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The 3-uniform loose cycle, denoted by C3
n , is the hypergraph

with vertices v1, v2, . . . , v2n and n edges v1 v2 v3, v3 v4 v5, . . . ,

v2n−1 v2n v1. Similarly, the 3-uniform loose path P3
n is the hyper-

graph with vertices v1, v2, . . . , v2n+1 and n edges v1 v2 v3, v3 v4 v5,

. . . , v2n−1 v2n v2n+1. In 2006 Haxell et al. proved that the 2-color
Ramsey number of 3-uniform loose cycles on 2n vertices is asymp-
totically 5n

2 . Their proof is based on the method of the Regularity
Lemma. Here, without using this method, we generalize their re-
sult by determining the exact values of 2-color Ramsey numbers
involving loose paths and cycles in 3-uniform hypergraphs. More
precisely, we prove that for every n � m � 3,

R
(
P3

n ,P3
m

) = R
(
P3

n ,C3
m

) = R
(
C3

n ,C3
m

) + 1

= 2n +
⌊

m + 1

2

⌋
,

and for every n > m � 3, R(P3
m,C3

n ) = 2n + � m−1
2 �. This gives a

positive answer to a recent question of Gyárfás and Raeisi.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

For given k-uniform hypergraphs H1,H2, . . . ,Ht the Ramsey number R(H1,H2, . . . ,Ht) is the
smallest number N such that in every t-coloring of the edges of the complete k-uniform hypergraph
on N vertices, Kk

N , there is a monochromatic copy of Hi in color i, for some 1 � i � t . A k-uniform
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loose cycle Ck
n (shortly, a cycle of length n) is a hypergraph with the vertex set {v1, v2, . . . , vn(k−1)} and

with the set of n edges ei = {v1, v2, . . . , vk}+ (i −1)(k −1), i = 1,2, . . . ,n, where we use mod n(k −1)

arithmetic and by adding a number t to a set H = {v1, v2, . . . , vk} we mean a shift, i.e., the set
which is obtained by adding t to subscripts of each element of H . Similarly, a k-uniform loose path Pk

n
(shortly, a path of length n) is a hypergraph with vertex set {v1, v2, . . . , vn(k−1)+1} and with the set of
n edges ei = {v1, v2, . . . , vk} + (i − 1)(k − 1), i = 1,2, . . . ,n. For an edge e of a given loose path (also
a given loose cycle) K, the first vertex and the last vertex are denoted by vK,e and v̂K,e , respectively.
For k = 2 we get the usual definitions of a cycle Cn and a path Pn with n edges.

Determining the exact values of R(Pn, Pm), R(Pn, Cm) and R(Cn, Cm) are classical results; see [1,
6,5,8,16]. Also, the asymptotic value of R(Cn, Cn, Cn) was obtained by Figaj and Luczak [7]. Moreover,
Gyárfás et al. [10] determined the value of R(Pn, Pn, Pn) for sufficiently large n. For a survey, including
some results on the Ramsey numbers of paths and cycles, see [15].

There are few known results about the Ramsey numbers of hypergraphs. Recently, this topic has
received considerable attention. Haxell et al. [12] proved the following result on the Ramsey number
of 3-uniform loose cycles, using the Regularity Lemma.

Theorem 1.1. For all η > 0 there exists some n0 = n0(η) such that for every n > n0 , every 2-coloring of
K3

5(1+η)n/2 contains a monochromatic copy of C3
n .

Subsequently, Gyárfás, Sárközy and Szemerédi [11] extended this result to k-uniform loose cycles
and proved that for any k � 3 and η > 0 there exists some n0 = n0(η) such that every 2-coloring of
Kk

N with N = (1 +η) 1
2 (2k − 1)n contains a monochromatic copy of Ck

n , i.e., R(Ck
n,Ck

n) is asymptotically
equal to 1

2 (2k − 1)n. All these proofs are based on the hypergraph regularity method. Recently, Gyár-
fás and Raeisi [9] determined the exact values of 2-color Ramsey numbers of two k-uniform loose
triangles and two k-uniform loose quadrangles. They also posed the following question.

Question 1.2. For every n � m � 3, is it true that

R
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P3

n ,P3
m

) = R
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P3

n ,C3
m

) = R
(
C3

n ,C3
m

) + 1 = 2n +
⌊

m + 1

2

⌋
?

In particular, is it true that

R
(
P3

n ,P3
n

) = R
(
C3

n ,C3
n

) + 1 =
⌈

5n

2

⌉
?

