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of blocks. Later it was disproved. But the quest for such 
examples remain valid till this date. In this note we compute 
the transversal size of a certain series of intersecting families 
of k-sets, which is constructed over the Cyclic graph. It helps 
to provide an example of maximal intersecting family of k-sets 
with so many blocks and to present two worthwhile examples 
which disprove two special cases of one of the conjectures of 
Frankl et al.
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1. Introduction

By a family, we mean a collection (set) of finite sets. For a family G, the members of G
are called its blocks and the elements of the blocks are called its points. The point set
of the family G is defined as ∪

B∈G
B and is denoted by PG . A family G is an intersecting 

family if any two blocks of G have non empty intersection. By a k-set, where k is a 
positive integer, we mean a set of size k and we say a family G is a family of k-sets, 
if all its blocks are k-sets. A blocking set of a family G is a set which intersects every 
block of G. A minimum size blocking set of G is called a transversal of G. We denote the 
common size of its transversals by tr(G) and the family of transversals of G by G�.

A family F is said to be a maximal intersecting family of k-sets if (tr(F) = k and) 
F = F�. It is not clear from the definition whether such a family has finite number 
of blocks. Erdős and Lovász proved the surprising result that any such family has at 
most kk blocks (see [1, Theorem 7]). This result is of central attraction in the study 
of intersecting family of k-sets with transversal size t, where 1 ≤ t ≤ k. It allows us 
to define the integer M(k) to be the maximum number of blocks achievable by any 
maximal intersecting family of k-sets. We are trying to find an example of a maximal 
intersecting family of k-sets with M(k) blocks. It is answered by means of an example 
that M(k) ≥ (k2 )k−1. The core part of this example is to produce an intersecting family 
of k-sets with transversal size t ≤ k − 1. For each t, where 1 ≤ t ≤ k − 1, such a family 
of k-sets can be embedded in a maximal intersecting family of k-sets.

In this note, we construct a series of intersecting families of k-sets with transversal 
size t ≤ k−1 (namely F(k, t)), such that each such family can be embedded in a maximal 
intersecting family of k-sets. Such a construction is not entirely new. There are similar 
type of families, namely G in [2, §2]. In order to find the similarity between F(k, t) and 
G in [2, §2], it seems quite reasonable to pose the following question. Depending on the 
negative answer of such question, we may attempt to disprove the uniqueness part of 
Conjecture 4 in [2] for each large positive integer.

Question. For each large positive integers k and t, are F(k, t) and G in [2, § 2] isomorphic?

The compact description of F(k, t) (given here) is amenable to rigorous arguments. 
Our purpose of this note is to show that transversal size of F(k, t) is t (Theorem 1.1) 
and as a consequence (Theorem 1.2) we have, for any positive integer k,

M(k) ≥ |F(k, k − 1)| + |F�(k, k − 1)|. (�)

In this context, we acknowledge that the proof of Theorem 1.1 can be developed by 
using the blueprint of the proof of Proposition 2 [2]. But we put an warning that such 
sketchy arguments contain several typographical errors. (For example, we should place 
a = |C ∩ Ji| instead of a = |C ∩ Ii| in Claim 2 [2, Page 38].) In a collective way such 
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typographical errors may create a huge confusion to a reader. On accounting this, we 
present our proof of Theorem 1.1. A reader may consider it as an alternative proof.

We construct the family F(k, t) as follows.

Construction. Let k and t be positive integers with t ≤ k. Let Xn 0 ≤ n ≤ t − 1, be t
pairwise disjoint sets with

|Xn| =

⎧⎨
⎩
k − � t

2� if 0 ≤ n ≤ � t−1
2 �

k − � t−1
2 � if � t−1

2 � + 1 ≤ n ≤ t− 1

say Xn = {xn
p : 0 ≤ p ≤ |Xn| − 1}. Let F(k, t) be the family of all the k-sets of the form

Xn �
{
xn+i
pi

: 1 ≤ i ≤ k − |Xn|
}
,

where 0 ≤ n ≤ t − 1, addition in the superscript is modulo t and {pm : m ≥ 1} varies 
over all finite sequences of non negative integers satisfying,

p1 = 0 or 1 and for m ≥ 2, pm = pm−1 or 1 + pm−1. (��)

In this construction, the pairwise disjoint sets Xn may be thought as arranged along 
a t-cycle. Since the diameter of a t-cycle is � t

2�, it is easy to verify that F(k, t) is an 
intersecting family of k-sets. The beautiful portion of this note is to establish the following 
theorem.

