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The goal of the present paper is to extend the mitosis 
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of Grothendieck polynomials. In addition we will also use 
this algorithm to construct a short combinatorial proof of 
Fomin–Kirillov’s formula for the coefficients of Grothendieck 
polynomials.
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0. Introduction

The mitosis algorithm, developed by Ezra Miller and Allen Knutson (see [6], [7]), is a 
combinatorial rule that allows one to compute the coefficients of Schubert polynomials 
inductively in terms of so called rc-graphs (originally introduced by Fomin and Kirillow 
in [4]).

Schubert (and Grothendieck) polynomials are originally defined by downward induc-
tion on weak Bruhat order where the induction step is represented by applying the 
corresponding divided difference operator (or, in the case of Grothendieck polynomi-
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als — the isobaric divided difference operator). At the same time, according to the 
formula of Billey–Jockusch–Stanley (see [2]), the coefficients of each Schubert polyno-
mial might be obtained from the set of diagrams in an n × n grid called rc-graphs 
(or reduced pipe dreams). Mitosis might be considered as an analogue of applying 
the divided difference operator: namely, if w and v are permutations and v < w in 
the weak Bruhat order, then by using this algorithm we can obtain the set RP(v)
of reduced pipe dreams corresponding to the Schubert polynomial Sv(x) from the set 
RP(w). Thus, the algebraic construction of the Schubert polynomials becomes com-
binatorial. In [7], Ezra Miller provides a short combinatorial proof of this fact, based 
on Billey–Jockusch–Stanley’s formula and adjacent combinatorial properties of reduced 
pipe dreams ([7, Theorem 15]).

The analogous formula of Fomin and Kirillov (see [3, Theorem 2.3]) establishes the 
same correlation between the coefficients of Grothendieck polynomials and pipe dreams 
in general, with its proof being based on the Yang–Baxter equation. The goal of the 
present paper is to extend the mitosis algorithm to the case of Grothendieck polynomi-
als. While the original paper [7] uses the formula of Billey–Jockush–Stanley for Schubert 
polynomials in order to justify the mitosis algorithm, we are going to both justify the 
modified mitosis algorithm and prove Fomin–Kirillov’s formula, by using only the com-
binatorics of pipe dreams.

The paper is structured as follows: in the first section we will give the classical induc-
tive definitions of Schubert and Grothendieck polynomials and introduce the concept of 
pipe dreams. The second section is devoted to the original mitosis algorithm: we give a 
brief description of this algorithm and also prove the important lemma about the way 
mitosis acts on the set of pipe dreams P(w) corresponding to a permutation w. Section 3, 
analogously to [7], provides a special involution on P(w). The final section introduces 
the modified mitosis algorithm and uses it to provide a short combinatorial proof of 
Fomin–Kirillov’s formula.

1. Pipe dreams

Denote by si = (i, i + 1) the corresponding adjacent transposition of Sn. It is well 
known that the set {si | i = 1, . . . , n − 1} generates the group Sn with the following 
relations:

s2
i = 1 ,

sisj = sjsi if |i− j| > 1 ,

sisi+1si = si+1sisi+1 .

Thus, we can say that the set {si | i ∈ N} generates the group S∞ with the relations 
described above. Let w be an arbitrary element of S∞. Then we can define a sequence 
a1, . . . , ak of minimal length such that w = sa1 · · · sak

. The number k is called the 
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length of w and is denoted by l(w) (note that the sequence itself can be defined in more 
than one way: for example, the words sisi+1si and si+1sisi+1 correspond to the same 
permutation).

Let w be an arbitrary element of S∞ and si be an adjacent transposition. Then we 
say that wsi > w if l(wsi) = l(w) + 1. Otherwise we have l(wsi) = l(w) − 1 which 
means that l(w) = l((wsi)si) = l(wsi) + 1 and, consequently, w > wsi. Now, by using 
the property of transitivity, we can introduce on S∞ a partial order (called the Bruhat 
order). Note that Sn ordered in such a way is a Weyl group therefore it has the unique 
greatest element. This element is called the order reversing permutation and is denoted 
by w(n)

0 = (n n − 1 · · · 1).
Now we can define Schubert and Grothendieck polynomials inductively. For that we 

will also need to introduce the set {∂i}i∈N of divided difference operators, and the set 
{πi}i∈N of isobaric divided difference operators. These linear operators act on the ring 
Z[x1, x2, ...] as follows:

∀f ∈ Z[x1, x2, ...] ∂i(f) = f − si(f)
xi − xi+1

, πi(f) = ∂i(f − xi+1f) .

