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1. Introduction

In the late 1960’s Askey formulated several conjectures about the nonnegativity of integrals of
products of orthogonal polynomials times certain functions. An excellent survey of the research in
this area, which was spearheaded by Askey, is Askey’s CBMS lecture notes [3], see also [1]. In the
1970’s it was realized that some of the integrals considered by Askey and his coauthors have combi-
natorial interpretations. Even and Gillis [11] showed that the number of derangements of sets of sizes
n1,n2, . . . ,nm is

(−1)n1+···+nm

∞∫
0

e−x
m∏

j=1

Ln j (x)dx, (1.1)

where Ln(x)’s are the simple Laguerre polynomials, while Azor, Gillis, and Victor [7] and indepen-
dently Godsil [16] showed that the number of perfect matchings of sets of sizes n1,n2, . . . ,nm is

2−(n1+···+nm)/2
∫
R

e−x2

√
π

m∏
j=1

Hn j (x)dx,

where Hn(x)’s are the Hermite polynomials. Askey and Ismail [4] used the MacMahon Master theorem
to give a systematic combinatorial treatment of the integrals of products of the classical polynomials
with respect to certain measures. One of them generalized the Even and Gillis result to Meixner
polynomials. Foata and Zeilberger [12] considered the general Laguerre numbers

(−1)
∑m

j=1 n j n1! · · ·nm!
∞∫

0

xαe−x

Γ (α + 1)

m∏
j=1

L(α)
n j

(x)dx,

where L(α)
n (x)’s are the Laguerre polynomials. Zeng and, Kim and Zeng extended this study to all

Sheffer polynomials in [24,34,35].
In their combinatorial study of integrals of products of orthogonal polynomials Askey and Ismail

[4] pointed out another source of positivity results. Recall that a system {Q n(x)} of birth and death
process polynomials [20], [17, §5.2], is generated by
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Q 0(x) = 1, Q 1(x) = [b0 + d0 − x]/d0,

−xQ n(x) = bn Q n+1(x) + dn Q n−1(x) − (bn + dn)Q n(x), (1.2)

where {bn} and {dn} are the birth and death rates, respectively, are such that

λn > 0, n � 0, and dn > 0, n > 0, d0 � 0. (1.3)

Karlin and McGregor [20] showed that the probability to go from state (population) m to state (pop-
ulation) n in time t is given by

pm,n(t) = b0b1 · · ·bn−1

d1d2 · · ·dn

∞∫
0

e−xt Q m(x)Q n(x)dμ(x), t > 0, (1.4)

where μ is the orthogonality measure of {Q n(x)}. This proves that

∞∫
0

e−xt Q m(x)Q n(x)dμ(x) � 0. (1.5)

The Laguerre polynomials correspond to bn = n + 1, dn = n + α. Thus

∞∫
0

e−xt xαe−xL(α)
m (x)L(α)

n (x)dx > 0, α � 0, t > 0. (1.6)

This and the derangement number (1.1) motivated us to consider the combinatorial interpretation of
the numbers

A(α)(m,n, s) = (−1)m+n

Γ (α + 1)

∞∫
0

xs

s! L(α)
m (x)L(α)

n (x)xαe−x dx. (1.7)

One important tool used in the combinatorial study of the integrals of orthogonal polynomials is
MacMahon’s Master theorem and its β-extension due to Foata–Zeilberger [12]. When the β-extension
of MacMahon’s Master theorem is combined with the exponential formula [30,33], all the known
combinatorial interpretations of the linearization coefficients of the orthogonal Sheffer polynomials
can be deduced by computing their generating functions. Another way to gain insight into the combi-
natorial interpretation of the linearization coefficients is from their corresponding moment sequences,
see [24,32,35],

μn =
∫
R

xn dμ(x). (1.8)

However the generating function approach fails when one tries to extend the previous results to their
q-analogues, even though a conjecture for the combinatorial interpretation is formulated. For example,
an important q-analogue for the linearization coefficients of Hermite polynomials was given by Ismail,
Stanton and Viennot [18], but their proof remains difficult. We are grateful to a referee for pointing
out that Effros and Popa rediscovered the lsmail–Stanton–Viennot result in [10]. Another proof due to
Anshelevich [2] uses stochastic processes, and is also far from being elementary. Our paper provides
a fresh approach to linearization questions. Indeed, one of the main results of this paper is to give an
elementary proof of the Ismail–Stanton–Viennot result.

Separation of variables is a standard technique to solve linear partial differential equations. The
idea is to seek solutions which are products of single variables then by the principle of linear su-
perposition the general solution is a linear combination of these products. The only problem left is
to use initial and boundary conditions to determine the coefficients. This technique can be used to
solve difference or differential equations. One important application of this method is to solve the
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Chapman–Kolmogorov equations for birth and death processes, see [17, §5.2]. The latter equations is
a system of differential equations in time and partial difference equations in two discrete variables
whose solution is given by (1.4).

In this paper we show how the separation of variables gives integral representations for solutions
of certain combinatorial problems.

Our approach is explained in detail in Section 2. The integrands in our integral representations
are constant multiples of products of orthogonal polynomials times a measure with respect to which
the polynomials are orthogonal. The integral representations arise naturally through separation of
variables of the solution of systems of difference equations satisfied by the combinatorial numbers.
We may reverse the process by starting with integrals of products of orthogonal polynomials times
their orthogonality measure and reach the combinatorial numbers. Some of these integrals arose in
problems involving linearizations of products of orthogonal polynomials where the focus of attention
was their nonnegativity [5,31]. Most of the positivity results originated from work by Askey and his
coauthors in the late 1960’s and 1970’s. For references we refer the interested reader to Askey’s
monograph [3], and to Ismail’s book [17].

The integral representations studied in this work are of the form∫
R

f (x)
m∏

j=1

pn j (λ j x)dμ(x), (1.9)

where μ is a discrete or absolutely continuous measure and f is some integrable function. Ismail
and Simeonov [19] studied the large k behavior of integrals of the form (1.9) when the n j ’s are all
equal. Since the integral in (1.9) represents the number of ways a certain configuration occurs, one
can calculate the probability that such configuration occurs. We shall also study integrals of the type
(1.9) where the polynomials pn j (x) come from two different families of orthogonal polynomials. The
positivity results which we establish are not only new but seem to be the first of its type.

The rest of this paper is organized as follows. As we already mentioned in the above paragraph our
approach is outlined in Section 2, where we characterize the linearization coefficients of orthogonal
polynomials as the unique solution of some partial differential equations with boundary conditions.
Then we apply the results of Section 2 to various combinatorial problems in Sections 3–8. More
precisely, by solving the corresponding partial difference equations combinatorially, we deduce the
combinatorial interpretations of Hermite and Charlier polynomials, Laguerre polynomials, Meixner
polynomials, Meixner–Pollaczek polynomials, q-Hermite polynomials, q-Charlier polynomials, and q-
Laguerre polynomials, respectively. In each case we start with a combinatorial problem involving
multisets, deduce a difference equation for the combinatorial numbers involved, then identify the
orthogonal polynomials which arise through the machinery developed in Section 2. Furthermore, in
Section 9, we extend the previous results to some more general integrals to include the moments,
inverse coefficients and linearization coefficients. We also compute the corresponding generating
functions for the corresponding integrals of Lagurre and Meixner polynomials and deduce their com-
binatorial interpretation by applying MacMahon’s Master theorem. In Section 10, we give a further
extension of the integrals of Laguerre and Meixner polynomials. Finally, in Section 11, we prove the
crucial step, Lemma 8.1, towards the combinatorial solution of the partial difference equations of q-
Charlier polynomials.

We follow the standard notation for shifted factorials, hypergeometric functions and their q-
analogues as in the books [1,14,17]. The work of Koekoek–Lesky–Swarttouw [27] is also a standard
reference for formulas involving orthogonal polynomials and their basic analogues.

2. Separation of variables and linearization coefficients

Let {pn(x)} be a sequence of orthogonal polynomials∫
pm(x)pn(x)dμ(x) = ζnδm,n, ζ0 = 1. (2.1)
R
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The condition ζ0 = 1 amounts to normalizing total mass of μ to be 1. Then the polynomials {pn(x)}
must satisfy a three term recurrence relation of the form

pn+1(x) = [Anx + Bn]pn(x) − Cn pn−1(x), n > 0, (2.2)

and we will always assume p0(x) := 1, p1(x) = A0x + B0. Therefore

ζn = A0

An
C1C2 · · · Cn. (2.3)

We consider the linearization coefficients in the expansion of
∏m−1

j=1 pn j (λ j x) in {pn(x)}. Equiva-
lently we consider the numbers

I(n) :=
∫
R

(
m−1∏
j=1

pn j (λ jx)

)
pnm (x)dμ(x), (2.4)

where n = (n1, . . . ,nm), n j is a nonnegative integer for 1 � j � m. We shall use the following notation:

I±j (n) = I(n1, . . . ,n j−1,n j ± 1,n j+1, . . . ,nm).

Moreover we assume that λm = 1. It is clear that

I+j (0, . . . ,0,n) = λ jC1
A0

A1
δn,1 + B0(1 − λ j)δn,0, if n = 0,1, and

I(0, . . . ,0) = 1, I(n) = 0 if
m−1∑
j=1

n j < n. (2.5)

Theorem 2.1. The numbers I(n) satisfy the system of difference equations

I+j (n) − u jk(n)I+k (n) = [Bn j − u jk Bnk ]I(n) − Cn j I−j (n) + u jk(n)Cnk I−k (n), (2.6)

where u jk(n) = v j(n)/vk(n) and v j(n) = An j λ j .

Proof. For 1 � t � m, we have by (2.2)

I+t (n) =
∫
R

[
(Ant λt x + Bnt ) pnt (λt x) − Cnt pnt−1(λt x)

]∏
r �=t

pnr (λr x)dμ(x)

= vt(n)

∫
R

x
m∏

r=1

pnr (λr x)dμ(x) + Bnt I(n) − Cnt I−t (n).

Specializing the above equation at t = j and t = k immediately leads to (2.6). �
Observe that in the system (2.6) we assume j,k � 1. It is more convenient to write (2.6) in the

more symmetric form

1

v j(n)
I+j (n) − 1

vk(n)
I+k (n) =

[
Bn j

v j(n)
− Bnk

vk(n)

]
I(n) − Cn j

v j(n)
I−j (n) + Cnk

vk(n)
I−k (n). (2.7)

We will show that the system (2.7) describes many combinatorial problems. From now on we will
consider different combinatorial problems and derive a system of equations of the type (2.7) for the
combinatorial numbers under consideration. Theorems 2.2 and 2.3 identify the combinatorial numbers
as integrals of products of orthogonal polynomials.
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Theorem 2.2. One solution to

y+
j (n) − u jk(n)y+

k (n) = [
Bn j − u jk(n)Bnk

]
y(n) − Cn j y−

j (n) + u jk(n)Cnk y−
k (n), (2.8)

is given by

y(n) =
∫
R

m∏
j=1

pn j (λ j x)dν(x), (2.9)

for any measure ν having finite moments of all orders.

Proof. We try the separation of variables y(n) = ∏m
j=1 F j(n j). When we substitute in (2.8) we get

F j(n j + 1)

v j(n)F j(n j)
+ Cn j F j(n j − 1)

v j(n)F j(n j)
− Bn j

v j(n)
= Fk(nk + 1)

vk(n)Fk(nk)
+ Cnk Fk(nk − 1)

vk(n)Fk(nk)
− Bnk

vk(n)
. (2.10)

Thus each side of the above equation is a constant independent of j or k, so we denote the constant
by x. This leads to the difference equation

F j(n j + 1) = (λ j An j x + Bn j )F j(n j) − Cn j F j(n j − 1),

and the F ′s now depend on x. Comparing with (2.2) and noting that F j(−1) = 0 and F j(0) = 1, we
see that the above recurrence relation has a solution given by F j(n j) = pn j (λ j x) and by the principle
of linear superposition the function in (2.9) is a solution. �
Theorem 2.3. The system of Eqs. (2.8) and the boundary conditions

y+
j (0, . . . ,0,n) = λ jC1

A0

A1
δn,1 + B0(1 − λ j)δn,0, if n = 0,1, and

y(0, . . . ,0) = 1, y(n) = 0 if
m−1∑
j=1

n j < n, (2.11)

have a unique solution which is given by (2.4).

Proof. We know that the multisequence (2.4) satisfies the system of Eqs. (2.8) and boundary condi-
tion (2.11), hence a solution exists. The second boundary condition defines y for n � 0 and when the
rest are zero. The first boundary condition in (2.11) defines y for n and when one other entry = 1
and the rest are zero in a unique way. Letting n = (0, . . . ,1,0, . . . ,n), n > 0 in (2.8) with k = m we
evaluate y(0, . . . ,2,0, . . . ,n) and by induction we evaluate y(0, . . . ,ns,0, . . . ,n), 1 � s < m. Next we
use (2.8) to evaluate y for general nr,n and another nonzero ns: if n > nr + 1, then y(n) with nonzero
entries in the positions r,m of n is zero when we have 1 in the position s; if n � nr + 1, we use
(2.8) with j = s,k = m to evaluate y. Thus we can evaluate y inductively when n has three nonzero
entries. We continue this argument until we reach any desired general n. �
Remark 2.4. It is important to note that (2.8) is satisfied by solutions of the form (2.9) where ν is
any probability measure with finite moments. It is the boundary conditions (2.11) that force ν to be
an orthogonality measure of {pn(x)}.