Theorem 1.1. tr(F(k, t)) = t.

We consider a t-set T such that |T ∩Xi| = 1 for each i with 0 ≤ i ≤ t − 1, then by 

using Theorem 1.1, we have T is a transversal of F(k, t). Therefore, there are 
t−1∏
i=0

|Xi|
choices for such transversals. But there are other transversals. Hence

|F�(k, t)| >
{

(k − r + 1)2r−1 if t = 2r − 1
(k − r)r(k − r + 1)r if t = 2r.

Theorem 1.2. Let t ≤ k − 1 and A be a maximal intersecting family of (k − t)-sets with 
disjoint point set from the point set of F(k, t). Then F(k, t) � (A �F�(k, t)) is a maximal 
intersecting family of k-sets. Here A � F�(k, t) denotes the collection of all sets of the 
form A � T , where A ∈ A and T ∈ F�(k, t).

Remark. If we consider the case t = k − 1 in Theorem 1.2, we have F(k, k − 1) � (A �
F�(k, k−1)) is a maximal intersecting family of k-sets. As a consequence we deduce (�). 
We verified that the equality case in (�) holds for k = 3. The only clue we have is that 
the equality case in (�) is false for k = 5. Currently, there is no clue on the equality case 
for k = 4 and for k ≥ 6.
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Remark. Erdős and Lovász showed an example of maximal intersecting family of k-sets 
with �(e − 1)k!� blocks. Such an example is based on a recursive procedure [1, Con-
struction (c), Page 620]. Such recursive procedure can be deduced from the case t = 1
in Theorem 1.2. For this case F(k, 1) = {X0}, where |X0| = k and consequently, 
F�(k, 1) = {{x} : x ∈ X0}. Now using Theorem 1.2 we deduce the Erdős-Lovász re-
cursive construction. Hence starting with the unique maximal intersecting family of 
1-set, we apply this recursive procedure repeatedly to obtain the Erdős-Lovász example 
of maximal intersecting family of k-sets with �(e −1)k!� blocks. Lovász conjectured in [3]
that M(k) = �(e − 1)k!�. He predicted that the Erdős-Lovász example of maximal inter-
secting family of k-sets is an example of the said family with M(k) blocks. Later it turns 
out that this conjecture is false.

There is one more application of Theorem 1.2. In [2], it is conjectured that the con-
struction of Frankl et al. yields the unique maximal intersecting family of k-sets with the 
largest number of blocks. Both parts of this conjecture are false. Specifically, the unique-
ness part is incorrect for k = 4, while the optimality part is incorrect for k = 5. It is 
shown that Example 1.3 and Example 1.4 are counter examples to [2, § 3, Conjecture 4]
in those special cases.

Example 1.3. By using Theorem 1.2 we have, for k ≥ 3, F(k, 2) � (A � F�(k, 2)) is 
a maximal intersecting family of k-sets, where A is a maximal intersecting family of 
(k−2)-sets. We observe that for 0 ≤ p ≤ k−2 and 0 ≤ q ≤ k−1, the transversals of F(k, 2)
are {x0

p, x
1
q}; {x1

0, x
1
1}. Hence there are k2 − k + 1 transversals and 3 blocks in F(k, 2). 

