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1. Introduction

Let H be a finite group and S be a subset of H. The Cayley digraph Cay(H,S) is
the digraph that has vertex set H, and arc set {(z,sz) : « € H,s € S}. It follows
from the definition that Aut(Cay(H,S)) contains Hg, the group of all right translations
Hgp = {hg:h € H}, where 2% = zh, x € H. Also, Cay(H,S) is loopless if the identity
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element 1 ¢ S, and it is regarded as an undirected graph when S is an inverse-closed
set, that is, S =S~ ! = {271 : 2 € S}.

Two Cayley digraphs Cay(H,S) and Cay(H,T) are called Cayley isomorphic if
T = 5% for some automorphism ¢ € Aut(H). It is trivial to show that Cayley iso-
morphic Cayley digraphs are isomorphic as digraphs. The converse, however, does not
hold in general. There are examples of Cayley digraphs which are isomorphic but not
Cayley isomorphic. A subset S C H is called a Cl-subset if for any T' C H, the isomor-
phism Cay(H,T) = Cay(H, S) implies that T'= S% for some ¢ € Aut(H). The group H
is a DCI-group if each of its subsets are Cl-subsets, and a CI-group if each of its inverse-
closed subsets are CI-subsets. Motivated by a problem posed by Addm in [1], Babai and
Frankl [4] asked the following question: Which are the CI-groups? Although the can-
didates of CI-groups have been reduced to a restricted list [9,18], which was obtained
by accumulating the work of several mathematicians, it is considered to be difficult to
confirm that a particular group is a Cl-group. We refer the reader to the survey paper
[17] for most results on CI- and DCI-groups.

One of the crucial steps towards the classification of all CI-groups is to answer which
elementary abelian p-groups are Cl-groups (see also [17, Question 8.3]). It is known that
the group Zy is a Cl-group in each of the following cases: n =1 [7,10,29]; n = 2 [2,12];
n=3[28;n=4andp=2I5;n=4andp > 2[13] (a proof for n = 4 with no condition
on p was given recently in [19]); n = 5 and p = 2 [5]; and n = 5 and p = 3 [27]. On
the other hand, some examples of groups Z; are also known which are not Cl-groups,
and in each case the rank n > 6. Nowitz [23] found a non-Cl-subset of ZS, and more
recently, Spiga [27] constructed a non-CI subset of Z§. Constructions of non-Cl-subsets
of Zj; where n is expressed as a function in p were the subject of the papers [20,25,26].
The best bound is due to Somlai [25], which says that Z; is not a Cl-group if n > 2p+3.
The question whether Zg is a Cl-group for any odd prime p is mentioned in [17] as a
crucial task for classifying Cl-groups (see Section 8.4 and Problem 8.10). The goal of
this paper is to complete this task by proving the following theorem:

Theorem 1.1. The group Zg is a DCI-group for any prime p.

Our starting point is the following group theoretical criterion due to Babai [3]: A sub-
set S C H is a Cl-subset if and only if any two regular subgroups of Aut(Cay(H,S))
isomorphic to H are conjugate in Aut(Cay(H,S)). Recall that, the group Hg of right
translations is always contained in Aut(Cay(H,S)). Motivated by this criterion, the fol-
lowing definition was introduced by Hirasaka and Muzychuk [13]: A permutation group
G < Sym(Q) containing a fixed subgroup F is F-transjugate if for each g € Sym(2), the
condition g~'Fg < G implies that g~ ' Fg and F and are conjugate in G. In this context,
Babai’s result can be rephrased as to say that a subset S C H is a Cl-subset if and only if
the group Aut(Cay(H,S)) is Hr-transjugate. It is well-known that Aut(Cay(H,S)) is a
2-closed permutation group for any S C H (for the definition of a 2-closed permutation
group, see Section 2.1). Following [13], we say that H is a CI®)-group if all 2-closed
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subgroups of Sym(H) containing Hp are Hp-transjugate. Clearly, if H is a CI()-group,
then it is necessarily a DCI-group. Theorem 1.1 was proved by Conder and Li [5] for
p = 2, hence it will be sufficient to consider only the case when p is odd. In fact, instead
of Theorem 1.1 we prove the following slightly more general theorem:

Theorem 1.2. The group Zf, is a CI® -group for any odd prime p.

We prove Theorem 1.2 following the so called S-ring approach (S-ring is the abbre-
viation of Schur ring, and for a definition, see Section 2.2). Roughly speaking, S-rings
are certain subalgebras of the group algebra QH which were introduced by Schur [24] in
order to study permutation groups containing a regular subgroup isomorphic to H. The
usage of S-rings in the investigation of CI-groups was proposed by Klin and Péschel [14,
15]. For a concise survey on S-rings and their applications in combinatorics, we refer the
reader to [21].

We finish the introduction with a brief outline of the paper: Section 2 contains prelim-
inary material, especially, a thorough introduction to S-ring theory. We intend to keep
our text as self-contained as possible. In Sections 3, we turn to S-rings over elementary
abelian p-groups of arbitrary rank. In particular, an equivalent condition will be derived
for the group Z; to be a CI®)-group in terms of its S-rings (Proposition 3.4). We remark
that, this condition is obtained by combining together several results proved in [13,19,
26]. Based on this equivalence, Theorem 1.2 will be reformulated in a statement involv-
ing a particular class of S-rings over the group Zg (Theorem 3.5). Then, in Section 4,
we derive a property of S-rings over Z; which will be needed when dealing with S-rings
over Zg. The proof of Theorem 3.5 will be divided into two parts depending on whether
the S-rings in question are decomposable or not (for a definition of a decomposable S-
ring, see Section 2.2). The decomposable S-rings will be handled in Section 5, while the
indecomposable ones in Section 6.

2. Preliminaries

All groups in this paper are finite. In this section we collect all concepts and facts
needed in this paper.

2.1. Permutation groups

Let G < Sym(f2) be a permutation group of a finite set Q. For w € Q, we denote
by G, the stabilizer of w in G, and by w® the G-orbit of w. For a subset A C
and permutation v € Sym(f2), we say that ~ fixes A if AY = A, and that ~ fixes A
pointwise if w? = w for all w € A. The setwise stabilizer and pointwise stabilizer of
A in G will be denoted by Gay and Ga, resp., that is, Giay = {g € G : A9 = A}
and Gao = {g € G : w9 = w, w € A}. The set of all G-orbits is denoted by Orb(G, 2).
Suppose that G is transitive on Q. If 6 = {Aq,...,A,} is a block system for G, then we
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write G5 for the kernel of the action of G on §, and G° for the permutation group of §
induced by G.

Two permutation groups H,G < Sym(() are said to be 2-equivalent, denoted by
H =5 G, if Orb(H,Q?%) = Orb(G,Q?), see [31]. The equivalence class of G contains a
largest subgroup, which is called the 2-closure of G, denoted by G(?). The group G is
called 2-closed if G = G.

Proposition 2.1. For any G < Sym(Q), Z(G) < Z(G?).

Proof. Let g1 € Z(G), v € G® and w € Q. Since Orb(G,Q?) = Orb(G®), Q?), we have
(w,w9)% = (w, wgl)G(Q)7 and so there exists g € G, depending on w and w9, such that
(w,w9)9 = (w,w9)7. Then w9 = w99 = w991 = W9, As w was chosen arbitrarily
from Q and v from G, it follows that g; € Z(G?), hence Z(G) < Z(G®?), and the

assertion follows. O

A transitive permutation group G and its 2-closure G?) have the same block systems
(see [31, Theorem 4.11]).

Proposition 2.2. ([13, Proposition 2.1]) Let G < Sym(f) be a transitive permutation
group, and let § be a block system for G. Then

(i) (GP) < (G°).
(ii) If G is 2-closed and F° is 2-closed for some F < G, then FGs is also 2-closed.

The following statement is given as Exercise 5.8 in [31]. It also appears as 5.1. Propo-
sition in the preprint [22], where the authors give a proof. Regarding the fact that [22]
is a university preprint, we also present a proof.

Proposition 2.3. (cf. [31]) If G < Sym(Q) is a p-group, then G®) is also a p-group.

Proof. If G is intransitive, then G is a subdirect product of the 2-closures of the tran-
sitive components of G. Thus, it is sufficient to prove the theorem for transitive groups
G < Sym(€2). Suppose to the contrary that G is a counterexample to the proposition
whose order is the smallest possible. If G is abelian, then it is regular on Q. By Proposi-
tion 2.1, G® centralizes G, and it follows that G?) = G. Thus, we may assume that G
is non-abelian, and so |G| > p3. The center Z(G) is nontrivial. Let P < Z(G) such that
|P| = p, and let g € G be an element of order g for some prime g # p. Then Orb(P, Q)
is a block system of G on 2. Let us consider the natural action of G on Orb(P,{2). To
simplify notation, we write § = Orb(P,2). The permutation group G° < Sym(§) induced
by G is transitive on § and has order less than |G|. By the minimality of G the group
(G®)®@) is a p-group. Thus (G))? is also a p-group, see Proposition 2.2(i), which implies
that g acts on J as the identity permutation. Equivalently, g fixes any P-orbit A € §. By
Proposition 2.1, P < Z(G(Q)), hence g centralizes P. This implies that g is semiregular
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on A. Since g has order g and |A| = p, g fixes pointwise A, and as this is true for any
A € §, g is the identity permutation of 2, a contradiction. O

Proposition 2.4. ([13, Proposition 3.6(ii)]) Let H be an abelian p-group whose order |[H| >
p3, and let G < Sym(H) with G > Hg. If there exists a G1-orbit T such that |T| = p
and (T) = H, then |G| =p- |H]|.

Finally, we recall a recent result of Morris [19]. Let H = Z, for an arbitrary prime p.
Assume that G < Sym(H) is a p-group such that

G = (Hg,n 'Hpgm) for some 7 € Sym(H).

Let P be a Sylow p-subgroup of Sym(H) with G < P. Then P is permutation isomorphic
to the iterated wreath product Z,- - -1Z, (n copies of Z,), and this shows that P admits
block systems dg, . .., 0,1 such that §; has blocks of size p'T!, and if 0 < i< j<n—1,
then each class of §; is contained in a class of ¢;. Since Hp is abelian, the kernel (Hg)s;,
has order p*!l. In particular, there exist 79, 71 € Hp such that (Hg)s, = (7o) and
(Hg)s, = (10, 71). Note that, we can write do = Orb({1g), H) and d; = Orb({ro, 1), H).

Proposition 2.5. ([19, Corollary 3.2]) With the above notation, there exists b € G such
that 1 commutes with 19, and ¥~ 'm ' Hgm contains 1.

Let us consider once more the above groups G = (Hg, 7~ 'Hrm) and P, where P is
a Sylow p-subgroup of Sym(H) with G < P. Then Z(P) < n~'Hprm because 7~ Hgm
is abelian and regular on H. Similarly, Z(P) < Hp. On the other hand, Ps, < P and
To € Ps,, implying Ps, N Z(P) # 1 because P is p-group. Then Ps, N Z(P) < Hp
implies P5, N Z(P) = (1), hence 9 € Ps, N Z(P) < 7~ 'Hgm. Proposition 2.5 together
with the condition that ¢ centralizes 7y shows that 79,71 € ¥~ 'n "' Hgmy, and hence
|Cr, (= tn~YHgm)| > p?. This inequality will be used later.

2.2. S-rings

In this subsection, we give the definition of an S-ring, and review several basic proper-
ties. Let H be a finite group with identity element 1, and let QH denote the group algebra
of H over the rational number field. For a subset T' C H, we define the Q H-element T as
the formal sum T = ZheH aph with ap, = 1if h € T, and ap, = 0 otherwise. We remark
that the QH-element T is traditionally called simple quantity, see [30].

By a Schur-ring over H (S-ring for short) we mean a subalgebra A4 C QH, which can
be associated with a partition 7 of H satisfying the following conditions:

e The set {1} belongs to .
o For every T € m, the set T~! belongs to .
e A is spanned by the QH-elements T, T' € .
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The elements (classes) of w are also called the basic sets of A, and from now on we
will use the notation Bsets(A) for m. The cardinality |Bsets(A)| is called the rank of
A. The concept of S-ring is due to Wielandt [30], which was motivated by the following
result of Schur [24]:

Theorem 2.6. (cf. [30, Theorem 24.1]) Let H be a finite group, and let G < Sym(H) with
Hp < G. Then the QH-elements T, T € Orb(G1, H) span an S-ring over H.

The S-ring in the above theorem is also called the transitvity module of G, denoted by
V(H,G1). We note that, there exist S-rings which do not arise as transitivity modules.
Given an arbitrary S-ring A over a group H, we say that A is Schurian if A =V (H, K7)
for some permutation group K < Sym(H) with Hr < K, and that A is non-Schurian
otherwise.

Remark 2.7. It should be noted that the pair (H,{Cay(H,T) : T € Bsets(.A)}) forms a
Cayley (association) scheme in the sense of [21]. Thus, S-ring theory can be regarded as
a part of the theory of association schemes, and several concepts defined for S-rings can
be understood in this context.

Let A be any S-ring over a group H. A subset S C H (subgroup K < H, resp.) is
called an A-subset (A-subgroup, resp.) if S € A (K € A, resp.). The radical of a subset
S C H is the subgroup of H defined as

rad(S) = {h € H: hS = Sh = S}.

In other words, rad(S) is the largest subgroup E < H for which S is equal to the union
of some left E-cosets and also some right E-cosets. If S is an A-subset, then both groups
rad(S) and (S) are A-subgroups (see [30, Propositions 23.5 and 23.6]). If K, L < H
are two A-subgroups, then it can be easily checked that both K N L and (K U L) are
A-subgroups. The thin radical of A is defined as

Op(A) ={g € G:{g} € Bsets(A)}.
The following simple, but useful property is a simple observation:

If e € Og(A) and T € Bsets(A), then both sets eI’ and Te are in Bsets(A4). (1)
Here eI' = {et : t € T} and Te = {te : t € T}. It follows that the thin radical Og(A) is
an A-subgroup.

Let K < H be an A-subgroup. Then, for any basic set T' € Bsets(A) there exist

positive integers k and k' such that

|IKhNT|=kand |hKNT|=Fk forall heT. (2)
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These can be verified by considering the products K - T and T - K. Here and in what
follows the symbol - denotes the multiplication of QH. Since both products belong to A,
these can be expressed as a linear combination of the simple quantities T/, T" € Bsets(.A).
The coefficient by T is equal to k in the case of K - T, and it is equal to k' in the case
of T K.

The subalgebra QK N A is an S-ring over an A-subgroup K, denoted by Ay, which
is called the S-subring of A induced by K.