An important class of orthogonal polynomials is the class of birth and death process polynomials.
They are generated by (1.2). These polynomials have only positive zeros so they are orthogonal with
respect to a probability measure supported on a subset of [0,∞). The idea of separation of variables
is also used to solve the differential-difference equations describing this model, see §5.2 and Theorem
7.2.1 in [17]. Birth and death processes have many applications in applied probability and queueing
theory.
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An immediate consequence of Theorem 2.3 is the following result for the polynomials {Q n(x)}
generated by (1.2).

Theorem 2.5. The system of difference equations

bn j

λ j
y+

j (n) − bnk

λk
y+

k (n) =
[

bn j dn j

λ j
− bnk dnk

λk

]
y(n) − dn j

λ j
y−

j (n) + dnk

λk
y−

k (n), (2.12)

and the boundary conditions

y+
j (0, . . . ,0,n) = λ j

d1

b0
δn,1 +

(
1 + d0

b0

)
δn,0, if n = 0,1, and

y(0, . . . ,0) = 1, y(n) = 0 if
m−1∑
j=1

n j < n, (2.13)

have a unique solution which is given by

y(n) =
∞∫

0

m∏
j=1

Q n j (λ j x)dμ(x), (2.14)

where μ is an orthogonality measure for the polynomials {Q n(x)} in (1.2).

From combinatorial point of view, sometimes it is easier to establish a different kind of difference
equations from (2.6). Since p1(x) = A0x + B0 and pn+1(x) = [Anx + Bn]pn(x) − Cn pn−1(x), we have

λ j p1(x)pn j (λ j x) = A0

An j

pn j+1(λ j x) +
(

λ j B0 − A0

An j

Bn j

)
pn j (λ j x)

+ A0

An j

Cn j pn j−1(λ j x). (2.15)

Substituting in (2.4) yields

I(1,n) = A0

λ j An j

I+j (n) +
[

B0 − A0

An j

Bn j

λ j

]
I(n) + A0

An j

Cn j

λ j
I−j (n). (2.16)

Subtracting (2.16) from itself with j replaced by k, we obtain (2.6). For the Laguerre polynomials, q-
Charlier polynomials and q-Laguerre polynomials, we shall first establish combinatorially (2.16) before
passing to (2.6). Finally we have the following result.

Theorem 2.6. Let n = (n1, . . . ,nm) with m � 1 and n1, . . . ,nm � 0. Any sequence I(n) satisfying the system
(2.16) is uniquely determined by its special values at n = (1, . . . ,1) and the symmetry with respect to the
indices n1, . . . ,nm.

Remark 2.7. Evaluating the special values of the linearization coefficients at n = (1, . . . ,1) amounts to
computing the moments of the corresponding orthogonal polynomials, while the boundary condition
(2.13) is much easier to check and does not need the knowledge of the moments, though the latter
would be a source of inspiration for the linearization coefficients.

3. Linearization coefficients of Hermite and Charlier polynomials

In this section we consider the linearization coefficients of Hermite and Charlier polynomials. We
start with some combinatorial setup, which will also be used in the later sections.
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Fig. 1. Diagrams of, from left to right, the matching M = 1 4/2 6/3 7/5 8, the partition π = 1 4/2 3 7/5 8/6 and the permutation
σ = 8 3 7 4 6 2 5 1.

Fig. 2. Diagrams of, from left to right, a partition in P(2,3,3) and permutation in D(2,3,3).

3.1. Combinatorial definitions

In the sequel, we denote by Mn , Πn and Sn the set of perfect matchings, of partitions and of
permutations, respectively, of [n] := {1,2, . . . ,n}. Recall that a perfect matching of [n] is just a set
partition of [n] the blocks of which have exactly two elements. It is often convenient to represent
pictorially set partitions and permutations of [n]. We first draw n elements on a line labeled 1,2, . . . ,n
in increasing order. Then, the diagram of a partition of [n] is obtained by joining successive elements
of each block by arcs drawn in the upper half-plane. Here, we say that two elements i < j in the block
B are successive, or more precisely that j follows i, if there is no element p ∈ B such that i < p < j.
We denote by (i, j) the arc whose extremities are i and j. The diagram of a permutation σ ∈ Sn is
obtained by drawing an arc i → σ(i) above (resp. under) the line if i < σ(i) (resp. i > σ(i)). Arcs are
always drawn in a way such that any two arcs cross at most once.

In what follows, we fix an m-tuple of nonnegative integers n = (n1, . . . ,nm) such that n = n1 +
· · · + nm and partition the n balls {1, . . . ,n} into m boxes S1, . . . , Sm where S j = {n1 + · · · + n j−1 + 1,

. . . ,n1 + · · · + n j}, n0 = 0, for j = 1, . . . ,m. We denote by [n] the set {1, . . . ,n} with underlying boxes
S1, . . . , Sm , and the corresponding sets of matching, partitions and permutations by

M(n) := Mn, Π(n) := Πn and S(n) := Sn. (3.1)

A partition π of [n] is said to be inhomogeneous if each block of π contains at least two elements and
no two elements in the same block belong to the same box Si (1 � i � m). Similarly, a permutation σ
of [n] is an inhomogeneous derangement if σ(Si) ∩ Si = ∅ for all i ∈ [m]. We let K(n) (resp. P(n) and
D(n)) denote the set of inhomogeneous perfect matchings (resp. partitions and derangements) of [n].
Note that a set partition (resp. permutation) is inhomogeneous if and only in its diagram, there is no
isolated vertex and no arc connecting two elements in the same box S j (1 � j � m). For instance, if
n = (2,3,3), then in Fig. 1 the matching drawn is in K(n) while the partition and the permutation
are not in P(n) and D(n) (they have isolated points). Inhomogeneous objects are drawn in Fig. 2.

3.2. Hermite polynomials and inhomogeneous matchings

The Hermite polynomials {Hn(x)}n�0 can be defined by one of the following five equivalent con-
ditions:

(1) (Coefficients) Hn(x) = ∑
0�2k�n(−1)k n!

2kk!(n−2k)! (2x)n−2k .

(2) (Generating function)
∑∞

n=0 Hn(x) tn

n! = exp(2xt − t2).

(3) (Orthogonality relation)
∫
R

Hm(x)Hn(x)e−x2
dx = 2nn!√πδmn.

(4) (Recurrence relation) 2xHn(x) = Hn+1(x) + 2nHn−1(x), with H−1(x) = 0, H0(x) = 1.

(5) (Moments) μ2n+1 = 0, μ2n = 1 · 3 · · · (2n − 1)/2n .

Let K (n) be the number of inhomogeneous perfect matchings of [n].
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Lemma 3.1. For k, j ∈ [m] and k �= j the numbers K (n) satisfy

K +
j (n) − K +

k (n) = nk K −
k (n) − n j K −

j (n), (3.2)

and the boundary condition (2.11) with λ j = 1 for all j and A0C1 = A1 .

Proof. Let r ∈ [m] and set Nr = n1 + · · · + nr . For any i �= r, the number of matchings in K+
r (n) in

which Nr + 1 is matched with an element in Si is clearly ni K −
i (n). This implies that for any r ∈ [m],

we have

K +
r (n) =

m∑
i=1
i �=r

ni K −
i (n),

from which we immediately deduce (3.2). The boundary conditions in (2.11) are obviously satis-
fied. �
Theorem 3.2. The numbers K (n) have the following integral representation

K (n) = 2−(n1+···+nm)/2
∫
R

e−x2

√
π

m∏
j=1

Hn j (x)dx. (3.3)

Proof. When λ j = 1 for all j, and

An = 1, Bn = 0, Cn = n for all n,

by Lemma 3.1, the numbers K (n) satisfy (2.8) and (2.11). On the other hand, the corresponding or-
thogonal polynomials H̃n(x) satisfy the recurrence relation

xH̃n(x) = H̃n+1(x) + nH̃n−1(x), with H̃−1(x) = 0, H̃0(x) = 1. (3.4)

Hence, these are the normalized Hermite polynomials H̃n(x) = 2−n/2 Hn(x/
√

2) and their orthogonality
relation is

∫
R

H̃m(x)H̃n(x)
e−x2/2

√
2π

dx = n!δmn. (3.5)

Therefore

K (n) =
∫
R

e−x2/2

√
2π

m∏
j=1

2−n/2 Hn j (x/
√

2 )dx,

which is equal to (3.3). �
Note that the exponential formula (see [30, Corollary 5.1.6]) implies that

∑
n1,...,nm�0

K (n)
xn1

1

n1! · · · xnm
m

nm! = exp

(∑
i< j

xi x j

)
. (3.6)

Hence (3.3) can also be proved from the generating function of Hermite polynomials.
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3.3. Charlier polynomials and inhomogeneous partitions

The Charlier polynomials C (a)
n (x) can be defined by one of the following five equivalent conditions:

(1) (Explicit formula) C (a)
n (x) = ∑n

k=0

(n
k

)(x
k

)
k!(−a)n−k .

(2) (Generating function)
∑∞

n=0 C (a)
n (x) wn

n! = e−aw(1 + w)x.

(3) (Orthogonality)
∫ ∞

0 C (a)
n (x)C (a)

m (x)dψ(a)(x) = ann!δmn, where ψ(a) is the step function of which the

jumps at the points x = 0,1, . . . are ψ(a)(x) = e−aax

x! .

(4) (Recursion relation) C (a)
n+1(x) = (x − n − a)C (a)

n (x) − anC (a)
n−1(x).

(5) (Moments) μn = ∑n
k=1 S(n,k)ak , where S(n,k) are the Stirling numbers of the second kind.

The number of blocks of a set partition π is denoted by bl(π). Consider the enumerative polyno-
mial of inhomogeneous partitions

C(n;a) =
∑

π∈P(n)

abl(π). (3.7)

Lemma 3.3. For k, j ∈ [m] and k �= j the polynomials C(n;a) satisfy

C+
j (n;a) − C+

k (n;a) = (nk − n j)C(n;a) + ankC−
k (n;a) − an jC

−
j (n;a), (3.8)

and the boundary condition (2.11) with λ j = 1 for all j and A0C1 = A1 .

Proof. Let N j = n1 + · · · + n j . The partitions of P+
j (n) can be divided into three categories:

• N j + 1 and one element of Sk form a block of two elements, the corresponding generating func-
tion is ankC−

k (n;a);
• N j + 1 and one element of Sk belong to a block containing at least one another element, the

corresponding generating function is
∑

π∈P(n)(nk − nk, j(π))abl(π) , where nk, j(π) is the number
of blocks in π containing both elements of S j and Sk (clearly nk, j(π) = n j,k(π));

• N j + 1 is in a block without any element of Sk , let Rk, j(n;a) be the corresponding generating
function.

Thus we have

C+
j (n;a) =

∑
π∈P(n)

(
nk − nk, j(π)

)
abl(π) + ankC−

k (n;a) + Rk, j(n;a). (3.9)

Exchanging k and j in the latter identity and subtracting the resulting identity from the latter iden-
tity, we obtain (3.8) in view of the symmetry relation Rk, j(n;a) = R j,k(n;a). This relation can be
easily proved, for instance by observing that a partition in P+

j (n) can be seen as an inhomogeneous
partition of the union S1 ∪ S2 ∪· · ·∪ Sm with Si = [Ni−1 +1, Ni] for i �= j and S j = [N j−1 +1, N j]∪ {x}
where x is any object which is not in [n]. �
Remark 3.4. We can also argue as follows. Let n∗ = (n1, . . . ,n j,1,n j+1, . . . ,nm) with j ∈ [m]. It is
fairly easy to show that

C
(
n∗;a

) = C+
j (n;a) + an j C

−
j (n;a) + n j C(n;a). (3.10)

Subtracting the above identity from (3.10) with j = k yields immediately (3.8). We will use this argu-
ment for the Laguerre and Meixner polynomials in the next sections.

We can solve the system (3.8) by applying the method of separation of variables which naturally
leads to the Charlier polynomials.
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Theorem 3.5. The polynomials C(n;a) have the following integral representation

C(n;a) =
∞∫

0

C (a)
n1 (x) · · · C (a)

nm (x)dψ(a)(x). (3.11)

Proof. Clearly (2.8) reduces to (3.8) when λ j = 1 for all j, and

An = 1, Bn = −n − a, Cn = an for all n � 0.

From Lemma 3.3 and Theorem 2.3 we deduce (3.11). �
The above formula was first established by Zeng [34] using the generating function and the expo-

nential formula. A different proof was given by Gessel [15] using rook polynomials.