So if we consider the case k = 4 we have F(4, 2) has 3 blocks and 13 transversals. Let A
be the unique maximal intersecting family of 2-sets isomorphic to {{a, b}, {b, c}, {a, c}}
and PA ∩ PF(4,2) = ∅. Therefore by Theorem 1.2, F(4, 2) � (A � F�(4, 2)) is a maximal 
intersecting family of 4-sets with 42 blocks and 10 points. In this maximal intersecting 
family of 4-sets there are 3 points in 26 blocks, 5 points in 14 blocks and 2 points in 10
blocks.

Example 1.4. By using Theorem 1.2 we have, for k ≥ 4, F(k, 3) � (A � F�(k, 3)) is a 
maximal intersecting family of k-sets, where A is a maximal intersecting family of (k −
3)-sets. We observe that for 0 ≤ p, q, r ≤ k−2, the transversals of F(k, 3) are {x0

p, x
1
q, x

2
r}; 

{x0
0, x

0
1, x

1
p}; {x1

0, x
1
1, x

2
p} and {x2

0, x
2
1, x

0
p}. Hence there are (k−1)3 +3(k−1) transversals 

and 6 blocks in F(k, 3). So if we consider the case k = 4 and k = 5 respectively, we have 
F(4, 3) and F(5, 3) with 36 and 76 transversals respectively. Let A be the unique maximal 
intersecting family of 1-set (respectively, unique maximal intersecting family of 2-sets 
isomorphic to {{a, b}, {b, c}, {a, c}}) and PA∩PF(4,3) = ∅ (respectively, PA∩PF(5,3) = ∅). 
By Theorem 1.2, F(4, 3) � (A � F�(4, 3)) is a maximal intersecting family of 4-sets with 
42 blocks (respectively, F(5, 3) � (A �F�(5, 3)) is a maximal intersecting family of 5-sets 
with 234 blocks). In this maximal intersecting family of 4-sets there are 1 point in 36
blocks, 6 points in 16 blocks and 3 points in 12 blocks.
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Remark. Example 1.3 and Example 1.4 prove the existence of two non isomorphic max-
imal intersecting family of 4-sets with 42 blocks. It disproves a special case (case k = 4) 
of Conjecture 4 in [2], which claims such maximal intersecting family of 4-sets is unique 
up to isomorphism.

Remark. Example 1.4 proves the existence of a maximal intersecting family of 5-sets 
with 234 blocks. So we have M(5) ≥ 234. It disproves a special case (case k = 5) of 
Conjecture 4 in [2], which claims M(5) = 228.

2. Proof of Theorem 1.1

The following remarkable lemma is essentially the case n = 1 of [4, Theorem 2.1]. We 
include a simpler proof for the sake of completeness. Recall that, for any finite sequence 
(r1, . . . , rt) its cyclic shifts are the t sequences (r1+i, . . . , rt+i) where 0 ≤ i ≤ t − 1 and 
the addition in the subscripts is modulo t.

Lemma 2.1 (Raney). Let (r1, r2, . . . , rt) be a finite sequence of integers such that 
t∑

i=1
ri = 1. Then, exactly one of the t cyclic shifts of this sequence has all its partial 

sums strictly positive.

Proof. For 1 ≤ n ≤ t, let sn = r1 + . . . + rn − n
t . Suppose, sm = sn for some indexes 

1 ≤ m < n ≤ t. Then rm+1 + . . . + rn = n−m
t , which is a contradiction, since the left 

hand side is an integer and the right hand side is a proper fraction. Thus, the t numbers 
s1, s2, . . . , st are distinct. So there is a unique index μ, with 1 ≤ μ ≤ t, for which sμ is 
the minimum of these t numbers. Now, for μ + 1 ≤ m ≤ t,

rμ+1 + . . . + rm = (sm − sμ) + m− μ

t
> 0

and for 1 ≤ m ≤ μ,

rμ+1 + . . . + rt + r1 + . . . + rm = 1 − (sμ + μ

t
) + (sm + m

t
)

= (sm − sμ) + 1 − μ−m

t
> 0.

Thus, the partial sums of (rμ+1, . . . , rμ+t) are all strictly positive. This proves the exis-
tence.

