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1. Introduction

A set of N permutations of [v] = {1, 2, . . . , v} is (N, v, t)-suitable if each symbol 
precedes each subset of t − 1 others in at least one permutation; necessarily we must 
have t ≤ min(v, N). We represent such a set as an N×v array called an (N, v, t)-suitable 
array. For example, {2413, 3421, 1423} is a (3, 4, 3)-suitable set of permutations and its 
corresponding array is

[2 4 1 3
3 4 2 1
1 4 2 3

]
.

Given an (N, v, t)-suitable array, we can readily form an (N + 1, v, t)-suitable array 
by adding an arbitrary extra row, and an (N, v − 1, t)-suitable array by removing all 
occurrences of a single symbol (and left-justifying the remaining symbols). This simple 
observation motivates two fundamental extremal problems:

(P1) Given v and t, what is the smallest N for which an (N, v, t)-suitable array exists? 
We denote this as N(v, t) (following [3]), which is well-defined: the v×v array whose 
initial elements are 1, 2, . . . , v is (v, v, t)-suitable for each t ≤ v and so N(v, t) ≤ v.

(P2) Given N and t, what is the largest v for which an (N, v, t)-suitable array ex-
ists? We denote this as SUN(t, N) (following [1]). It is well-defined for t ≥ 3: 
we then have SUN(t, N) ≤ 22N [15], and SUN(t, N) ≥ N by reference to the 
(v, v, t)-suitable example just described. But SUN(2, N) is not well-defined for 
N ≥ 2, because the N × v array whose first two rows are [1 2 . . . v − 1 v ]
and [v v − 1 . . . 2 1] is (N, v, 2)-suitable for arbitrarily large v.

In 1950, Dushnik [3] introduced problem (P1), showing by combinatorial arguments 
that N(v, t) = v − j + 1 for each j satisfying 2 ≤ j ≤ √

v and for each t satisfying
⌊
v

j

⌋
+ j − 1 ≤ t <

⌊
v

j − 1

⌋
+ j − 2.

This determines N(v, t) exactly for all t in the range
⌊

v

�√v�

⌋
+

⌊√
v
⌋
− 1 ≤ t < v.

In particular, when the lower bound is attained (arising by taking j = �√v�), both v
and N(v, t) grow as Θ(t2).

Spencer [15] continued the study of problem (P1) in 1971. Under the condition 
that t ≥ 3 is fixed, he used a theorem due to Erdős and Szekeres [6] to show that 
N(v, t) ≥ log2 log2 v (or equivalently SUN(t, N) ≤ 22N ), and Sperner’s lemma [16] and 
the Erdős–Ko–Rado theorem [5] to show that N = O(log2 log2 v) as v → ∞.
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Füredi and Kahn [8] studied problem (P1) in 1986, using probabilistic methods to 
show that N(v, t) ≤ t2(1 + log(v/t)) for all t and N . Kierstead [11] refined this result 
when t is approximately log v.

In a recent paper, Colbourn [1] studied problem (P2) by linking suitable sets of permu-
tations to a variety of combinatorial structures explicitly. He showed that SUN(t, N) =
Θ(22N ) for fixed t ≥ 3, extending Spencer’s result, by using a connection with binary 
covering arrays [12]. He examined the case when v and N both grow as t2, by mak-
ing a connection with Golomb rulers and their variants [2,4,7]. He found results for the 
case when t is O(logN) by making a connection with Hadamard matrices [9] and Paley 
matrices [13].

Our principal interest in this paper is Colbourn’s study of problem (P2) for values 
of t that are intermediate between those described above. His results (and ours) are 
conveniently described in terms of the quantity

SCN(t,N) := SUN(t,N) −N, (1)

whose motivation will be described in Section 2. Colbourn [1, Section 1] derives the value 
of SCN(2s, N) for all N < s(s +1), and the value of SCN(2s +1, N) for all N < (s +1)2, 
and gives the following lower bounds for the next largest value of N .

Theorem 1 (Colbourn).

(i) [1, Lemma 1.3] SCN(2s, s(s + 1)) ≥ s + 2 for all s ≥ 2.
(ii) [1, Lemma 1.4] SCN(2s + 1, (s + 1)2) ≥ s + 2 for all s ≥ 1.

Parts (i) and (ii) of Theorem 1 are proved in [1] by two explicit constructions of 
families of suitable arrays. In Section 4 we will prove a general relation between certain 
suitable arrays with parameter t and others with parameter t + 1. One consequence is 
that part (ii) of Theorem 1 can be obtained directly from part (i).