In connection with Question 1.2, it is known that for every n � � 5m
4 �, R(P3

n ,P3
m) = 2n + �m+1

2 �;
see [13]. In this article, we answer Question 1.2 positively. Our proof involves new ideas (though, it
modifies certain ideas from [13] at some points), and does not use the Regularity Lemma. Moreover,
we show that R(P3

m,C3
n ) = 2n + �m−1

2 � for any n > m � 3. Indeed, our results yield Theorem 1.1.
The loose paths and loose cycles are examples of hypergraphs with bounded maximum degree.

For this class of hypergraphs, it was conjectured that their Ramsey number is linear in terms of their
number of vertices. This conjecture has been established by several authors using the hypergraph
regularity method; see [3,4,14]. Recently, Conlon, Fox and Sudakov [2] proved this without using the
regularity method.

This paper is organized as follows. In Section 2, we state the principal results necessary to prove
the main results. In Section 3, we determine the exact value of the Ramsey number of loose cycles
in 3-uniform hypergraphs; this generalizes Theorem 1.1. In Section 4, we provide the exact value of
the Ramsey number of loose paths in 3-uniform hypergraphs, and finally, in Section 5, the Ramsey
number of a loose path and a loose cycle in 3-uniform hypergraphs is determined.

Note. It is shown in [9, Lemma 1] that (k − 1)n + �m+1
2 � is a lower bound for R(Pk

n ,Pk
m), R(Pk

n ,Ck
m)

and R(Ck
n,Ck

m)+1, when n � m � 2 and k � 3. Here we note that for any n > m and k � 3, R(Pk
m,Ck

n) �
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(k − 1)n + �m−1
2 �. To prove this, consider a complete hypergraph whose vertex set is partitioned into

two parts A and B , where |A| = (k − 1)n − 1 and |B| = �m−1
2 �. Color all edges that contain a vertex of

B red, and the rest blue. In this coloring, the longest red path has length at most m − 1 and there is
also no blue copy of Ck

n , since such a copy should have (k − 1)n vertices. Our main aim in this article
is to prove that for k = 3 these lower bounds are sharp. Therefore, in this paper, to determine the
Ramsey numbers it suffices to verify that the known lower bounds are also upper bounds.

Throughout the paper, we denote by Hred and Hblue the induced 3-uniform sub-hypergraph of H
on the edges with color red and blue, respectively. Also, we denote by |H| and ‖H‖ the number of
vertices and edges of H, respectively.

2. Preliminaries

In this section, we present results that we will use in the follow up sections. We also recall some
results from [9].

Lemma 2.1. (See [9].) Let n � m � 3 and k � 3 and let H = Kk
(k−1)n+� m+1

2 � be 2-edge colored red and blue. If

Ck
n ⊆Hred , then either Pk

n ⊆Hred or Pk
m ⊆Hblue . Also, if Ck

n ⊆Hred , then either Pk
n ⊆Hred or Ck

m ⊆Hblue .

Theorem 2.2. (See [9].) For every k � 3,

(i) R(Pk
3,Pk

3) = R(Ck
3,Pk

3) = R(Ck
3,Ck

3) + 1 = 3k − 1;
(ii) R(Pk

4,Pk
4) = R(Ck

4,Pk
4) = R(Ck

4,Ck
4) + 1 = 4k − 2.

Let P be a loose path and let W be a set of vertices with W ∩ V (P) = ∅. By a �{vi ,v j ,vk}-configu-

ration, we mean a copy of P3
2 with edges {x, vi, v j} and {v j, vk, y} so that the vl ’s, where l ∈ {i, j,k},

belong to two consecutive edges of P and {x, y} ⊆ W . The vertices x and y are called the end ver-
tices of this configuration. A �S -configuration, with S ⊆ V (ei) ∪ V (ei+1), is good if the last vertex of
ei+1 is not in S and it is bad, otherwise. Let H = K3

l be 2-edge colored red and blue. We say that
a red path P = e1e2 . . . en of length n is maximal with respect to W ⊆ V (H) \ V (P) (in brief, maximal
w.r.t. W ) if there are no vertices x and y in W so that for some 1 � i � n either there is a red path
P ′ = e1e2 . . . ei−1ee′ei+1 . . . en in H with vP ′,e = vP,ei if i = 1 and v̂P ′,e′ = v̂P,ei if i = n, or a red
path P ′ = e1e2 . . . ei−1ee′e′′ei+2 . . . en in H with vP ′,e = vP,ei if i = 1 and v̂P ′,e′′ = v̂P,ei+1 if i = n − 1,
such that V (P ′) = V (P) ∪ {x, y}. Clearly, if P is maximal w.r.t. W , then it is maximal w.r.t. every
W ′ ⊆ W and also every loose path P ′ which is a sub-hypergraph of P is again maximal w.r.t. W . We
use these definitions to deduce the following lemma.