Conversely, let μ be an index for which the partial sums of (rμ+1, . . . , rμ+t) are all 
strictly positive. Then each of these partial sums is at least 1, so that if we subtract a 
proper fraction from one of them, then the result remains positive. For μ + 1 ≤ m ≤ t,

sm − sμ = (rμ+1 + . . . + rm) − m− μ
> 0
t
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and for 1 ≤ m < μ,

sm − sμ = (rμ+1 + . . . + rt + r1 + . . . + rm) − (1 − μ−m

t
) > 0

Thus μ is the unique index for which sμ = min{si : 1 ≤ i ≤ t}. This proves the 
uniqueness. �
Proof of Theorem 1.1. We recall that if T is a t-set such that |T ∩ Xn| = 1, for each 
n with 0 ≤ n ≤ t − 1, then T is a blocking set of F(k, t). Hence tr(F(k, t)) ≤ |T | = t. 
Therefore, it suffices to show that F(k, t) has no blocking set C of size t − 1. Let C be 
a (t − 1)-subset of PF(k,t). For 0 ≤ n ≤ t − 1, |C ∩ Xn| is a non negative integer and 
t−1∑
i=0

|C ∩ Xi| = t − 1. Therefore, if we define the integers rn+1 = 1 − |C ∩ Xn|, where 

0 ≤ n ≤ t − 1, then 
t∑

i=1
ri = 1. So applying Lemma 2.1 to this sequence, we get a unique 

index μ, with 0 ≤ μ ≤ t − 1 such that 
n∑

i=0
rμ+i ≥ 1, i.e. |C ∩ (

n
�
i=0

Xμ+i)| ≤ n, for each n

with 0 ≤ n ≤ t −1. In particular, C is disjoint from Xμ. For each n with 1 ≤ n ≤ k−|Xμ|, 
let ln = n −

n∑
i=1

|C ∩Xμ+i|. Thus ln ≥ 0. Let Pn be the set of all integers p ≥ 0 for which 

there is a sequence (p1, . . . , pn) satisfying (��) such that pn = p and for 1 ≤ i ≤ n, 
xμ+i
pi

/∈ C.

Claim: |Pn| ≥ 1 + ln for 1 ≤ n ≤ k − |Xμ|.

Proof of claim. We prove it by finite induction on n. When n = 1,

|Pn| = 2 − |C ∩Xμ+n|
= 1 + ln.

So the claim is true for n = 1.
Now let 1 ≤ m ≤ k − 1 − |Xμ| and suppose that the claim is true for m. Since 

|C ∩Xμ+m+1| = 1 + lm − lm+1 and clearly

Pm+1 � (Pm ∪ {1 + p : p ∈ Pm}) � {i : xμ+m+1
i ∈ C ∩Xμ+m+1},

we have

|Pm+1| ≥ |Pm ∪ {1 + p : p ∈ Pn}| − |C ∩Xμ+m+1|
≥ 1 + |Pm| − |C ∩Xμ+m+1|
≥ 2 + lm − (1 + lm − lm+1)

= 1 + lm+1

This completes the induction and proves the claim.
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By the case n = k−|Xμ| of the claim, Pk−|Xμ| is non empty. Hence there is a sequence 
{p1, . . . , pk−|Xμ|} satisfying (��) and such that {xμ+i

pi
: 1 ≤ i ≤ k− |Xμ|} is disjoint from 

C. Therefore, the block Xμ � {xμ+i
pi

: 1 ≤ i ≤ k − |Xμ|} is disjoint from C. Thus C
is not a blocking set of F(k, t). Since C is an arbitrary set of size t − 1, this shows 
tr(F(k, t)) ≥ t. �
3. Proof of Theorem 1.2

Let C be a blocking k-set of F(k, t) � (A � F�(k, t)). To prove, C ∈ F(k, t) � (A �
F�(k, t)). If C ∈ F(k, t) we are done. So assume C /∈ F(k, t). To show C ∈ A � F�(k, t). 
We claim the following.