Colbourn [1] states (without proof) that the inequality of Theorem 1 (i) is actually 
an equality. We demonstrate by example in Section 2 the new results that SCN(3, 4) ≥ 8
and SCN(5, 9) ≥ 5, so that equality does not hold in Theorem 1 (ii) for the cases s = 1
and s = 2. This appears to suggest that the inequality of Theorem 1 (ii) is not sharp in 
general, but we shall show in Section 5 using elementary combinatorial arguments that 
this is not the case:

Theorem 2. SCN(2s + 1, (s + 1)2) = s + 2 for all s ≥ 3.

Theorem 2 suggests a more delicate question: for t = 2s + 1, can we increase the 
maximum possible value of v from s + 2 by incrementing the value of the parameter 
N = (s + 1)2 by 1; in other words, is SCN(2s + 1, (s + 1)2 + 1) > s + 2 for infinitely 
many s? Small examples appear hopeful: we demonstrate by example in Section 2 the 
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new results that SCN(7, 17) ≥ 6 and SCN(9, 26) ≥ 7, corresponding to the cases s = 3
and s = 4. However, in Section 6 we show that such an increase is possible for only 
finitely many s (all of which can be shown to be at most 14). In fact, in Section 6 we 
use Ramsey’s theorem [14] (to our knowledge, a new tool in the study of suitable arrays) 
to show the surprising result that, for the parameters of both parts of Theorem 1, the 
value of N can be increased any fixed amount � and yet v can be increased from s + 2
for only finitely many s:

Theorem 3.

(i) For each nonnegative integer �, there exists s0 (depending on �) such that 
SCN(2s, s(s + 1) + �) = s + 2 for all s ≥ s0.

(ii) For each nonnegative integer �, there exists s0 (depending on �) such that 
SCN(2s + 1, (s + 1)2 + �) = s + 2 for all s ≥ s0.

The remainder of the paper is structured in the following way. In Section 2 we in-
troduce suitable cores as equivalent objects to suitable arrays. In Section 3 we establish 
some preliminary results to be used in later nonexistence proofs. In Section 4 we estab-
lish a link between suitable cores with parameters t and t + 1. In Sections 5 and 6 we 
prove the central results of the paper, Theorems 2 and 3, respectively.

2. Suitable cores

In this section, we recast the problem of finding suitable arrays as the equivalent 
problem of finding “suitable cores”, as defined in [1] based on the proof of Theorem I 
of [3]. As previously noted, the N × N array whose initial elements are 1, 2, . . . , N is 
(N, N, t)-suitable for each t ≤ N and so we may restrict attention to (N, v, t)-suitable 
arrays having v ≥ N . We begin with a straightforward lemma.

Lemma 4. Let A be an (N, v, t)-suitable array, and let α occur in the leftmost position of 
some row of A. Then the array B obtained by moving an occurrence of α in a different 
row of A to the rightmost position of its row results in another (N, v, t)-suitable array.

Proof. The symbol α precedes all other symbols in some row of B, and therefore precedes 
each set of t − 1 other symbols in this row. Each symbol β other than α precedes each 
set of t − 1 other symbols in at least one row of A, and it still precedes the same t − 1
symbols when some occurrence of α is moved rightwards to form B. �

For example, we can transform the following (5, 7, 3)-suitable array on the left to the 
(5, 7, 3)-suitable array on the right by applying Lemma 4 repeatedly (moving α = 3 in 
row 4, then α = 4 in row 4, then α = 5 in row 4, then α = 6 in row 5, then α = 7 in 
rows 1 through 4).
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⎡
⎢⎢⎢⎣

3 1 2 7 4 5 6
4 1 2 7 3 5 6
5 7 2 1 3 4 6
6 3 4 5 2 1 7
6 7 2 1 3 4 5

⎤
⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎢⎣

3
4
5
6
7

1 2
1 2
2 1
2 1
2 1

4 5 6 7
3 5 6 7
3 4 6 7
3 4 5 7
3 4 5 6

⎤
⎥⎥⎥⎥⎥⎦

Conversely, the boxed 5 × 2 subarray on the right can be transformed back into a 
(5, 7, 3)-suitable array by choosing 5 new symbols, prepending a different one to each 
row, and in each row appending the remaining 4 new symbols in arbitrary order.

In general, by applying Lemma 4 repeatedly we can transform an (N, v, t)-suitable 
array A into another (N, v, t)-suitable array B having the following properties:

• The leftmost column of B consists of N distinct symbols; call these the first symbols
of B.

• Columns 2 to v −N + 1 of B consist only of the v −N symbols which are not first 
symbols.

• Columns v −N + 2 to v of B consist only of first symbols.