Lemma 2.3. Assume that H = K3
l is 2-edge colored red and blue. Let P ⊆ Hred be maximal w.r.t. W ⊆

V (H) \ V (P) with |W | � 3. Let ei = {v2i−1, v2i, v2i+1} and ei+1 = {v2i+1, v2i+2, v2i+3} be consecutive
edges of P . Then there is a good �S -configuration C in Hblue with end vertices in W and S ⊆ V (ei)∪ V (ei+1)

or there is a bad �S1 -configuration C1 in Hblue with end vertices in W and S1 ⊆ V (ei) ∪ V (ei+1) \ {v2i+2}.
If there is no such good configuration C in Hblue and ei+2 = {v2i+3, v2i+4, v2i+5} is an edge of P , then there
is also a good �S2 -configuration C2 in Hblue with S2 ⊆ V (ei+1) ∪ V (ei+2) and with end vertices in W and
S1 ∩ S2 = ∅. Moreover, each vertex of W , with the exception of at most one, can be considered as an end vertex
of C if there exists such a configuration and otherwise, each vertex of W can be considered as an end vertex of
C1 and C2 .

Proof. Assume that W = {x1, . . . , xt} ⊆ V (H) \ V (P). If {v2i−1, v2i, x} (resp. {v2i+2, v2i+3, x}) is red
for some x ∈ W , then the maximality of P w.r.t. W implies that for arbitrary vertices x′ �= x′′ ∈ W \
{x} the edges {x′, v2i+1, v2i} and {v2i, v2i+2, x′′} (resp. {x′, v2i+1, v2i+2} and {v2i+2, v2i, x′′}) are blue
and there is a good �S -configuration C = {x′, v2i+1, v2i}{v2i, v2i+2, x′′} (resp. C = {x′, v2i+1, v2i+2}
{v2i+2, v2i, x′′}) in Hblue with S = {v2i, v2i+1, v2i+2} ⊆ V (ei) ∪ V (ei+1). So we may assume that for
every x ∈ W both edges {v2i−1, v2i, x} and {v2i+2, v2i+3, x} are blue.
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If there is a vertex y ∈ W such that at least one of the edges f1 = {v2i−1, v2i+1, y}, f2 =
{v2i, v2i+1, y}, f3 = {v2i−1, v2i+2, y} and f4 = {v2i, v2i+2, y}, say f , is blue, then there is a good
�S -configuration C = {v2i−1, v2i, x} f , x �= y, with

S = {v2i−1, v2i} ∪ f \ {y} ⊆ V (ei) ∪ V (ei+1).

Hence, if there is no such good configuration C , we may assume that for every y ∈ W the edges f1,
f2, f3 and f4 are red. Therefore, the maximality of P w.r.t. W implies that for every y′ ∈ W the edge
{v2i, v2i+3, y′} is blue. Otherwise, replacing eiei+1 by {v2i−1, v2i+2, y}{y, v2i+1, v2i}{v2i, v2i+3, y′},
y �= y′ , in P yields a red path P ′ greater than P , which is a contradiction. Thus, for every a �= b ∈ W ,
C1 = {v2i−1,a, v2i}{v2i, v2i+3,b} is a bad �S1 -configuration in Hblue with the desired properties, so
that

S1 = {v2i−1, v2i, v2i+3} ⊆ V (ei) ∪ V (ei+1) \ {v2i+2}.
Clearly, when ei+2 = {v2i+3, v2i+4, v2i+5} is an edge of P , then for every x ∈ W , {v2i+2, v2i+4, x} (resp.
{v2i+1, v2i+4, x}) is blue; otherwise, for some y ∈ W \ {x}, replacing eiei+1 by {v2i−1, v2i+1, y}{y, v2i,

v2i+2}{v2i+2, v2i+4, x} (resp. eiei+1 by {v2i−1, v2i+2, y}{y, v2i, v2i+1}{v2i+1, v2i+4, x}) in P yields a
red path P ′ greater than P , which contradicts the maximality of P w.r.t. W . Thereby, for every a �=
b ∈ W , C2 = {a, v2i+2, v2i+4}{v2i+4, v2i+1,b} is a good �S2 -configuration with the desired properties,
where

S2 = {v2i+1, v2i+2, v2i+4} ⊆ V (ei+1) ∪ V (ei+2). �
The following is an immediate corollary of Lemma 2.3.