Here si(f) is a polynomial, obtained from f by interchanging the variables xi and 
xi+1. Note that in both cases the result is also a polynomial with integer coefficients. 
The term “isobaric” makes sense after the coordinate change xi → 1 − xi for the case 
where the corresponding πi preserves the degree of homogeneous polynomials.

Definition 1.1. For an arbitrary element w of S∞ corresponding Schubert and Grothen-
dieck polynomials (denoted by Sw(x) and Gw(x) respectively) can be defined inductively 
in compliance with the following rules:

(i) for the order reversing permutation w(n)
0 , the following equalities hold:

G
w

(n)
0

(x) = S
w

(n)
0

(x) = xn−1
1 xn−2

2 · · ·xn−1 ,

(ii) if l(wsi) = l(w) − 1 the following equalities hold:

∂i(Sw(x)) = Swsi(x) , πi(Gw(x)) = Gwsi(x) .

Now we will give the definition of a pipe dream. Consider the direct product Z>0×Z>0

represented in the form of a table extending infinitely south and east (the box located 
in the i-th row and j-th column is indexed by pair (i, j)). Then a pipe dream is a finite 
subset of Z>0 × Z>0, with its elements being marked with the + symbol.

Example 1.1. The following pipe dream represents the set {(1, 1); (1, 2); (1, 5); (2, 2);
(3, 2); (5, 1)}.



D.N. Tyurin / Journal of Combinatorial Theory, Series A 154 (2018) 32–48 35
+ + +
+
+

+

Now, in every box with + we put the symbol , and in every empty box we put the 
symbol ��. Thus, we obtain the network of strands crossing each other at the positions 
belonging to the pipe dream and avoiding each other at other positions. A pipe dream 
is reduced if each pair of strands crosses at most once. Now for every w ∈ S∞ by RP(w)
we denote the set of reduced pipe dreams such that for each of its elements the strand 
entering the i-th row exits from the w(i)-th column.

Example 1.2. The depicted pipe dream is reduced and corresponds to the permutation 
w = (314652).

2 6 1 3 5 4

1 �� �� �

2 �� �� �� �

3 �� �� �

4 �� �� �

5 �

6 �

Note that for simplicity we usually do not draw the “sea” of wavy strands whose 
entries and exits are equal.

Now Schubert polynomials can be defined combinatorially. Firstly, for an arbitrary 
pipe dream D we will introduce the following notation

xD =
∏

(i,j)∈D

xi .

The following formula was originally proven by Billey–Jockusch–Stanley in [2] in 
transparently equivalent language. Later, however, Fomin and Stanley introduced the 
combinatorial proof in a more fitting form (see [5]).

Proposition 1.1. For an arbitrary element w of S∞, the following equality holds

Sw(x) =
∑

D∈RP(w)

xD . (1.1)

As a consequence, the coefficients of the polynomial Sw(x) are positive.
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Consider an arbitrary pipe dream B whose strands can cross each other more than 
once. We will say that B is nonreduced. For each element (i, j) of B we will define its 
anti-diagonal index by the number i + j−1. Then, by moving across the table from right 
to left and from top to bottom and associating to each element of B its anti-diagonal 
index, we will obtain a sequence (i1, . . . , ik), where k is the number of crosses of B. The 
corresponding permutation w is produced by multiplying the adjacent transpositions 
si1 · · · sik in compliance with the following rules:

s2
i = si ,

sisj = sjsi if |i− j| > 1 ,

sisi+1si = si+1sisi+1 .