We can also transform the N×(v−N) array formed from columns 2 to v−N +1 of B
back into an (N, v, t)-suitable array by choosing N new symbols, prepending a different 
one to each row, and in each row appending the remaining N−1 new symbols in arbitrary 
order. We call an N × (v − N) array that can be transformed into an (N, v, t)-suitable 
array by this procedure an (N, v −N, t)-suitable core. In the example above, the boxed 
5 × 2 subarray is a (5, 2, 3)-suitable core.

We see in this way that the existence of an (N, v + N, t)-suitable array is equiva-
lent to the existence of an (N, v, t)-suitable core. Given N and t, define SCN(t, N) to 
be the largest v for which an (N, v, t)-suitable core exists. This is consistent with the 
definition (1), and determining SUN(t, N) is equivalent to determining SCN(t, N).

We remark that Colbourn [1] established Theorem 1 (i) by constructing an 
(s(s + 1), s + 2, 2s)-suitable core for all s ≥ 2, and Theorem 1 (ii) by constructing 
an ((s + 1)2, s + 2, 2s + 1)-suitable core for all s ≥ 1.

Figs. 1, 2, 3, 4 show examples of suitable cores with parameters (4, 8, 3), (9, 5, 5), 
(17, 6, 7), (26, 7, 9), respectively. To our knowledge, suitable cores with these parameters 
(and their associated suitable arrays) were not previously known. The first two were 
found by hand, and the second two by interactive computer search [10]. These examples 
imply the bounds SCN(3, 4) ≥ 8, SCN(5, 9) ≥ 5, SCN(7, 17) ≥ 6, SCN(9, 26) ≥ 7
mentioned in Section 1 as motivation for the explorations leading to Theorems 2 and 3.

We next give necessary and sufficient conditions for an array to be an (N, v, t)-suitable 
core; these are essentially contained in [1, Lemma 1.1]. For an array C, symbol σ, and 
subset T of symbols, denote by Cpre(σ, T ) the set of rows of C for which σ either starts 
a row or is preceded only by elements of T .
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⎡
⎣2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6
5 6 7 8 1 2 3 4
8 7 6 5 4 3 2 1

⎤
⎦

Fig. 1. A (4, 8, 3)-suitable core.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 5 4
2 1 4 5 3
3 1 4 5 2
3 2 4 5 1
4 1 3 5 2
4 2 3 5 1
5 1 4 2 3
5 2 4 1 3
5 3 4 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. A (9, 5, 5)-suitable core.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 ∗ ∗ ∗ ∗
1 2 5 ∗ ∗ ∗
1 6 5 ∗ ∗ ∗
2 4 ∗ ∗ ∗ ∗
2 3 ∗ ∗ ∗ ∗
2 6 5 ∗ ∗ ∗
3 5 ∗ ∗ ∗ ∗
3 2 1 ∗ ∗ ∗
3 6 1 ∗ ∗ ∗
4 1 3 ∗ ∗ ∗
4 5 3 ∗ ∗ ∗
4 6 ∗ ∗ ∗ ∗
5 1 3 ∗ ∗ ∗
5 4 2 ∗ ∗ ∗
5 6 ∗ ∗ ∗ ∗
6 2 1 ∗ ∗ ∗
6 3 4 ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. A (17, 6, 7)-suitable core (starred entries 
may be filled arbitrarily).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 6 5 ∗ ∗ ∗ ∗
1 7 5 ∗ ∗ ∗ ∗
1 3 5 ∗ ∗ ∗ ∗
1 4 2 ∗ ∗ ∗ ∗
2 6 1 ∗ ∗ ∗ ∗
2 7 1 ∗ ∗ ∗ ∗
2 5 3 ∗ ∗ ∗ ∗
2 4 1 ∗ ∗ ∗ ∗
3 6 5 ∗ ∗ ∗ ∗
3 7 5 ∗ ∗ ∗ ∗
3 1 ∗ ∗ ∗ ∗ ∗
3 2 ∗ ∗ ∗ ∗ ∗
4 6 1 ∗ ∗ ∗ ∗
4 7 1 ∗ ∗ ∗ ∗
4 5 2 ∗ ∗ ∗ ∗
4 3 ∗ ∗ ∗ ∗ ∗
5 6 ∗ ∗ ∗ ∗ ∗
5 7 3 ∗ ∗ ∗ ∗
5 1 2 ∗ ∗ ∗ ∗
5 4 ∗ ∗ ∗ ∗ ∗
6 7 5 ∗ ∗ ∗ ∗
6 2 ∗ ∗ ∗ ∗ ∗
6 3 4 ∗ ∗ ∗ ∗
7 6 1 ∗ ∗ ∗ ∗
7 4 ∗ ∗ ∗ ∗ ∗
7 2 3 ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. A (26, 7, 9)-suitable core (starred entries 
may be filled arbitrarily).