Corollary 2.4. Assume that H = K3
l is 2-edge colored red and blue. Let P ⊆ Hred be maximal w.r.t.

W ⊆ V (H) \ V (P) with |W | � 3. Let ei = {v2i−1, v2i, v2i+1}, ei+1 = {v2i+1, v2i+2, v2i+3} and ei+2 =
{v2i+3, v2i+4, v2i+5} be consecutive edges of P . Then either for every distinct vertices x and y of W ,
except for at most one, there is a blue path Q = {x, v̄1, v̄2}{v̄2, v̄3, y} of length 2 with {v̄1, v̄2, v̄3} ⊆
V (ei) ∪ V (ei+1) \ {v2i+3} or for every distinct vertices x, y and z of W there is a blue path Q′ =
{x, v ′

1, v ′
2}{v ′

2, v ′
3, y}{y, v ′

4, v ′
5}{v ′

5, v ′
6, z} of length 4 with {v ′

1, v ′
2, v ′

3} = {v2i−1, v2i, v2i+3} and {v ′
4, v ′

5,

v ′
6} = {v2i+1, v2i+2, v2i+4}.

Corollary 2.5. Let H = K3
l be 2-edge colored red and blue and P = e1e2 . . . en, n � 3, be a maximal red

path w.r.t. W , where W ⊆ V (H) \ V (P) and |W | � 3. Then for some r � 0 and W ′ ⊆ W there is a blue
path Q = f1 f2 . . . fq between W ′ and P̄ = e1e2 . . . en−r so that W ′ = {vQ, f1} ∪ {v̂Q, f2i | 1 � i � q/2} and
V (Q) \ W ′ ⊆ P̄ . Moreover, Q does not have v̂P,en−r as a vertex, V ( f1 f2 . . . fq−2) ∩ V (en−ren−r+1 . . . en) ⊆
{vP,en−r }, ‖Q‖ = q = 2(|W ′| − 1) � n − r and either x = |W \ W ′| ∈ {0,1} or x � 2 and 0 � r � 2.

Proof. Let P = e1e2 . . . en be a maximal red path w.r.t. W ⊆ V (H) \ V (P) where ei = {v1, v2, v3} +
2(i − 1), i = 1,2, . . . ,n.

Step 1: Set i1 = 1, P1 =P , W1 = W , P ′
1 = ei1 ei1+1 and P ′′

1 = ei1 ei1+1ei1+2. Since P1 is maximal w.r.t.
W1, using Corollary 2.4 there is a blue path Q1 with end vertices x1 and y1 in W1 between P1 and
W ′

1 ⊆ W1 where P1 ∈ {P ′
1,P ′′

1 }, ‖Q1‖ = 2‖P1‖ − 2 and Q1 does not contain the last vertex of P1.
If P1 = P , then Q = Q1 is a blue path between W ′ = W ′

1 and P̄ = P with the desired properties.
Otherwise, continue to Step 2.

Step k (k ��� 2): Set

ik = min
{

j: j ∈ {ik−1 + 2, ik−1 + 3}, e j /∈ Pk−1
}
, Pk = eik eik+1 . . . en,

and Wk = (W \ V (
⋃k−1

i=1 Qi)) ∪ {xk−1, yk−1}. If either |Wk| � 3 or ‖Pk‖ � 2, then Q = ⋃k−1
i=1 Qi is a

blue path between W ′ = ⋃k−1
i=1 W ′

i and P̄ = e1e2 . . . eik−1 with the desired properties. Otherwise, set
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P ′
k = eik eik+1 and P ′′

k = eik eik+1eik+2. Since Pk is maximal w.r.t. Wk , using Corollary 2.4 there is a

blue path Qk between Pk , Pk ∈ {P ′
k,P ′′

k }, and W ′
k ⊆ Wk such that ‖Qk‖ = 2‖Pk‖ − 2, Qk does not

contain the last vertex of Pk and
⋃k

i=1 Qi is a blue path with end vertices xk, yk in Wk . If the last

edge of Pk is en , then Q = ⋃k
i=1 Qi is a blue path between W ′ = ⋃k

i=1 W ′
i and P̄ = P with the

desired properties. Otherwise, continue to Step k + 1.
Let t � 2 be the minimum integer for which either the last edge of Pt−1 is en or |Wt | � 3 or