In other words, we omit transpositions that decrease length (for example, the word 
s1s1s2s1s1 gives us the permutation s1s2s1 = (321)). The corresponding operation is 
called the Demazure product. The set of all pipe dreams whose Demazure products are 
equal to w is denoted by P(w). The set RP(w) is a subset of P(w). Also, in the case 
of a reduced pipe dream, the Demazure product is equivalent to the standard group 
operation, so we can think of RP(w) as a subset of elements of P(w) with the minimal 
number of crosses.

Example 1.3. B is a nonreduced pipe dream, belonging to P(1423).

B =

+
+ +
+

There is a formula analogous to the equality (1.1) from Proposition 1.1 for the case 
of Grothendieck polynomials. Namely, for an arbitrary element w of S∞ we have

Gw(x) =
∑

B∈P(w)

(−1)|B|−l(w)xB . (1.2)

Here by |B| we denote the number of crosses of B.
This formula can be obtained as a particular case from the more general result of 

Fomin and Kirillov (see [3, Theorem 2.3]). At the end of the paper we will introduce the 
alternative combinatorial proof.

2. Mitosis algorithm

Consider an arbitrary pipe dream D. By starti(D) we will denote the maximal column 
index such that each box in the i-th row located strictly to the left of the corresponding 
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column is marked with a cross. Also, by Ji(D) we denote the subset of columns j located 
strictly to the left of (i, starti(D)) such that the box (i + 1, j) is empty.

Now, each element p of Ji(D) can be associated with a new pipe dream Dp, con-
structed in the following way: first the cross in the box (i, p) is deleted from D, then 
every cross in the i-th row located to the left of (i, p) with its column index belonging 
to Ji(D) is moved down to the empty box below it.

Definition 2.1. The i-th mitosis operator (denoted by mitosisi(D)) sends D to the set 
{Dp | p ∈ Ji(D)}.

Example 2.1.

3
4

+ + +
+ +

+ + + +
+

+
+ +
+

↑
start3

�−→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+ + +
+ +
+ + +

+
+
+ +
+

,

+ + +
+ +

+ +
+ +
+
+ +
+

,

+ + +
+ +

+
+ + +
+
+ +
+

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Here i = 3, and Ji(D) contains 1, 2 and 4.

If C is a set of pipe dreams, then by mitosisi(C) we mean the union 
⋃

D∈C
mitosisi(D)

over all elements of C. If Ji(D) = ∅, then mitosisi(D) = ∅.
Now let w be an element of S∞ and si be an adjacent transposition such that l(wsi) =

l(w) − 1. The main result of the corresponding article by E. Miller ([3]) is the following 
statement:

Theorem 2.1. Disjoint union �
D∈RP(w)

mitosisi(D) coincides with the set RP(wsi) of 

reduced pipe dreams of the permutation wsi.

Together with the Formula (1.1) this theorem gives us the capability to obtain Schu-
bert polynomials inductively, in terms of pipe dreams. Here we will not give the proof 
of this theorem (see [7, Theorem 15]). Nevertheless, we will use the same methods and 
terms, with a slight modification.

For our further reasonings, we will have to introduce the family of operations of the 
pipe dreams, which, in accordance with the original article [1] by Bergeron–Billey, will 
be called chute moves.

Each chute move applied to a pipe dream interchanges or deletes some of its elements 
located in two neighbouring rows of the pipe dream. Henceforth, we will distinguish 
between three types of chute moves.
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Definition 2.2. All three types of chute moves (which henceforth will be indexed by 
numbers 1,2 and 3) can be defined graphically in the following way

+
+

+
+

+
+

+
+

+ +
+

+
+

+
+

+
++

+
+

+
+

+
+

+
++

+

+
+

+
+

+
+

+
++

+ +
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
++

1)

2)

3)

As we can see, for any chute move we can uniquely describe an inverse one. The 
following statement is an easy extension of [7, Lemma 9] and is correct for both chute 
moves and inverse chute moves:

Lemma 2.1. If a pipe dream D belongs to the set P(w), then the result of applying any 
of the chute moves 1–3 also belongs to P(w).