4. Linearization coefficients of Laguerre polynomials

The shifted factorials are

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1), n > 0. (4.1)

The Laguerre polynomials are defined by

L(α)
n (x) = (α + 1)n

n!
n∑

k=0

(−n)k

k!(α + 1)k
xk, (4.2)

and have the generating function

∞∑
n=0

L(α)
n (x)tn = (1 − t)−α−1 exp

( −xt

1 − t

)
. (4.3)

They satisfy the recurrence relation

(n + 1)L(α)
n+1(x) − (2n + α + 1 − x)L(α)

n (x) + (n + α)L(α)
n−1(x) = 0, (4.4)

and the orthogonality

∞∫
0

xαe−x

Γ (α + 1)
L(α)

m (x)L(α)
n (x)dx = (α + 1)n

n! δm,n. (4.5)

The moments are

μn = 1

Γ (α + 1)

∞∫
0

xα+ne−x dx = (α + 1)n. (4.6)

In this section we shall prove the results of Foata and Zeilberger [12] about the Laguerre poly-
nomials through our method of separation of variables. For π ∈ S(n), we let Fixi π = π(Si) ∩ Si for
i ∈ [m]. For an m-tuple Λ = (λ1, . . . , λm), define

L(n;α,Λ) =
∑

π∈S(n)

(α + 1)cyc(π)
m∏

i=1

(λi − 1)|Fixi π |λ|Si\Fixi π ]
i , (4.7)

where cyc(π) is the number of cycles of π . By definition, for an inhomogeneous permutation
π ∈ D(n) we have | Fixi π | = 0. Hence, when Λ = 1 := (1, . . . ,1) the summands in (4.7) reduce to
(α + 1)cyc(π) if π ∈ D(n) and 0 otherwise. Thus, we have
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L(n;α,1) =
∑

π∈D(n)

(α + 1)cyc(π). (4.8)

Lemma 4.1. For j,k ∈ [m] such that j �= k the polynomials L(n;α,Λ) satisfy

λk L+
j (n;α,Λ) − λ j L

+
k (n;α,Λ)

= [
(2nk + α + 1)λ j − (2n j + α + 1)λk

]
L(n;α,Λ)

+ nk(nk + α)λ j L
−
k (n;α,Λ) − n j(n j + α)λk L−

j (n;α,Λ). (4.9)

Proof. Let n0 = λ0 = 1 and n∗ = (n0,n1, . . . ,nm) with S0 = {1∗}. Then λ j L(n∗;α,Λ) is the generating
function of σ ∈ S(n∗) such that σ(1∗) �= 1∗ and the edge 1∗ → σ(1∗) is weighted by λ j . We show
that

λ j L
(
n∗;α,Λ

) = L+
j (n;α,Λ) − (α + 1)(λ j − 1)L(n;α,Λ)

+ 2n j L(n;α,Λ) + n j(n j + α)L−
j (n;α,Λ). (4.10)

To do so, we adjoin the element 1∗ to S j . Thus (α + 1)(λ j − 1)L(n;α,Λ) is the generating function
of σ ∈S

+
j (n) such that σ(1∗) = 1∗ . Hence, the difference

L+
j (n;α,Λ) − (α + 1)(λ j − 1)L(n;α,Λ)

is the generating function of σ ∈ S
+
j (n) such that σ(1∗) �= 1∗ , moreover the edge 1∗ → σ(1∗) is

weighted by λ j − 1 if σ(1∗) ∈ S j and λ j otherwise. To compensate the over counting, we should add

• the generating function of σ ∈ S
+
j (n) such that σ(1∗) ∈ S j and the edge 1∗ → σ(1∗) is weighted

by 1;
• the generating function of σ ∈ S

+
j (n) such that σ−1(1∗) ∈ S j and the edge σ−1(1∗) → 1∗ is

weighted by 1.

For any σ ∈S
+
j (n), we let a = σ(1∗) and b = σ−1(1∗). There are four cases to consider.

(1) a ∈ S j and b /∈ S j . We can construct such a permutation σ as follows: starting from a permutation
τ ∈ S(n) and choosing a point ξ ∈ S j , we define σ(x) = τ (x) if x �= 1∗, τ−1(ξ), and σ(1∗) = ξ ,
σ(τ−1(ξ)) = 1∗ As the weight of the edge 1∗ → ξ is 1 and that of τ−1(ξ) → 1∗ in σ is equal to
that of τ−1(ξ) → ξ in τ , the weight of σ is equal to that of τ , hence the generating function is
n j L(n;α,Λ).

(2) a /∈ S j and b ∈ S j . Similar to the above case, the generating function is n j L(n;α,Λ).
(3) a ∈ S j and b ∈ S j , but a �= b. Starting from σ ∈S(n∗) we can define the permutation τ on [n]\ {a}

by τ ( j) = σ( j) for j �= a,b and τ (b) = σ(a). Clearly cyc(σ ) = cyc(τ ). Inversely, starting from a
permutation τ ∈ S

−
j (n) there are n j(n j − 1) choices for a and b. Thus, the corresponding gener-

ating function is n j(n j − 1)L−
j (n;α,Λ).

(4) a = b ∈ S j . The generating function is (α + 1)n j L−
j (n;α,Λ).

Summing up the above four cases we obtain (4.10). Now, substituting j by k in (4.10) yields

λk L
(
n∗;α,Λ

) = L+
k (n;α,Λ) − (α + 1)(λk − 1)L(n;α,Λ)

+ 2nk L(n;α,Λ) + nk(nk + α)L−
k (n;α,Λ). (4.11)

Multiplying (4.10) and (4.11) by λk and λ j , respectively, and then subtracting, we obtain the identity
(4.9). �
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We need to state some preliminary results before proving the main result of this section. Let A
and B be two disjoint sets of cardinality m and n, respectively. An injection f from A to A ∪ B can
be depicted by a graph on A ∪ B such that there is an edge x → y if and only if f (x) = y. Hence the
connected components of the graph consists of cycles, i.e., x → f (x) → ·· · → f l(x) with f i(x) ∈ A and
f l(x) = x and paths, i.e., x → f (x) → ·· · → f l(x) with f l(x) ∈ B . Let cyc( f ) be the number of cycles
of f . Then, Foata and Strehl [13] proved∑

f :A→A∪B injection

βcyc( f ) = (β + n)m. (4.12)

Theorem 4.2. The polynomials L(n;α,Λ) have the following integral representation

L(n;α,Λ) = (−1)n1+···+nm
n1! · · ·nm!
Γ (α + 1)

∞∫
0

xαe−x
m∏

j=1

L(α)
n j

(λ jx)dx. (4.13)

Moreover, this formula is equivalent to the special Λ = 1 case.

Remark 4.3. Let us first explain what we mean by the equivalence of (4.13) and its special Λ = 1
case. We first prove that the definition (4.7) implies that L(n;α,Λ) is given by the integral (4.13). By
taking Λ = 1 in (4.13), the formula reduces to the special Λ = 1 case. The point is that we shall prove
that knowing the equality in (4.13) for Λ = 1 proves that the two sides of (4.13) are equal via the use
of the well-known formula [17, Theorem 4.6.5]:

L(α)
n (cx) = (α + 1)n

n∑
k=0

ck(1 − c)n−k

(n − k)!(α + 1)k
L(α)

k (x). (4.14)

The formula (4.13) was first proved by Even and Gillis [11] for α = 0 and Λ = 1. Foata and Zeil-
berger [12] proved the general case of (4.13) by introducing the cycles.

Proof. Clearly (2.8) reduces to (4.9) when λm = 1, and

An = 1, Bn = −(2n + α + 1), Cn = n(n + α)

for all n. That is, the orthogonal polynomials are the normalized Laguerre polynomials pn(x) =
(−1)nn!L(α)

n (x), which satisfy the three-term recurrence relation

xpn(x) = pn+1(x) + (2n + α + 1)pn(x) + n(n + α)pn−1(x), (4.15)

and the orthogonal relation

∞∫
0

xαe−x

Γ (α + 1)
pn(x)pm(x)dx = n!(α + 1)nδm,n.

From Lemma 4.1 and Theorem 2.3 we deduce (4.13) when λm = 1. To recover the general λm �= 1
case, we can proceed as follows: let E be a subset of Sm with cardinality nm − k, we consider the
permutations π of S(n) such that Fixm(π) = E . Any such a permutation corresponds to a pair (σ , τ )

such that σ is the restriction of π on E , which is an injection from E to Sm , and τ is a permutation
on S1 ∪ · · · ∪ Sm−1 ∪ (Sm \ E) defined by τ (x) = π(x) if π(x) /∈ E and τ (x) = π l(x) where l is the
minimum integer such that π l(x) /∈ E . Clearly, the correspondence π �→ (σ , τ ) is a bijection and the
generating function of such permutations is

(α + 1 + k)nm−k(λm − 1)nm−kλk
m L

(
n∗

m;α,Λ∗),
where n∗

m = (n1, . . . ,nm−1,k) and Λ∗ = (λ1, . . . , λm−1,1). Applying the result for λm = 1 case we
obtain
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L(n;α,Λ)

=
nm∑

k=0

(
nm

k

)
(α + 1 + k)nm−k(λm − 1)nm−kλk

m L
(
n∗

m;α,Λ∗)

=
m∏

j=1

(−1)n j n j !
∫
R

xαe−x

Γ (α + 1)

m−1∏
j=1

L(α)
n j

(λ j x)
nm∑

k=0

(α + 1 + k)nm−k(1 − λm)nm−kλk
m

k! L(α)

k (x)dx.

Now, invoking the known formula (4.14), we deduce (4.13).
It remains to show the special Λ = 1 case of (4.13) implies (4.13) for general Λ. As in the above

argument, instead of operating within the last box, applying the same operation to all the boxes and
using (4.13) for Λ = 1 we obtain

L(n;α,Λ) =
∑

k1,...,km�0

m∏
j=1

(
n j

k j

)
(α + 1 + k j)n j−k j (λ j − 1)n j−kkλ

k j

j L(k;α,1)

=
∫
R

xαe−x

Γ (α + 1)

(
m∏

j=1

(−1)n j n j !
n j∑

k=0

(α + 1 + k)n j−k(1 − λ j)
n j−kλk

j

(n j − k)! L(α)

k (x)

)
dx.

Thus, the general formula (4.13) follows by applying the multiplication formula (4.14). �
Remark 4.4. The analogue of (4.13) for Hermite polynomials [25, Proposition 5.1] reads

2−(n1+···+nm)/2
∫
R

e−x2

√
π

m∏
j=1

Hn j (λ j x)dx =
∑

π∈M(n)

m∏
i=1

(
λ2

i − 1
)homi(π)

λ
|Si |−2 homi(π)

i , (4.16)

where homi(π) denotes the number of homogeneous edges in Si for 1 � i � m. When λi = 1, the
right-hand side of (4.16) reduces obviously to the number of inhomogeneous matchings of [n], so the
formula (4.16) becomes (3.3). As the analogue of (4.14) for Hermite polynomials [17, (4.6.33)] is

Hn(cx) =

n/2�∑
k=0

n!(−1)k

k!(n − 2k)!
(
1 − c2)k

cn−2k Hn−2k(x), (4.17)

a similar proof of (4.16) from (3.3) using (4.17) can be given. We leave this to the interested reader.

5. Linearization coefficients of Meixner polynomials

The Meixner polynomials are [17,27]

Mn(x;β, c) = (β)n2 F1(−n,−x;β;1 − 1/c), (5.1)

and satisfy the orthogonality relation

∞∑
x=0

Mm(x;β, c)Mn(x;β, c)
(β)x

x! cx = (β)n n!
cn(1 − c)β

δm,n, β > 0, 0 < c < 1. (5.2)

The Meixner polynomials generalize the Laguerre polynomials in the sense

lim
c→1

Mn
(
x/(1 − c);α + 1, c

) = n!Lα
n (x).

They have the generating function

∞∑
Mn(x;β, c)

tn

n! = (1 − t/c)x(1 − t)−x−β. (5.3)

n=0
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The notation here is slightly different from [17, Chapter 6]. The three-term recurrence relation is

−xMn(x;β, c) = c(1 − c)−1Mn+1(x;β, c) − [
c(β + n) + n

]
(1 − c)−1Mn(x;β, c)

+ (1 − c)−1(β + n − 1)nMn−1(x;β, c). (5.4)

The moments are, see [28,32,35],

μn(β, c) = (1 − c)β
∑
k�0

knck (β)k

k! =
∑

π∈Sn
cwex(π)βcyc(π)

(1 − c)n
, (5.5)

where wex(π) is the number of weak excedances of π , i.e.,

wex(π) = ∣∣{i
∣∣ 1 � i � n and i � π(i)

}∣∣. (5.6)

Let π be a permutation of [n]. We say that π has an excedance (resp. box-excedance) at i ∈ [n]
if i < π(i) (resp. i ∈ Sk , π(i) ∈ S j and j > k). Denote by exc(π) (resp. excb(π)) the number
of excedances (resp. box-excedances) of π . Clearly, if π is an inhomogeneous derangement, then
exc(π) = excb(π). Consider the generating function of the derangements with respect to the numbers
of cycles and (box-)excedances:

M(n;β, c) =
∑

π∈D(n)

βcyc(π)cexc(π). (5.7)

Lemma 5.1. For any k, j ∈ [m] such that k �= j we have

M+
j (n;β, c) − M+

k (n;β, c) = (c + 1)(nk − n j)M(n;β, c) + cnk(nk + β − 1)M−
k (n;β, c)

− cn j(n j + β − 1)M−
j (n;β, c), (5.8)

and the boundary condition (2.11) with λ j = 1 for all j and A0C1 = A1 .