‖Pt‖ � 2. If the first case holds, then Q= ⋃t−1
i=1 Qi is a blue path between W ′ = ⋃t−1

i=1 W ′
i and P̄ =P

with the desired properties. Otherwise, let W ′ = ⋃t−1
i=1 W ′

i . Clearly, either |W \ W ′| = 0,1 or |W \
W ′| � 2 and 0 � ‖Pt‖ � 2. So Q= ⋃t−1

i=1 Qi is a blue path between P̄ = e1e2 . . . en−r and W ′ with the
desired properties where r = n − it + 1. �
3. Cycle–cycle Ramsey number in 3-uniform hypergraphs

In this section, we provide the exact value of R(C3
n ,C3

m), when n � m � 3. Before we proceed we
need the following two lemmas.

Lemma 3.1. Let n � m � 3, (n,m) �= (3,3), (4,3), (4,4) and let H = K3
2n+� m−1

2 � be 2-edge colored red and

blue. Assume that there is no copy of C3
n in Hred and C = C3

n−1 is a loose cycle in Hred . Then there is a copy of

C3
m in Hblue . Moreover, for every n > m, there is also a copy of P3

m in Hblue .

Proof. Let t = 2n + �m−1
2 � and C = e1e2 . . . en−1 be a copy of C3

n−1 in Hred with edges ei =
{v1, v2, v3}+2(i −1) (mod 2(n−1)), i = 1, . . . ,n−1. Let W = V (H)\ V (C). We consider the following
cases.

Case 1. For some 1 � i � n − 1, there exist an edge ei = {v2i−1, v2i, v2i+1} and a vertex z ∈ W such
that {v2i, v2i+1, z} is red.

Let P = ei+1ei+2 . . . en−1e1e2 . . . ei−2ei−1 and W0 = W \ {z}.
First, let m � 4. Therefore, |W0| = 2. Let W0 = {u, v}. We show that Hblue contains C3

m and P3
m for

each m ∈ {3,4}. Since n � 5 and there is no red copy of C3
n , clearly {u, v2i−2, v2i}{v2i, v, v2i−1}{v2i−1,

z, u} forms a blue copy of C3
3 . Moreover, P ′ = ei−3ei−2ei−1 (in mod (n − 1) arithmetic) is maximal

w.r.t. W = W0 ∪ {z}. Using Lemma 2.3 there is a configuration in Hblue (no matter good or bad),
say C , between V (ei−3) ∪ V (ei−2) and W with end vertices in W . Without loss of generality assume
that u is an end vertex of C . Clearly, C{v, z, v2i−1}{v2i−1, v2i, u} is a blue copy of C3

4 . Also, using
Corollary 2.4 there is either a blue path Q of length 4 between P ′ and W or a blue path Q of length
2 between ei−3ei−2 and W . In the first case, we have a blue copy of P3

4 and a blue copy of P3
3 . In

the second case, Q{y, z, v2i−1}{v2i−2, v2i, w} is a blue copy of P3
4 where w = y = {u, v} \ V (Q) if

z ∈ V (Q) and y = v, w = u, otherwise.
Now, let m � 5. Clearly, |W0| � 3. Since there is no red copy of C3

n , P is a maximal path w.r.t. W0.
Now, using Corollary 2.5, there is a blue path Q of length l′ between P̄ (where P̄ is the path obtained
from P by deleting the last r edges) and W ′ for some r � 0 and W ′ ⊆ W0 with properties mentioned
in Corollary 2.5. Let x′ and y′ be the end vertices of Q in W ′ , T = W0 \ V (Q) and x = |T |. We have
the following subcases.

Subcase 1: x = 0.
Clearly, l′ = 2�m−1

2 �. First, let m be even. Hence l′ = m − 2 and so{
v2i−1, z, x′}Q{

y′, v2i, v2i−1
}
,

is a blue copy of C3
m . If n > m, then r � 1 and so {v2i−2, v2i, x′}Q{y′, z, v2i−1} is a blue copy of P3

m .
Now, let m be odd. So l′ = m − 1. In this case, we remove the last two edges of Q to make a path Q′
of length m − 3. Using Corollary 2.5, v2i−2 /∈Q′ . Now, we may assume that the vertices x′ and y′′ �= y′
of W ′ are the end vertices of Q′ . Hence,

Q′{y′′, v2i−2, v2i
}{

v2i, y′, v2i−1
}{

v2i−1, z, x′},
is a copy of C3

m in Hblue. Also, Q{y′, v2i−1, v2i} is a blue copy of P3
m .
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Subcase 2: x = 1.
Let T = {u}. Clearly, l′ = 2�m−1

2 � − 2. Let m be odd. Then l′ = m − 3 and r � 1. Thereby,

Q
{

y′, v2i−2, v2i
}{v2i, u, v2i−1}

{
v2i−1, z, x′},

is a blue copy of C3
m . When n > m, then r � 2 and since P̂ = ei−2ei−1ei is a maximal path w.r.t.