Proof. We will prove the statement only for the cases of chute move 1 and chute move 2, 
since any chute move 3 can be introduced as a result of consistent applying of chute 
moves 2 and 1.

For every pipe dream D, the corresponding word will be denoted by word(D). For 
every word v and pipe dream D, the corresponding Demazure product will be denoted 
by Demaz(v) (Demaz(D) accordingly).

1) Suppose that the m-th and (m + 1)-th rows of D look like

A′
B′

B

A

(i) (i+1)

(i) (i+1)

(i+k)

(i+k)

+
+

+
+

+
+

+
+

+
m + 1

m

so that we can apply chute move 1 (the numbers located under the boxes of the i-th 
row and below the boxes of the i + 1-th row are the indexes of the corresponding anti-
diagonals, and the letters A, B, A′ and B′ are the corresponding subwords, obtained by 
“reading” of the pipe dream D in the way described above). Then the subword obtained 
by reading the m-th and (m + 1)-th rows is the following

Asi+ksi+k−1 . . . si+1siA
′Bsi+ksi+k−1 . . . si+2si+1B

′ .
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From the properties of the Demazure product, it follows that this subword is equivalent 
to the following

AA′si+ksi+k−1 . . . si+1sisi+ksi+k−1 . . . si+2si+1BB ′.

This means that for the case of chute move 1, it is enough to prove the equivalence 
of the words

(si+ksi+k−1 . . . si+1sisi+ksi+k−1 . . . si+2si+1) ,

(si+k−1si+k−2 . . . si+1sisi+ksi+k−1 . . . si+1si)

with respect to the Demazure product.
Note that in the case of applying chute move 1 to a reduced pipe dream, preservation of 

the permutation can easily be proven graphically. Indeed, all strands remain “untouched”
except the pair involved in the conversion. Also the crossing of two involved strands in 
the upper right corner of the chutable rectangle is replaced with the crossing in the lower 
left corner and the exits of these two strands stay the same (see the following figure).

In particular, this proof works for the pipe dream B whose crosses coincide with 
those depicted on the figure above. This pipe dream is reduced and yields the word 
(si+ksi+k−1 . . . si+1sisi+ksi+k−1 . . . si+2si+1). Applying the corresponding chute move 1, 
we get a reduced pipe dream B′ with the word (si+k−1si+k−2 . . . si+1sisi+ksi+k−1 . . .

si+1si). Hence, the words word(B) and word(B′) are reduced decompositions of the 
same permutation Demaz(B) = Demaz(B′). In particular, word(B) and word(B′) are 
equivalent with respect to the Demazure product.

2) Suppose now that the m-th and (m + 1)-th rows of D look like

A′
B′

B

A

(i) (i+1)

(i) (i+1)

(i+k)

(i+k)

+
+

+
+

+
+

+
+

+
+m + 1

m

so we can apply chute move 2. By carrying out the arguments analogously to 1), we 
reduce our statement to proving the equivalence of the words

(si+ksi+k−1 . . . si+1sisi+ksi+k−1 . . . si+1si)

(si+k−1si+k−2 . . . si+1sisi+ksi+k−1 . . . si+1si) .
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Again, consider a reduced pipe dream B. Then we have

(si+ksi+k−1 . . . si+1sisi+ksi+k−1 . . . si+1si) = word(B)si ∼

∼ word(B′)si ∼ (si+k−1si+k−2 . . . si+1sisi+ksi+k−1 . . . si+1sisi) .

Thus, since the subwords sisi and si are equivalent, the initial two words are also 
equivalent. Here we also use associativity of the Demazure product. �

Now we can redefine the mitosis algorithm in terms of chute moves.

Proposition 2.1. Let D be a pipe dream. Set jmin to be the minimal element of Ji(D) (on 
the assumption that it is not empty). Then each Dp ∈ mitosisi(D) is obtained from D by

(1) deleting (i, jmin) and then
(2) moving to the right, one by one applying chute moves 1, so that (i, p) is the last cross 

moved from the i-th row to i + 1-th row.