Assume, in addition, that K < H for an A-subgroup K. For a subset S C H, we let
S/K = {Kh, h € S}. Let T1, T, € Bsets(.A) such that K'T1 N KT, # ), or equivalently,
kyt1 = kato holds for some k; € K and t; € T; (i = 1,2). This shows that, the coefficient
ar, > 0 by the linear combination K-T5 = ZTGBsetS(A) arT. This implies that 77 C KT,
and hence KTy C KT5. Similarly, by, > 0 by K - T} = ZTeBsets(A) brT, hence Ty C
KTy, and so KTy C KT also holds. We conclude that K77 = KT, and thus the sets
KT, T € Bsets(.A) form a partition of H, and consequently, the sets T/K, T € Bsets(.A)
form a partition of H/K. The corresponding Q H/K-elements T/ K span an S-ring over
H/K, which is called the quotient of A by K, denoted by AH/K.—

Assume that H = E x F' is the internal direct product of its subgroups E and F, and
that A is an S-ring over H such that both F and F are A-subgroups. Since ENF = {1},
it follows that XY = X - Y for any subsets X C F and Y C F. A straightforward
computation yields that the simple quantities RS, R € Bsets(Ag), S € Bsets(Ar) span
an S-ring over H. The latter S-ring is called the tensor product of Ap with Ar, denoted
by Ag ® Ap. Clearly, Ag ® Ap = Ar ® Ag, and Ag ® Ar C A. The following lemma
can be easily shown using Eq. (1).

Lemma 2.8. Let A be an S-ring of the internal direct product H = E X F such that both
E and F are A-subgroups. If Ap = QF or Ap = QF, then A= Ag @ Ap.

The following result is also known as Schur’s first theorem on multipliers (see [21]).

Theorem 2.9. (cf. [30, Theorem 23.9(a)]) Let A be an S-ring over an abelian group H,
T € Bsets(A) be any basic set, and suppose that k is an integer coprime to |H|. Then
the set T™F) .= {h* . h € T} is a basic set of A.

Finally, we recall the concept of E/F-wreath product after [21]. This was defined in
[16] under the name wedge product, and independently in [11] under the name generalized
wreath product. Let A be an S-ring over a group H. If there exist A-subgroups E and F
such that

F<E, FaH, and F <rad(T) for all T € Bsets(A), T C H\ E,

then we say that A is an E/F-wreath product and write A = Ap lg/p Ap/p. Note
that, the S-ring A can be reconstructed uniquely from the S-rings Ag and Ag/p. In
the particular case when E = F, we use term wreath product, and write Ag ! Ay, g for
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AEglp e A e- In what follows we say that A is decomposable if it can be decomposed as
A= Aplg/p Ap/r where E # H and F # {1}, and that A is indecomposable otherwise.

2.8. Automorphisms of S-rings

Let A C QH be an S-ring over a group H. By an automorphism of A we mean
a permutation of H that is an automorphism of all Cayley graphs Cay(H,T), T €
Bsets(A). This definition is due to Klin and Péschel [14] (see also [21]). The group of all
automorphisms of A will be denoted by Aut(A), that is,

Aut(A) =[] Aut(Cay(H,T)).
TeBsets(A)

In what follows, we write Aut(A); for the stabilizer (Aut(A));. Note that, as a permu-
tation group of H, Aut(.A) is 2-closed. Moreover, if A = V(H, G1) for some G < Sym(H)
with G > Hp, then Aut(V(H,G1)) = G®. If K < G is a subgroup with Hg < K, then
V(H,K;) 2 V(H,G1). Also, given two S-rings A and B of the same group H, the
inequality B C A implies that Aut(B) > Aut(A).

For two arbitrary S-rings A, B C QH, their intersection A N B is also an S-ring over
H (cf. [13,21]). Therefore, given any subset S C H, it is possible to define the S-ring
{(S) := Na»A*, where A* runs over the set of all S-rings over H that contain S. Then,
the following identity holds:

Aut(Cay(H, S)) = Aut({S)). (3)

Indeed, let G = Aut(Cay(H, S)) and A = V(H, G1). The fact that G > Aut({(S))) follows
if we observe that S can be expressed as S = UF_, T for some basic sets T; € Bsets({(S))),
and thus Aut({S)) < ﬂle Aut(Cay(H,T;)) < G. On the other, since G is 2-closed,
G = Aut(A). Also, as any element of G; maps S to itself, it follows that S € A. This
implies in turn that ((S)) C A, and so Aut({(S)) > Aut(A) = G, and Eq. (3) follows.

Suppose that K < H is an A-subgroup and write G = Aut(.A). Then any element of
the stabilizer G; maps K to itself. This implies that the setwise stabilizer G factorizes
as Gyxy = G1Kg. In particular, G1 < Gk;, and hence the G )-orbit of 1 is a block
for G (see [6, Theorem 1.5A]). The latter orbit is K, and we conclude that the induced
block system § = {KY : g € G} is equal to the set H/K of all right cosets of K in H.

Finally, we point out a relation between Aut(.A) and the thin radical Ogy(.A). For h €
H, the left translation hy, € Sym(H) is the permutation acting as "t = h='x, x € H.
If A is a Schurian S-ring over H, then its thin radical Oy (A) satisfies the following:

Oy(A) = {h € H : hy, € Csymen (Aut(A))}. (4)

Indeed, if h € Oy(A) then every g € Aut(A) acts as an automorphism of Cay(H, {h}).
It is straightforward to check that this implies that g and (h~!); commute, and so



170 Y.-Q. Feng, I. Kovdcs / Journal of Combinatorial Theory, Series A 157 (2018) 162-204

hr € Csym(m)(Aut(A)). On the other hand, if by € Cgyy)(Aut(A)) and g € Aut(A)y,
then (h=1)9 = 1"9 = 19"2 = h~! Therefore, the orbit of A~! under Aut(A); is equal
to the set {h~1}. Now, since A is Schurian, its basic sets are the Aut(.A);-orbits on H,
in particular, h=* € Og(A), and this implies that h € Og(A) as well.

2.4. Isomorphisms of S-rings

Let A be an S-ring over a group H and B be an S-ring over a group K. A bijection
f:H — K is called an (combinatorial) isomorphism between A and B if

{ Cay(H,T) : T € Bsets(A)} = { Cay(K,S) : S € Bsets(B) }.

Here Cay(H,T)/ is the image of the digraph Cay(H,T) under f, that is, it has vertex
set K and arc set {(zf,y/) : 2,y € H and ya~=1 € T}.

It follows from the definition that f induces a bijection f* : Bsets(.A) — Bsets(B)
defined by T/ = S for T € Bsets(A) exactly when Cay(H,T)/ = Cay(K,S). We say
that f is normalized if f maps the identity element 15 to the identity element 1. In the
special case when f is an isomorphism from H to K, we call f a Cayley isomorphism.
Notice that, when f is a normalized isomorphism of A, then T/ = T/ holds for all
T € Bsets(A). It is well-known that the linear map defined by T — T/ is an algebra
isomorphism between the Q-algebras A and B (cf. also [13,21]). Using this fact, it is not
hard to show that (ST)f = S/T7 holds for any normalized isomorphism f of A and any
basic sets S, T € Bsets(.A). Some properties are listed below.

Proposition 2.10. ([13, Proposition 2.7]) Let f : A — B be a normalized isomorphism
from an S-ring A over a group H to an S-ring B over a group K, and let E < H be an
A-subgroup. Then,

(i) the image EY is a B-subgroup of K. Moreover, the restriction fg : E — EY is an
isomorphism between Ap and Ags.
(i) For each h € H, (Eh)f = EfnS.
(iii) If E < H and B/ Q9 K, then the mapping fH/F . HIE — K/E', defined by
(Eh)fH/E := ETh' is a normalized isomorphism between Ay p and Bk /s -

In this paper, we will be interested exclusively in isomorphisms between S-rings over
the same group H. We adopt the notation used in [13], and denote by Iso(A) the set of
all isomorphisms from A to S-rings over H, that is,

Iso(A) = {f € Sym(H) : f is an isomorphism from .4 onto an S-ring over H};
and let Iso1 (A) = {f € Iso(A) : 1/ = 1}.

Note that, Iso(A) C Sym(H ), but it is not necessarily a subgroup. It follows from the
definition that for any v € Aut(A) and ¢ € Aut(H), their product 44 is an isomorphism
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from A to an S-ring over H. Therefore, Aut(A) Aut(H) C Iso(A). Now, we say that A
is a CI-S-ring or simply that A is CI, if Iso(A) = Aut(A) Aut(H). This definition was
given by Hirasaka and Muzychuk in [13], where the following proposition was proved:

Proposition 2.11. ([13, Theorem 2.6]) Let G < Sym(H) be a 2-closed group with Hr < G,
and let A=V (H,Gy). Then the following conditions are equivalent:

(i) G is Hg-transjugate.
(ii) Iso(A) = Aut(A) Aut(H).
(#ii) Iso1(A) = Aut(A); Aut(H).

Thus, the CI(®)-property for a group H is equivalent to the CI-property for all Schurian
S-rings over H. In the last lemma of this subsection we collect further properties of S-ring
isomorphisms.

Lemma 2.12. Let A be an S-ring over a group H, and let f € Iso1(A).

(i) If H is abelian and T/ = T for some T € Bsets(A), then (T") = T®) for any
integer k coprime to |H]|.

(ii) Let E < H be an A-subgroup such that E < rad(T) for some T € Bsets(A). If
(TE)! = TE then T =T.

Proof. (i): Since T¥ = T, f € Aut(Cay(H,T)). Let us consider the S-ring (7). By
Eq. (3), f € Aut({T))). On the other hand, by Theorem 2.9, T*) € Bsets({(T")), and (i)
follows.

(ii): This follows from (TE)/ = TE and ET =TE =T as E <rad(T). O

2.5. p-S-rings

We say that an S-ring A over a group H is a p-S-ring if H is a p-group, and all
basic sets T € Bsets(A) have p-power size, see [13]. The following proposition follows
from results about p-schemes proved in [32] (see [13, Theorem 3.3]). For sake of easier
reading, we give a proof using only the definition of an S-ring.

Proposition 2.13. Let A be a p-S-ring over a p-group H. Then

(i) the thin radical Og(A) is nontrivial;
(ii) there exists a chain of A-subgroups

Hy={1}<Hy<---<H.=H,

such that |H;11 : H;| = p for alli € {0,...,r —1}.
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Table 1
p-S-rings over Zg for an odd prime p.
No. p-S-ring Schurity Indecomposability
1. QZ% yes yes
2. QZIQ) L QZy, yes no
3. QZp @Z; yes no
4. (QZp 2 QZy) ® QZy yes no
5. QZyp 1 QZy 2 QZy yes no
110
3 _ )
6. V(Z,,(x)), = = <0 1 1) yes yes
001

Proof. By definition, > rcpsers(a),r2(1y [T = [H| — 1. Since all cardinality [T'| as well
as |H| are p-powers, (i) follows.

We prove (ii) by induction on |H|. The statement is trivial for |H| = p. For the
rest of the proof it is assumed that |H| > p. Choose a maximal nontrivial .A-subgroup
K < H, that is, H is the only A-subgroup which contains properly K. Let |K| = p™.
Let us consider the sets KTK, T € Bsets(.A). These sets form a partition of H because
T, C KToK or Ty N KTo K = ) for any basic sets T1, T» € Bsets(A) by Eq. (2), and
therefore, KT' K = KTy K or KT1 KNKT,K = (). Note that, p™ divides |[KT K| for all T,
and KTK = K for all basic sets T' C K. Thus, |H| = ZTeBsets(A),Tgt_K |KTK|+|K|, and
so there exists a basic set 77 such that 7y ¢ K and |KT1 K| = p™. Then, Kt C KT K
and tK C KT K for all ¢t € T;. This together with |Kt| = [¢tK| = |[KT1 K| = p™ shows
that any ¢ € Ty normalizes K. Thus, K < (K,T1) = H, where the latter equality follows
by the maximality of K. Now, (ii) follows by applying the induction hypothesis to the
S-rings A and Ap k. O

Proposition 2.14. ([13, Proposition 3.4(i)]) Let A be a p-S-ring over an abelian p-group H.
If there exists a basic set T € Bsets(A) with |T| = |H|/p, then A decomposes to the wreath
product A = Ax L Ak, where K < H is an A-subgroup with index |H : K| = p.

The next result is the classification of all p-S-rings over Zg.

Theorem 2.15. ([13,28]) Every p-S-ring over the group Z?) for an odd prime p is Cayley
isomorphic to one of the S-rings given in Table 1.

Remark 2.16. Hirasaka and Muzcyhuk [13] classified the Schurian S-rings, and it was
proved later by Spiga and Wang [28] that all p-S-rings over Z3 are Schurian (see [28,
Theorem 1]).

Let H be a group isomorphic to Zf’, for an odd prime p. An S-ring A over H is called
exceptional if it is Cayley isomorphic to the S-ring in the 6th row of Table 1, see [13].
Exceptional S-rings will play an important role in later sections.
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Lemma 2.17. Let A be an exceptional S-ring over a group H, H = Zg. Then | Aut(A)| =
p* and Iso1(A) = Aut(H).

Proof. Consider the S-ring in the 6th-row of Table 1. Denote by T its basic set containing
the element (1,0,0) € Z3. Since p > 2, it follows quickly that |T'| = p and (T) = Z3. This
implies that A has also a basic set 7" such that |T’| = p and (T') = H. The S-ring A
is Schurian. Thus, 7" is equal to an Aut(A);-orbit, and by Proposition 2.4, | Aut(A)| =
p*. Thus, Hr < Aut(A), and so Aut(A); < Aut(H). Since H is a CI®-group, A
is a CI-S-ring, see Proposition 2.11, and we can write Iso;(A) = Aut(A); Aut(H) =
Aut(H). O

We finish the subsection with further properties.

Lemma 2.18. Let A be a p-S-ring over a group H, K < H be an A-subgroup with index
|H : K| =p, and let T € Bsets(A). Then the following hold:

(i) T is contained in a K-coset. In particular, rad(T) < K.
(i) Let L < H be an A-subgroup of order p such that L < H and L £ rad(T). Then
forany heT, hLNT = LhNT = {h}.
(iii) If H is an abelian group and |Og(A) N K||T| > |H|/p, then Op(A) Nrad(T) # {1}.

Proof. (i): Let us consider the quotient S-ring Ag /. By Eq. (2), Ag/k is a p-S-ring.
Since H/K = 7Z,, its only p-S-ring is Q H/K, and so Ag/x = QH/K. In particular,
|T/K| =1, hence T C Kh for a coset Kh and (i) follows.

(ii) By Eq. (2), there is a positive integer k such that |hL NT| = |LhNT| = k for
all h € T. As |T| is a p-power, k = 1 or p. If kK = p, then we find LT = TL =T, so
L < rad(T), which is excluded by one of the assumptions. Thus, kK = 1 and (ii) follows.