Claim: There exists at least one transversal T of F(k, t), which is disjoint from C.

Proof of claim. If for each integer n, with 0 ≤ n ≤ t −1, there exists at least one xn ∈ Xn

such that xn /∈ C, then {xn : 0 ≤ n ≤ t − 1} is the required T and we are done for 
this case. Suppose there exists at least one integer n, with 0 ≤ n ≤ t − 1, such that 
Xn � C. We note that such an integer n is unique. Therefore, for each m with m �= n

and 0 ≤ m ≤ t − 1, there exists at least one xm ∈ Xm such that xm /∈ C. (If not, then 
there exists one more integer m with m �= n, 0 ≤ m ≤ t − 1 such that Xm � C. This 
implies that Xn � Xm ⊂ C; a contradiction arises since k ≥ t + 1.) Hence C is of the 
form Xn � Y , where Y is a (k − |Xn|)-set. We observe that if Y is disjoint from the 
m-set Tn+m−1 := {xn+m−1

i : 0 ≤ i ≤ m − 1}, for some m with 1 ≤ m − 1 ≤ k − |Xn|
and we choose a (t − m)-set S such that |S ∩ (Xn+m+i � C)| = 1 for each i with 
0 ≤ i ≤ t − m − 1. Then Tn+m−1 � S is the required transversal disjoint from C and 
we are done. So we assume that Y intersects Tn+μ, for each μ with 1 ≤ μ ≤ k − |Xn|. 
We note that Tn+μ ∩ Tn+ν = ∅, for each μ and ν with 1 ≤ μ < ν ≤ k − |Xn| and 
|Y | = k − |Xn|. Therefore for each μ with 1 ≤ μ ≤ k − |Xn|, |Y ∩ Tn+μ| = 1. In 
particular, we note that |Y ∩ {xn+1

0 , xn+1
1 }| = 1. Suppose xn+1

ε1 ∈ Y , where ε1 equals 
exactly one of 0 or 1. We proceed (inductively) by constructing a finite sequence of non 
negative integers {qi : i ≥ 1} with xn+i

qi ∈ Y for i ≥ 1 as follows: q1 = ε1 and for m ≥ 2, 
qm = qm−1 + εm, where εm equals exactly one of 0 or 1. Clearly, {qi : i ≥ 1} satisfies 
(��). Therefore θ := max

{
m : {xn+i

qi : 1 ≤ i ≤ m} ⊂ Y
}

is a well defined positive integer. 
Since C /∈ F(k, t), Y is not of the form {xn+i

qi : 1 ≤ i ≤ k − |Xn|}. Consequently, we 
have 1 ≤ θ ≤ k − |Xn| − 1. Since θ is maximum, {xn+θ+1

qθ
, xn+θ+1

1+qθ
} is disjoint from Y . 

Therefore,

{xn+m
qm−1+1−εm

: 1 ≤ m ≤ θ} � {xn+θ+1
qθ

, xn+θ+1
1+qθ

} � S

is a transversal of F(k, t), which is disjoint from both Y and Xn (hence from C), where 
S is a (t − θ − 2)-set such that |S ∩ (Xn+i � C)| = 1 for each i with θ + 2 ≤ i ≤ t − 1. 
Hence the claim is established.
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Using the above claim, suppose T is the required transversal disjoint from C. Partic-
ularly, C intersects all the blocks of the form A � T , where A ∈ A. Therefore C ∩ PA
is a blocking set of A. This implies |C ∩ PA| ≥ k − t. We note that C is blocking set 
of F(k, t), therefore by using Theorem 1.1, we have |C ∩ PF(k,t)| ≥ t. But |C| = k, so 
|C ∩PA| = k− t and |C ∩PF(k,t)| = t. Hence C ∩PA ∈ A and C ∩PF(k,t) ∈ F�(k, t). So 
C ∈ A � F�(k, t). This completes the proof of Theorem 1.2.
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