Proof. Let j ∈ [m] and set n∗ = (n1, . . . ,n j,1,n j+1, . . . ,nm). We first show that

M
(
n∗;β, c

) = M+
j (n;β, c) + n j(c + 1)M(n;β, c) + n j(n j + β − 1)M−

j (n;β, c). (5.9)

Let u = n1 + · · · + n j + 1 and for each π ∈ D(n∗), let a := π(u) and b := π−1(u). We partition the
derangements in D(n∗) into five categories:

(1) a /∈ S j and b /∈ S j . These derangements can be easily identified with the derangements in D+
j (n),

so the corresponding enumerative polynomial is M+
j (n;β, c).

(2) a /∈ S j and b ∈ S j . Define the derangement π ′ on [n∗] \ {u} by π ′( j) = π( j) for j �= b and π ′(b) =
a. Clearly cyc(π ′) = cyc(π) and exc(π ′) = exc(π) − 1. Conversely, starting with any derangement
π ′ of [n∗] \ {u}, we can recover a derangement π ∈ D(n∗) by choosing any element in S j as b
and breaking the arrow b → π ′(b) into b → u and u → π ′(b), so the corresponding enumerative
polynomial is cn j M(n;β, c).

(3) a ∈ S j and b /∈ S j . Define the derangement π ′ on [n∗] \ {u} by π ′( j) = π( j) for j �= b and
π ′(b) = a. Clearly cyc(π ′) = cyc(π) and exc(π ′) = exc(π). As in the case (2), the corresponding
enumerative polynomial is n j M(n;β, c).

(4) a = b and a ∈ S j . The corresponding enumerative polynomial is cβn j M−
j (n;β, c).

(5) a ∈ S j , b ∈ S j , and a �= b. Define the derangement π ′ on [n∗] \ {a, u} by π ′( j) = π( j) for j �= b
and π ′(b) = π(a). Clearly cyc(π ′) = cyc(π) and exc(π ′) = exc(π) − 1. Conversely, starting with a
derangement on [n∗] \ {u,a}, we can reverse this process by choosing any element in S j \ {a} as
b. As there are n j(n j − 1) ways to choose two different elements a and b in S j , the corresponding
enumerative polynomial is cn j(n j − 1)M−

j (n;β, c).
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Summarizing the above five cases leads to (5.9). Specializing (5.9) at j = k and then subtracting the
resulted equation from (5.9) ends the proof. �
Theorem 5.2. We have

M
(
n;β, c−1) = (−1)n1+···+nm (1 − c)β

∞∑
x=0

m∏
j=1

Mn j (x;β, c)
cx(β)x

x! . (5.10)

Proof. When λ j = 1 for all j, and

An = 1 − 1/c, Bn = β + n + n/c, Cn = n(β + n − 1)/c for all n � 0,

by Lemma 5.1, the polynomials (−1)n1+···+nm M(n;β, c−1) satisfy (2.8) and (2.11). Theorem 2.3 implies
then (5.10). �

This formula was first given by Askey and Ismail [4] when β = 1, and by Zeng [34] for general β .

6. Linearization coefficients of Meixner–Pollaczek polynomials

The Meixner–Pollaczek polynomials Pn(x) := Pn(x; δ,η) can be defined by [9,27],

∞∑
n=0

Pn(x; δ,η)
tn

n! = [
(1 + δt)2 + t2]−η/2

exp

[
x arctan

(
t

1 + δt

)]
. (6.1)

They satisfy the recurrence relation:

Pn+1(x; δ,η) = (
x − (δ + 2n)η

)
Pn(x; δ,η) − n(η + n − 1)

(
1 + δ2)Pn−1(x; δ,η). (6.2)

The orthogonality relation is

1∫
R

w(x)dx

∫
R

Pn(x)Pm(x)w(x)dx = (
δ2 + 1

)n
n!(η)nδmn, (6.3)

where w(x) = x(x; δ,η) is given by

w(x; δ,η) = [
Γ (η/2)

]−2
∣∣∣∣Γ

(
η + ıx

2

)∣∣∣∣2

exp(−x arctan δ).

Recall that a permutation π of [n] has a drop (resp. box-drop) at i ∈ [n] if i > π(i) (resp. i ∈ Sk ,
π(i) ∈ S j and j < k). Denote by drop(π) (resp. dropb(π)) the number of drops (resp. box-drops) of π .

The moments of Meixner–Pollaczek polynomials [35] are

μn(δ,η) = 1∫
R

w(x)dx

∫
R

xn w(x)dx =
∑

σ∈Sn

(δ + ı)drop(σ )(δ − ı)exc(σ )ηcyc(σ ), (6.4)

where ı2 = −1.
Consider the enumerative polynomial of the inhomogeneous derangements

P (n; δ,η) =
∑

π∈D(n)

(δ + ı)drop(π)(δ − ı)exc(π)ηcyc(π). (6.5)

Lemma 6.1. For any k, j ∈ [m] such that k �= j we have

P+
j (n; δ,η) − P+

k (n; δ,η) = 2δ(nk − n j)P (n; δ,η) + nk(nk + η − 1)
(
δ2 + 1

)
P−

k (n; δ,η)

− n j(n j + η − 1)
(
δ2 + 1

)
P−

j (n; δ,η), (6.6)

and the boundary condition (2.11) with λ j = 1 for all j and A0C1 = A1 .



M.E.H. Ismail et al. / Journal of Combinatorial Theory, Series A 120 (2013) 561–599 577
Proof. For j ∈ [m] let n∗ = (n1, . . . ,n j,1,n j+1, . . . ,nm). Following the proof of Lemma 5.1 we obtain

P
(
n∗; δ,η) = P+

j (n; δ,η) + 2n jδP (n; δ,η) + (
δ2 + 1

)
n j(n j + η − 1)P−

j (n; δ,η). (6.7)

Subtracting the last equation from (6.7) with j = k yields (6.6). �
By the method of separation of variables we can solve (6.6) and obtain the following result.

Theorem 6.2. We have

P (n; δ,η) = 1∫
R

w(x)dx

∫
R

m∏
j=1

Pn j (x)w(x)dx. (6.8)

Proof. Clearly (2.8) reduces to (6.6) when λ j = 1 for all j, and

An = 1, Bn = −(δ + 2n)η, Cn = n(η + n − 1)
(
1 + δ2) for all n � 0.

From Lemma 6.1 and Theorem 2.3 we deduce (6.8). �
This formula was first given by Zeng [35], and later generalized by Kim and Zeng [24].

7. Linearization coefficients of q-Hermite polynomials

The continuous q-Hermite polynomials Hn(x | q) are generated by

H0(x | q) := 1, H1(x | q) = 2x, 2xHn(x | q) = Hn+1(x | q) + (
1 − qn)Hn−1(x | q),

n > 0, (7.1)

and have the orthogonal relation

π∫
0

Hn(cos θ | q)Hm(cos θ | q)v(cos θ | q)dθ = (q;q)nδmn, (7.2)

where

v(cos θ | q) = (q;q)∞
2π

(
e2ıθ , e−2ıθ ;q

)
∞.

If we rescale the q-Hermite polynomials by

H̃n(x | q) = Hn

(
1

2
ax

∣∣∣ q

)
/an, a = √

1 − q,

then (7.1) reads

xH̃n(x | q) = H̃n+1(x | q) + [n]q H̃n−1(x | q),

and the orthogonality relation (7.2) becomes

2/
√

1−q∫
−2/

√
1−q

H̃n(x | q)H̃m(x | q)ṽ(x | q)dx = n!qδmn. (7.3)

Here n!q = (q;q)n/(1 − q)n and

ṽ(x | q) =
√

1 − q(q;q)∞√
1 − (1 − q)x2/44π

∞∏{
1 + (

2 − x2(1 − q)
)
qk + q2k}. (7.4)
k=0
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Fig. 3. Crossings in an inhomogeneous perfect matching.

Given a perfect matching M (or more generally, a set partition), a pair of arcs (e1, e2) of M is said
to cross if e1 = (i, j), e2 = (k, �), and i < k < j < �. The number of arc crossings in M is denoted by
cr(M). For instance, if M is the matching drawn in Fig. 1, we have cr(M) = 5. Let

K (n | q) =
∑

M∈K(n)

qcr(M). (7.5)

For any nonnegative integer n we set

[n]q := 1 − qn

1 − q
= 1 + q + · · · + qn−1. (7.6)

Lemma 7.1. For k, j ∈ [m] and k �= j the polynomials K (n | q) satisfy

K +
j (n | q) − K +

k (n | q) = [nk]q K −
k (n | q) − [n j]q K −

j (n | q), (7.7)

and the boundary condition (2.11) with λ j = 1 for all j and A0C1 = A1 .

Proof. Let u = n1 + · · · + n j + 1. The matchings in K+
j (n) (resp. K+

j+1(n)) can be divided into two
categories:

• the integer u ∈ S j (resp, u ∈ S j+1) is matched with the �th element u + � in S j+1 (resp. u − �

in S j ), from left (resp. right), with � ∈ [n j+1] (resp. � ∈ [n j]), then the corresponding arc crosses
each of the � − 1 arcs of which one vertex is u + t (resp. u − t) with 1 � t � � − 1. An illustration
is given in Fig. 3(a) (resp. Fig. 3(b)). Hence the generating function of such matchings is(

1 + q + · · · + qn j+1−1)K −
j+1(n|q)

(
resp.

(
1 + q + · · · + qn j−1)K −

j (n | q)
);

• the integer u is matched with an element not in S j ∪ S j+1, let Ru(n | q) be the generating poly-
nomial of such matchings.

It follows that K +
j (n | q) = [n j+1]q K −

j+1(n | q) + Ru(n | q) and K +
j+1(n | q) = [n j]q K −

j (n | q) + Ru(n | q).
By subtraction we obtain (7.7) for adjacent k and j. The general case follows from the simple identity
uk − u j = ∑k−1

i= j (ui+1 − ui) for any integers j and k such that j < k. �
Theorem 7.2. We have

K (n | q) =
∫
R

ṽ(x | q)

m∏
j=1

H̃n j (x | q)dx. (7.8)

Proof. Clearly (2.8) reduces to (7.7) when λ j = 1 for all j, Bk = 0, Ck = [k]q for all k, and Ak is a
constant independent of k. From Lemma 7.1 and Theorem 2.3 we deduce (7.8). �
Remark 7.3. The representation (7.8) is due to Ismail, Stanton and Viennot [18]. Three different proofs
were later given in [2,10,26]. As we can see, the new proof of (7.8) given above parallels our proof in
the case q = 1.
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Note that K (n|0) is the number of perfect inhomogeneous matchings of [n] without crossings
and Hn(x|0) is the n-th Chebyshev polynomial of the second kind Un(x). Hence, letting q = 0 in
Theorem 7.2 we obtain the following result, due to de Sainte-Catherine and Viennot [8].

Corollary 7.4. The number of perfect inhomogeneous matchings of [n] without crossings is given by

K (n|0) = 2

π

1∫
−1

Un1(x) · · · Unm (x)
(
1 − x2)1/2

dx. (7.9)

Another generalization of the above corollary was given by Kim and Zeng [25].

8. Linearization coefficients of q-Charlier and q-Laguerre polynomials

8.1. Al-Salam–Chihara polynomials

Since our q-Charlier and q-Laguerre polynomials are two rescaled special Al-Salam–Chihara poly-
nomials, we first recall the definition of these polynomials. The Al-Salam–Chihara polynomials
Q n(x) := Q n(x; t1, t2 | q) may be defined by the recurrence relation [27, Chapter 3]:{

Q 0(x) = 1, Q −1(x) = 0,

Q n+1(x) = (
2x − (t1 + t2)q

n)Q n(x) − (
1 − qn)(1 − t1t2qn−1)Q n−1(x), n � 0.

(8.1)

Let Q n(x) = 2n pn(x) then

xpn(x) = pn+1(x) + 1

2
(t1 + t2)q

n pn(x) + 1

4

(
1 − qn)(1 − t1t2qn−1)pn−1(x). (8.2)

They also have the following explicit expressions:

Q n(x; t1, t2 | q) = (t1t2;q)n

tn
1

3φ2

(
q−n, t1u, t1u−1

t1t2,0

∣∣∣ q;q

)

= (t1u;q)nu−n
2φ1

(
q−n, t2u−1

t−1
1 q−n+1u−1

∣∣∣ q; t−1
1 qu

)

= (
t2u−1;q

)
nun

2φ1

(
q−n, t1u

t−1
2 q−n+1u

∣∣∣ q; t−1
2 qu−1

)
,

where x = u+u−1

2 or x = cos θ if u = eıθ .
The Al-Salam–Chihara polynomials have the following generating function

G(t, x) =
∞∑

n=0

Q n(x; t1, t2 | q)
tn

(q;q)n
= (t1t, t2t;q)∞

(teıθ , te−ıθ ;q)∞
.