From this proposition we can see that all elements of mitosisi(D) correspond to 
the same permutation because all of them are the results of chute moves applied to 
D\(i, jmin).

Now we are ready to prove the main theorem of this section.

Theorem 2.2. Let w be an element of S∞, si be an adjacent transposition, and let D
belong to P(w). Then, if mitosisi(D) is not empty, it lies entirely in either P(wsi) or 
P(w).

Proof. According to Lemma 2.1 and Proposition 2.1 if D\(i, jmin) belongs to P(wsi)
(accordingly, to P(w)), then the same is true of all the elements of mitosisi(D).

Let D be of the form

si +
+

+
+ + A′

B′

B

A

i-th diagonal

Then the following equalities hold

w = Demaz(D) = Demaz(AA′si+jmin−1 . . . siB
′si+jmin−1 . . . si+1B) .
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Since si commutes with the subword B, by applying to the left word a transform 
analogous to chute move 1 gives

w = Demaz(D) = Demaz(AA′si+jmin−2 . . . siB
′si+jmin−1 . . . si+1Bsi) =

= Demaz(word(D′)si)

where D′ is the result of removing (i, jmin) from D.
Denote by w̃ the permutation Demaz(D′). Then according to the definition of the 

Demazure product two cases are possible:

1) l(w̃si) = l(w̃) − 1. Then we have w = Demaz(word(D′)si) = w̃ and D′ belongs 
to P(w).

2) l(w̃si) = l(w̃) + 1. Then we have w = Demaz(word(D′)si)) = w̃si, which means that 
w̃ = wsi and D′ belongs to P(wsi). �

Note that in both cases l(wsi) = l(w) − 1. In particular, the following corollary takes 
place.

Corollary 2.2.1. If wsi > w, then the set Ji(D) is empty.

In compliance with the proven theorem for each case l(wsi) = l(w) −1, we divide P(w)
into three disjoint sets: Psi(w) (the set of all pipe dreams which are sent to P(wsi)), 
PI(w) (the set of all pipe dreams which are sent to P(w)), and P∅(w) (the set of all pipe 
dreams which are sent to the empty set). Here and further by mitosis we mean mitosisi
with condition that l(wsi) = l(w) − 1. This partition will be used later.

Example 2.2. Consider the case w = s2 = (23). Then s2s2 = e and the set P(s2) consists 
of three pipe dreams

{
+

+ ,
+

, +

}

Here the first pipe dream belongs to PI(w), the second belongs to P∅(w) and the 
third belongs to Ps2(w).

3. Intron mutations

Let D be an arbitrary pipe dream with a fixed row index i. We will index the boxes 
in i-th and (i + 1)-th rows as shown in the following figure

(i + 1)
(i) 1

2
3
4

5
6

7
8

1 2 3 4
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Henceforth, by an intron we mean a 2 ×m rectangle, located in these two adjacent 
rows such that:

1) the first and the last boxes of this rectangle are empty,
2) no ·

+
column can be located to the right of a ·

· column or a +

· column and no ·
·

column can be located to the right of a +

· column. (The first (last) box of a rectangle 

is the box with the maximal (minimal) index according to the ordering described 
above.)

An intron C is maximal, if the empty box with largest index before C (if there is one) is 
located in the i + 1-th row and the empty box with smallest index after C is located in 
the i-th row. In other words, an intron is maximal, if in cannot be extended rightwards 
or leftwards.

Lemma 3.1. Let D be a pipe dream and C ⊆ D be an intron. Then by applying a sequence 
of chute moves and inverse chute moves we can transform C to a new intron τ(C) with 
the following properties:

1 ) the set of +

+
columns in C coincides with the set of +

+
columns in τ(C), and

2) the number ci of crosses in the i-row of C coincides with the number c̃i+1 of crosses 
in the i + 1-th row of τ(C) and vice versa.