Proposition 5. Let C be an N × v array. The following statements are equivalent:

(i) C is an (N, v, t)-suitable core.
(ii) For each s satisfying 0 ≤ s ≤ t − 1, each symbol of C precedes each subset of s

others in at least t − s rows.
(iii) For each symbol σ of C and for each subset T of other symbols, |Cpre(σ, T )| ≥

t + 1 − v + |T |.

Proof. (i) ⇐⇒ (ii):
Construct an N × (v + N) array A from C by adding N new symbols as first sym-

bols and completing the rows of A arbitrarily. From the discussion following Lemma 4, 
statement (i) is equivalent to the statement that A is an (N, v+N, t)-suitable array. We 
now show that this is equivalent to statement (ii).

Suppose that C does not satisfy (ii), so that for some s satisfying 0 ≤ s ≤ t − 1 there 
is a symbol σ in C and a set S of s other symbols in C such that σ precedes all elements 
of S in at most t − s − 1 rows of C. Combine S with the set of first symbols of the 
corresponding rows of A to give a set of size at most t − 1, and extend it if necessary to 
a set of size t − 1. Then there is no row of A in which σ precedes all elements of this set, 
and so A is not an (N, v + N, t)-suitable array.
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On the other hand, suppose that C satisfies (ii). Let σ be a symbol in A and S be 
a set of t − 1 other symbols in A. We shall show that σ precedes all elements of S in 
some row of A. If σ is a first symbol of A, this is immediate. Otherwise, let S′ be the 
set of elements of S which are not first symbols. By assumption, σ precedes all elements 
of S′ in at least t − |S′| rows of A. Since there are only t − 1 − |S′| elements of S which 
are first symbols, then at least one of these t − |S′| rows of A does not begin with an 
element of S; in that row, σ precedes all of S (by construction of A from C). Thus A is 
an (N, v + N, t)-suitable array.

(ii) ⇐⇒ (iii):
Let σ be a symbol of C, let S be a set of s other symbols of C where 0 ≤ s ≤ t − 1, 

and let T = [v] \ (S ∪ {σ}). Then σ precedes all elements of S in at least t − s rows of C
if and only if |Cpre(σ, T )| ≥ t − s. Note that |T | = v − s − 1, and that 0 ≤ s ≤ t − 1 is 
equivalent to the trivial conditions v − t ≤ |T | ≤ v − 1. �

We now briefly review some results due to Colbourn [1] on suitable cores, which allow 
the exact determination of SCN(t, N) for all N up to approximately t2/4.

Proposition 6 ([1, Section 1]).

(i) Suppose there exists an (N, v, t)-suitable core. Then N ≥ i(t + 1 − i) for i =
1, 2, . . . , min(v, t).

(ii) Let v ≤ (t +2)/2. Then an (N, v, t)-suitable core exists if and only if N ≥ v(t +1 −v).
(iii) SCN(t, N) = k for each k ≥ 0 satisfying k(t + 1 − k) ≤ N < (k + 1)(t − k).

Proof.

(i) Let i be an integer satisfying 1 ≤ i ≤ min(v, t). Let S be a subset of [v] of size i and 
let σ ∈ S. By Proposition 5, σ precedes all other elements of S in at least t + 1 − i

rows. As σ ranges over S we obtain i(t + 1 − i) distinct rows of the core.
(ii) Suppose an (N, v, t)-suitable core exists. Then we may take i = v in (i) to obtain 

N ≥ v(t + 1 − v).
Now suppose that N ≥ v(t +1 −v). Construct an N×v array C whose first v(t +1 −v)
rows have the following form: each symbol i ∈ [v] starts a row t + 1 − v times, and 
each symbol j ∈ [v] that is distinct from symbol i occurs directly after i in at least 
one row. This is possible because v ≤ (t + 2)/2 implies t + 1 − v ≥ v − 1. We now 
use Proposition 5 to show that C is an (N, v, t)-suitable core. Let σ ∈ [v] and let 
T be a set of symbols other than σ. Then Cpre(σ, T ) contains the t + 1 − v rows in 
which σ appears first, as well as at least |T | rows in which σ appears directly after 
an element of T , for a total of at least t + 1 − v + |T | rows.