(iii): Assume that |Op(A)NK]||T| > |H|/p. Let us consider the sets eT, e € Og(A)NK.
By Eq. (1) and (i), these are all basic sets contained in a coset Kh. If these are pairwise
distinct, then |Op(A) N K||T| = > . co,a)nk €T < [Kh| = [H|/p, a contradiction.
Thus, eT = €'T for distinct e, e’ € Oy(A) N K. Using this and that H is abelian, we find
e le'T =Te e =T, and so e te/ € Op(A) Nrad(T), by which (iii) follows. O

3. On CI-S-rings over Zg

In this section we give three propositions about CI properties of S-rings over the groups
Z,. The first one is a necessary condition for an S-ring to be non-CL. It is essentially
contained in the proof of [13, Proposition 3.9].

Proposition 3.1. Suppose that A = V(H, Py) is a non-CI-S-ring, where H = Z; and
Hpr < P < Sym(H) is a p-group. Then the normalizer Naua)(HRr) contains a subgroup
K for which the following hold:



174 Y.-Q. Feng, I. Kovdcs / Journal of Combinatorial Theory, Series A 157 (2018) 162-204

(i) K =7y, it is regular on H, and K # Hg.

(i) The stabilizer (KHp)1 is elementary abelian, and
|Crp(KHRg)1)| > |K N Hpg|.

Proof. Let G = Aut(A) and N = Npyya)(Hg). Note that, since G = P® and P is
a p-group, G is a p-group as well, see Proposition 2.3. We first show the existence of
a subgroup K < N that has all properties given in (i). If G = N, then the existence
of the required subgroup K follows from the condition that A is a non-CI-S-ring. Now,
suppose that N < G. Then, since G is a p-group, the normalizer Ng(N) # N, hence we
may choose some g € Ng(N)\ N. We let K = (Hg)9. It is straightforward to see that
K has all properties given in (i).

Now, we turn to part (ii). Consider the group Q = K Hpg. Clearly, Q = Q1 K = Q1Hg
and Q1 = Q/Hr = K/(K N Hg). Thus, 1 is an elementary abelian group. Also, as
both K and Hp are abelian, K N Hr < Z(Q), implying that |Cu,(Q1)| > |K N Hpg|.
This completes the proof of part (ii). O

The second proposition will be a sufficient condition for an S-ring over Zy to be CI.
Definition 3.2. We say that an S-ring A over a group H is ~y-minimal if
{X <Sym(H): X > Hr and X =5 Aut(A)} = {Aut(A)}.

For example, the full group algebra QH is a s5-minimal S-ring. The obvious examples
for non-Azp-minimal S-rings are the S-rings of rank 2 (the two basic sets are {1} and
H\ {1}). Clearly, Aut(A) = Sym(H), and thus Aut(A) ~o X whenever Hgp < X <
Sym(H) and X is 2-transitive on H.

Proposition 3.3. Let A be a Schurian p-S-ring over a group H = Zy, and K < H be
an A-subgroup of order p such that Ap i is a ~g-minimal CI-S-ring. Then A is a

CI-S-ring.

Proof. Let G = Aut(A) and choose L < G such that L is regular on H and L = H.
Because of Proposition 2.11 it is enough to show that L and Hp are conjugate in G.

We write G = G"/K Hr = (Hg)"/K and L = L¥/X. Note that Hr = (H/K)p.
The group L is abelian acting transitively on H/K. It follows that it is regular, and
L~ Z;“l. Since Ap/ i is a CI-S-ring, L = (Hg)® for some € Aut(Ap, k). For sake of
simplicity we denote by 1 the identity of H/K.

We claim that Aut(Ap k) = G. To settle this it is sufficient to show that
Aut(AH/K) ~y G, and use the assumption that Ap )k is ~2-minimal. We have to show
that Ap/x = V(H/K,G1). Here we copy the proof of [13, Proposition 2.8(ii)]. Since
K is an A-subgroup, K9 = K for any g € Gy, and thus by Proposition 2.10(ii), the
coset Kh is mapped by ¢"/X to (Kh)gH/K = Kh9. A basic set of Ag/k is in the form
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T/K where T € Bsets(A). Since A = V(H,G;), we find that T = h“: for some h € H.
Observe that Gk} = KgG1, and for any g € G, g"/E ¢ Gy if and only if ¢ fixes setwise
the subgroup K. This implies that g = krg’ for some k € K and ¢’ € G;. Now, we can
express the Gi-orbit of Kh as

(Kh)C1 = {(Kh)™"" ix =kpg, ke K, ge G1} = {K(kh)? : k€ K, g € G1}
={Kh?:gcG}=h""/K=T/K.

We conclude that T/K is an orbit of G7, and the claim follows.

Recall that L = (Hg)* for some z € Aut(Ap,x) = G. Choose g € G such that
g"/K = g=1 Then L9 < Gu/xkHRr, where G g denotes the kernel of G' acting on
H/K. Write M = Gk Hg. Since both G and (Hg)"/X are 2-closed groups, it fol-
lows by Proposition 2.2(ii) that M is also 2-closed. We are done if we show that M is
Hp-transjugate, because then (L9)Y = Hpg for some ¢’ € M, showing that L and Hp
are indeed conjugate in G.

Again, because of Proposition 2.11 we are done if we show that the S-ring B =
V(H, M) is CI. Then A C B, and thus K is also a B-subgroup. Note that G/ x NHr =
KR and M = MlHR. Then |M1| = |M|/|HR| = ‘GH/KHR|/|HR| = ‘GH/K|/|KR| and
|Gr x| = [(Guyx)1l|Kr|. It follows |Mi| = [(Gu/k)1| and hence My = (G g/ )1- Since
(Gu/k)1 < Gi and all orbits of Gy i are the cosets of K in H which have order p,
we have K < Op(B) and all basic sets of B = V(H, M;) not contained in Og(B) are
K-cosets.

Let f € Iso;(B). In order to prove that B is a CI-S-ring, we have to find an automor-
phism ¢ € Aut(H) such that

T/% =T for all T € Bsets(B). (5)

Choose a minimal generating set {hy, ..., h,} of H such that {hy,...,he}, £ <mn,isa
generating set of Og(B) with hy € K. By Proposition 2.10, K < H and (Kh;)f = K'h.
Since 14 = 1, T/ € Bsets(BY) for every basic set T' € Bsets(.A). Using this and that each
Kh; is a B-subset, we find that each thz-f is a B/ -subset, and so (Kfh{ ... K/hl)<H
is a B/ -subgroup. By Proposition 2.10(i), [(K/h{, ..., Kfhf)| = (KT, .. KIhi)F 1.
Thus, H = (K'h{, ... K'hf). Since hy € K, it follows that K/h! = K7 and
{h{ ,---,hf} is also a minimal generating set of H. Define ¢ as the induced automor-
phism of H by ¢ : hf — h; for 1 <7 < n. Then h{‘P = h;. To finish the proof, it suffices
to show that Eq. (5) holds.

Set fi = fo. Clearly, fi € Iso;(B). Recall that for any S,T € Bsets(B), (ST)/* =
SATT (see the paragraph preceding Proposition 2.10). Then f; fixes each element in
0y (B) because f; fixes a generating set of Og(B). In particular, K1 = K as K <
0y (B), and Eq. (5) holds whenever T' C Oy (B). Now, suppose that T ¢ Ogy(B). Let us
consider the isomorphism f; AIK o Bp i induced by fi (for the definition of le / K, see
Proposition 2.10(iii)). The quotient S-ring By,x = Q H/K. Since Q H/K is a CI-S-ring
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and Aut(Q H/K) = (H/K)p, it follows that Iso;(By,x) = Aut(Q H/K) Aut(H/K) =
Aut(H/K). Also, le/K € Isoy(By k), because K/t = K, and so le/K € Aut(H/K).
On the other hand, as f; fixes all generators h;, le /K fixes a generating set of H/K,
and so le/K is the identity mapping. Since T ¢ Oy(B), T = Kh for some h € H \ K,
and we can write T/t = (Kh)/1 = (Kh)ffi/K =Kh=T. O

Proposition 3.3 will be especially useful in conjunction with the fact that all indecom-
posable Schurian p-S-rings over Z;‘) are ~o-minimal. We prove the latter fact in Section 4.
Recall that, the CI®)-property for a group H is equivalent to the Cl-property for all
Schurian S-rings over H (see Proposition 2.11). The third proposition is the following

refinement:

Proposition 3.4. Let H be a group isomorphic to Z;, for a prime p. Then the following
conditions are equivalent:

(i) H is a CI®-group.
(ii) All S-rings V(H,A) are CI-S-rings where A < Aut(H) is a p-group with
|Cri (A)] = p*.

Proof. Notice that, the implication (i) = (ii) is a direct consequence of Proposition 2.11.

Now, we turn to the implication (ii) = (i). Let G < Sym(H) be a 2-closed subgroup
with Hr < G, and let K < G be a regular subgroup such that K = H. We have to show
that K and Hp are conjugate in G.

Now, choose a Sylow p-subgroup P of G such that Hgp < P. Since G is 2-closed,
by Proposition 2.3, P is 2-closed, that is, P(*) = P. By Sylow Theorem, K* < P for
some x € G, hence we may assume that K < P. According to Proposition 2.5 there
exists some y € (Hp, K)?) < P = P such that |Cy, (KY)| > p?. Let Q = (Hg, KY).
Then Q) < P?) = P, and Q® is also a p-group. It is sufficient to show that Q® is
Hpg-transjugate.

Let us consider the normalizer N = N (Hg). Since |Ch, (KY)| > p?, it follows that
|Cry(Q)| > p. By Proposition 2.1, Cpr,, (Q) = HrNZ(Q) < HrNZ(Q®)) = Cr,, (QP)).
Therefore, |Cy,(Q®)| > p?, and as N? < QP it follows that |Cp,(Ny)| > p?. By
the hypothesis in (ii), the S-ring V/(H, (N®)),) = V(H, Ny) is a CI-S-ring. Equivalently,
N®) is Hp-transjugate.

We finish the proof by showing that N = Q(®. In doing this we use the same idea
as in the proof of [27, Proposition 1]. Assume to the contrary that N?) < Q®). Since
Q™ is a p-group, we can choose an element z € N (N?)\ N3, Then (Hp)* < N,
Since N is Hp-transjugate, (Hg)* = (Hg)? for some z/ € N® and so we find
Zz7le Ng@ (Hgr) = N, from which z € N®) | a contradiction. Therefore, Q) = N2,
showing that Q) is Hp-transjugate, as required. 0O



Y.-Q. Feng, I. Kovdcs / Journal of Combinatorial Theory, Series A 157 (2018) 162-204 177

In fact, we are going to derive Theorem 1.2 by showing that the condition in case (ii)
of Proposition 3.4 holds when H = Zg.

Theorem 3.5. Let H = 75 for an odd prime p. Then all S-rings V(H, A) are CI-S-rings
where A < Aut(H) is a p-group with |C,(A)| > p2.

The proof of Theorem 3.5 will be given in Sections 5 and 6.
4. Indecomposable Schurian p-S-rings over ZZ are ~-minimal for n < 4

We set some notation that will be used throughout the rest of the paper:

Notation. From now on p will stand for an odd prime, and H will denote a group iso-
morphic to Z;. The group H will be regarded as the additive group of an n-dimensional
vector space over the field GF(p). The elements of H will be denoted by lower case letters
u, v, etc., while the subgroups of H by upper case letters U, V, etc. As usual, the identity
element will be denoted by 0, and the inverse of an element u € H by —u. For an integer
k and a subset T C H we write T"") = kT = {ku : h € T}, where ku = u + - - - + u, with
|k| summands if £ > 0, and ku = —(u + - - - + u) otherwise.

It turns out that all indecomposable p-S-rings over the group Z; are ~3-minimal for
any odd prime p and n < 3. This is not hard to see for the groups Z, and Zi. The
full group algebra QZ, is the only p-S-ring over Z,; and up to Cayley isomorphisms,
there are two p-S-rings over Zg: QZZ and QZ,1QZ,, and the latter one is decomposable.
Theorem 2.15 shows that, up to Cayley isomorphisms, there are two indecomposable
p-S-rings over ZE’,: QZ;’, and the exceptional p-S-ring given in the 6th row of Table 1.
By Lemma 2.17, the automorphism group of an exceptional p-S-ring has order p*, hence
it is A&zo-minimal. In this section, we extend this result to the Schurian indecomposable
p-S-rings over Zf,.

Theorem 4.1. All indecomposable Schurian p-S-rings over the group Z;ﬁ are ~9-minimal
for any odd prime p.

Remark 4.2. We would like to remark that the above theorem cannot be generalized
to Schurian indecomposable p-S-rings over Zg. A counterexample is the indecomposable
S-ring V(H, L) defined in Lemma 6.4, where H = Z5 and L < Aut(H) of order |L| = p?.
It is proved in Lemma 6.5 that | Aut(V (H, L))| = p®, hence HrL =5 Aut(V (H, L)) but
HprL < Aut(V(H, L)), and so V(H, L) is not ~p-minimal.

The proof of the theorem will be given in the end of the section following three
preparatory lemmas.

Recall that, if A is an S-ring over H and W < H is an A-subgroup, then the W-cosets
in H form a block system for Aut(A).
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Lemma 4.3. Let A be an indecomposable S-ring over a group H = Z;, and let W be an
A-subgroup with |W| = p. Then the kernel

Aut(A)s = Wg ={wg : w € W},
where § denotes the block system H/W.

Proof. Let K = Aut(A)s. It is clear that Wx < K, and thus it is enough to prove that
the stabilizer Ky is trivial. By Lemma 2.18(ii), for every basic set T' € Bsets(A),

W Lrad(T)=TNW +u) ={u} forall u € T. (6)

We define recursively a finite sequence T7,...,T, of basic sets of A as follows. Let
Ty = {w} where w is an arbitrary nonzero element in W. Now, suppose that the sets
Ty,...,T; are already defined for ¢ > 1. If H = (T3 U--- U T;), then finish the procedure
and let r = 4. Otherwise, choose T; 1 to be a basic set in H \ (T3 U---UT;) such that
W L rad(T;41). Notice that, such T;11 does exist because A is indecomposable.

Let S =Ty U---UT, and consider the Cayley graph Cay(H, S). Note that, Aut(A) <
Aut(Cay(H,S)). It is clear from the construction that (S) = H, hence Cay(H,S) is
connected. We claim that S has the property that, whenever a W-coset intersects S,
it does intersect it at exactly one element. Suppose to the contrary that there exist
ui,u2 € S such that uy # uo and uy —up € W. Then u; € T; and up € Tj for
some i,j € {1,...,r}. It follows from the construction of S and Eq. (6) that i # j,
and we may assume w. 1. 0. g. that i < j. Thus, us € (T;, W) < (Ty,...,T;), and so
ug € (T1 U---UT;_1) N T}, a contradiction. Now, using that Aut(A) < Aut(Cay(H,S))
and the above property of S, we find that every element in K fixes all neighbors of 0 in
Cay(H, S). This and the connectedness of Cay(H, S) yield that |[Ko|=1. O

For © € Aut(H), we define Cy(z) = {u € H : u* = u}. Note that for u € H,
u € Cy(x) is equivalent to the condition that ur and x commute with each other.