They are orthogonal with respect to the linear functional L:

L
(
xn) = 1

2π

π∫
0

cosn θ
(q, t1t2, e2ıθ , e−2ıθ ;q)∞

(t1eıθ , t1e−ıθ , t2eıθ , t2e−ıθ ;q)∞
dθ, (8.3)

where x = cos θ . Equivalently, the Al-Salam–Chihara polynomials Q n(x; t1, t2 | q) are orthogonal on
[−1,1] with respect to the probability measure

(q, t1t2;q)∞
2π

∞∏ 1 − 2(2x2 − 1)qk + q2k

[1 − 2xt1qk + t2
1q2k][1 − 2xt2qk + t2

2q2k]
dx√

1 − x2
. (8.4)
k=0
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As in [2,26], we shall consider the q-Charlier polynomials Cn(x | q) := Cn(x,a,b, c | q) defined re-
cursively by

Cn+1(x | q) = (
x − c − b[n]q

)
Cn(x | q) − a[n]qCn−1(x | q), (8.5)

where C−1(x | q) = 0 and C0(x | q) = 1. Comparing with (8.1) we see that this is a rescaled version of
the Al-Salam–Chihara polynomials:

Cn(x | q) =
(

a

1 − q

)n/2

Q n

(
1

2

√
1 − q

a

(
x − c − b

1 − q

)
; −b√

a(1 − q)
,0 | q

)
. (8.6)

We define u1(x) and v1(x) by

u1(x) = 1 − q

2a
x2 − c(1 − q) + b

a
x + b2 + c2(1 − q)2 + 2(1 − q)(bc − a)

2a(1 − q)
,

v1(x) = 1

2

√
1 − q

a

(
x − c − b

1 − q

)
. (8.7)

The moment functional for Cn(x | q) is

L1( f ) = (q;q)∞
2π

1

2

√
1 − q

a

×
A+∫

A−

∞∏
k=0

[1 − 2u1(x)qk + q2k] f (x)

1 + 2v1(x)qk/(
√

a(1 − q)) + q2k/a(1 − q)

dx√
1 − v1(x)2

, (8.8)

where

A± = c + b

1 − q
± 2

√
a

1 − q
.

As in [21], we shall consider the q-Laguerre polynomials Ln(x | q) := Ln(x, y | q) defined by the
recurrence:

Ln+1(x | q) = (
x − y[n + 1]q − [n]q

)
Ln(x | q) − y[n]2

q Ln−1(x | q), (8.9)

with the initial condition L−1(x | q) = 0 and L0(x | q) = 1. Hence these are the re-scaled Al-Salam–
Chihara polynomials:

Ln(x | q) =
( √

y

q − 1

)n

Q n

(
(q − 1)x + y + 1

2
√

y
; 1√

y
,
√

yq | q

)
. (8.10)

One deduces then the explicit formula:

Ln(x | q) =
n∑

k=0

(−1)n−k n!q
k!q

[
n

k

]
q
qk(k−n) yn−k

k−1∏
j=0

(
x − (

1 − yq− j)[ j]q
)
. (8.11)

Define u2(x) and v2(x) by

u2(x) = (1 − q)2

2y
x2 − (1 − q)(1 + y)

y
x + y2 + 1

2y
, v2(x) = q − 1

2
√

y
x + y + 1

2
√

y
. (8.12)



M.E.H. Ismail et al. / Journal of Combinatorial Theory, Series A 120 (2013) 561–599 581
Then the moment functional in this case is

L2( f ) = (q,q;q)∞
2π

1 − q

2
√

y

×
B+∫

B−

∞∏
k=0

[1 − 2u2(x)qk + q2k] f (x)

[1 − 2v2(x)qk/
√

y + q2k/y][1 − 2v2(x)qk+1√y + q2k+2 y]
dx√

1 − v2(x)2
,

(8.13)

where

B± = (1 ± √
y)2

1 − q
. (8.14)

For the combinatorial approach to the linearization coefficients, the q-Hermite and q-Charlier cases
were proved by first combining the combinatorial models for the polynomials and moments to obtain
a messy sum, and then using a killing involution to reduce it to some nicer models, [8,18,26]. How-
ever, this approach seems difficult to deal with the q-Laguerre case. So, a recursive approach based
on the symmetry is used in [21], but such a proof for the q-Charlier polynomials is new.

8.2. Linearization coefficients of q-Charlier polynomials

Recall that if π is a partition of [n], an arc crossing of π is a pair of arcs (e1, e2) such that
e1 = (i, j), e2 = (k, �), and i < k < j < �. For instance, if π is the partition drawn in Fig. 1 (resp. in
Fig. 2), then cr(π) = 2 (resp. cr(π) = 6). We let cr(π) denote the number of arc crossings in π .

For each partition π ∈ Πn we define the weight

w(π) = abl(π)btr(π)csg(π)qcr(π), (8.15)

where bl(π), sg(π) and tr(π) are respectively the numbers of blocks, singletons and transients of π .
Here, a singleton is just a block of size 1 and a transient is an element which is neither the least nor
the greatest element in a block of π .

Consider the enumerative polynomial of inhomogeneous partitions

F(n | q) := F(n;a,b, c | q) =
∑

π∈P(n)

w(π). (8.16)

Note that by the general theory of orthogonal polynomials, the three-term recurrence relation
(8.5) and Proposition 4.1 in [22] imply that the linear functional L1 has the following combinatorial
interpretation:

L1
(
xn) =

∑
π∈Πn

w(π). (8.17)

To find the partial difference equations satisfied by F(n | q) we need the following key result.

Lemma 8.1. The polynomials F(n | q) are symmetric with respect to the permutation of indices n1, . . . ,nm.

We postpone the proof of this crucial lemma to Section 11.

Lemma 8.2. For j ∈ [m], the polynomials F(n | q) satisfy

F+
j (n | q) = F

(
n∗ ∣∣ q

) − b[n j]qF(n | q) − a[n j]qF−
j (n | q), (8.18)

where n∗ = (1,n1, . . . ,nm).
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Proof. By Lemma 8.1, we can suppose that j = 1. Hence, it suffices to check that∑
π∈P(n∗)

w(π) = F+
1 (n | q) + b[n1]qF(n | q) + a[n1]qF−

1 (n | q), (8.19)

where w(π) = abl(π)btr(π)qcr(π) since sg(π) = 0 for any π ∈P(n).
Given a partition π ∈ P(n∗), we denote by r1 the integer i > 1 which is connected to 1 by an arc.

We classify the partitions in P(n∗) into three categories according to the value of r1 (The reader is
suggested to draw diagrams as we do in the proof of Lemma 7.1):

(a) r1 > n1 + 1; such partitions are exactly the partitions in P+
1 (n), whence the enumerative polyno-

mial of such partitions is F+
1 (n | q).

(b) 2 � r1 � n1 + 1; then the arc (1, r1) crosses with each of the r1 − 2 arcs of which one vertex is
� with 2 � � � r1 − 1. Suppose {1, r1} is a block of π (resp. is not a block of π ). Summing over
all r1 = 2,3, . . . ,n1 + 1, it is readily seen that the enumerative polynomial of such partitions is∑n1+1

r1=2 aqr1−2F−
1 (n | q) = a[n1]qF−

1 (n | q) (resp.
∑n1+1

r1=2 bqr1−2F1(n | q) = b[n1]qF(n | q)).

Summing up the above three cases we obtain (8.19). �
The following result is due to Anshelevich [2] and a combinatorial proof was later given by Kim,

Stanton and Zeng [26].

Theorem 8.3. For m � 1 and n1, . . . ,nm � 0, we have

F(n | q) = L1
(
Cn1(x | q) · · · Cnm (x | q)

)
. (8.20)

Proof. For j,k ∈ [m] and j �= k we deduce from (8.18) that

F+
j (n|q) −F+

k (n | q) = ([nk]q − [n j]q
)
F(n | q) − a[n j]qF−

j (n | q) + a[nk]qF−
k (n | q), (8.21)

and the boundary condition (2.11) with λ j = 1 for all j and A0C1 = A1. The result then follows by
applying Theorem 2.3. �
Remark 8.4. When q = 0, the polynomials Cn(x | 0) are the so-called perturbed Chebyshev polynomials
of the second kind and F(n | 0) is the enumerative polynomial of inhomogeneous partitions of [n]
without any arc crossings.

Remark 8.5. In view of Lemmas 8.1, 8.2 and Theorem 2.6, we can also prove the above theorem by
checking (8.20) for the special n = 1m := (1, . . . ,1). As C1(x;q) = x − c, the latter identity reads

F
(
1m

∣∣ q
) = L1

(
(x − c)m)

(m � 1). (8.22)

By the binomial formula, this is equivalent to

L1
(
xm) =

m∑
k=0

(
m

k

)
ckF

(
1m−k

∣∣ q
)
. (8.23)

In view of the combinatorial interpretation of the moments (8.17) and the definition (8.16) the latter
identity is obvious if we enumerate the partitions π of [m] by the weight (8.15) and according to the
number of singletons.
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8.3. Linearization coefficients of q-Laguerre polynomials

For σ ∈Sn the number of crossings of σ is defined by

cr(σ ) =
n∑

i=1

#
{

j
∣∣ j < i � σ( j) < σ(i)

} +
n∑

i=1

#
{

j
∣∣ j > i > σ( j) > σ(i)

}
. (8.24)

Note that the linear functional L2 has the following combinatorial interpretation [21]:

L2
(
xn) =

∑
σ∈Sn

yexc(σ )qcr(σ ). (8.25)

Consider the enumerative polynomial of inhomogeneous derangements

I(n | q) := I(n; y | q) =
∑

σ∈D(n)

yexc(σ )qcr(σ ). (8.26)

Lemma 8.6. The polynomials I(n; y | q) satisfy

I+j (n | q) − I+k (n | q)

= (yq + 1)
([nk]q − [n j]q

)
I(n | q) − y[n j]2

q I−j (n | q) + y[nk]2
q I−k (n | q), (8.27)

and the boundary condition (2.11) with λ j = 1 for all j and A0C1 = A1 .

Proof. It is proved in [21, Eq. (38)] that

I+j (n | q) = I
(
n∗ ∣∣ q

) − (yq + 1)[n j]q I(n | q) − y[n j]2
q I−j (n | q), (8.28)

where n∗ = (1,n1, . . . ,nm). Replacing j by k in the above equation and then subtracting the resulting
equation from the above one we get (8.27). The boundary condition is obvious. �

The following result is due to Kasraoui, Stanton and Zeng [21].

Theorem 8.7. We have

I(n | q) = L2
(
Ln1(x | q) · · · Lnm (x | q)

)
. (8.29)

Proof. Clearly (2.8) reduces to (8.27) when λ j = 1 for all j, and

An = 1, Bn = −(
y[n + 1]q + [n]q

)
, Cn = q[n]2

q, n � 0.

From Lemma 8.6 and Theorem 2.3 we deduce (8.29). �
Remark 8.8. In the above proof, we do not require the combinatorial interpretation of the moments
(8.25), which was needed in [21].

9. More integrals of orthogonal polynomials

In this section, for a sequence of orthogonal polynomials {pn(x)}, we shall consider integrals of
type ∫

R

xn0

m∏
j=1

pn j (x)dμ(x), n0 ∈N, (9.1)

and
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∫
R

x(x − 1) · · · (x − n0 + 1)

m∏
j=1

pn j (x)dμ(x), n0 ∈ N, (9.2)

where μ is an orthogonal measure for {pn(x)}.
One important tool used in this work is MacMahon’s Master theorem, [29, vol. 1, pp. 93–98] and

its β-extension due to Foata–Zeilberger [12], which we now recall.
Let Vm be the determinant det(δi j − xiai, j) (1 � i, j � m). The MacMahon master theorem asserts

that the coefficient of xn1
1 xn2

2 · · · xnm
m in the expansion of V −1

m is equal to the coefficient of xn1
1 xn2

2 · · · xnm
m

in
m∏

k=1

(ak,1x1 + · · · + ak,mxm)nk . (9.3)

It will be convenient to restate this in a slightly different form. Let C(m) be the set of rearrange-
ments of the word 1n1 . . .mnm . For any rearrangement

γ = γ (1,1) . . . γ (1,n1) . . . γ (m,1) . . . γ (m,nm) ∈ C(m),

we associate the weight

w(γ ) =
∏
i, j

ai,γ (i, j) (1 � i � m, 1 � j � ni).

Then, the coefficient of xn1
1 xn2

2 · · · xnm
m in (9.3) is equal to the sum of all the w(γ ) with γ running

over all the elements in C(m). On the other hand, each sequence n = (n1, . . . ,nm) of positive integers
defines a unique mapping χ from [n] to [m] given by χ( j) = i if j ∈ Si . For each permutation π ∈
S(n) we let

w(π) =
n∏

j=1

aχ( j),χ(π( j)).

Clearly, to each rearrangement γ in C(m), there corresponds exactly n1! · · ·nm! permutations π in
S(n) with the property that w(π) = w(γ ). Therefore, the coefficient of xn1

1 xn2
2 · · · xnm

m in (9.3) is also
equal to

1

n1! · · ·nm!
∑

π∈S(n)

w(π).

The MacMahon Master theorem can now be restated as∑
n1,...,nm�0

xn1
1 · · · xnm

m

n1! · · ·nm!
∑

π∈S(n)

w(π) = V −1
m .

The β-extension of the MacMahon Master theorem [12] reads as follows.