Ŵ = {x′, y′, u, z}, using Corollary 2.4 there is either a blue path Q′ of length 2 between (V (ei−2) ∪
V (ei−1)) \ {v2i−1} and Ŵ or a blue path Q′ of length 4 between V (P̂) \ {v2i+1} and Ŵ so that
Q′′ =Q∪Q′ is a blue path. Now, let l′′ be the length of Q′ . If l′′ = 4, then Q′′ is a blue copy of P3

m+1
and so there is a P3

m in Hblue. If l′′ = 2, the length of Q′′ is m − 1. Without loss of generality let
x′, y′′ ∈ W be the end vertices of Q′′ . Then {v2i−1, v2i, x′}Q′′ is a blue copy of P3

m .
Now, suppose that m is even, so l′ = m − 4 and r � 2. If {v2i−5, v2i−4, x′} is red, then

Q
{

y′, v2i−3, v2i−4
}{v2i−4, v2i−2, u}{u, v2i, v2i−1}

{
v2i−1, z, x′},

is a blue copy of C3
m . If {v2i−4, v2i−3, u} is red, then

Q
{

y′, v2i−1, v2i
}{v2i, v2i−2, u}{u, z, v2i−5}

{
v2i−5, v2i−4, x′},

is a blue copy of C3
m . Otherwise,

Q
{

y′, v2i−1, v2i
}{v2i, v2i−2, u}{u, v2i−3, v2i−4}

{
v2i−4, v2i−5, x′},

is a copy of C3
m in Hblue. For n > m, clearly r � 3 and since P̂ = ei−3ei−2ei−1 is a maximal path

w.r.t. Ŵ = {x′, y′, u, z}, using Corollary 2.4 there is a blue path Q′ either of length l′′ = 2, between
(V (ei−3) ∪ V (ei−2)) \ {v2i−3} and Ŵ or of length l′′ = 4, between V (P̂) \ {v2i−1} and Ŵ such that
Q′′ = Q ∪ Q′ is a blue path. If l′′ = 4, then Q′′ is a blue copy of P3

m . Otherwise, the length of Q′′ is
m − 2. We may assume that x′ ∈ W is an end vertex of Q′′ . Clearly, {v2i−2, v2i, x′}Q′′{u, z, v2i−1} is a
blue copy of P3

m .
Subcase 3: x � 2.
One can easily check that this implies that r � 3. This subcase does not occur by Corollary 2.5.

Case 2. For some 1 � i � n − 1, there exist an edge ei = {v2i−1, v2i, v2i+1} and a vertex z ∈ W such
that {v2i−1, v2i, z} is red.

In this case, consider the path P = ei−1ei−2 . . . e2e1en−1en−2 . . . ei+2ei+1 and repeat the proof of
Case 1. By an argument similar to the one we have given for Case 1 we can find a blue copy of C3

m
for any n � m and a blue copy of P3

m for any n > m.

Case 3. For every ei = {v2i−1, v2i, v2i+1}, 1 � i � n−1, and every vertex z ∈ W the edges {v2i−1, v2i, z}
and {v2i, v2i+1, z} are blue.

Let W = {x1, x2, . . . , x� m−1
2 �+2}. For 1 � i � m, set

f i =
{ {x i+1

2
, v 3i+1

2
, v 3i+3

2
} if i is odd,

{v 3i
2
, v 3i

2 +1, x i
2 +1} if i is even.

Set Q= f1 f2 . . . fm−1. For n = m = 5,

Q fm = {x1, v2, v3}{v3, v4, x2}{x2, v5, v6}{v6, v7, x3}{x3, v8, v1},
is a blue copy of P3

m . Otherwise, since (n,m) �= (3,3), (4,3), (4,4) we have

max{i | vi ∈ fm} � 2n − 2.