Lemma 4.4. Let A be an indecomposable S-ring over a group H = Z; and let © €
Naus(ay(Hg) such that x #idg and 0° = 0. Then |Cy ()| < p*.

Proof. Since # # idg, it follows that |Cx(z)] < p®. Assume to the contrary that
|Cr(x)| = p®. Let U = Cg(z), and for a fixed v; € H\ U, let W = (v§ — v1). Then
|W| = p, and it follows that the orbit v*) = W 4 v for all v € H \ U. Observe that, W
is not an A-subgroup. For otherwise,  belongs to the kernel of Aut(A) acting on H/W,
which is impossible by Lemma 4.3.

Let U’ be an A-subgroup of order p3. If U = U’, then define V =
Mrepsets(a), rc o rad(T). Clearly, V' is an A-subgroup such that W <V < U, and A
is an U/V-wreath product, a contradiction. Hence, U’ # U, and in particular, U is not
an A-subgroup.
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Let Ty € Bsets(A) such that 73 € U’ and Ty ¢ U. Then |T1| > p, and since W is
not an A-subgroup, it follows that |T}| = p?. Indeed, if |T}| = p, then T} is necessarily
a W-coset, implying that W = rad(T}), and so W is an A-subgroup, which is not the
case. By Proposition 2.14, T} is equal to a U”-coset for some A-subgroup U"” such that
|U"| = p? and W < U". We find U"”" = W + W' for an A-subgroup W' of order p. Since
W' < O0p(A), W < U, and it follows that U =U'NU.

Now, choose T € Bsets(A) such that ' ¢ U U U’ and T NU # (). Notice that such T'
exists because U is not an A-subgroup. Since T' ¢ U, it follows that T' contains at least
one W-coset not contained in U. This together with TN U # § gives that |T| > p. Fix
an element v € TNU. Then T' C U’ 4 v, see Lemma 2.18(i). Since A is indecomposable,
it follows from Proposition 2.14 that |T| = p2. Let o' € T\ U. If W’ < rad(T), then we
find U"+v' =W+ (W+v') CW +T =T. Thus, T = U” + ¢/, contradicting that
TNU # 0. Thus, W' £ rad(T), and by Eq. (2), every W’-coset intersects T in at most 1
element. Consequently, any U”-coset intersects T' in at most p elements. The U"-cosets
contained in U’ 4+ v can be listed as U” + ku + v, where k € {0,1,...,p — 1} and u is
any fixed element in U'\U. Let T; =T N (U" +iu+wv), i € {0,1,...,p— 1}. It follows
that the sets T; form a partition of T, T; is a W-coset for all ¢ > 0, and |Ty| = p.

Let us consider the product T' - (=T) in QH. Writing T - (=7) = >, .y
follows quickly from the above description of the sets T; that 3, ¢y 10y Gu = p3 —p2.

Ay, u, it

On the other hand, T - (—T) € A, and it can be expressed as the linear combination
T-(=T) = Yprepsetsa) brL’. Let w € W, w # 0. Since W is not an A-subgroup, it
follows that the coset W’ 4+ w is a basic set of A. Let us denote the latter basic set
by T(w). It also follows from the description of the sets T; that a, > p? — p. Thus,
br(w) > p? — p as well, and as w was chosen arbitrarily from W \ {0}, we arrive at a

contradiction as follows:

PP-p’= Y au> > brwlTw) = (-1 -p). O
weU\{0} weW\{0}

Let A be a p-S-ring over H. In what follows, we call an ordered n-tuple (vy,...,v,)
of generators of H an A-basis if all subgroups in the chain below are A-subgroups

{0} < (vn) < (vp—1,vp) < -+ <{v1,...,0,) = H.

Notice that, if z € Aut(A) normalizes Hg and 0 = 0, then « € Aut(H), and it can be
written in an A-basis as an upper triangular matrix having 1’s in the diagonal.

Lemma 4.5. Let A be an indecomposable p-S-ring over a group H = Z;‘;. Then

(1) [Nausa)(Hr)| < p°%
(i) Hp is normal in Aut(A).
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Proof. Let G = Aut(A) and N = Nayya)(Hr).

(i): Assume to the contrary that |N| > pS that is, for the stabilizer Ny we have
|No| > p?. Let us fix an A-basis (v, ve,vs,v4). This means that (vs) is an A-subgroup,
and we can consider the action of Ny on H/(vs). By Lemma 4.3, the latter action is
faithful, and hence Ny is isomorphic to a subgroup of the group of all upper triangular
3 x 3 matrices with each diagonal element equal to 1. Therefore, | No| = p3, and we can
choose x € Z(Np) that can be written in the basis (v1,ve,v3,v4) as

8

|
oo
[Nl ]
O O
o o

Then, the orbit v{v‘) has size at most p?. This follows from Proposition 2.14 and
the fact that A is indecomposable. Therefore, there exists y € Ny such that y # idg
and y fixes v1. Using also that [z,y] = 1, we find that (vf)¥ = (v¥)* = of, hence
v = vy + vz + avy € Ch(y). It follows that each of vy, vz and vy is in Cy(y). This,
however, contradicts Lemma 4.4.

(ii): We have to show that G = N. Assume to the contrary that G > N. Then
Ng(N) > N. Choose g € Ng(N)\ N and let P = (Hg)YHg. Since Py < Ny, |Py| < p*.
If |Py| = p, then |P| = |Hg| - |Py| = p°, hence |(Hg)? N Hg| = p®. Then every = € P,
satisfies |Cpp(x)| > |(Hg)? N Hg| = p?, a contradiction to Lemma 4.4. Therefore,
|Po| = p?, Py = Np and each z € Ny satisfies |Cp,(2)] > [(Hgr)Y N Hg| = p*. By
Lemma 4.4, Cp,(2) = (Hg)9 N Hr whenever z # idy. Therefore, letting U = {u € H :
ur € H}, N Hg}, we can write

Cyg(z) =U for all z € Ny, z #idgy. (7)

Let us consider the S-ring B = V(H, Ny). Clearly, U < Ogy(B). Fix a B-subgroup V
such that V has order p® and U < V. Let v € H\ V and T € Bsets(B) be a basic
set such that v € T. By Lemma 2.18(i), v* — v € V. Suppose that v* —v € U for all
z € Np. This implies that T C U + v, and thus either T'= U +v, or |T| < p. In the latter
case, however, it follows from |Ny| = p? that Ny contains a non-identity element z fixing
some v € T, and hence Cp(z) > (U,v) > U, which contradicts Eq. (7). Observe that, if
T = U + v, then it is also a basic set of A. For otherwise, A would have a basic set of
size p3, contradicting that A is indecomposable (see Proposition 2.14). Now, since A is
not a V/U-wreath product, there exists v € H\ V and x € Ny for which v — vy ¢ U.

Now, define the elements vy = v{ — vy, v3 = v§ — v2, and let v4 € U be an element
such that U = (vs, v4). It follows that (vy,ve,vs,vs) is a B-basis, in which

8

Il
[N e Na il b
OO ==
O =O
—Oo oo
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Let y € Ny such that Ny = (x,y). By Eq. (7), Cu(y) = U = (vs,v4), and thus y can
be written in the basis (v1,v2,v3,v4) in the form

<

I
SO O
SO~
O~ Qo>
— o0 0

Using also that [z,y] = 1, we find d = a and e = 0. Thus, v§ = v2 +dvs. On the other
d
hand, véw ) = v + dvz also holds, and we find vy € Cy(xdy~!), where 9y~ # idg.
This contradicts Eq. (7). O

All Schurian p-S-rings over Zé are CI [13, Theorem 3.1]. Combining this with
Lemma 4.5 yields the following corollary (see also the proof of Lemma 2.17):

Corollary 4.6. Let A be an indecomposable Schurian p-S-ring over a group H, H = ij
for an odd prime p. Then Isog(A) = Aut(H).

Everything is prepared to prove the main result of this section.

Proof of Theorem 4.1. Assume to the contrary that A is a Schurian indecomposable
p-S-ring over H, which is not ~3-minimal. Let G = Aut(A). By Lemma 4.5, Hg < G and
|G| < p®. As A is not ~p-minimal, |G| = p®, and there exists z € Gy such that x has order
p,and A = V(H, (z)). In other words, G ~y K where K = (Hg,z). Note that G = K.
Let u € Cy(z). Then ug € Z(K), and by Proposition 2.1, up € Z(K®) = Z(G),
implying that u € Cy(y) for any y € Gy. We obtain that Cy(x) < Cg(y) for all y € Gy.
Also, as A =V (H, (x)), every basic set of A has size at most p. Suppose for the moment
that |Cy(z)] = p?. Let T be a basic set of size p and fix an element v € T. Clearly,
T ¢ Cy(x). Also, since T is a Gy-orbit and |G| = p?, we find that Go NG, is nontrivial.
Hence if y € Go NG, and y # idy, then Cy(y) = (Cu(z),v), contradicting Lemma 4.4.
It remains to consider the case when |Cy(z)| = p. Equivalently, rank(z —I) = 3, and this
implies that, in a suitable basis, denoted by (v1,vs,v3,v4), z has the following Jordan
normal form:

O M= O
— OO

8

|
SO O
OO ==

Since x has order p, it follows that p > 3. Let T be the orbit of v; under () (hence
under Gy). It is not hard to check that |T'| = p and (T') = H. Then, by Proposition 2.4,
|Go| = p, a contradiction. This completes the proof of the theorem. 0O

We finish the section with a corollary of Proposition 3.3 and Theorem 4.1, which will
be used several times in the next two sections.
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Corollary 4.7. Let A be a Schurian p-S-ring over the group H = ZZ, and let W be an
A-subgroup of order p. If A is a non-CI-S-ring, then the S-ring Ay w is decomposable.

5. Proof of Theorem 3.5 I: the decomposable S-rings

We record all assumptions of Theorem 3.5 in the following hypothesis:

Hypothesis 5.1. A = V(H, A) is an S-ring over a group H = Zg for some odd prime p,
and for some subgroup A < Aut(H) with |Cg(A4)] > p?.

Our eventual goal is to show that, assuming Hypothesis 5.1, the S-ring A is CI. In
this section, we deal with the particular case when A is decomposable.

Theorem 5.2. Assuming Hypothesis 5.1, suppose that A is decomposable. Then A is a
CI-S-ring.

The theorem will be proved in the end of the section following four preparatory lem-
mas. In the next three lemmas we study the S-ring A described in Theorem 5.2 which
satisfies additional conditions.

Lemma 5.3. Assuming Hypothesis 5.1, suppose that there exist A-subgroups Uy, Us, W1
and Wg with |U1| = |U2| = p4, |W1| = |W2| =D, U1 75 UQ, W1 7é Wg and W1 + W2 <
Uy NUs, and also that the following hold:

(1) A is both a Uy /Ws- and a Us /W1 -wreath product.
(2) Both Ay, w, and Ay, w, are indecomposable.
(3) |Ay| # 1 for some v € H\ Uy UUs.

Then one of the following possibilities holds:

(1) |Nauta)y(HRr)| = p®, and there exists an A-subgroup Us such that |Us| = p*, Uz # Uj;
fori € {1,2}, and every basic set of A not contained in Uy UUs UUs is equal to a
(Uy N Us)-coset.

(ii) |Nauea)(Hr)| = p°, and every basic set of A not contained in Uy UUs is equal to a

(U1 N Uz)-coset.

Proof. We let N = Naya)(Hgr), W = Wi + Wy and U = Uy N U,. Note that A =
V(H, Ny), where Ny denotes the stabilizer of 0 in N. Also notice that, w? = w for
all w € W and v € Ny. Fix a non-identity element 2 € A,, and some uy € Uy \ U
which is not fixed by x. Then there exists an integer k£ such that ku; + v € Us,. Since
v ¢ Uy, it follows that kuy; +v ¢ U. We define the elements v; = kuy, vo = kuy + v and
v3 = v¥ —v;. We find that v§ = vy+vs. For i € {1,2}, let T; = v}, the A-orbit containing
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v; (in other words, T; is the basic set of A that contains v;). Note that, since Ay, /w,
is indecomposable, it follows that rad(7;) = W; for both i = 1,2. Since v = v7 — v;,
it follows that vy € T; — T;, hence vz € U,;. We conclude that v3 € U; N Uy. Suppose
that v3 € W. Fix i € {1,2}. Then both v; and v¥ are in T; N (v3) + v;. Notice that
v{ # v1 because v; = kuj and u; was chosen so that it is not fixed by x. Thus vs # 0,
and so vy # ve also holds. We get |T; N (vs) + v1]| > 1, and this together with Eq. (2)
shows that |T; N (vs) + v'| = p for all v/ € T;, implying that (vs3) < rad(T;). It follows
that (vs) < rad(71) Nrad(Tz) = Wi N Wy, contradicting that vz # 0. We obtain that
V3 € (Ul ﬂUQ) \W

Next, assume for the moment that v — vs € Wi. Let us consider the automorphism
zU/Wi | First, as v —wv; = vy ¢ Wy, we see that zU/™1 is not the identity mapping.
On the other hand, zV*/"1 fixes W/W; pointwise and fixes also the element Wj + v3
(here W7 + vs is regarded as an element of the group U;/W3). By all these we find
ICu, yw, (zUr/™1)| = p?, which implies that Au,yw, is a nontrivial generalized wreath
product, a contradiction to the assumption given in (2). We conclude that v§ — v ¢ Wy.

Notice that, there is a symmetry between the conditions satisfied by the pairs (Uy, W1)
and (Us, Ws). Therefore, any statement, which involves the subgroups Uj, Uy, Wi
and Ws, and which can be derived from these conditions, gives always rise to yet
another statement that is obtained by replacing U; with Uy and W; with Ws. In
what follows, we will refer to the new statement as the dual counterpart. For in-
stance, the statement v§ — vs ¢ W; has dual counterpart: v§ — vs ¢ Ws. Now, as
vy — vz ¢ W1 UWs, we can choose non-zero elements vy € Wy and vz € Wa such that
vy = vg + vg + vs.

Now, it follows from the above construction that (vi,ve,vs,vs,vs5) is an A-basis. In
this basis, the automorphism z is represented by the matrix as shown in Eq. (8).

1 01 00 10 0 1 0 10 0 0 O

01100 01 0 00 01 0 01
xr=]10 01 1 1 nn=10 01 0 O =10 0 1 0 O (8)

0 00 1O 00 010 0 00 10

0 0 0 01 00 0 01 0 0 0 01

Furthermore, it is straightforward to check that each of y; and y,, defined in
Eq. (8), acts on H as an automorphism of A, and therefore, it belongs to Ny. Let
M = (z,y1,y2). Clearly, M < Ny, and for i € {1,2}, the basic set T; is equal to the
orbit vM.

Now, let z € Ng N N,,. For i € {1,2}, let us consider the automorphism zV«/W: ¢
Aut(Ay, w,)o. The latter group is generated by the element zVi/Wi  and we find
ZUi/Wi e (gUs/Wi) Moreover, as v = vy, it follows that 2V*/"1 is the identity mapping.