Theorem 9.1. We have∑
n1,...,nm�0

xn1
1 · · · xnm

m

n1! · · ·nm!
∑

π∈S(n)

βcyc(π)w(π) = V −β
m . (9.4)

Now, we consider the determinant

�m+1 :=

∣∣∣∣∣∣∣∣∣∣∣

1 −cx1 · · · −cx1 −cx1
−x2 1 · · · −cx2 −cx2

...
...

. . .
...

...

−xm −xm · · · 1 −cxm

−x −x · · · −x 1 − x

∣∣∣∣∣∣∣∣∣∣∣
.

0 0 0 0
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The proof of the following determinant formula is left to the reader.

Lemma 9.2. Let a and b be any variables in a commutative ring. Then∣∣∣∣∣∣∣∣∣∣∣

x1 a · · · a a
b x2 · · · a a
...

...
. . .

...
...

b b · · · xn−1 a
b b · · · b xn

∣∣∣∣∣∣∣∣∣∣∣
= aφn(b) − bφn(a)

a − b
,

where φn(x) = (x1 − x)(x2 − x) · · · (xn − x). When a = b, the right side should be taken as the limit
φn(a)(1 + a

∑m
j=1

1
x j−a ).

Applying the above lemma to �m+1 we obtain

�m+1 = 1

c − 1

[
c(1 + x1) · · · (1 + xm) − (1 + cx1) · · · (1 + cxm)

(
1 − (1 − c)x0

)]
. (9.5)

Therefore, denoting the elementary symmetric functions of the indeterminates x1, . . . , xm by e1(x), . . . ,

em(x), we have

�m+1 = 1 −
m∑

k=2

(
c + · · · + ck−1)ek(x) − x0

m∏
j=1

(1 + cx j). (9.6)

Let

A(α)(n0,n) = (−1)
∑m

j=1 n j

∞∫
0

xn0
xαe−x

Γ (α + 1)

m∏
j=1

n j !L(α)
n j

(x)dx. (9.7)

A main result of this section is the following theorem.

Theorem 9.3. The integrals {A(α)(n0,n)} have the generating function

∑
n0,...,nm�0

A(α)(n0,n)
xn0

0

n0! · · · xnm
m

nm!

=
[

1 − x0

m∏
j=1

(1 + x j) − e2(x) − 2e3(x) − · · · − (m − 1)em(x)

]−α−1

. (9.8)

Moreover, we have the following combinatorial interpretation:

A(α)(n0,n) =
∑

π∈S∗(n)

(α + 1)cyc(π), (9.9)

where S∗(n) is the set of permutations of S0 ∪ · · · ∪ Sm such that all the elements in box j should not stay in
the original box after permutation for 1 � j � m and the objects in box 0 are not restricted.

Proof. We use (4.3) to see that

∑
n ,...,n �0

A(α)(n0,n)

m∏
j=0

x
n j

j

n j !

0 m



586 M.E.H. Ismail et al. / Journal of Combinatorial Theory, Series A 120 (2013) 561–599
= 1

Γ (α + 1)

m∏
j=1

(1 + x j)
−α−1

∞∫
0

exp

(
−x

(
1 − x0 −

m∑
k=1

xk/(1 + xk)

))
xα dx

=
m∏

j=1

(1 + x j)
−α−1

[
1 − x0 −

m∑
k=1

xk

1 + xk

]−α−1

,

which reduces to the right-hand side of (9.8) after some simplification using the following identity,
which was proved in [6], see also [4, (2.8)],

m∏
j=1

(1 + t j)

[
1 −

m∑
j=1

t j

1 + t j

]
= 1 − e2(x) − 2e3(x) − · · · − (m − 1)em(x). (9.10)

This proves (9.8). The rest of Theorem 9.3 follows from the β-MacMahon Master theorem and
(9.6). �
Remark 9.4. When α = 0, A(0)(n0,n)/n0!n1! · · ·nm! can be simply interpreted as follows: we have
boxes of sizes n0,n1, . . . ,nm and box j contains n j indistinguishable elements and we arrange the
contents such that no object in box j stays in its original box when 1 � j � m with no restriction on
box number 0. The number of possible rearrangements is A(0)(n0,n)/n0!n1! · · ·nm!.

Corollary 9.5. We have

A(0)(m,n, s) = m!n!s!
∑
j�0

(
m

j

)(
s

n + j − m

)(
s + m − j

m

)
. (9.11)

Proof. By (9.3) we have the generating function∑
m,n,s�0

A(α)(m,n, s)
xm

1

m!
xn

2

n!
xs

0

s! = 1

[1 − x0 − x1x2 − x1x0 − x2x0 − x1x2x0]α+1
.

Since

V =
∣∣∣∣∣

1 −x1 −x1
−x2 1 −x2
−x0 −x0 1 − x0

∣∣∣∣∣ = 1 − x0 − x1x2 − x1x0 − x2x0 − x1x2x0

by the MacMahon Master theorem, Theorem 9.1, we see that A(0)(m,n, s) is given by the coefficient
of xm

1 xn
2xs

0 in (x2 + x0)
m(x1 + x0)

n(x1 + x2 + x0)
s , which is equal to the claimed expression. �

Motivated by the numbers A(α)(n0,n) we consider the following generalized linearization coeffi-
cients of Meixner polynomials:

B(β)(n0,n) = (−1)
∑m

j=1 n j c−n0(1 − c)β+n0

×
∞∑

x=0

x(x − 1) · · · (x − n0 + 1)
cx(β)x

x!
m∏

j=1

Mn j (x;β, c). (9.12)

Theorem 9.6. The integrals {B(β)(n0, . . . ,nm)} have the generating function

∑
n ,...,n �0

B(β)(n0,n)

m∏
j=0

x
n j

j

n j ! =
[

1 −
m∑

k=2

1 − c1−k

c(1 − c−1)
ek(x) − x0

m∏
j=1

(1 + x j/c)

]−β

. (9.13)

0 m
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Moreover, we have the following combinatorial interpretation:

B(β)(n0,n) =
∑

π∈S∗(n)

βcyc(π)c−exc(π), (9.14)

where S∗(n) is the same as in Theorem 9.3.

Proof. We use (5.3) to see that∑
n0,...,nm�0

B(β)(n0,n)
xn0

0

n0! · · · xnm
m

nm!

=
∑
x�0

(
1 + (1 − c)x0/c

)x cx(β)x

x! (1 − c)β
m∏

j=1

(1 + x j/c)x(1 + x j)
−x−β

=
[∏m

j=1(1 + x j) − (c + (1 − c)x0)
∏m

j=1(1 + x j/c)

1 − c

]−β

.

This gives (9.13) after simplification.
Comparing with (9.6) we see that the β = 1 case of (9.14) comes from the MacMahon Master

theorem associated with the matrix (aij) with aii = 0, aij = 1/c for j > i and aij = 1 for j < i. The
general case follows from using the β-extension of MacMahon’s Master theorem. �
Remark 9.7. For the Charlier polynomials we have a similar result for the integral

C (a)(n0,n) :=
∑
x�0

x(x − 1) · · · (x − n0 + 1)
e−aax

x!
m∏

j=1

C (a)
n j

(x). (9.15)

A straight computation shows that∑
n0,...,nm�0

C (a)(n0,n)
xn0

0

n0!
xn1

1

n1! · · · xnm
m

nm!
= exp

(
a
[
x0 + x0e1(x) + (x0 + 1)e2(x) + · · · + (x0 + 1)em(x)

])
. (9.16)

We apply the exponential formula to see that

C (a)(n0,n) =
∑

π∈P∗(n0,n)

abl(π), (9.17)

where P∗(n0,n) is the set of partitions of S0 ∪ S1 ∪ · · · ∪ Sm such that each block is either a singleton
of an element in S0 or inhomogeneous, i.e., no two elements of S j (0 � j � m) can be in the block.

It is clear that Theorem 9.3 is the limit c → 1− of Theorem 9.6. Similarly we have the following
analogue of Corollary 9.5.

Corollary 9.8. We have

B(1)(m,n, s) = m!n!s!
∑
j�0

(
m

j

)(
s

n + j − m

)(
s + m − j

m

)
cn−2m+ j.

Corollary 9.9. We have

xn = cn

(1 − c)n

n∑
k=0

(
n

k

)
(β + k)n−k(−1)k Mk(x;β, c). (9.18)
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Proof. Let xn = ∑n
k=0 c(n,k)Mk(x;β, c). Using the orthogonality (5.2) we obtain

(1 − c)β
∑
x�0

xn Mk(x;β, c)
(β)k

x! cx = c(n,k)
(β)kk!

ck
.

Comparing with (9.12) we see that the left side is equal to (−1)kcn(1 − c)−n B(β)(k,n). It remains to

compute B(β)(k,n), which, by Theorem 9.6, is the coefficient of
xn

0xk
1

n!k! in the expansion

[
1 − x0(1 + x1/c)

]−β =
∑
n�0

(β)n

n! xn
0(1 + x1/c)n =

∑
n,k�0

n!(β)n

(n − k)! c−k xn
0xk

1

n!k! .

Hence B(β)(k,n) = n!(β)n
(n−k)! c−k . This yields the desired result. �

Let ϕ be the linear functional defined by ϕ( f (x)) = ∫
R

f (x)dμ(x). Then the integral (9.1) contains
the following four special cases:

(1) the evaluation of ϕ(xn) corresponds to the moments,
(2) the evaluation of ϕ(

∏2
j=1 pn j (x)) corresponds to the orthogonality,

(3) the evaluation of ϕ(xn pk(x)) combined with the orthogonality corresponds to the coefficient cn,k
in the expansion xn = ∑n

k=0 cn,k pk(x),
(4) the evaluation of ϕ(

∏m
j=1 pn j (x)) corresponds to the linearization coefficients.

Since A0x = p1(x) − B0, we have

(A0x)n0 =
n0∑

l=0

(
N

l

)
(−B0)

N−l p1(x)l, n0 ∈N.

Therefore,

ϕ

(
(A0x)n0

m∏
j=1

pn j (x)

)
=

n0∑
l=0

(
n0

l

)
(−B0)

n0−lϕ

(
p1(x)l

m∏
j=1

pn j (x)

)
. (9.19)

We can deduce the combinatorial interpretations of the integrals (9.19) for the orthogonal Sheffer
polynomials and the three q-analogues from the combinatorial interpretation of the corresponding
linearization coefficients.

For example, as H1(x) = 2x, it follows from Theorem 3.2 that

2−(n0+n1+···+nm)/2
∫
R

e−x2

√
π

(2x)n0

m∏
j=1

Hn j (x)dx (9.20)

is the number of perfect inhomogeneous matchings in K(n) with

n = (1, . . . ,1︸ ︷︷ ︸
n0

,n1,n2, . . . ,nm).

For the Laguerre polynomials we have x = −L(α)
1 (x) + α + 1, so

∞∫
0

xαe−x

Γ (α + 1)
xn0

m∏
j=1

(−1)n j n j !L(α)
n j

(x)dx

=
n0∑

l=0

(
n0

l

)
(α + 1)n0−l

∞∫
xαe−x

Γ (α + 1)

(−L(α)
1 (x)

)l
m∏

j=1

(−1)n j n j !L(α)
n j

(x)dx. (9.21)
0
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We can easily recover the combinatorial interpretation (9.9) in Theorem 9.3 from the above equation
and (4.13).

For the Meixner polynomials we have 1−c
c x = β − M1(x;β, c), so

B̃(β)(n0,n) = c−n0(1 − c)β+n0

∞∑
x=0

xn0
cx(β)x

x!
m∏

j=1

(−1)n j Mn j (x;β, c)

=
n0∑

l=0

(
n0

l

)
βn0−l(1 − c)β

∞∑
x=0

cx(β)x

x!
(−M1(x;β, c)

)l

×
m∏

j=1

(−1)n j Mn j (x;β, c). (9.22)

Using Theorem 5.2, we see the following combinatorial interpretation

B̃(β)(n0,n) =
∑

π∈S∗(n)

βcyc(π)c−exc(π)−exc0(π), (9.23)

where S∗(n) is the same as in Theorem 9.3 and exc0(π) is the number of excedances of two elements
in S0, i.e., exc0(π) = |{i ∈ S0: π(i) ∈ S0 and π(i) > i}|.

10. Laguerre and Meixner polynomials revisited

Recall [17, p. 100] that the Hermite polynomials can be viewed as special Laguerre polynomials
since

H2n+1/2±1/2(x) = (−1)n22nn!(2x)1/2±1/2L(±1/2)
n

(
x2).

Therefore the integral in (3.3) is a special case of the integral

W j,k(m;α,β;m,n)

:= (−1)
∑ j

i=1 mi+
∑k

r=1 nr

Γ (α + 1)

∞∫
0

xm+αe−x

[ j∏
i=1

mi !L(α)
mi

(x)

][
k∏

r=1

nr !L(β)
nr (x)

]
dx, (10.1)

where m = (m1,m2, . . . ,m j) and n = (n1,n2, . . . ,nk).
In this section we study the combinatorics of the integrals of the type in (10.1) and their discrete

analogues which result by replacing the Laguerre polynomials by Meixner polynomials.