(iii) Let k ≥ 0 satisfy k(t + 1 − k) ≤ N < (k + 1)(t − k). The range for N given 
by these inequalities is nonempty exactly when k ≤ (t − 1)/2. Therefore we may 
apply (ii) with v = k and use the assumption N ≥ k(t + 1 − k) to show that 



190 J.H.C. Chan, J. Jedwab / Journal of Combinatorial Theory, Series A 148 (2017) 183–196
there exists an (N, k, t)-suitable core and so SCN(t, N) ≥ k. Then apply (ii) with 
v = k + 1 and use the assumption N < (k + 1)(t − k) to show that there does 
not exist an (N, k + 1, t)-suitable core and so SCN(t, N) ≤ k. We conclude that 
SCN(t, N) = k. �

For fixed t, the smallest N for which SCN(t, N) is not determined by Proposition 6 (iii) 
is N = (t/2)((t +2)/2) if t is even, and ((t +1)/2)2 if t is odd. These smallest undetermined 
cases can be written as SCN(2s, s(s +1)) when t is even, and SCN(2s +1, (s +1)2) when 
t is odd, and this motivates the constructions underlying Theorem 1.

3. Preliminary results

We shall use the following two lemmas in our nonexistence results for suitable cores.

Lemma 7. Removing all occurrences of a single symbol from an (N, v, t)-suitable core 
(and left-justifying the remaining symbols) results in an (N, v − 1, t)-suitable core.

Lemma 8. Suppose that C is an (N, v, t)-suitable core.

(i) Let v ≤ t. Then each k ∈ [v] starts a row at least t + 1 − v times.
(ii) Let v ≤ t + 1, let k start a row exactly t + 1 − v times, and let j be another symbol. 

Then there is at least one row that starts with j k.
(iii) Let v ≤ t + 2, let k start a row exactly t + 2 − v times, and let i, j be two other 

distinct symbols. If neither i k nor j k starts a row, then there is at least one row 
that starts with i j k or j i k.

Proof.

(i) For k ∈ [v], apply Proposition 5 with T = ∅ to show that |Cpre(k, ∅)| ≥ t + 1 − v.
(ii) Apply Proposition 5 with T = {j} to show that |Cpre(k, {j})| ≥ t + 2 − v. Since 

k starts a row exactly t + 1 − v times, k must be preceded by j and by no other 
symbol in at least one row.

(iii) Apply Proposition 5 with T = {i, j} to show that |Cpre(k, {i, j})| ≥ t + 3 − v. Since 
k starts a row exactly t +2 −v times, k must be preceded by one or both of i and j, 
and by no other symbol, in at least one row. Excluding the cases i k and j k for the 
initial symbols of this row leaves only the cases i j k and j i k. �

4. Suitable cores with parameters t and t + 1

The following result links suitable cores with parameters t and t + 1.

Theorem 9. Suppose SCN(t, N) ≥ v and N > v(t +1 −v). Then SCN(t +1, N+v−1) ≥ v.
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Proof. We suppose that C is an (N, v, t)-suitable core, where N > v(t +1 −v), and prove 
the result by constructing an (N +v−1, v, t +1)-suitable core D. Since N > v(t +1 −v), 
by the pigeonhole principle some symbol starts a row of C at least t +2 −v times; relabel 
if necessary so that this symbol is v. Form D by adding v − 1 rows to C, these rows 
starting with 1 v, 2 v, . . . , (v−1) v. We now show that D is an (N +v−1, v, t +1)-suitable 
core using Proposition 5. Let σ ∈ [v] and let T be a (possibly empty) set of symbols 
other than σ. We distinguish two cases.

Case 1 σ �= v. Then Cpre(σ, T ) consists of at least t +1 −v+ |T | rows. Combine with the 
extra row of D starting σ v to give the necessary t + 2 − v + |T | rows for Dpre(σ, T ).

Case 2 σ = v. When T is empty, the required condition |Dpre(v, ∅)| ≥ t +2 −v is satisfied 
because of the t + 2 − v rows that start with v. When T is nonempty, choose c ∈ T

and then the required condition |Dpre(v, T )| ≥ t +2 −v+|T | is satisfied because there 
are at least t +1 − v+ |T | rows in Cpre(v, T ) and the extra row of D starting c v. �

We note two important corollaries of Theorem 9.

Corollary 10. Theorem 1 (i) implies Theorem 1 (ii) for s > 1.

Proof. Apply Theorem 9 with (N, v, t) = (s(s + 1), s + 2, 2s) for each s > 1. �
Corollary 11. Theorem 3 (ii) implies Theorem 3 (i).

Proof. We have the general result that SCN(t, N + 1) ≥ SCN(t, N), by considering the 
addition of an arbitrary extra row to a suitable core. In view of Theorem 1 (i), we then 
see that Theorem 3 (i) is equivalent to: given an integer � ≥ 0, we have SCN(2s, s(s +
1) + �) < s +3 for all sufficiently large s. Likewise, in view of Theorem 1 (ii), we see that 
Theorem 3 (ii) is equivalent to: given an integer �′ ≥ 1, we have SCN(2s +1, (s +1)2+�′) <
s + 3 for all sufficiently large s.