All these yield that z can be written in the following form:
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1 0 0 0 0
01 a ala—1)/2 b
z=10 0 1 a 0, abeGF(p). (9)
0 00 1 0
0 00 0 1

This shows that [Ng N N,, | < p?, and therefore, |N| = p® or p°.

Fix an element v' = kv; + vg for some k € {1,...,p — 1}, and let T be the basic set
of A that contains v'. Since A = V(H, Ny) we can write T = (v')No. Tt follows from
Egs. (8) and (9) that W 4+ C T C U +'. This together with Lemma 2.14 yields that
T=W+v or T=U+7v". By Eq. (8), (v')* = kvy + kv + va + v3 =v" + (k+ 1)vs.

Assume at first that k& # p — 1. Then (v')* ¢ v' + W, and hence T' = U + v’. The
latter condition together with Theorem 2.9 yields that every basic set of A contained in
(U,v") \ U is equal to a U-coset.

If |IN| = p®, then M = Ny, vév" = v3 + (v4 +v5), and this with the previous paragraph
implies that (i) holds with Uz = (U, —v; + vg). Finally, suppose that |N| = p°. Then
for z with @ = 1 and b = 0 in Eq. (9), we find (—v; + v2)® = —vy + vy + v3, thus
(—v1 +ve)No = U + (—v; + v2), and (ii) follows. O

Lemma 5.4. With the notation of Lemma 5.3, the S-ring A is CL

Proof. We keep all notations from the previous proof, and let, in addition, W5 = (vs+wvs).
Let f € Isog(.A) such that f fixes all elements v; with i # 2, and also —vy. Recall that,
(v1,...,v5) is the A-basis defined in the proof of Lemma 5.3. We settle the lemma by
showing that T = T for all basic sets T' € Bsets(.A). This will be done in five steps.

Claim (a). Tf =T for all T € Bsets(A), T C Uy U Us.

This is trivial for the basic sets {v4} and {v5}, and hence Claim (a) follows for all basic
sets T C W = (v4,vs). Let N = Npye(a)(Hr). It follows from the proof of Lemma 5.3
that any basic set T C U \ W is in the form T = k(W3 + v + w) for some w € W
and some k € {1,...,p — 1} if |N| = p®; whereas in the form T' = k(W + v3) for some
ke{l,...,p—1}if [N| =p°.

Assume that |[N| = p®. As both W3 + v3 and {w} are basic sets, we can write (W3 +
v +w)f = (W3 +v3)f +wl = W?f + vg +w/ = W3 + v3 +w, where the second equality
follows by Lemma 2.10(ii). Now, this together with Lemma 2.12(i) yields 7/ = T in the
case when |N| = p®. Similarly, (W +wv3)/ = W +vs3, and this with Lemma 2.12(i) yields
T/ =T if [N| = p°.

Next, let us consider the isomorphism fUY Since Ay, /w, is indecomposable,
fU /Wi ¢ Aut(U; /W), see Lemma 2.17. This together with the fact that f fixes point-
wise a generating set of Uy shows that fU1/W1 is the identity mapping. Using this and that
Ay, is a Uy /Wi-wreath product, we deduce that T/ = T for all basic sets T C U; \ U.
Observe that, the latter statement has dual counterpart: T4 = T for all basic sets
T C Uy \ U. This completes the proof of Claim (a).

/W1
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Claim (b). There exist an integer k and a function Fy : Uy — {0,1,...,p — 1} such that
(v1 +u)f =v + w' + Fy(u)vs for all u € Us. (10)

The S-ring Ap/y = QH/U. From this and the fact that f fixes a basis of H, we
deduce that f7/U is the identity mapping, and therefore, f maps every U-coset to itself.
In particular, it fixes the coset Us 4+ v1. Let f denote the permutation of Us 4+ vy induced
by the action of f on Uz 4+ v1. Choose an arbitrary basic set T € Bsets(Ay, ), and let ¥
be the subdigraph of Cay(H,T) induced by the set Us + v;. By Claim (a), T/ = T, and
this in turn implies that f € Aut(Cay(H,T)), and f € Aut(X). It is straightforward to
check that (v1)g is an isomorphism between Cay(Us,T') and . This implies that

(v1)rf(—v1)r € Aut(Cay(Us, T)). (11)

We set g for (v1)rf(—v1)r. As T € Bsets(Ay,) was chosen arbitrarily, by definition,
g € Aut(Ay,). Furthermore, 09 = 0(V=f(=v1)r = (0. We have already shown that
Aut(Ap, /w,)o = (2Y2/"2), and thus we can write gV2/W2 = (z¥)V2/W2 for some integer
k. This allows us to define the function Fy : Uy — {0,1,...,p— 1}, by letting Fa(u)vs =
w9 — u®" for each u € Us,. Then, "+ Fy(u)vs = u9 = w)rf(—v)R = (u+v1)f — w1,
and Claim (b) follows.

Recall that N = N4 (HRr)-

Claim (c). Suppose that |[N| = p8. Then for any u,u’ € Uy with u — v’ € U, Fy(u) =
).

Suppose that u,u’ € Uz such that u —u’ € U. Recall that g € Aut(Ay,) and g fixes
every U-coset. Let us consider the automorphism ¢V2/Ws. It can be easily seen from the
proof of Lemma 5.3(i) that Ay w, = QU/W3. By repeating the argument used to derive
Eq. (11), we obtain that g¥2/"s acts on the coset (U +u)/W3 = (U/W3) + (W3 +u) as
a translation by some element from U/Ws. This implies that, u? —u+ ' — (u')9 € Ws.
It follows from Eq. (8) that u — ol — (u') =* € Wj also holds, and by the definition
of Fy we can write

k

(Fy(u) — Fo(u)))vs = u? —u® — ()7 + ()" € Ws.
On the other hand, (vs) N W5 = {0}, and this yields Claim (c).

We turn next to the action of f on the coset U; —vq. Notice that, the arguments given
in (b) and (c) can be repeated after one replaces Uy with Uy, Wa with Wy, vy with —vs,
and ws with wy. This gives rise to the following analogous statements:

Claim (d). Suppose that |N| = p8. Then there exist an integer | and a function Fy : Uy —
{0,1,...,p— 1} such that
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(—vo +u)f = —vy + u + Fy(u)vy for allu € Uy. (12)
Moreover, if u,u’ € Uy with u—u' € U, then Fy(u) = F1(v).
We are ready to handle the remaining basic sets of A.
Claim (e). T/ =T for all T € Bsets(A).

In view of Claim (a), we can assume that T' ¢ Uy U Us. If [N| = p%, then T is equal
to a U-coset, see Lemma 5.3(ii). Using this and that f maps every U-coset to itself,
Claim (e) follows at once if |[N| = p°.

In the rest of the proof it will be assumed that |N| = p®. Let us consider the coefficient
of vz in the linear combination of (v; — vy)f with respect to the basis (vy,...,vs). By
Eq. (10), (v1 — v2)f = vy — (vg)’fk + Fy(—v9)vs. Thus the required coefficient is equal
to the coefficient of v in —(vg)xk, which can be computed directly using Eq. (8) to be
equal to —k. On the other hand, by Eq. (12), (v; —v2)f = —vy + (vl)ml + Fy(v1)vg. Thus
the required coeflicient is equal to the coefficient of vz in (vl)zl, which can be computed
directly using Eq. (8) to be equal to I. We conclude that [ = —k.

Next, let us consider the element w = (v; — vy +v3)7 — (v1 —v2)f. Using Eq. (10) and
Claim (c), we find

Kk Lk k
w=uv1 + (—v2)" +v§ + Fo(—vy + v3)vs — (v1 + (—v2)* + F2<—U2)U5)

= vgk = v3 + kvy + kvs.
On the other hand, using Eq. (12), the fact that [ = —k and Claim (d), we find

—k —k —k
w = —vg—l—(vl)x +’U§ +F1(U1 —|—U3)U4— (—U2+(U1)z —|—F1(U1)’U4)

—k
:’U§ :1)37](}’[}47]{71}5.

We conclude that £ = 0.

Let Uz = (U, v — v2). We have shown in the proof of Lemma 5.3(i) that all basic sets
of A not contained in Uy U Us U Us are U-cosets, and all basic sets contained in Us \ U
are W-cosets. Combining this with the fact that f maps every U-coset to itself, we get
that Claim (e) holds whenever T' ¢ Uy U Us U Us. It remains to check whether the basic
sets contained in Us \ U are fixed by f. By Theorem 2.9, these basic sets are in the form
T® = kT = {ku:u € T}, where k € {1,...,p—1} and T C Uz N (U + v1). Then, by
Lemma 2.12(i), we are done if we show that 7/ = T. Since T' C U, + vy, there exists
some u € Us such that T = W + v; 4+ u. Now, applying Eq. (10) and using that k = 0,
we finally get

T/ =W (1 +u) =W v +u+ F(uwvs =W +v; +u=T.

This completes the proof of Claim (e), and thus the proof of the lemma as well. O
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Lemma 5.5. Assuming Hypothesis 5.1, suppose that A is an U/W -wreath product, where
|U| =p*, [W|=p and Ay is indecomposable. Then the S-ring A is CI.

Proof. If |A| = p, then each basic set has size at most p, and therefore, each basic set
T Cc H\U is equal to a W-coset. This implies that Ag,y = QH/W. In particular,
Apw is indecomposable, and we can apply Corollary 4.7 to get that A is a CI-S-ring.
For the rest of the proof we assume that |4| > p?.

Let AV denote the group of automorphisms of U induced by restricting A to U.
We show next that |AY| < p. Assume to the contrary that |AY| > p. Since Ay is
indecomposable, it follows by Lemma 4.4 that |Og(A)| = p?. Fix uy,us € Og(A) such
that Og(A) = (ui,us). Now, let V < U be an A-subgroup such that |V| = p3 and
0p(A) <V, and fix an element ug € V' \ Og(A). If AV is not semiregular on the orbit
u3', then it follows that |Cr;(z)| = p? for any non-identity » € (AY),,. This contradicts
Lemma 4.4, and thus ujf* = Oy(A) + uz and |AY| = p?. There exist unique elements
z,y € A that satisfy uf = u; +us and u§ = ug + u3. Now, let u be an arbitrary element
from U\ V. Then both u” —u and u¥ —u are in V. Therefore, there are integer numbers
k,,m, k' I',m" €{0,1,...,p— 1} for which

u® = u+ kuy + lug + mus and ©¥ = u + k'ug + U'ug + m'us.

Since |AY| = p?, the group AY is abelian, and u*¥ = u¥®. The coefficients of u; and
ug, resp., have to be the same in both sides, and this results in the equalities: k + k' =
k+k +m and I +1'+m = 1+ 1, resp., which gives that m = m’ = 0. This implies
that the orbit u{®¥ = Ogy(A) + u, and therefore, rad(T) = Oy (A) for the basic set of A
that contains u. As u was chosen arbitrarily from U \ V, we obtain finally that Ay is a
V/Og(A)-wreath product. This contradicts the assumption that Ay is indecomposable,
and by this we have proved that |AY| < p.

Let us fix 71 € Bsets(A) such that 77 € H\U and |rad(T})] is the smallest among all
|rad(T)| where T runs over the basic sets T' € Bsets(A), T C H\U. Now, let (vy...,vs)
be an A-basis such that v; € U for all i < 5 and vs € Ty. Let f € Isog(A) such that f
fixes v; for all i € {1,...,5}. We settle the lemma by showing that T/ = T for all basic
sets T € Bsets(A).

Since f fixes all v; and U = (v1,...,v4), the A-subgroup U is mapped to itself by f.
Then fY is a normalized isomorphism of Ay. Since Ay is indecomposable, by Corol-
lary 4.6, fU € Aut(U), which implies that fU is the identity mapping. In particular,
T =T for all basic sets T C U.

Now, we turn to the basic sets contained in H \ U. Let

V= N rad(T).

TeBsets(A), TCH\U

Let us consider the S-ring Ag /v . Since V' < U and f fixes U pointwise, we get vi=v,
and thus f7/V € Isoo(Ag,v) (see Proposition 2.10(iii)). We finish the proof by showing
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that fH/V = idg/y. Indeed, then any basic set T C H \ U satisfies (I'+ V) =T+ V,
and since V < rad(T), it follows by Lemma 2.12(ii) that T = T.

Case 1. |A| = p?.
Let V4 =rad(Th). Clearly, V' < V;. We show at first that we may choose vs such that
T1 = Vl —+ Vs and V = Vl. (13)

Since |AY| < p, there exists * € A such that Cg(x) = U. Then the (z)-orbits not
contained in U coincide with the cosets of a subgroup W’ < H of order p. Let T be
a basic set of A outside U. It follows that T+ W + W’ = T. On the other hand, as
|A| = p?, |T| < p?. Thus if W # W’ then T is equal to a coset of W + W', and this
implies that Eq. (13) holds. Let W’ = W. Let A = (x,y). Let us consider the S-ring
Ap/w. Tt follows that Ag,w = V(H/W, (y"/WY), where y"/W is the automorphism
of H/W induced by the action of y on H/W. In view of Corollary 4.7 we may assume
that Ag, w is decomposable. This implies that any <yH/ W)_orbit is contained in a coset
of a fixed subgroup of H/W of order p. It is not hard to show that this implies that
|Crw (yH/™)| = p3. Let U’ be the unique subgroup of H that contains W and for which
U'JW = Cop (7).

Suppose at first that U’ = U. Then, any (y)-orbit in U is contained in a W-coset,
and hence |Cy(y)| > p3. On the other hand, Ay indecomposable, and it follows from
Lemma 4.4 that y acts as the identity on U. Hence, Cy(y) = U, and so Cy(A) = U.
This shows that any basic set T C H \ U is equal to a V-coset, in particular, Eq. (13)
follows.

Next, suppose that U’ # U, and choose an element v € U’ \ U. Then the basic
set T'(v) containing v is equal to the coset W + v. Thus, |rad(T'(v))| = p, which is
clearly minimal among all orders |rad(T")|, T C H \ U. Then choosing vs to be v, we get
Ty, =T(v) =W 4+ vs and also W = V; =V, that is, Eq. (13) holds also in this case.

Let U” = (V,vs). The group H/V decomposes to the internal direct sum H/V =
U+U", where both factors U = U/V and U” = U"/V are Ay y-subgroups. To simplify
notation, we write © for the coset V + v, where v is any element in H, and S for the
set S/V C H/V, where S C H. Notice that, f#/V fixes pointwise both U and U”. Let
v € H/V be an arbitrary element. Then, U 4+ © = U + v/ for some v” € U"”, and we can
write

U+ =@+ =O+uw)™" =0+ =U+wv.

Similarly, U” + © = U"” + @ for some % € U, and hence

FHIV

0+ =@ o) =0 +u)" =0 +u=0"+0.