Theorem 10.1. Let ei(x), i = 0,1, . . . , j + k, be the ith elementary symmetric polynomial of x1, . . . , x j+k. The
integrals {W j,k(m;α,β;m,n)} have the generating function

∑
m,mi ,nr�0

W j,k(m;α,β;m,n)
xm

0

m!
xm1

1

m1! · · · x
m j

j

m j !
xn1

j+1

n1! · · · xnk
j+k

nk!

=
k∏

r=1

(1 + x j+r)
α−β

[
1 − x0

j+k∏
i=1

(1 + xi) −
j+k∑
l=2

(l − 1)el(x)

]−α−1

. (10.2)
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Proof. Apply the generating function (4.3) to see that the left-hand side of (10.2) is given by

j∏
i=1

(1 + xi)
−α−1

k∏
r=1

(1 + x j+r)
−β−1

∞∫
0

xα

Γ (α + 1)
exp

(
−x + xx0 +

j+k∑
l=1

xxl

1 + xl

)
dx

=
j∏

i=1

(1 + xi)
−α−1

k∏
r=1

(1 + x j+r)
−β−1

[
1 − x0 −

j+k∑
l=1

xl

1 + xl

]−α−1

. (10.3)

This establishes (10.2) after some simplification using (9.10). �
Corollary 10.2. The numbers {W j,k(m;α,β;m,n)} are positive when α > −1 and α − β is a nonnegative
integer.

Assuming that α − β is a positive integer N , we can give a combinatorial interpretation for
W j,k(m;α,β;m,n). Let S∗

N (n) be the set of (k + 1)-tuples (π, f1, . . . , fk) such that

• σ is an inhomogeneous permutation of S∗
0 ∪ S1 ∪ · · · ∪ S j ∪ S∗

j+1 ∪ · · · ∪ S∗
j+k , where S∗

0 ⊆ S0 and
S∗

j+r ⊆ S j+r for r = 1, . . . ,k.
• fr : S j+r \ S∗

j+r → [N] is an injection for r = 1, . . . ,k.

From Theorems 9.3 and 10.1 we deduce the following combinatorial interpretation:

W j,k(m;α,β;m,n) =
∑

(π, f1,..., fk)∈S∗
N (n)

(α + 1)cyc(π). (10.4)

Motivated by the numbers W j,k(m;α,β;m,n) we consider the following generalized linearization
coefficients of Meixner polynomials:

Y j,k(m;α,β; c;m,n) := (−1)
∑ j

i=1 mi+
∑k

r=1 nr c−m(1 − c)α+m

×
∞∑

x=0

x(x − 1) · · · (x − m + 1)
cx(α)x

x!

×
[ j∏

i=1

Mmi (x;α, c)

][
k∏

r=1

Mnr (x;β, c)

]
, (10.5)

where m = (m1,m2, . . . ,m j) and n = (n1,n2, . . . ,nk).

Theorem 10.3. The integrals Y j,k(m;α,β; c;m,n) have the generating function

∑
m,mi ,nr�0

Y j,k(m;α,β; c;m,n)
xm

0

m!
j∏

i=1

xmi
i

mi !
k∏

r=1

xnr
j+r

nr !

=
k∏

r=1

(1 + x j+r)
α−β

[
1 −

j+k∑
l=2

1 − c1−l

c(1 − c−1)
el(x) − x0

j+k∏
i=1

(1 + xi/c)

]−α

. (10.6)

Proof. Applying (5.3) to see that the left-hand side of (10.6) is

∑
x�0

(
1 + (1 − c)x0/c

)x cx(α)x

x! (1 − c)α
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×
j∏

i=1

(1 + xi/c)x(1 + xi)
−x−α

k∏
r=1

(1 + x j+r/c)x(1 + x j+r)
−x−β

= (1 − c)α
j∏

i=1

(1 + xi)
−α

k∏
r=1

(1 + x j+r)
−β

[
1 − (

c + (1 − c)x0
) j+k∏

i=1

1 + xi/c

1 + xi

]−α

.

This establishes (10.6) after some simplification using (9.10). �
In the same vein, assuming that α − β is a positive integer N , Theorems 9.6 and 10.3 imply the

following combinatorial interpretation:

Y j,k(m;α,β; c;m,n) =
∑

(π, f1,..., fk)∈S∗
N (n)

αcyc(π)c−exc(π). (10.7)

Note that Theorem 10.3 shows that the numbers Y j,k(m;α,β; c;m,n) are positive when α − β is
a nonnegative integer.

11. Proof of Lemma 8.1: Symmetry of F(n | q)

Recall that n = (n1, . . . ,nm) is a sequence of positive integers and n = n1 + · · · + nm . Clearly we
need only to prove the invariance of F(n | q) for the two following permutations of the indices n j ’s:
the transposition exchanging 1 and 2, and the cyclic permutation mapping i to i + 1 (mod m) for
i = 1, . . . ,m. Moreover, since sg(π) = 0 and tr(π) = n − 2 bl(π) for any partition π ∈ P(n), we see
that Lemma 8.1 is equivalent to the following result.

Lemma 11.1. We have∑
π∈P(n)

abl(π)qcr(π) =
∑

π∈P(n2,n3,...,nm,n1)

abl(π)qcr(π), (11.1)

∑
π∈P(n)

abl(π)qcr(π) =
∑

π∈P(n2,n1,n3...,nm)

abl(π)qcr(π). (11.2)

For a positive integer k such that k < n, we introduce two sets of inhomogeneous partitions:

(k)Pn := P(k,1, . . . ,1︸ ︷︷ ︸
n−k

), P(k)
n := P(1, . . . ,1︸ ︷︷ ︸

n−k

,k).

In other words, a partition π of [n] is in (k)Pn (resp. P(k)
n ) if and only if it has no singleton and there

is no arc in π joining two elements in [1,k] (resp. [n − k + 1,n]). For instance, the two partitions
π1 and π2 drawn at the top of Fig. 4 are in (4)P13 and P(4)

13 . We first show that the following result
implies (11.1).

Proposition 11.2. For any positive integer k, there is a bijection Φn,k : (k)Pn �→ P(k)
n such that for any π ∈

(k)Pn, we have

(I) for k < i < j, the pair (i, j) is an arc of π if and only if the pair (i − k, j − k) is an arc of Φn,k(π);
(II) bl(Φn,k(π)) = bl(π) and cr(Φn,k(π)) = cr(π).

Indeed, assuming the existence of such a bijection Φn,k with k = n1, as P(n) ⊆ (n1)Pn , the prop-
erty (I) implies that Φn,n1 (P(n)) ⊆ P(n2,n3, . . . ,nm,n1). Since the cardinality of P(n) is invariant by
permutations of the ni ’s and Φn,n1 is bijective, we deduce that

Φn,n1

(
P(n)

) = P(n2,n3, . . . ,nm,n1),

and then (11.1) by applying the property (II).
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Fig. 4. The mappings Φn,k , Fn,k , Gn,k and Ψn,k .

We now turn our attention to (11.2). Define the set of inhomogeneous partitions

P(n1,n2)
n := P(n1,n2,1, . . . ,1︸ ︷︷ ︸

n−n1−n2

).

In other words, a partition π of [n] is in P(n1,n2)
n if and only if it has no singleton and there is no

arc connecting two integers in [1,n1] or in [n1 + 1,n1 + n2]. For instance, the partitions π1 and π2

drawn in Fig. 6 are, respectively, in P(3,4)
14 and P(4,3)

14 . Similarly, we deduce (11.2) from the following
result.

Proposition 11.3. There is a bijection Θ
(n1,n2)
n :P(n1,n2)

n →P(n2,n1)
n such that for any π ∈P(n1,n2)

n , we have

(I) for N2 < i < j, the pair (i, j) is an arc of π if and only if the pair (i, j) is an arc of Θ
(n1,n2)
n (π), where

N2 := n1 + n2;

(II) bl(Θ(n1,n2)
n (π)) = bl(π) and cr(Θ(n1,n2)

n (π)) = cr(π).

Indeed, since P(n) ⊆ P(n1,n2)
n , the property (I) of Θ

(n1,n2)
n implies that Θ

(n1,n2)
n (P(n)) ⊆ P(n2,n1,

n3, . . . ,nm). This, combined with the fact that the cardinality of P(n) is invariant by permutations of
the ni ’s and Θ

(n1,n2)
n is bijective, implies that

Θ
(n1,n2)
n

(
P(n)

) = P(n2,n1,n3, . . . ,nm).

Eq. (11.2) then follows by applying the property (II) of Θ
(n1,n2)
n .

The next two subsections are dedicated to the proof of Propositions 11.2 and 11.3.

11.1. Construction of the bijection Φn,k

Given a partition π ∈ Πn , an element i ∈ [n] is said to be minimal (resp. maximal) if i is the
least (resp. largest) element of a block of π . The set of the minimal (resp. maximal) elements in
π will be denoted min(π) (resp. max(π)). For example, for π = 1 4 6/2/3 5, min(π) = {1,2,3} and
max(π) = {2,5,6}. Note that min(π) ∩ max(π) = sing(π) where sing(π) is for the set of singletons
of π . Let S be a subset of X . The restriction of a partition π = {B1, B2, . . . , Bk} of X on S is the
partition {B1 ∩ S, B2 ∩ S, . . . , Bk ∩ S} of S .

The key idea for the definition of the mapping Φn,k is some appropriate decomposition of parti-

tions in (k)Pn and P(k)
n . Let (k) An (resp. A(k)

n ) be the set of 3-tuples (τ , R, σ ) where

• τ ∈ Πn−k and σ ∈ Sk ,
• sing(τ ) ⊆ R ⊆ min(τ ) (resp. sing(τ ) ⊆ R ⊆ max(τ )) and |R| = k.

For instance, in Fig. 4, we have (τ1, O , σ1) ∈ (4) A13 and (τ2, C, σ2) ∈ A(4)
13 .

We first define two simpler mappings Fn,k :P(k)
n → A(k)

n and Gn,k : (k)Pn → (k) An .
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• For π ∈P(k)
n , set Fn,k(π) = (τ , C, σ ), where

– τ is the restriction of π on [n − k];
– C is the set of elements in π which are connected to an element > n − k by an arc;
– By definition of P(k)

n , we have |C | = k. Suppose C = {c1 < c2 < · · · < ck}, then σ is the unique
permutation in Sk such that (c1,n −k +σ(1)), (c2,n −k +σ(2)), . . ., (ck,n −k +σ(k)) are arcs
of π .

• For π ∈ (k)Pn , set Gn,k(π) = (τ , O , σ ), where
– τ ∈ Πn−k is the partition obtained by subtracting k from each element in the restriction of π

on [k + 1,n];
– Let M be the set of elements in π which are connected to an element j � k by an arc. By

definition of P(k)
n , we have |M| = k. Suppose M = {m1 < m2 < · · · < mk}, then O is obtained by

subtracting k from each element of M , i.e., O = {m1 − k,m2 − k, . . . ,mk − k};
– σ is the unique permutation in Sk such that (σ (1),m1), (σ (2),m2), . . . , (σ (k),mk) are arcs

of π .

The mappings Fn,k and Gn,k are illustrated in Fig. 4.

Definition 11.4. Let π be a partition of a set S consisting of positive integers. The depth of an element
i in π , denoted dpi(π), is the number of arcs (a,b) in π satisfying a < i < b.

Definition 11.5. Let σ = σ(1)σ (2) · · ·σ(n) be a permutation of [n]. A pair (i, j), 1 � i < j � n, is said
to be a non-inversion in σ if σ(i) < σ( j). The number of non-inversions in σ will be denoted ninv(σ ).

Some useful properties of Fn,k and Gn,k are summarized in the following result.

Proposition 11.6. The mappings Fn,k :P(k)
n → A(k)

n and Gn,k : (k)Pn → (k) An are bijections. Moreover, for any

π ∈P(k)
n , if Fn,k(π) = (τ , C, σ ), then

bl(π) = bl(τ ) and cr(π) = cr(τ ) + ninv(σ ) +
∑
i∈C

dpi(τ ), (11.3)

and, for any π ∈ (k)Pn, if Gn,k(π) = (τ , O , σ ), then

bl(π) = bl(τ ) and cr(π) = cr(τ ) + ninv(σ ) +
∑
i∈O

dpi(τ ). (11.4)

Proof. It is easy to see that Fn,k (resp. Gn,k) is a bijection by constructing its inverse (use Fig. 4).
Let S be a finite subset of positive integers. Clearly, if π is a partition of S , then each block B of

π is represented by |B| − 1 arcs. This easily leads to the following result.

Fact 11.7. The number of blocks of a partition π of S is equal to |S| − (number of arcs in π).

The first equation in (11.3) and (11.4) is just a consequence of the above fact. We now turn our
attention to the second equation in (11.3) and (11.4). Let π ∈ P(k)

n . Clearly, the arc crossings in the
partition π can be divided into three classes R1(π), R2(π) and R3(π) illustrated in Table 1.