Clearly every two non-consecutive f i ’s are disjoint and every two consecutive f i ’s have exactly one
vertex in their intersection. Therefore, Q fm is a blue copy of P3

m . Moreover, depending on whether m
is even or odd, Q{x1, v 3m , v 3m +1} or Q{x m+1 , v1, v2} is a blue copy of C3

m . �

2 2 2
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Lemma 3.2. R(C3
4 ,C3

3 ) = 9.

Proof. Let H = K3
9 be 2-edge colored red and blue. Suppose that there is no red copy of C3

4 and
no blue copy of C3

3 . Using Theorem 2.2 we may assume that there is a blue copy of C3
4 . Let C =

e1e2e3e4 be a copy of C3
4 in Hblue with edges ei = {v1, v2, v3} + 2(i − 1) (mod 8), i = 1, . . . ,4. Let

v ∈ V (H) \ V (C). Since there is no blue copy of C3
3 ,

{v1, v6, v}{v, v3, v8}{v8, v4, v2}{v2, v5, v1},
is a red copy of C3

4 . This is a contradiction. �
The main result of this section is the following result on the Ramsey number of loose cycles in

3-uniform hypergraphs.

Theorem 3.3. For every n � m � 3,

R
(
C3

n ,C3
m

) = 2n +
⌊

m − 1

2

⌋
.

Proof. We prove this theorem by induction on m+n. The case n = m = 3 holds by Theorem 2.2. Using
Theorem 2.2 and Lemma 3.2 we may assume that n � 5. Suppose for a contradiction that the edges
of H = K3

2n+� m−1
2 � can be colored red and blue with no red copy of C3

n and no blue copy of C3
m . We

consider the following cases.

Case 1: n = m. By the induction hypothesis,

R
(
C3

n−1,C
3
n−1

) = 2(n − 1) +
⌊

n − 2

2

⌋
< 2n +

⌊
n − 1

2

⌋
.

So we may assume that there is a red copy of C3
n−1 in H. Using Lemma 3.1 we have a blue copy

of C3
n ; a contradiction.

Case 2: n > m. In this case, we have n − 1 � m and since

R
(
C3

n−1,C
3
m

) = 2(n − 1) +
⌊

m − 1

2

⌋
< 2n +

⌊
m − 1

2

⌋
,

we may assume that C3
n−1 ⊆Hred. Using Lemma 3.1 we have a blue copy of C3

m; a contradiction. �
4. Path–path Ramsey number in 3-uniform hypergraphs

In this section, we determine the exact value of R(P3
n ,P3

m), for n � m � 3. For this purpose we
need the following lemmas.

Lemma 4.1. Let n � m � 3, (n,m) �= (3,3), (4,3), (4,4) and let H = K3
2n+� m+1

2 � be 2-edge colored red and

blue. If P =P3
n−1 is the maximum red path, then there is a copy of P3

m in Hblue .

Proof. Let t = 2n +�m+1
2 �, and P = e1e2 . . . en−1 be a red copy of P3

n−1 with edges ei = {v1, v2, v3}+
2(i − 1), i = 1,2, . . . ,n − 1, and let W = V (K3

t ) \ V (P). One can easily check that |W | � 3. By
Lemma 2.1 we may assume that there is no copy of C3

n in Hred. Since P =P3
n−1 is the maximum red

path, P ′ = e2 . . . en−1 is a maximal red path w.r.t. W . By Corollary 2.5, for some r � 0, there is a blue
path Q (where Q does not contain v2n−1−2r ) of length l′ = 2(|W ′| − 1) between P̄ ′ = e2e3 . . . en−1−r
and W ′ for some W ′ ⊆ W as in Corollary 2.5. Let y and z be the end vertices of Q in W ′ , T = W \ W ′
and x = |T |. We have one of the following cases.
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Case 1: x = 0. One can easily check that l′ = 2�m+1
2 �. Since l′ � m, there is a blue copy of P3

m and we
are done.

Case 2: x = 1. Let T = {u}. It is easy to see that l′ = 2�m+1
2 �−2. If m is odd, then l′ = m −1 and clearly

Q{y, v1, u} is a blue copy of P3
m . If m is even, then l′ = m − 2. Since v2n−1 is not a vertex of Q and

there is no red copy of C3
n , clearly {v1, u, y}Q{z, v2, v2n−1} is a blue copy of P3

m .