Therefore, o e UNnU" = {0}, and fH/V = idg /v, as claimed.
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Case 2. |A| > p3.

Let K denote the kernel of A acting on the set U. Since |AY| < p, |K| > p?. Since
K < Aut(H) and each element of K fixes U pointwise, there exists a subgroup V' < U
such that |[V’| = |K| > p?, and the K-orbits not contained in U are equal to the V'-cosets
not contained in U. Note that, V > V', and thus |V;| > |V| > p?, where V; = rad(T}).

Suppose at first that Ty # V; + vs. By Proposition 2.4, |T1| = p3, which implies that
|V1] = p?, and hence V = V;. Also, the S-ring Apv is an exceptional S-ring over the
group H/V, and it follows that f#/V € Aut(H/V). Since f fixes all generators v;, it
follows that f#/V = idg,y.

Now, suppose that 77 = Vj + v5. It is sufficient to show that V' = Vj. Then the
conditions in Eq. (13) hold, and f#/V = idgy follows as in Case 1. Since V < Vy, |V| >
p? and |V;| < p?, the equality V = V; follows if |V;| = p?. We are left with the case
when |Vi| = p3. Then, for each basis set T C H \ U, |rad(T)| = p?, implying that T
is a coset of a subgroup that contains V. Assume to the contrary that V # Vj. Then
|H/V|=p3, and Ay /v has two basic sets which are cosets of distinct subgroups of order
p. Since |H/V| = p3, the S-ring Ag v is Cayley isomorphic to one of the S-rings given
in Table 1. A quick look at the table shows that none of these S-rings has two basic sets
which are cosets of distinct subgroups of order p. Therefore, V' = V1, and this completes
the proof of the lemma. 0O

Before we prove Theorem 5.2, one more technical lemma is needed.

Lemma 5.6. Assuming Hypothesis 5.1, suppose that A is a U/W -wreath product, where
|U| = p* and |W| = p. Furthermore, let V be an A-subgroup such that W <V <
U, V| =p? and |Og(A) N V| > p?, and let f € Isog(A). Then there exists ¢ € Aut(H)
such that fop maps each of U and W to itself, and the following conditions hold:

(i) T1¢ /W =T/W for all T € Bsets(A).
(i5) TI? =T for all T € Bsets(A) with T C VU (H \ U).
(iii) If either V. C Og(A), or each basic set of A contained in V' \ Og(A) is equal to a
W -coset, then fo fizes pointwise V.

Proof. Let us fix five elements of H as follows:
vs € WA\ {0}, va € (VNOg(A)\ W, vz € V\ (vg,v5), v2€ U\ V and v; € H\ U.

Clearly, (v1,...,vs5) is an A-basis. Let ¢1 € Aut(H) be the automorphism defined by
Y v{ —v;, i €{1,...,5}, and let f; = fo. It follows that f; € Isog(.A), and f; fixes all
v;. In particular, W# = W, and thus le/W € Isog(Am/w)-

The S-ring Ag/w is a CI-S-ring. Therefore, there exists some ¢ € Aut(H /W) such that
TH /W = (T/W)? for all T € Bsets(A). Let ¢; € Aut(H) such that ¢ fixes W pointwise,
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and qﬁ{{/w = ¢. Then we have W+uvJ! = (W+U4)¢fl/w = (WHug)® = W' = Wy,
Thus, v" = v4 + w for some w € W. Now, let ¢o € Aut(H) be defined by
v; ifi=1,2,3,5,
¢2 e d
v; —w if i =4,

and let o = @1¢2. It follows that oo satisfies the following:

(a) u?2 = for all u € (vg,vs),
(b) " = .

Let Ty € Bsets(A) such that v € Ty. Then 77 = X + vz for some subgroup X <
(v4,vs), and we find T{* = Xf1 4 of' = X + 03 = Ty. Thus, TF* /W = (Ty/W)#2' "
(Ty/W)¢ = Tf" /W = Ty /W. This gives T¥*> + W = T, + W, and thus ngl is contained
in the coset T + W = X + W +v3. On the other hand, X¥2 = X follows by (a), implying
that T{Pgl =X+ vg’;l. This with the previous observation yields that Tf’;l =T +w
for some w; € W. Now, we define @3 € Aut(H) by letting

V4 ifi=1,2,4,5,
w3:v; = Svg+w; ifi=3and X £ W,
v:f;l ifi=3and X =W.

Let ¢ = golgoglgogl. Then fo = fio; o3t Tt is easily seen that f; maps each of U
and W to itself. The condition that @9 maps W to itself follows from (a) and the fact that
W = (vs). Then, W < U%2, and for U¥> = U it is enough to show that U¥2/W = U/W.
This follows along the line: U?2 /W = (U/W)#: " = (U/W)® = U/t /W = U/W. The
definition of 3 shows that it also maps U and W to itself, and therefore, we obtain that
fo maps each of U and W to itself. We finish the proof by showing that all conditions

(i)—(iii) hold for fe.

(i): Recall that f; = fo;. It follows from (b) that Tf“"Z_l/W =T/W for all T €
Bsets(A). We claim that (W 4+ v;)¥® = W 4 v; for all ¢ € {1,...,5}. This is obvious if
i #3,ori=3and X # W. Let i = 3 and X = W. Then T} = W + v3, and since
Tlf1 =T, it follows that T /W = Tlfl/W = T /W, implying that W+v:f2_1 =W +vs.
Therefore, (W + v3)%3 = W¥s 40> = W + v:f;l =W + v3. Since H = (vy,...,vs), it
follows that (W +x)¥s = W+ for all x € H. Consequently, T/% /W = Tf1¢51¢51/W =
T¢s' /W =T/W for all T € Bsets(A), and (i) follows.

(ii): Let T be an arbitrary basic set of A. Note that, if W < rad(T'), then using that
fo maps W to itself, we can write W + T/% = (W + T)/% = T/¢. Combining this with
(i) yields T/ = T/¢ + W = T + W = T. In particular, (ii) holds whenever T'C H \ U
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or T =T, and W = X. Also, by (a) and the definition of ¢3, f¢ fixes pointwise (v4, vs),
and this gives that (ii) also holds when T' C (v4,v4). It remains to consider the case
when T' C V'\ (vyq,v5). Observe that, T' can be written in the form 7' = kT + v for some
ke{l,...,p— 1} and some v € (v4,v5). In view of Eq. (1) and Theorem 2.9, in order
to prove TT® = T it is sufficient to show that Tlf ¥ = T,. We have already shown above
that this holds if X = W. If X ## W, then the statement follows along the following line:

—1 -1 —1 -1 _ -
Tl.fSOZTlfl<P2 Y3 :Tl‘% ¥3 :(T1+w1)tpgl :(X+U3+w1><p31 =X +uv3="T).

(iii): Since V' = (vs, v4,vs), we are done if we show that vlf“’ =v; for all ¢ € {3,4,5}.
Using that fo = f1¢, "¢3 " and all v; are fixed by fi, it reduces to show that vf;“";l
for all ¢ € {3,4,5}. This follows immediately from (a) and the definition of 3 if i = 4
or i = 5. The condition V' C Ogy(A) is equivalent to Ty = {v3}, and therefore, Ty = {vs}
or Ty = W + v3. Now, recall that ngl = T + wy. This shows that, if 77 = {vs}, then
v3? = v3 + wi, and so v:f;lgp;l = (v3 + wl)*”?Tl = vz. Finally, if T} = W + v3, then

—1 -1 -1
Y3 __ P2 : P2 Pz _
v3? =wv3? , that is, vg =v3. 0O

:U'i

Everything is prepared to settle the main result of the section.

Proof of Theorem 5.2. Since A is decomposable, it is a U/W-wreath product where
W < U, |W|=pand |U| = p*. Furthermore, we may assume because of Lemma 5.5 that
Ay is a V/X-wreath product where X <V < U, |X|=p and |V| = p>.

Let f € Isog(A). We have to show that there exists some ¢ € Aut(H) such that
T7¢ = T for all basic sets T € Bsets(A). By Lemma 5.6(i)(ii), there exists some
p1 € Aut(H) such that f; = fy; satisfies

T/ )W = T/W for all T € Bsets(A), (14)
and
T/' =T for all T € Bsets(A) with T ¢ VU H \ U. (15)

Now, if W < rad(T) for every basic set T'C V' \ U, then Eq. (14) and Lemma 2.12(ii)
imply that 77t = T also holds, and hence we are done by letting ¢ = ;. For the rest
of the proof it will be assumed that there exists some basic set 71 C U \ V such that
W « rad(Ty). Note that, this implies that [T1]| = p or |T1| = p?. We consider below the
two cases separately. For the rest of the proof u; will be a fixed element in T7.

Case 1. |T1| = p.

In this case 77 = X 4 uy. Since W £ rad(T}), it follows that X # W. Since X <V,
by Eq. (15), X/* = X, and thus Tlf1 =Xh —l—u{l = X +uj'. Using this and Eq. (14), we
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conclude that Tlf1 +W =T, +W, implying that Tlf1 is contained in the coset X + W +u;.
Thus, Tlf1 = T1+w; for some wy; € W. Choose an automorphism ¢ € Aut(H) satisfying
the following;:

w2 up = up —wy, |Cr(ps)| = p* and Culp2)NU =V.

Let fo = fipe. It is not hard to show that f> satisfies both Eqgs. (14) and (15). We
show below that T2 = T also holds for each T' € Bsets(.A) with T C U\ V, and therefore,
we will be done by letting ¢ = 1.

First, Tlf2 = (T1 +w1)?* = (X 4+ u1 +w1)??* = T1. Let us consider the S-ring Ay, x
and its isomorphism f2U /X Note that, the latter isomorphism belongs to Isog(Ayx)
because fo maps each of U and X to itself. The group U/X can be written as the
internal direct sum V/X + (X, u;)/X where both subgroups V/X and (X,u)/X are
Ay x-subgroups. By Lemma 2.8, Ay/x = Av/x @ Aix,u,)/x- Also, fQU/X fixes every
basic set 7" € Bsets( Ay, x) if 7" C V/X or T' C (X, u1)/X. This together with Ay/x =
Av/x @ A(x,u)y/x yields that fQU/X fixes all basic sets of Ay, x. Then, using also that
Ay is a V/ X-wreath product, we conclude f5 fixes all basic sets of A contained in U\ V,
as required.

Case 2. |T}| = p°.

Assume for the moment that T3 is equal to a coset X’ + uy for some subgroup X’ <
V, |X'| = p%, and |W N X'| = 1. It follows from Eq. (14) that 7" = Ty 4+ w; for some
wy € W. Repeating the argument used in Case 1, we find po € Aut(H) such that
fa = f1ps satisfies both Eqs. (14) and (15), and also Tj? = Ty. Now, if T € Bsets(.A)
is an arbitrary basic set such that T C U \ V, then it can be written in the form
T = k(Th +wsz) for some k € {1,...,p—1} and some wy € W. In view of Lemma 2.12(i),
T#2 =T follows because (T} + wy)f2 = Tlf2 + w£2 =T, + ws. All these show that we are
done by choosing ¢ = p1¢p2.

For the rest of the proof it will be assumed that 7T} is not a coset. Equivalently, Ay x
is an exceptional S-ring. This implies that any basic set in U \ V' generates U, and
therefore, V is the only A-subgroup of order p? contained in U. This fact will be used
later. Also, as Ay x is exceptional, we have rad(77) = X. Using also that W £ rad(T1),
we obtain that W # X.

By Corollary 4.7, the S-ring Ap,w must be decomposable. Equivalently, there exist
A-subgroups Y and U’ such that W <Y < U’, |[Y| = p? and |U’| = p*, and Ap,w is a
(U'/W)/(Y/W)-wreath product.

Case 2.1.U' =U.

Assume that Y = W + X. In this case A is a U/ X-wreath product, and we can finish
this case by replacing first W with X, and then apply the argument used right after
Eq. (15).
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Now, suppose that Y # W+X. Since W < Y, this gives XNY = {0} and | X +Y| = p>.
Then Y < U’ = U. We obtain that X + Y is an A-subgroup of order p? contained in U.
As it was noted above, this forces that X +Y =V, in particular, Y < V. It follows that,
either V' C Op(A), or any basic set contained in V' \ (W + X) is equal to a W-coset.
By Lemma 5.6(iii), fi fixes pointwise V. Let us consider flU /X the isomorphism of
Ay x induced by f; acting on U/X. Then, flU/X € Isoo(Ay)x), and since Ay, x is
exceptional, flU/X € Aut(U/X), see Lemma 2.17. Also, as f; fixes pointwise V, flU/X
centralizes V/X. This implies that f. /X acts on U /X \ V/X as a translation by some
element X + v where v € V. In particular, T /X = (T} + v)/X, and thus T{* + X =
Ty + v+ X. Since X < rad(T}), it follows that X = X/t < rad(Tlfl)7 and we can write
T/ =T+ X =Ty +v+ X = Ty +v. Using also that | X NY| = 1, we can further write
Ty +v =T, + v for some v' € Y. Then choose an automorphism ¢y € Aut(H) such that

uf? = uys — ', |Cu(pa)| = p* and Cu(pa) NU = V.

Recall that uy is the fixed element in T3. Let fo = fipo. Using that v/ € Y and Y <
rad(7T') for all T' € Bsets(A) with T" C H \ U, it is not hard to show that fo satisfies
Eq. (15). Also, T = (T} 4+ v/)#2 = T}. Finally, let T € Bsets(A) be an arbitrary basic
set such that T'C U\ V. Then, T can be written in the form T = T} + wq, wy € W, and
thus we can write 772 = Tlf2 + w§2 =T +wy =T. All these show that we are done by
choosing ¢ = ¢1¢2.

Case 2.2. U' # U.

Recall that, V is the only A-subgroup of order p? contained in U. This implies that
UNU' =V.Let T € Bsets(A) such that T ¢ UUU’. Since A is a U/W-wreath product
and Agw is a (U'/W)/(Y/W)-wreath product, it follows that Y <rad(T) <UNU' =
V.

Suppose that Y # W+ X. Then we obtain that X +Y = V and it follows that, either
V C 0y(A), or any basic set contained in V' \ (W + X) is equal to a W-coset. We can
repeat the above argument used in Case 2.1 and find that Tlf ! =Ty + v’ holds for some
v" € Y. Then choose an automorphism @2 € Aut(H) such that

!/

=u1 — v, [Cr(p2)| = p* and Cy(p2) =U'.

uf?
It follows along the same line of reasoning as in Case 2.1 that the desired ¢ will be ¢1¢2.

