear from Fig. 11 that for l = 0 there is a band of forced 
lozenges along the southwestern side of Hx,y,z(k, l), and that after removing this band 
one is left with a hexagon with a single notch of side k on its northeastern side. However, 
such a region is readily seen to be a T -region of the type addressed by Proposition 2 (see 
the picture on the left in Fig. 6), and thus the number of its lozenge tilings is given by 
the product formula (3.8). It is routine to check that the resulting formula agrees with 
the l = 0 specialization of formula (4.2) (note in particular that, due to the presence of 
the factor (l − k + i)k−i+1 in the summand in (4.3), all but the last term in the sum in 
(4.3) are zero).

For the induction step, assume that formula (4.2) holds for all instances when the 
value of the l-parameter is l− 1, and consider the region Hx,y,z(k, l). Since we are in the 
case x ≥ 1 and z ≥ 1, and we are assuming l ≥ 1, all six regions in Eq. (4.8) are well 
defined. Moreover, the F -regions are clearly special cases of the T -regions addressed by 
Proposition 2, and therefore have the number of their lozenge tilings expressed by the 
simple product formula (3.8).

Therefore, by (4.8) and by the induction hypothesis, we obtain that M(Hx,y,z(k, l))
is a sum of two concrete product expressions, each involving, besides a single factor 
having the type of the sum in (4.3), only linear factors. It is routine to check that the 
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sum of these two products agrees with the product on the right hand side of (4.2). This 
concludes the proof of part (a).

The proof of part (b) is completely analogous. �
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