Apply Theorem 9 with (N, v, t) = (s(s +1) +�, s +3, 2s) to show that if SCN(2s, s(s +
1) + �) ≥ s + 3 then SCN(2s + 1, (s + 1)2 + � + 1) ≥ s + 3, and take �′ = � + 1. �
5. Proof of Theorem 2

In this section we prove Theorem 2. As described in Section 1, the nonexistence result 
of Theorem 2 holds for all s ≥ 3 but not for s = 1 and s = 2 (see Figs. 1 and 2). We 
shall see where the condition s ≥ 3 is required in the proof of Theorem 2, and why the 
proof does not apply to the (9, 5, 5)-suitable core shown in Fig. 2.

Proof of Theorem 2. In view of Theorem 1 (ii), it is required to prove that for each s ≥ 3
there does not exist an ((s +1)2, s +3, 2s +1)-suitable core. Suppose, for a contradiction, 
that C is such a suitable core.
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Note from Lemma 8 (i) that each of the s +1 symbols of an ((s +1)2, s +1, 2s +1)-suitable 
core C ′ starts a row at least s + 1 times, and since this accounts for all (s + 1)2 rows of 
C ′ we have that

each symbol of an ((s + 1)2, s + 1, 2s + 1)-suitable

core starts a row exactly s + 1 times. (2)

It follows that

no symbol σ of C starts a row more than s + 1 times after removing all occurrences

of zero, one or two other symbols from C, (3)

for otherwise we could remove all occurrences of another two, one or zero other symbols, 
respectively, and by Lemma 7 would obtain an ((s + 1)2, s + 1, 2s + 1)-suitable core in 
which σ starts a row more than s + 1 times, contrary to (2).

Relabel if necessary so that the symbols of C are elements of [s +3] and the number of 
rows starting with i is nondecreasing with i. By Lemma 8 (i), each of the s + 3 symbols 
of C starts a row at least s − 1 times. This accounts for (s + 3)(s − 1) = (s + 1)2 − 4
of the (s + 1)2 rows of C, leaving four more rows to account for. By (3) (with “zero”), 
there are three possible distributions for the symbols that start these four rows:

Case 1 Symbols 1 to s − 1 each start a row exactly s − 1 times, and symbols s to s + 3
each start a row exactly s times.
By Lemma 8 (ii), each symbol that starts a row in C exactly s − 1 times must 
appear second after each other symbol. Therefore C contains a row starting j k for 
each k = 1, 2, . . . , s −1 and for each j �= k. The s +3 other rows of C each start with 
a different symbol of [s + 3].
Among these s +3 rows, no k from 1 to s − 1 can appear second, otherwise C would 
contain two rows starting j k for some j and a row starting i k for some i distinct 
from j for which i ≥ s; removing all occurrences of symbols i and j from C would 
then leave at least (s − 1) + 3 = s + 2 rows starting with k, contradicting (3).
Furthermore, among these s + 3 rows, no k from s to s + 3 can appear second more 
than once, otherwise C would contain a row starting i k and a row starting j k for i, j
not necessarily distinct; removing all occurrences of symbols i and j from C would 
again leave at least s + 2 rows starting with k, contradicting (3).
Therefore each of the s + 3 rows must contain a distinct symbol from s to s + 3 in 
its second position, which gives the contradiction s + 3 ≤ 4.

Case 2 Symbols 1 to s each start a row exactly s −1 times, symbols s +1 and s +2 each 
start a row exactly s times, and symbol s + 3 starts a row exactly s + 1 times.
By Lemma 8 (ii), C contains a row starting i j for each j = 1, 2, . . . , s and for each 
i �= j. There is only one other row of C and it starts with s + 3.
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By Lemma 8 (iii), since s +1 and s +2 each start a row in C exactly s times, for each 
i, j satisfying 1 ≤ i < j ≤ s either C contains rows starting i j (s + 1) and j i (s + 2)
or C contains rows starting i j (s + 2) and j i (s + 1).
It follows that s + 3 never occurs second or third in a row of C that starts with 1, 2, 
or 3, and, because s ≥ 3, no row of C starts with the symbols 1, 2, 3 in any order.
But by Proposition 5, Cpre(s + 3, {1, 2, 3}) contains at least s + 2 rows. Since there 
are exactly s + 1 rows of C starting with s + 3, there is some row of C that does not 
start with s + 3 in which s + 3 is preceded only by elements of {1, 2, 3}. This gives 
the required contradiction.