Proof. Suppose that ci ≥ c̃i+1. Then the proof is by induction on the parameter c :=
ci− c̃i+1. In the case c = 0 we obviously have C = τ(C). Now suppose that c > 0. Denote 
the index of the leftmost +

· column by p. Then moving to the left from this column we 
will, sooner of later, find a column of the type ·

· or ·
+

. If it is a ·
· column, then we 

can apply chute move-1 and thereby chute the cross from the i-th row to the i + 1-th 
one. Since the result of this conversion will also be an intron, the proof is reduced to the 
induction hypothesis. If it looks like a ·

+
column, then, owing to the fact that c > 0 and, 

thereafter, there is more than one +

· column in C, the corresponding fragment of C will 
take the form

(i + 1)
(i)

(p)

+
+
+ +

+ +
+
+

+
+ +

Then by applying the composition of the chute move 2 and the reverse chute move 3 
the way it shown on the following figure, we will bring the corresponding fragment of C
to a form
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(i + 1)
(i)

(p)

+
+
+ +

+ +
+
+

+
+ +

+
+
+ +

+
+
+

+
+ +

+
+
+ +

+
+
+

+
+ +

+

and thereby again chute the cross from the i-th row to the i + 1-th one. Thus, the proof 
is again reduced to the induction hypothesis.

In the case ci < c̃i+1 we just flip the argument 180◦. �
The transformation τ is called the intron mutation. Note that the intron τ(C) is 

defined uniquely and by construction τ(τ(C)) = C, i.e. τ is an involution.
Now we are ready to make the main statement of this section.

Theorem 3.1. Let w be an element of S∞. Then for each i ∈ N there is an involution 
τi : P(w) −→ P(w) such that for any D ∈ P(w) the following conditions take place:

1) τi(D) coincides with D in all rows with indexes different from i and i + 1,
2) starti(D) = starti(τi(D)) and τi(D) agrees with D in all columns with indexes 

strictly less than starti(D),
3) lii(τi(D)) = lii+1(D) (here lir(−) is the number of crosses in the r-th row located to 

the right or in column with index starti(−)).

Proof. Let D belong to P(w). Consider all crosses of the union of the i-th and (i +1)-th 
rows located to the right or in column with index starti(D). Then, according to the 
definition of starti(D), we can find a minimal rectangle with empty last box starting at 
the column starti(D) and containing all these crosses. Since the first box of this rectangle 
is also empty, it can be uniquely represented in form of a disjoint union of maximal 
introns and rectangles, completely filled with crosses. Apply to an every maximal intron 
the corresponding intron mutation. Since every mutation is a sequence of chute moves 
and reverse chute moves, the obtained pipe dream obviously belongs to P(w). Owing 
the fact that each mutation is an involution and that the result of applying a mutation 
to a maximal intron is also a maximal intron, the obtained transformation is also an 
involution. Properties 1)–3) are obvious from the construction scheme. �
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Remark. Note that the partition P(w) = P∅(w) �Psi(w) �PI(w) is invariant under the 
constructed involution. This fact will be used in the near future.

4. Mitosis theorem

In the second section we have defined the way mitosis acts on the set P(w). Never-
theless, in order to prove the main theorem of this article we will have to slightly modify 
its initial definition:

Definition 4.1. Let w be an element of S∞, si to be an adjacent transposition such that 
l(wsi) = l(w) − 1. Then if Ji(D) = {j1, . . . , jk} D belong to P(w) the operator mitosis′i
sends D ∈ P(w) to the set

{
Dj1 , Dj1 ∪Dj2 , Dj2 , . . . , Djk−1 , Djk−1 ∪Djk , Djk

}
.

As we can see, the elements of the set mitosis′i(D) form some kind of a chain, where 
links are elements of Djm and the result of the cohesion of two links is a union of the 
corresponding pipe dreams.

Let us show that pipe dreams of mitosis′i(D) represent the same permutation. Indeed, 
it’s easy to see that Djm ∪ Djm+1 is obtained from Djm by applying the inverse chute 
move 2. Thus, the partition P(w) = Ps(w) � PI(w) � P∅(w) constructed for mitosisi is 
also preserved by mitosis′i.