We are left with the case when Y = W 4 X. This shows that A is a U’/X-wreath
product. The S-ring Ay is a U’/W-wreath product, and we may assume that Ay y
is indecomposable. Observe that, letting U; = U, Uy = U', W; = X and Wy = W,
conditions (1) and (2) of Lemma 5.3 hold. Therefore, in view of Lemma 5.4, we may
assume that condition (3) does not hold, that is, A acts regularly on any of its orbits
not contained in U U U’. Now, fix an A-basis (v1,...,vs) as follows:

v €U\V, v elU'\V,v3€V\(W+X), vy € X and v5 € W.
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Then, let 1) be the automorphism of H defined by v : v{ — v; foralli € {1,...,5}, and
let f3 = f1. We finish the proof by showing that 772 = T for all basic sets T' € Bsets(.A).
One can settle the equality 7/ = T for T'C U U U’ by copying the argument used in
the proof of Claim (a) in the proof of Lemma 5.4.

Now, suppose that T € Bsets(A) with T C H \ (U UU’). By Lemma 2.18, T is
contained in both a U-coset and a U’-coset, hence it is contained in a V-coset, recall
that V. = U NU’. We claim that T is, in fact, equal to a V-coset. Assume to the
contrary that T is properly contained in a V-coset. In particular, we have |T'| < p2. Let
G = HrA, N = Nauya)(Hr), and Ny be the stabilizer of 0 in N. Then, Aut(A) = G®
and Cg,(A) < Z(G). By Proposition 2.1, Oy, (A) < Z(Aut(A)), and hence Cp,(A) <
Ch, (Np). The S-ring A can be expressed as A = V(H, Ny) such that p> < |Cy(No)|.
Now, we can replace A with Ny, and assume, in addition, that Ny is regular on T.
Therefore, |[No| = |T'| < p?. On the other hand, Ny contains two elements x and 2’ such
that Cy(x) = U and z acts on the elements v € H\U as the right translation v* = v4+w
for a fixed nonzero w € W, and Cy(z’) = U’ and z’ acts on the elements v € H \ U’
as the right translation v* = v + w’ for a fixed nonzero w’ € X. It is easily seen that
V(H,{(z,2")) # A = V(H, Ny), implying that (z,z’) < Ng. This, however, contradicts
the previously obtained bound |Ng| < p?, and by this we have proved that T is indeed
equal to a V-coset.

Finally, let us consider the S-ring Ag,y, and the induced isomorphism ff Vo
Isog(Ag v ). It is easily seen that Ag = Q (H/V), and therefore, ff/v € Aut(H/V).
Using this and that f5 fixes all v;, ¢ € {1,...,5}, we find ff/v = idg/v. Thus,
(T +V)fs =T +V, and combining this with V < rad(7T), Lemma 2.12(ii) gives that
Tfs = T. This completes the proof of Case 2.2. O

6. Proof of Theorem 3.5 II: the indecomposable S-rings

In this section, we turn to the indecomposable S-rings in Theorem 3.5 and prove the
following theorem:

Theorem 6.1. Assuming Hypothesis 5.1, suppose that A is indecomposable. Then A is a
CI-S-ring.

Our main result Theorem 3.5 follows then as the consequence of Theorems 5.2 and
6.1.

Theorem 6.1 will be proved in the end of the section after six preparatory lemmas.
In the first two lemmas we derive some properties of indecomposable p-S-rings with thin
radical of order at least p2.

Lemma 6.2. Let B be an indecomposable p-S-ring over a group H = Zg such that
|0¢g(B)| > p?, and let © € Naws)(Hgr) such that * # idg and 0° = 0. Then
[Cu(z)| < p*.
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Proof. Since x # idy, it follows that C(z) < p*. Assume to the contrary that |Cy (z)| =
pt. Let U = Cy(x), and for a fixed v; € H\ U, let W = (v¥ —v;). Then |W| = p, and it
follows that the orbit v{*) = W + v for all v € H \ U. It can be shown in the same way
as in the proof of Lemma 4.4 that neither U nor W are B-subgroups.

Let V1 < Oy(B) such that |Vi| = p? and let Vo = Vi +W. Then V; < U, [V NW| =1,
and therefore |V5| = p3. Let U’ be a B-subgroup of order p* such that V; < U’. Then
U # U’, and thus there exists u ¢ U UU’. Let T' € Bsets(B) such that u € T. Then
W +u C T, implying that W < U’. We conclude that UNU’' =V, + W = V5.

Let V" denote the restriction of z to the B-subgroup U’. Clearly, Cy (2V") = V3, and
thus by Lemma 4.4, By is a V' /W’ -wreath product for some B-subgroups 0 < W' <
V! < U', where [W'| = p and |V'| = p3. Let T € Bsets(B) such that T C U’ \ V'
and T ¢ U. Then using that T' contains a W-coset and W’ < rad(T), it follows that
T contains a (W + W')-coset (recall that W’ # W as W is not an .A-subgroup). This
together with Proposition 2.18(ii) yields that W < rad(T") < V', and thus W < V’. On
the other hand it is clear that V3 < V', and this with the previous observation yields
V' =W + Vi = V,. In particular, V5 is a B-subgroup. Since U is not a B-subgroup, the
S-ring By v, = QZ, ! QZ,, and this implies that U’ is the only B-subgroup which has
order p* and contains V5. This property will be used later. Note also that,

W'+ W <rad(T) for all T € Bsets(B) such that T C U’ \ Va. (16)

Next, let us consider the S-ring By /v,. Let T' € Bsets(B) such that TNU # ) and
T ¢ U. The latter condition implies that T’ contains some W-coset, and thus |T'/V;| > p?.
It follows by Proposition 2.14, that T/V; is equal to a U’/V; coset. It is easy to see that
Av v, = QZy L QZy; and we conclude that By, = QZ, 1 QZy L QZy,.

Now, fix a coset U’ +v; distinct from U’, and let T} € Bsets(B) such that Ty C U’ 4v;.
Let T' € Bsets(B) be another basic set contained in U’ +wv;. Since By, = QZ,1QZ,1QZy,
it follows that both 77 NV; +v1 and T'NV; 4+ v, are nonempty. Choose u; € Ty NV; + v
and ug € TNVy + vy. Then, ug —u; € Vi < Ogy(B), hence by Eq. (1), Th + ug — u; =
T. Thus, rad(T) = rad(T1), and combining this with Theorem 2.9, we conclude that
rad(7") = rad(7y) for any basic set 77 ¢ U’. Since B is indecomposable, it follows that
rad(Ty) is trivial. This together with Lemma 2.18(ii) yields that

Ty N Vi +v|=1forallveU +uv. (17)

Indeed, if uy,us € Ty N Vi + v, then for W = (u1 — ug), |Th N W + uz| > 2, and so
W <rad(T1), a contradiction. Thus, |73 N V5 +v| < 1, and since |73 N V7 +v| > 1 also
holds, see the above paragraph, Eq. (17) follows.

By Eq. (16), we can choose a subgroup W3 < V; which satisfies the following property:
for all T € Bsets(B), T C U’ \ Va, either |T| = p* or Wi £ rad(7T). Notice that, this
property implies that By /w, = QZ, 1 QZ, 1 QZ,.

Let us consider /W1 the automorphism of H /W1 induced by z acting on H/Wj.
By Lemma 4.3, z cannot be in the kernel of Aut(B) acting on H/Wjp, and so
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oH/W £ idg/w,. Then, Cyw, (/W) = U/Wy, and thus by Lemma 4.4, B jw, is
an (X/W7)/(Y/Wy)-wreath product for some B-subgroups X and Y, where |X| = p?,
Y| = p? and W; < Y < X. Notice that, X N U’ is a B-subgroup of order p3. On the
other hand, since By w, = QZ, 1 QZ, ! QZy, V5 is the only B-subgroup in U’ that has
order p? and contains W;. Using this and that W; < X NU’, it follows that Vo = X NU".
We have shown above that U’ is the only B-subgroup containing V5, hence X = U’.
Thus, W1 <Y < U’, and using again that By w, = QZ, 1 QZ, ! QZ,, we can see that
V1 is the only B-subgroup in U’ that has order p? and contains Wi, and so Y = V;. To
sum up, By w, is an (U'/W1)/(Vi/Wi)-wreath product. Recall that, T is a basic set
contained in the coset U’ + v;. Then, T} satisfies V1 /W7 < rad(Ty/W7). In particular,
for any u € Th, |Th N (Vi +w)| > |T1 /W1 N (Vi +u)/W1| = p, which, however, contradicts
Eq. (17). This completes the proof of the lemma. O

Lemma 6.3. Let B be an indecomposable non-CI p-S-ring over a group H = Zg such that
|0g(B)| > p?. Then |Naws)(Hr)| > p".

Proof. Let N = Nay(s)(Hr). Assume to the contrary that [N| < p°. Let K < N be the
subgroup given in Proposition 3.1. The stabilizer (K Hpg)o < Ny, hence we can write

|K||HR|
—————— = |KHg|=|(KH | H| < p-|H]|

Since K # Hpg, we can choose a non-identity element © € (KHp)o. Then the above
inequality yields |Cy(x)| > |K N Hgr| > |K|/p = p*. This, however, contradicts
Lemma 6.2. O

The key step in proving Theorem 6.1 will be to show that, if A is non-CI, then
Aut(A) N Aut(H) contains a subgroup L such that |L| = p? and |Cy (L)| = p3. The next
three lemmas are devoted to the arising S-ring V(L, H).

Lemma 6.4. Assuming Hypothesis 5.1, suppose that A is indecomposable, and let L <
Aut(A) N Aut(H) such that |L| = p? and |Cyx(L)| = p3. Then the following conditions
hold:

(i) The S-ring V(H, L) is indecomposable.
(ii) Let T be a basic set of V(H,L) such that |T| > 1. Then T is equal to an X -coset
for some subgroup X < Cy (L) of order | X| = p?.
(iii) Let T and T’ be two basic sets of V(H,L) of size p?> for which (T,Cy(L)) #
(T",Cy(L)). Then rad(T) # rad(T").

Proof. Let N = Npyya)(Hr) and Ny be the stabilizer of 0 in N. Note that, L < N
and A = V(H, Ny). Furthermore, we let B =V (H,L) and U = Cy(L).
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(i): Assume to the contrary that B is a X/Y-wreath product, where X > Y, | X| = p*
and |Y| = p. Let € Aut(H) be defined by v* = v for all v € X, and v* = v+ v for all
v € H\ X, where v; € Y is a fixed non-zero element. Then Cy(z) = X and z € Aut(B).
Also, as L < Ny, B = V(H,L) O V(H,Ny) = A, and thus Aut(B) < Aut(A). In
particular, € Aut(.A), which contradicts Lemma 6.2.

(ii): As |L| = p?, |T| < p?, and if |T| < p?, then L, is nontrivial, where v € T, and L,
is the stabilizer of v in L. Then for z € L,, v € Cg(z), and thus |Cy(x)| > (U, v)| = p*,
which contradicts Lemma 6.2, recall that B is indecomposable. We deduce that |T'| = p?.
Note that, since there is no basic set of size p, it follows that every B-subgroup of order
p? must be contained in U. This fact will be used later.

Let V < H be a B-subgroup such that U < V and |V| = p*. If T C V, then it easy to
see that T is equal to a coset of a subgroup of U of order p?, and (ii) follows.

Now, suppose that 7' ¢ U. By Lemma 2.18(iii), U Nrad(T) # {0}, and thus we can
choose W < U such that [W| = p and W < rad(T). Let us consider the S-ring By .
Then T'/W is a basic set of By of size |T'/W| = p. Denote by L*/W the subgroup of
Aut(Bpw) induced by L acting on H/W. By Lemma 4.3, |LH/W| = p2. Tt follows from
this and Proposition 2.4 that T/W cannot generate H/W. This together with the fact
that W < rad(T) shows that (T) # H, and thus |(T)| = p?® or |(T)| = p*. If (T)| = p?,
then it is easily seen that T is equal to a coset of a subgroup of U, and so (ii) follows.

Assume that (T') = p*, and let V/ = (T). We show below that this case cannot occur. If
U < V', then it is easy to see that T is equal to a coset of a subgroup of U, contradicting
that (T') = p*. Thus, [UNV’'| = p?, and H can be expressed as the internal direct sum
H =V’ + X for some subgroup X < U, |X| = p. Note that, as X < Ogy(B), it follows
from Lemma 2.8 that B = By ® Byx.

Let Y = VN V’. Then Y is a B-subgroup of order p® such that U NV’ < Y. Since
(TY=V',T ¢ Y. The radical rad(T") # U NV, for otherwise, T' cannot generate V'. It
follows that the basic sets of B contained in V/\ Y are in the form k(7 + u) for some
ke {l,...,p—1} and some u € UNV’'. Since W < rad(T), we obtain that By is a
Y /W -wreath product. This implies that B = By ® Bx is a (Y + X )/W-wreath product,
which contradicts (i).

(iii): Assume to the contrary that rad(T) = rad(T”) and (U,T) # (U,T"). Let X =
rad(T’), and let us consider the S-ring By, x. By (ii), both T" and 7" are X-cosets. Since
(U, T) # (U, T"), we find that the elements T/X and T'/X generate a subgroup of H/X
of order p?, and this subgroup intersects U/X trivially. We conclude that By, x = QZ3.
Consequently, every basic set of B is contained in some X-coset. This together with (ii)
shows that B is an U/X-wreath product, which contradicts (i). O

Lemma 6.5. With the notation of Lemma 6./, | Aut(V (H, L))| = pS.

Proof. As in the previous lemma, we let B = V(H, L) and U = Cg(L). We start with
fixing a suitable B-basis. Fix an element v; € H \ U, and another v, € H \ (U,v1). For
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i=1,2, let T; € Bsets(B) such that v; € T;. By Lemma 6.4(ii)—(iii), 7; — v; is a subgroup
of U of order p?. It will be convenient to denote these subgroups by U, and Uy, namely,
we let T) = U +v1 and Ty = Uy + v9. Then |Us, NUp| = p. Let vy € Uy N Uy, v4 # 0.
Then, there exist x,y € L satisfying v§ —ve = v} — v1 = v4. Let v3 = v{ — vy and
v5 = vy —v9. We prove next that (v1,va, vs,v4,v5) = H and (x,y) = L. For the first part it
is enough to show that (v3, v4,v5) = U. Now, vf € T} = Uso+v1, hence v € Uy, Suppose
for the moment that vs = kv, for some integer k. Then (kvo)* —kvy = kvy = vz = v —vy,
implying that kve —v; is fixed by z, and hence kvo—v1 € Cy(x) = U, which is impossible.
We conclude that Uy, = (v3,v4). We obtain by a similar argument that Uy = (v, vs),
and therefore, (vs, v4,v5) = Uso+Uy = U. For the second part, if y = 2™ for some integer
m, then we can write vy + v5 = 7)32’ = v%‘ = vy + muy, contradicting that (v, vs) = Uy
has order p?. Thus, (z,y) = L, as required. It is clear that (vq,...,vs5) is a B-basis.

Let V = (v1,v3). Then H can be written as the internal direct sum H =V + U. For
w € H, let wy and wy denote the projection of w into V' and U, resp. Furthermore, let
I = GF(p) U{oo}; and for i € I, define the elements 9; € V, and subgroups U; < U as
follows

iv] + vy otherwise, (v + v4,iv4 + v5) otherwise.

i 7 i
172‘:{”1 if i =00 Ui:{(vgv@ ifi =00

Let G = Aut(B) and G, be the stabilizer of an element w in G. Observe that, the
lemma is equivalent to show that |Go| = p3. We are going to derive this in six steps.