They are defined formally as follows:

R1(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 < i2 < j1 < j2 � n − k
}
,

R2(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 < i2 � n − k < j1 < j2
}
,

R3(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 < i2 < j1 � n − k < j2
};
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Table 1
Sketch of crossings in Li(π) and Ri(π).

i Li(π) Ri(π)

1

2

3

Fig. 5. The Motzkin path associated to the partition π = 1 4 15/2 3/5 6/7 10 13/8/9 11/12 14 and the mapping ψπ .

and satisfy cr(π) = |R1(π)|+ |R2(π)|+ |R3(π)|. Suppose Fn,k(π) = (τ , C, σ ). Then it is easily checked
that |R1(π)| = cr(τ ), |R2(π)| = ninv(σ ) and |R3(π)| = ∑

i∈C dpi(τ ) (see Fig. 4). This proves the sec-
ond equation in (11.3).

Similarly, let π ∈ P(k)
n . The arc crossings of the partition π can be divided into three parts L1(π),

L2(π) and L3(π) illustrated in Table 1, defined formally as follows:

L1(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ k < i1 < i2 < j1 < j2 � n
}
,

L2(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 < i2 � k < j1 < j2 � n
}
,

L3(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 � k < i2 < j1 < j2 � n
}
,

and such that cr(π) = |L1(π)| + |L2(π)| + |L3(π)|. Suppose Gn,k(π) = (τ , O , σ ). Then it is easily
checked that |L1(π)| = cr(τ ), |L2(π)| = ninv(σ ) and |L3(π)| = ∑

i∈O dpi(τ ) (see Fig. 4). This proves
the second equation in (11.4). �

In view of Proposition 11.6, to prove Proposition 11.2, it suffices to prove the following result.

Proposition 11.8. For any partition π , there is a bijection ψπ : min(π) �→ max(π) such that dpi(π) =
dpψ(i)(π) for each i ∈ min(π) and ψπ( j) = j for j ∈ sing(π).

Proof. It is worth noting that such a bijection was already described in the literature (e.g., see Re-
mark 7.2 in [23]). For reader’s convenience we recall the construction of ψπ . The mapping ψπ can
be nicely illustrated using Motzkin paths. Recall that a Motzkin path of length n is a lattice path in
the plane of integer lattice Z2 from (0,0) to (n,0), consisting of NE-steps (1,1), E-steps (1,0) and
SE-steps (1,−1), which never passes below the x-axis. The usual way to associate a set partition
to a Motzkin path works as follows: to a partition π of [n] we associate the Motzkin path M of
length n whose i-th step is NE if i ∈ min(π) \ sing(π), SE if i ∈ max(π) \ sing(π) and E otherwise. An
illustration of this correspondence is given in Fig. 5.

A basic property of the above correspondence is the following fact [22].

Fact 11.9. Suppose M is the Motzkin path associated to a partition π and let hi be the height of the i-th step
of M, i.e., the ordinate of its originate point. Then, dpi(π) = hi if the i-th step of M is NE and dpi(π) = hi − 1
if the i-th step of M is SE.
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We can now describe the mapping ψπ . We first set ψπ( j) = j for j ∈ sing(π). Suppose O(π) :=
min(π) \ sing(π) = {o1 < o2 < · · · < or}, C(π) := max(π) \ sing(π) = {c1 < c2 < · · · < cr} and let M be
the Motzkin path associated to π . Note that the NE (resp. SE) steps in M are exactly the steps indexed
by O(π) (resp. C(π)). We then pair the NE-steps with SE-steps in M two by two in the following
way. Suppose the i-th NE-step (i.e., the oi-th step) of M is at height h. Then, if the first SE-step to
its right at height h + 1 is the j-th SE step (i.e., the c j-th step) in M , then we set ψπ(oi) = c j . An
illustration is given in Fig. 5. From the construction of ψπ and Fact 11.9 it is easy to see that ψπ is
the desired bijection. �

For (τ , O , σ ) ∈ (k) An , we set Ψn,k(τ , O , σ ) := (τ ,ψτ (O ),σ ). Clearly Ψn,k is a mapping from (k) An

to A(k)
n . An illustration is given in Fig. 4. From Proposition 11.8 we immediately deduce the following

result.

Proposition 11.10. The mapping Ψn,k : (k) An → A(k)
n is a bijection. Moreover, if (τ , O , σ ) ∈ (k) An and

Ψn,k(τ , O , σ ) = (τ , C, σ ), then we have∑
i∈C

dpi(τ ) =
∑
i∈O

dpi(τ ).

Finally, we define the mapping Φn,k : (k)Pn →P(k)
n by

Φn,k := F −1
n,k ◦ Ψn,k ◦ Gn,k. (11.5)

This mapping is illustrated in Fig. 4. Combining Propositions 11.6 and 11.10, we conclude that the
mapping Φn,k satisfies the requirements of Proposition 11.2.

11.2. Construction of the bijection Θ
(n1,n2)
n

The key idea for the definition of the mapping Θ
(n1,n2)
n is some appropriate decomposition of

partitions in P(n1,n2)
n . We first introduce some further definitions. For any set K , let Π(K ) be the set

of partitions of K .

Definition 11.11. For two positive integers r, s, we denote by P∗(r, s) the set of all partitions π of
[r + s] such that there is no arc in π connecting two integers in [1, r] or in [r + 1, r + s] but π can
have singletons. Thus, we have P(r, s) �P∗(r, s).

Definition 11.12. Let A(n1,n2)
n be the set of 3-tuples ((τ , A), (γ , B),σ ) where

• τ is a partition in P∗(n1,n2) and A is a set satisfying sing(τ ) ⊆ A ⊆ max(τ );
• γ is a partition in Π([N2 + 1,n]) and B is a set satisfying sing(γ ) ⊆ B ⊆ min(γ );
• the sets A and B have the same cardinality. If k = |A| = |B|, then σ is in Sk .

For instance, in Fig. 6, we have ((τ1, A1), (γ1, B1),σ1) ∈ A(3,4)
14 and ((τ2, A2), (γ2, B2),σ2) ∈ A(4,3)

14 .

For π ∈P(n1,n2)
n , we set H(n1,n2)

n (π) = ((τ , A), (γ , B),σ ) where

• τ is the restriction of π on [1, N2] and A is the set of elements � N2 in π which are connected
to an element > N2 by an arc;

• γ is the restriction of π on [N2 + 1,n] and B is the set of elements > N2 in π which are
connected to an element � N2 by an arc;

• Suppose A = {a1 < a2 < · · · < ak} and B = {b1 < b2 < · · · < bk}. Then, σ is the (unique) permuta-
tion in Sk such that (a1,bσ(1)), (a2,bσ(2)), . . ., (ak,bσ(k)) are arcs of π .
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Fig. 6. The mappings H (n1,n2)
n , Γ

(n1,n2)
n and Θ

(n1,n2)
n .

Table 2
Sketchs of crossings in Ci(π).

i Ci(π)

1

2

3

4

5

Clearly, H(n1,n2)
n is a mapping from P(n1,n2)

n to A(n1,n2)
n . Two illustrations are given in Fig. 6.

Proposition 11.13. The mapping H (n1,n2)
n : P(n1,n2)

n → A(n1,n2)
n is a bijection. Moreover, for any π ∈ P(n1,n2)

n ,
if H(n1,n2)

n (π) = ((τ , A), (γ , B),σ ) and k = |A|, then

(i) bl(π) = bl(τ ) + bl(γ ) − k,
(ii) cr(π) = cr(τ ) + cr(γ ) + ninv(σ ) + ∑

i∈A dpi(τ ) + ∑
i∈B dpi(γ ).

Proof. It is easy to see that H(n1,n2)
n establishes a bijection from P(n1,n2)

n to A(n1,n2)
n by constructing

its inverse (use Fig. 6), and Property (i) is a direct consequence of Fact 11.7. Let π ∈ P(n1,n2)
n . The arc

crossings of the partition π can be divided into five parts Ci(π), 1 � i � 5, illustrated in Table 2. They
are defined formally as follows:

C1(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 < i2 < j1 < j2 � N2
}
,

C2(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ N2 < i1 < i2 < j1 < j2 � n
}
,
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Fig. 7. The mapping ψ(n1,n2) .

C3(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 < i2 � N2 < j1 < j2 � n
}
,

C4(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 � N2 < i2 < j1 < j2 � n
}
,

C5(π) = {
(i1, j1)(i2, j2) ∈ π

∣∣ 1 � i1 < i2 < j1 � N2 < j2 � n
}
,

and satisfy cr(π) = ∑5
i=1 |Ci(π)|. Suppose H(n1,n2)

n (π) = ((τ , A), (γ , B),σ ). It is easily checked (use
Fig. 6) that |C1(π)| = cr(τ ), |C2(π)| = cr(γ ), |C3(π)| = ninv(σ ), |C4(π)| = ∑

i∈B dpi(γ ) and |C5(π)| =∑
i∈A dpi(τ ). Altogether, this leads to Property (ii). �
Let

R(n1,n2) := {
(π, A): π ∈ P∗(n1,n2) and sing(π) ⊆ A ⊆ max(π)

}
. (11.6)

For instance, the elements (π, A) and (π, A′) drawn in Fig. 7 are, respectively, in R(4,6) and R(6,4).
In view of Proposition 11.13, to prove Proposition 11.3, it suffices to demonstrate the following

result.

Proposition 11.14. There is a bijection ψ(n1,n2) : R(n1,n2) → R(n2,n1) such that, for (π, A) ∈ R(n1,n2), if
ψ(n1,n2)(π, A) = (π ′, A′), then

cr
(
π ′) = cr(π),

∣∣A′∣∣ = |A|,
∑
i∈A′

dpi

(
π ′) =

∑
i∈A

dpi(π). (11.7)

Proof. To any (π, A) ∈ R(n1,n2) we associate an element (π ′, A′) in R(n2,n1) as follows:

• By definition of P∗(n1,n2), the arcs of π are (i1, jρ(1)), (i2, jρ(2)), . . ., (ik, jρ(k)) for some integers
k � 0, 1 � i1 < i2 < · · · < ik � n1, n1 + 1 � j1 < j2 < · · · < jk � N2 and some permutation ρ ∈
Sk . We use i for the complement of i in [1, N2], i.e., i = N2 + 1 − i. Then, we define π ′ as
the partition of [1, N2] which consists of the arcs ( jr, iρ(r)) for 1 � r � k. It is clear that π ′ ∈
P∗(n2,n1). Moreover, we have cr(π ′) = ninv(ρ) and cr(π) = ninv(ρ) whence cr(π ′) = cr(π).

• Since sing(π) ⊆ A ⊆ max(π), we have A = sing(π) ∪ B with B = { j�(1) < j�(2) < · · · < j�(t)} for
some increasing sequence (�(s))1�s�t . Suppose I := {i1, i2, . . . , ik} = {u1 < u2 < · · · < uk}. We
then set A′ := sing(π ′) ∪ B ′ with B ′ = {u�(1) < u�(2) < · · · < u�(t)}. Clearly, we have sing(π ′) ⊆
A′ ⊆ max(π ′) and |A′| = |A|. It is also easily checked that du�(t) (π

′) = d j�(t) (π) for s = 1,2, . . . , t

whence
∑

i∈B ′ dpi(π
′) = ∑

i∈B dpi(π). Moreover, since sing(π ′) = sing(π) and di(π
′) = di(π)

for i ∈ sing(π), we see that
∑

i∈sing(π ′) dpi(π
′) = ∑

i∈sing(π) dpi(π). Altogether, this implies that∑
i∈A′ dpi(π

′) = ∑
i∈A dpi(π).

Set ψ(n1,n2)(π, A) = (π ′, A′). Then ψ(n1,n2) is a well-defined map from R(n1,n2) to R(n2,n1) and
satisfies (11.7). An illustration is given in Fig. 7. Besides, it is easy to see that the composition
ψ(n2,n1) ◦ ψ(n1,n2) is the identity mapping. This proves that ψ(n1,n2) is a bijection. �

For ((π, A), (γ , B),σ ) ∈ A(n1,n2)
n , we set

Γ
(n1,n2)

n
(
(π, A), (γ , B),σ

) := (
ψ(n1,n2)(τ , A), (γ , B),σ

)
.

Clearly Γ
(n1,n2)

n is a mapping from A(n1,n2)
n to A(n2,n1)

n . An illustration is given in Fig. 6. From Proposi-
tion 11.14 we deduce the following result.
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Proposition 11.15. The mapping Γ
(n1,n2)

n : A(n1,n2)
n → A(n2,n1)

n is a bijection. Moreover, if ((τ , A), (γ , B),σ ) ∈
A(n1,n2)

n and Γ
(n1,n2)

n ((π, A), (γ , B),σ ) = ((τ ′, A′), (γ , B),σ ), then we have

cr
(
τ ′) = cr(τ ),

∣∣A′∣∣ = |A|,
∑
i∈A′

dpi

(
τ ′) =

∑
i∈A

dpi(τ ).

Finally, we define the mapping Θ
(n1,n2)
n :P(n1,n2)

n →P(n2,n1)
n by

Θ
(n1,n2)
n := (

H (n2,n1)
n

)−1 ◦ Γ
(n1,n2)

n ◦ H (n1,n2)
n . (11.8)

An illustration is given in Fig. 6. Combining Propositions 11.13 and 11.15, we conclude that the map-
ping Θ

(n1,n2)
n satisfies the requirements of Proposition 11.3.
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