Case 3: x = 2. Let T = {u, v}. In this case, l′ = 2�m+1
2 � − 4. Clearly, if m is odd, then l′ = m − 3 and

r � 1. One can easily check that

Q{z, v2, v2n−2}{v2n−2, u, v}{v, v2n−1, v1},
is a blue copy of P3

m . If m is even, then clearly l′ = m − 4 and r � 2. Since P̂ = en−2en−1 is maximal
w.r.t. Ŵ = {y, z, u, v}, by Lemma 2.3 there is a blue �S -configuration, say P ′′ , with S ⊆ V (en−2) ∪
V (en−1) so that Q′ =Q∪P ′′ is a blue path of length m − 2 and at least one of v2n−2 and v2n−1, say
w , is not in V (Q′). Without loss of generality assume that y and v are the end vertices of Q′ . Thus,
{u, v1, y}Q′{v, w, v2} is a blue copy of P3

m .

Case 4: x ��� 3. One can easily check that this implies that r � 3. This case does not occur by Corol-
lary 2.5. �

Using Theorem 2.2 we have R(P3
4 ,P3

4 ) = 10. Since R(P3
4 ,P3

3 ) � R(P3
4 ,P3

4 ), we have the following
lemma.

Lemma 4.2. R(P3
4 ,P3

3 ) = 10.

The following theorem on the Ramsey number of 3-uniform loose paths is the main result of this
section.

Theorem 4.3. For every n � m � 3,

R
(
P3

n ,P3
m

) = 2n +
⌊

m + 1

2

⌋
.

Proof. We give a proof by induction on m + n. Using Theorem 2.2 the case n = m = 3 is trivial. Using
Theorem 2.2 and Lemma 4.2 we may assume that n � 5. Let H = K3

2n+� m+1
2 � be 2-edge colored red

and blue with no red copy of P3
n and no blue copy of P3

m . Consider the following cases.

Case 1: n = m. By the induction hypothesis,

R
(
P3

n−1,P
3
n−1

) = 2(n − 1) +
⌊

n

2

⌋
< 2n +

⌊
n + 1

2

⌋
.

Therefore, we may assume that there is a red copy of P3
n−1. Using Lemma 4.1 we have a blue copy of

P3
n in H. This is a contradiction.

Case 2: n > m. In this case, n − 1 � m. Since

R
(
P3

n−1,P
3
m

) = 2(n − 1) +
⌊

m + 1

2

⌋
< 2n +

⌊
m + 1

2

⌋
,

we may assume that there is a copy of P3
n−1 in Hred. Using Lemma 4.1 we have a blue copy of P3

m
in H; a contradiction. �
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5. Path–cycle Ramsey number in 3-uniform hypergraphs

In this section, the Ramsey number of a loose path and a loose cycle in 3-uniform hypergraphs is
determined.

It is worth noting that we can conclude that R(P3
n ,C3

m) � 2n + �m+1
2 �, for any n � m � 3. To see

this, assume that H =K3
2n+� m+1

2 � is 2-edge colored red and blue with no red copy of P3
n and no blue

copy of C3
m . Since, using Theorem 3.3,

R
(
C3

n ,C3
m

) = 2n +
⌊

m − 1

2

⌋
< 2n +

⌊
m + 1

2

⌋
,

we have a red copy of C3
n in H. By Lemma 2.1 this contradicts our assumptions. Thereby, the following

theorem holds.

Theorem 5.1. For every n � m � 3,

R
(
P3

n ,C3
m

) = 2n +
⌊

m + 1

2

⌋
.

Combination Theorems 3.3, 4.3 and 5.1 gives a positive answer to Question 1.2. Next, we determine
R(P3

m,C3
n ) when n > m � 3.

Lemma 5.2. R(P3
3 ,C3

4 ) = 9.

Proof. Using Theorem 2.2 we have R(C3
4 ,C3

4 ) = 9. On the other hand, R(P3
3 ,C3

4 ) � R(C3
4 ,C3

4 ). �
Theorem 5.3. For every n > m � 3,

R
(
P3

m,C3
n

) = 2n +
⌊

m − 1

2

⌋
.

Proof. We prove the theorem by induction on m + n. By Lemma 5.2 the case when m = 3 and n = 4
is trivial. Suppose to the contrary that H = K3

2n+� m−1
2 � is 2-edge colored red and blue with no red

copy of P3
m and no blue copy of C3

n in H. For n = m + 1 by Theorem 5.1 and for n > m + 1 by the
induction hypothesis we have

R
(
P3

m,C3
n−1

)
< 2n +

⌊
m − 1

2

⌋
.

Since there is no red copy of P3
m , we have a copy of C3

n−1 in Hblue. By using Lemma 3.1 we have a
red copy of P3

m; a contradiction. �
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