Theorem 4.1. Let w be an element of S∞ and si to be an adjacent transposition such 
that l(wsi) = l(w) − 1. Then the following equalities take place:

1) �
D∈PI(w)

mitosis′i(D) = P∅(w)

2) �
D∈Psi

(w)
mitosis′i(D) = P(wsi).

Proof. The disjointness of the unions on the left sides of the equalities 1) and 2) is obvi-
ous. Indeed, each element of the image of mitosis′i agrees with its preimage everywhere 
except i-th and (i + 1)-th rows. In these two adjacent rows they also coincide to the 
right from the leftmost column of the type +

· or ·
· . The rest of the diagram is restored 

uniquely according to the corresponding algorithm.
In order to prove the first equality, it is enough to construct a preimage in PI(w)

for an arbitrary D from P∅(w). It can be done in the following way: consider the first 
column of D which has a restriction on the rows i, i + 1, different from +

+
and ·

+
. If it 

looks like ·
· , then by moving from this column to the left and applying the sequence of 

inverse chute moves 1 (corresponding to the sequence of the ·
+

-columns, located strictly 
to the left from our column) we will bring D to a form B′ = B\(i, jmin), where B is 
a pipe dream with non-empty set mitosisi(B) (note that the quantity of applied chute 
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moves may be zero). Applying Theorem 2.2 to B in the corresponding notation, we have 
Demaz(B′) = Demaz(D) = w and l(wsi) = l(w) − 1 which means that Demaz(B) = w

and B belongs to PI(w). Obviously, B is a preimage of D and also D is a “link” in the 
mitosis′i(B)-chain.

If our column look like +

· , then the way to construct a preimage for D is more difficult. 
Since D belongs to P∅(w), there must be at least one ·

+
-column to the left from ours. 

We will fixate all such columns. Then we will start moving to the left, applying to each 
·
+

-column except the last one the transformation, inverse to the one which is described 
by the figures in the proof of Lemma 3.1. And finally we will apply chute move 3 to the 
last ·

+
-column, again bringing D to a form B′ = B\(i, jmin), where B is a pipe dream, 

belonging to PI(w) and the set mitosisi(B) is non-empty. Note, that this time D also 
belongs to mitosis′i(B), but as a cohesion.

The second equality’s proof is practically the same, only this time we use the fact 
that l(wsisi) = l(w) = l(wsi) + 1 which, according to the Corollary 2.2.1, means that 
for each element D of P(wsi) the corresponding set mitosis′i(D) is empty. �

Thus, Theorem 4.1 gives us the way to list efficiently all pipe dreams of P(w). Namely, 
if l(wsi) = l(w) − 1, we have the equality

P(wsi) =
( �

D∈P(w)
mitosis′i(D)

)∖
P∅(w) .

Now denote the corresponding operation of applying mitosis′i to all elements of P(w)
and deleting all elements of P∅(w) by mitosis′i(w). Then if w belongs to Sn, w(n)

0 is 
corresponding order reversing permutation and si1 · · · sik is a reduced expression for 
w

(n)
0 w, we have the equality

P(w) = mitosis′ik . . .mitosis′i1(D
(n)
0 )

where D(n)
0 is the only pipe dream belonging to P(w(n)

0 ).
Finally, we will give a proof of Formula (1.2).

Theorem 4.2. Let w be an element of S∞ and si be an adjacent transposition such that 
l(wsi) = l(w) − 1. Then the following equality takes place

Gw(x) =
∑

B∈P(w)

(−1)|B|−l(w)xB .

Proof. The proof is by induction on l(w) for each group Sn. For each n the inductive basis 
is the case w = w

(n)
0 = (n n −1 · · · 1). Indeed, the only reduced pipe dream corresponding 

with this permutation is the one containing all boxes above the n-th anti-diagonal (it is 
the only possible way to connect i with n + 1 − i for each i = 1, · · · , n). And since 
w belongs to Sn, each element of P(w) contains only such boxes, which means that 
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P(w) contains only one element described above. Corresponding monomial is obviously 
xn−1

1 xn−2
2 · · ·xn−1 = G

w
(n)
0

(x).
Now we want to fulfil the induction step. Let l(wsi) = l(w) − 1 and assume that the 

induction hypothesis is applicable to w. Let D be an arbitrary element of Psi(w) with 
J = |Ji(D)|. Then xD = xJ

i xD′ , where D′ is a pipe dream obtained from D by removing 
all crosses in the boxes (i, j), with j belonging to Ji(D).