Case 3 Symbols 1 to s + 1 each start a row exactly s − 1 times, and symbols s + 2 and 
s + 3 each start a row exactly s + 1 times.
By Lemma 8 (ii) with j = 1 and k = 2, 3, . . . , s +1, there are at least s rows starting 
with 1. This contradicts that symbol 1 starts a row exactly s − 1 times. �

Note that the proof of Theorem 2 does not apply to the (9, 5, 5)-suitable core shown 
in Fig. 2, because its first row starts with the symbols 1, 2, s + 1 where s = 2.

Colbourn [1] states without proof that SCN(2s, s(s +1)) = s +2 for all s ≥ 2, in other 
words that the inequality of Theorem 1 (i) is actually an equality. This result can be 
recovered using similar techniques to those in the above proof of Theorem 2.

6. Proof of Theorem 3

In this section we prove Theorem 3. We first establish two auxiliary lemmas.
Lemma 12 shows that if, for a set A, we associate each element of A with a subset of 

A of size at most m, then some element of A appears in at most m of the subsets.

Lemma 12. Let d and m be positive integers. Let A be a set of size d and let g be a 
function from A to subsets of A of size at most m. Then there exists k ∈ A for which 
{� ∈ A : k ∈ g(�)} has at most m elements.

Proof. Let f(k) = |{� ∈ A : k ∈ g(�)}|. Then 
∑

k∈A f(k) ≤ md, and so the mean of f(k)
over k ∈ A is at most m. So f(k) ≤ m for some k ∈ A. �

We next refine Lemma 12 to show that, if d is large enough, we can choose e elements 
of A, each of which appears in none of the subsets associated with the other e − 1
elements.

Lemma 13. Let e and m be positive integers and d ≥ (e − 1)(2m + 1) + 1. Let A be a set 
of size d and let g be a function from A to subsets of A of size at most m. Then there 
exists a subset B of A of size e such that j /∈ g(i) for all distinct i, j ∈ B.
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Proof. The proof is by induction on e ≥ 1, with m and d satisfying the stated conditions.
If e = 1, then |A| = d ≥ 1. Then simply choose B to comprise one element in A.
Now let e > 1 and assume the statement is true for all positive integers less than e and 

for all m and d satisfying the stated conditions. By Lemma 12, there exists k ∈ A such 
that |{� ∈ A : k ∈ g(�)}| ≤ m. Let S = {k} ∪ g(k) ∪ {� ∈ A : k ∈ g(�)} and A′ = A \ S. 
Note that |S| ≤ 2m + 1, and so |A′| ≥ d − (2m + 1) ≥ (e − 2)(2m + 1) + 1. We then 
define a function g′ from A′ to subsets of A′ of size at most m as follows: for each b ∈ A′, 
g′(b) = g(b) ∩A′. Clearly |g′(b)| ≤ m for each b ∈ A′.

By the inductive hypothesis applied to A′ and g′, there exists a subset B′ of A′ of 
size e − 1 such that j /∈ g′(i) for all distinct i, j ∈ B′. Then we let B = B′ ∪ {k}. Since 
k /∈ B′, we have |B| = e. Now let j ∈ B. We complete the induction by showing that 
j /∈ g(i) for all i ∈ B \ {j}.

Case 1 j �= k. Then j /∈ g(k) by definition of S and A′, since j ∈ A′ and g(k) ⊆ S. Also, 
j /∈ g(i) for all i ∈ B′ \ {j}, since j /∈ g′(i) and g′(i) = g(i) ∩A′. Together this gives 
j /∈ g(i) for all i ∈ B \ {j}.

Case 2 j = k. Then k /∈ g(i) for all i ∈ B \ {k}, since {� ∈ A : k ∈ g(�)} ⊆ S and 
i ∈ A′. �

We are now ready to prove Theorem 3.

Proof of Theorem 3. By Corollary 11, it is sufficient to prove only part (ii) of the theorem. 
In view of Theorem 1 (ii), it is required to prove that for all sufficiently large s there 
does not exist an ((s +1)2 + �, s +3, 2s +1)-suitable core (where � is a fixed nonnegative 
integer). Suppose, for a contradiction, that there is some arbitrarily large s for which C
is such a suitable core.

Relabel if necessary so that the symbols of C are elements of [s +3] and the number of 
rows starting with i is nondecreasing with i. By Lemma 8 (i), each of the s + 3 symbols 
of C starts a row at least s −1 times. This accounts for (s +3)(s −1) = (s +1)2−4 of the 
(s + 1)2 + � rows of C, leaving � + 4 more rows to account for. The number of symbols 
that start a row more than s − 1 times is then at most � + 4. Let c be the number of 
symbols that start a row exactly s − 1 times, so that each of 1 to c starts a row exactly 
s − 1 times and c ≥ s + 3 − (� + 4) = s − � − 1.