Claim (a). The basic sets of B not contained in U are in the form
U+ jo;+u, iel, je GF(p)\ {0}, ueU. (18)

By definition, the basic sets in question are equal to the L-orbits w*, w € H \ U,
where L = (z,y). Now, w = jo; + u for some j € GF(p)\ {0}, i € I and u € U. A
direct computation yields that the L-orbit % = U; + 9;. This together with the fact that
u € Cy(L) yields Claim (a).

Let Fung(V,U) denote the set of all functions F : V' — U such that F(0) = 0. For
F € Fung(V,U), we define the permutation gr € Sym(H) as follows:

wIF =w+ F(wy), w € H, (19)
where wy denotes the projection of w to V' (recall that, we have H =V + U).
Claim (b). For every g € Go, g = g for some F € Fung(V,U).

Since U is a B-subgroup, the set H/U form a block system for G. Let us consider
g%V the permutation of H/U induced by g acting on H/U. Then, ¢"'/V € Aut(B/U).
It is easy to see that B/U = Q H/U, and thus we get that gt/v = idy /. Equivalently,
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g fixes setwise every U-coset. On the other hand, by Eq. (4), g centralizes ug for all
u € U. These two facts imply Claim (b).

Claim (c). For every F € Fung(V,U), gr € Gy if and only if the following conditions
hold:

Flv+ ;) — F(v) €U forallveVand i€ I (20)

Let F' € Fung(V,U). By definition, gr € Gy if and only if gr € Aut(Cay(H,T)) for
any basic set T € Bsets(B). It is clear that gp centralizes ug for all uw € U. Hence,
gr € Aut(Cay(H,T)) whenever T C U. Now, suppose that T' ¢ U. By Claim (a), T =
Ui+ jo; +u for some j € GF(p)\ {0}, i € I and u € U. Therefore, gr € Aut(Cay(H,T))
if and only if

(U; + jo; + u+ w)9" = U; + j0; +u+ w?" for all w € H.
By Eq. (19), this reduces to
Ui+ joi +w+u+ F(jo; +wy) = Ui + jo; + w+ u+ Fwy).

Equivalently, F'(v + j0;) — F(v) € U; for all v € V. Since,

J
F(v+ji;) — F(v) = (F(v+kb;) — Fo+ (k= 1)) ),
k=1
it follows that F(v + jo;) — F(v) € U; for all v € V if and only if F(v+ 9;) — F(v) €
U; for all v € V, and Eq. (20) follows.

Claim (d). If i,7,k € I are pairwise distinct, and uy,us,us € U are arbitrary elements,
then ‘U7,+'Uz1 ﬂUj+U20Uk+U3| =1.

It is not hard to show that Claim (d) follows from U; NU; NUy, = {0}. Let avs + Bus +
yus € U; NU; N Uyg. Suppose at first that none of ¢, 7 and £ is equal to co. Then, using
the definition of the subgroups U;, U; and Uy, we find aq, a and a3 in GF(p) such that

Ot:Oél’L. = Oégj = Oégk

B=a1+7v = ax+7j = az+ k.

Using also that 4, j and k are pairwise distinct, we deduce that § =v(i+j) =v(i+k) =
v(j + k), and hence a = f =~ =0, and so U; N U; N Uy, = {0}.

Now, suppose that k = oo. Since Uy = (v3,v4), ¥ = 0, and avz+ fvg = aq (ivs+v4) =
az(jvs + v4). Since i # 7, it follows that a1 = s =a = =0, and U; NU; N U, = {0},
as required.
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Claim (e). |Go NGy, | < p.

Let ¢ € Go N G,,. By Claim (b), g = gr for some F € Fung(V,U). Notice that,
F(0) = F(v1) = 0. Let us consider the image F(2v;). Then, we can express 2v; as
2u1 = v1 + Uso, hence by Eq. (20), F(2v1) — F(v1) € Uso. Also, v1 +v9 = 201 + 0
and ve = 2v; + 9_, and using again Eq. (20), we find F(v; + v2) — F(2v1) € U_; and
F(vg) — F(2v1) € U_3. All these yield

F(21}1) € Uy +F(Ul) N U_4 —|—F(1}1 —l—’Ug) n U_2+F(U2). (21)

On the other hand, F'(ve) € UgNU—-1 = (—v4+wvs) and F(v1+vs) € UgNU; = (vg+vs).
Using also that F(vi 4+ v2) — F(v2) € Us = (vs,v4), we find F(v2) = a(—v4 + v5) and
F(v1 +v2) = a(vg +v5) for some o € GF(p). Substitute these in Eq. (21). After a direct
computation we find F'(2v1) = 2aws. This shows that the orbit of 2v; under the group
Go NGy, has size at most p. Therefore, |Go NGy, | < |Go NGy, NGay, | - p, and to derive
Claim (e) it is enough to show that |Go N Gy, N Gay, | = 1.

Now, choose g € Gy N Gy, N Gay,. Then, F(0) = F(vy) = F(2v1) = 0, thus applying
Eq. (20) to F(iv1+v2), i € GF(p), and using Claim (d), we find F (ivy +v2) € U;NU;—1 U
Ui—a = {0}. Therefore, F(ivy +v2) = 0 for all i € GF(p). In particular, F'(ve) = F(v1 +
vg) = F(2v1 4+ v2) = 0, and we can repeat the same argument to have F(iv; + 2v9) =0
for all i € GF(p). Since V = (v1,v2), the process can be continued to cover all v € V,
and this leads to that F'(v) = 0 for all v € V, that is, g = idy, as required.

Claim (f). |Go| = p3.

The Gp-orbit of vy is the basic set Uy + vy. This together with Claim (e) shows
that |Go| < p? - |Go N Gy, | < p3. To settle Claim (f) it is enough to find a non-identity
automorphism g € Go N G,,. We claim that gr is such an automorphism where F' is
defined as follows:

F(ivy + jug) = i(i — 1)z + (20 — 1)jvg + j%vs, 14,7 € GF(p).

Then, F(0) = 0, and by Claim (c), we have gr € Gy if F satisfies the conditions in
Eq. (20). This can be verified directly. After letting v = iv; + jve and using the above
definition of F', we compute for k € GF(p),

F(v+000) — F(v) = 2ivs + 2jvy,
Flv+ ’UA]C) — F(U) =(2i—-1+ k)(kvd +vg) + (2] + 1)(/€U4 + ’U5).

These show that the conditions in Eq. (20) hold, and gr € Go. Also, F(v;) = 0 and
F(2v1) = 2v3, and hence gp is a non-identity element in Gy N G,,. This completes the
proof of the lemma. O
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Lemma 6.6. With the notation of Lemma 6.4, V(H, L) is a CI-S-ring.

Proof. We keep all notations from the previous proof, that is,
L= (x,y), G=Aut(V(H,L)), U=0y(V(H,L)) = (v3,v4,05), V = (v1,03).

In addition, let N = Ng(HEg). In view of Lemma 2.11, it is enough to show that all regular
subgroups of G isomorphic to H are conjugate in G. First, the number of subgroups of
G that are conjugate to Hp is equal to the index |G : N|. By Lemma 6.5, |G| = p®, and
since HrL < N, it follows that |[N| > p”. If G = N, then for every non-identity element
2 € Go NGy, Cu(z) = (v1,v3,v4,v5), contradicting Lemma 6.2. Thus, |N| = p”, and
there are exactly p subgroups of G that are conjugate to Hpy.

Therefore, to finish the proof it is sufficient to show that there are exactly p regular
subgroups of G isomorphic to H. Note that, we have L = Ny. Let K < G be any regular
subgroup isomorphic to Hp such that K # Hg. Let M = (K, Hg). Since K # Hpg,
|M| > pb. This implies that |[M N L| > 1. Indeed, if |[M| = pb, then Hr < M, and hence
My # 1 and My < Ny = L. If |M| > p%, then |M N L| > 1 follows because |L| = p?
and |LM| < |G| = p®. Using also that K N Hr < Z(M) and Lemma 6.2, we deduce
that |K N Hg| < p®. On the other hand, since K is regular and abelian, it follows that
Z(G) < K, and hence K N Hg = Ug. Note that, we have proved that every regular
subgroup isomorphic to H intersects Hg at Ug, unless it is equal to Hg. This fact will
be used in the next paragraph.

We claim that K < N. Suppose to the contrary that there exists some g € K \ N.
Then g = zjvg for some z1 € Go \ L and v € H. Since Ur < K, the element v cannot
be in U. On the other hand, [N N K| > p* and thus K also contains an element in
the form zowg, 20 € L and w € H \ U (again, w ¢ U because of Ugr < K). Then,
2122(VR)2WR = 21VRZWR = 22WRZ1VR = 2221 (wR)** vg. By Lemma 6.5, Gy is abelian,
L= (v® +w — v)g. Thus, (wg)** € Hg, and since
w ¢ U, (wg)** ¢ Ug, and |Hf N Hg| > p*. Now, it follows by the previous paragraph

and we get (wg)** = (vg)?2wgr(vr)™

that Hy' = Hpg, and hence z; € L, a contradiction.
Now, there exist 21, zo € L such that

K = <21(1)1)R, ZQ(UQ)R,UR>.

Recall that, the L-orbit of v; is in the form vf = U, + vy, and the L-orbit of vy is
in the form vl = Uy + vq. Let u = v{? — vy. Clearly, u € Uy. Then, since z;(vi)g and
25(va) g commute, 071 (V1)Rz2(V2)R — 42 4 4y and 072(V2)r=L ()R = 421 4y it follows that
u = v5' — ve. This shows that u € Uy also holds, and hence u € Uy, N Uy = (v4). Now,
as L is regular on both orbits v¥ and vZ, the automorphisms z; and zp are uniquely
determined by u, and thus K is determined as well. This yields that there are exactly p
regular subgroups of G isomorphic to H. This completes the proof of the lemma. 0O
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Lemma 6.7. Assuming Hypothesis 5.1, suppose that A is indecomposable, and let U and
W be A-subgroups such that W < Og(A) < U, [W| = p and |U| = p*. Then A has a
basic set T' such that

TCH\U 1<|T| <p® and W £ rad(T). (22)

Proof. Since A is indecomposable, there exists a basic set Ty C H \ U such that W £
rad(T1). It is clear that |T7] > 1. We have to show that |T3| < p?. To the contrary assume
that |T1| > p3. If |T1| = p*, then A is decomposable, see Proposition 2.14, thus |1 | = p3.
This together with |Og(A) NU| = |Oy(A)| > p? gives |Op(A) NU| - |T1| > p* = |H|/p,
and we can apply Lemma 2.18(iii) to obtain that Og(A) Nrad(Ty) # {0}. Let W' <
Oy (A) Nrad(Ty) such that |W’'| = p. Since W £ rad(T}), we get, using Eq. (1), pairwise
distinct basic sets in the form T7 +w, w € W. As the union of the latter basic sets is equal
to the coset U + v1, it follows that W’ < rad(T) for all T € Bsets(A) with T' C U + v;.
This together with Theorem 2.9 yields that W’ < rad(T) for all T € Bsets(.A) with
T ¢ U, that is, A is a U/W'-wreath product, a contradiction. O

Everything is prepared to settle the main result of the section.

Proof of Theorem 6.1. Let U = Og(A), N = Nayua)(Hr) and Ny be the stabilizer of 0
in N. Assume to the contrary that A is a non-CI-S-ring. We prove first the following:

There exists L < Ny such that |L| = p? and |Cy (L)| = p°. (23)

If |U| > p3, then we are done by choosing L to be any subgroup of Ny of order p?
(see also Lemma 6.3). Thus we assume for the moment that |U| = p?. Let K < N be
the subgroup given in Proposition 3.1, and let M = (KHRg)o. If |[M| < p?, then

|K|-|Hr| _ |K|-|Hr| _ 3
|K Hp| |MI[H] —

Cuy(M)>|KNHg|=

By Lemma 6.2, M must have order p?, and therefore, we are done by choosing L to be
M.

Let |[M| > p®. It follows from Lemma 6.7 that there exists a basic set T such that
|T| < p? and rad(T) # U. Let v € T, and M, be the stabilizer of v in M. Then
Cu(M,) > (U,v). If |T| = p or the orbit v™ # T, then it follows that |M,| > p.
Using this and that |(U,v)| = p3, we can choose L to be any subgroup of M, of order
p?. Now, suppose that |T| = p?, and the orbit v = T. Choose a non-identity element
xg € M,, and let v € T be an arbitrary element. Then v = v® for some x € M, and
since M is abelian, we can write u®® = v*0 = p*o¥ = p* = y. As a corollary we find
Ch(zo) > (U, T). Clearly, |{U,T)| > p3; in fact, (U, T)| = p*> must hold by Lemma 6.2.
It follows that T is equal to a U-coset, that is, rad(7') = U. This is a contradiction, and
Eq. (23) follows.
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By Lemma 6.6, the S-ring V(H, L) is a CI-S-ring. Therefore, A # V(H, L), hence
A > L, in particular, |A| > p3. For sake of simplicity we let V = Og(V (H, L)). Clearly,
U <V and |V| =p’ Fix W; < U, [Wi| = p. By Lemma 6.7, there exists a basic
set Ty € Bsets(A) such that 1 < |Ty| < p? and W; £ rad(T}). Since every basic set
of V(H, L) outside V is a coset of a subgroup of V of order p?, we find that either
Ty is contained in H \ V, |T1| = p? and rad(T1) < V, or T} < V. In the former case
V =rad(Ty) + W1, whereas in the latter case V = (T, W;) because Wy £ rad(Ty). We
conclude that V' is an A-subgroup. This shows that we may choose the above T3 such that
Ty € H\V.Fix some v € Ty. Since |Ny| > p3, there exists a non-identity element x € Ny
such that vf = vy, and thus Cy(x) > (U, v1), and so |Cy (z)| > p-|U|. This together with
Lemma 6.2 shows that |U| = p?, in particular, U < V. Now, using also that W; < U
and Wy «£ rad(T1), we infer in turn that [U N rad(T1)| = p, Araa(ry) = QCp 1 QC), and
finally that, Ay = (QC, 1 QC,) ® QC,p. Let Wy = U N rad(T1). It is easy to see that
every A-subgroup of order p? contained in V' contains Ws. (In fact, such an A-subgroup
intersects rad(77) at exactly Ws.) Now, apply Lemma 6.7 with W = W;. We obtain
that, there exists a basic set Ty of A such that T, ¢ V, |Tz| = p? and Wy « rad(Ts). As
before, rad(T%) is an A-subgroup of order p? contained in V, contradicting our earlier
observation that such an A-subgroup must contain Ws. This completes the proof of the
theorem. 0O
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