Recall that if condition l(wsi) = l(w) − 1 is satisfied, then Gwsi(x) is obtained from 
Gw(x) by applying the operator πi. Thus, we have

∑
E∈mitosis′i(D)

(−1)|E|−l(wsi)xE = (−1)|D|−l(w)xD′

J∑
d=1

xJ−d
i xd−1

i+1 −

− (−1)|D|−l(w)xD′

J−1∑
d=1

xJ−d
i xd

i+1 = (−1)|D|−l(w)πi(xJ
i )xD′ .

Note that the partition P(w) = P∅(w) �Psi(w) �PI(w) is preserved by involution τi
from Section 3, so we can restrict it to Psi(w). Now, if τi(D) = D, then it follows from 
property 3) of τi that xD′ is symmetric in the variables xi and xi+1. Consequently, we 
have

(−1)|D|−l(w)πi(xJ
i )xD′ = (−1)|D|−l(w)πi(xJ

i xD′) = πi((−1)|D|−l(w)xD) .

On the other hand, if τi(D) �= D, then again, according to property 3) of τi, the sum 
xD′ + si(xD′) is symmetric in the variables xi and xi+1 and we have

(−1)|D|−l(w)πi(xJ
i )(xD′ + si(xD′))1 = (−1)|D|−l(w)πi(xJ

i (xD′ + si(xD′))) =

= πi((−1)|D|−l(w)(xD + xτi(D))) ,

which, in turn, means that

∑
E∈mitosis′i(D)

(−1)|E|−l(wsi)xE +
∑

E∈mitosis′i(τi(D))

(−1)|E|−l(wsi)xE =

= πi((−1)|D|−l(w)(xD + xτi(D))) .

Thus, by grouping the elements of D ∈ Ps(w) in accordance with the involution τi, 
and taking into account that πi is R-linear, we obtain the following equality

∑
E∈mitosis′i(Ps(w))

(−1)|E|−l(wsi)xE = πi

( ∑
D∈Ps(w)

(−1)|D|−l(w)xD

)
. (4.1)
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There is an analogous equality in the case of PI(w)

∑
E∈mitosis′i(PI(w))

(−1)|E|−l(wsi)xE = πi

( ∑
D∈PI(w)

(−1)|D|−l(w)xD

)
. (4.2)

Now if D ∈ P∅(w), i.e. D′ = D and τi(D) = D, then D is symmetric in the variables 
xi and xi+1 and, consequently, we have

(−1)|D|−l(w)π(xD) = (−1)|D|−l(w)xD .

Also if τi(D) �= D then the sum xD +xτi(D) is symmetric in the variables xi and xi+1
and we have

(−1)|D|−l(w)π(xD + xτi(D)) = (−1)|D|−l(w)(xD + xτi(D)) .

Thus, by grouping the elements of P∅(w) with accordance with the involution τi, we 
get the equality

∑
D∈P∅(w)

(−1)|D|−l(w)xD = πi

( ∑
D∈P∅(w)

(−1)|D|−l(w)xD

)
. (4.3)

By taking the sum of (4.1), (4.2) and (4.3), we obtain the following result
∑

E∈mitosis′i(Psi
(w))

(−1)|E|−l(wsi)xE = πi(Gw(x)) = Gwsi(x) .

Indeed, according to Theorem 4.1 1), the right sides of equations (4.2) and (4.3) differ 
by sign. Also according to Theorem 4.1 2), we have

∑
E∈mitosis′i(Psi

(w))

(−1)|E|−l(wsi)xE =
∑

D∈P(wsi)

(−1)|D|−l(wsi)xD ,

which gives us
∑

D∈P(wsi)

(−1)|D|−l(wsi)xD = Gwsi(x) .

Thus, the inductive step is fulfilled and the proof is completed. �
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