By Lemma 8 (ii), C contains a row starting i j for each j = 1, 2, . . . , c and for each 
i �= j. Form C ′ from C by deleting the first such row for every such pair (i, j). Then 
in C ′, each of 1 to c starts a row exactly m := s − c times. Since c ≥ s − � − 1, we have 
m ≤ � + 1.

The number of elements in {c +1, . . . , s +3} is s −c +3 = m +3. For each i ∈ [c], since 
there are m rows of C ′ starting with i there are at least 3 elements of {c + 1, . . . , s + 3}
which do not appear second after i in C ′, and so do not appear second after i in C. We 
may therefore define a function f from [c] to 3-subsets of {c + 1, . . . , s + 3}, such that 
f(i) = {j1, j2, j3} where j1, j2, j3 do not appear second after i ∈ [c].
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Now choose s to be large enough to force c ≥
(
m+3

3
)
(d − 1) + 1 (via the inequality 

c ≥ s − � − 1), where d ≥ 1 is an integer to be determined later. Then, by the pigeonhole 
principle, there exists a set of d numbers A = {a1, a2, . . . , ad} in [c] for which f(a1) =
f(a2) = · · · = f(ad). Let {k1, k2, k3} = f(a1).

Next choose d ≥ (e − 1)(2m + 1) + 1, where e ≥ 1 is an integer to be determined 
later. Define the function g from A to subsets of A via: for each a ∈ A, g(a) is the 
set of elements of A appearing second in the rows of C ′ that start with a; so g(a) has 
size at most m. By Lemma 13, there exists a subset B = {b1, . . . , be} of A of size e
such that bi /∈ g(bj) for all distinct i, j. It follows that no row of C ′ starting with an 
element of B has an element of B appearing second. By the construction of C ′ from C, 
we conclude that for each pair of distinct elements bx, by of B there is exactly one row 
of C starting bx by.

Now associate with C a graph G whose vertex set is [e]. For each x, y ∈ [e], there 
is at least one element of the set {k1, k2, k3} that precedes the other two in neither the 
row starting bx by nor the row starting by bx; choose one such element and color the edge 
between vertices x, y with color 1 if the choice is k1, color 2 if it is k2, and color 3 if 
it is k3. The resulting graph G is a complete graph Ke on e vertices whose edges are 
colored from a set of 3 colors.

Recall that k1, k2, k3 are in {c +1, . . . , s +3} by definition of f . Now in C, the symbols 
k1, k2, k3 start a row s − 1 + r1, s − 1 + r2, s − 1 + r3 times, respectively, for some positive 
integers r1, r2, r3. Let T be a subset of B of size r1+1. Then by Proposition 5, Cpre(k1, T )
contains at least s + r1 rows. Then there is some row of C, that does not start with k1, 
in which k1 is preceded only by elements of T . By the definition of f , k1 does not appear 
second after b1, b2, . . . , be, so this row starts bx by for some distinct elements bx, by of T , 
and certainly in this row k1 precedes k2 and k3. The edge joining vertices x and y of G
is therefore not colored 1. Since this applies over all subsets T of B of size r1 + 1, this 
means that G does not contain a Kr1+1 of color 1. A similar analysis holds for k2 (T has 
size r2 + 1) and k3 (T has size r3 + 1), and so G also contains neither a Kr2+1 of color 
2 nor a Kr3+1 of color 3.

However, by Ramsey’s theorem [14], for some v ≥ 1, denoted R(r1 + 1, r2 + 1, r3 + 1), 
each edge coloring of a complete graph on v vertices using three colors contains either a 
Kr1+1 of color 1, or a Kr2+1 of color 2, or a Kr3+1 of color 3. Choose e = v to give the 
required contradiction. �
7. Open problems

We conclude with some open problems suggested by the results of this paper.

1. Theorem 3 (ii) specifies the existence of s0 for which an expression involving SCN
holds for all s ≥ s0; but our proof, using Ramsey’s theorem, does not determine a 
minimum s0. Given a nonnegative integer �, what is the smallest possible value of s0
and how does it grow with �?
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2. The examples of suitable cores given in Figs. 3 and 4 show that the inequality

SCN(2s + 1, (s + 1)2 + �) > s + 2 (4)

holds for � = 1 and s = 3, 4. However, Theorem 3 (ii) shows that (4) holds for only 
finitely many s when � is a fixed positive integer. But if � is allowed to increase with s
then (4) can hold for infinitely many s: substitute s +1 for s in Theorem 1 (ii), and use 
the general result from Proposition 5 that SCN(t, N) ≥ v implies SCN(t −1, N) ≥ v, 
to show that � = 2s +3 suffices. Does a function of s growing more slowly than 2s +3
suffice for (4) to hold for infinitely many s? Does a function of s growing more slowly 
than linearly with s suffice?
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