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1. Introduction

Let H be a finite group and S be a subset of H. The Cayley digraph Cay(H, S) is 
the digraph that has vertex set H, and arc set {(x, sx) : x ∈ H, s ∈ S}. It follows 
from the definition that Aut(Cay(H, S)) contains HR, the group of all right translations
HR = {hR : h ∈ H}, where xhR = xh, x ∈ H. Also, Cay(H, S) is loopless if the identity 
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element 1 /∈ S, and it is regarded as an undirected graph when S is an inverse-closed 
set, that is, S = S−1 = {x−1 : x ∈ S}.

Two Cayley digraphs Cay(H, S) and Cay(H, T ) are called Cayley isomorphic if 
T = Sϕ for some automorphism ϕ ∈ Aut(H). It is trivial to show that Cayley iso-
morphic Cayley digraphs are isomorphic as digraphs. The converse, however, does not 
hold in general. There are examples of Cayley digraphs which are isomorphic but not 
Cayley isomorphic. A subset S ⊆ H is called a CI-subset if for any T ⊆ H, the isomor-
phism Cay(H, T ) ∼= Cay(H, S) implies that T = Sϕ for some ϕ ∈ Aut(H). The group H
is a DCI-group if each of its subsets are CI-subsets, and a CI-group if each of its inverse-
closed subsets are CI-subsets. Motivated by a problem posed by Ádám in [1], Babai and 
Frankl [4] asked the following question: Which are the CI-groups? Although the can-
didates of CI-groups have been reduced to a restricted list [9,18], which was obtained 
by accumulating the work of several mathematicians, it is considered to be difficult to 
confirm that a particular group is a CI-group. We refer the reader to the survey paper 
[17] for most results on CI- and DCI-groups.

One of the crucial steps towards the classification of all CI-groups is to answer which 
elementary abelian p-groups are CI-groups (see also [17, Question 8.3]). It is known that 
the group Zn

p is a CI-group in each of the following cases: n = 1 [7,10,29]; n = 2 [2,12]; 
n = 3 [2,8]; n = 4 and p = 2 [5]; n = 4 and p > 2 [13] (a proof for n = 4 with no condition 
on p was given recently in [19]); n = 5 and p = 2 [5]; and n = 5 and p = 3 [27]. On 
the other hand, some examples of groups Zn

p are also known which are not CI-groups, 
and in each case the rank n ≥ 6. Nowitz [23] found a non-CI-subset of Z6

2, and more 
recently, Spiga [27] constructed a non-CI subset of Z8

3. Constructions of non-CI-subsets 
of Zn

p where n is expressed as a function in p were the subject of the papers [20,25,26]. 
The best bound is due to Somlai [25], which says that Zn

p is not a CI-group if n ≥ 2p +3. 
The question whether Z5

p is a CI-group for any odd prime p is mentioned in [17] as a 
crucial task for classifying CI-groups (see Section 8.4 and Problem 8.10). The goal of 
this paper is to complete this task by proving the following theorem:

Theorem 1.1. The group Z5
p is a DCI-group for any prime p.

Our starting point is the following group theoretical criterion due to Babai [3]: A sub-
set S ⊆ H is a CI-subset if and only if any two regular subgroups of Aut(Cay(H, S))
isomorphic to H are conjugate in Aut(Cay(H, S)). Recall that, the group HR of right 
translations is always contained in Aut(Cay(H, S)). Motivated by this criterion, the fol-
lowing definition was introduced by Hirasaka and Muzychuk [13]: A permutation group 
G ≤ Sym(Ω) containing a fixed subgroup F is F -transjugate if for each g ∈ Sym(Ω), the 
condition g−1Fg ≤ G implies that g−1Fg and F and are conjugate in G. In this context, 
Babai’s result can be rephrased as to say that a subset S ⊆ H is a CI-subset if and only if 
the group Aut(Cay(H, S)) is HR-transjugate. It is well-known that Aut(Cay(H, S)) is a 
2-closed permutation group for any S ⊆ H (for the definition of a 2-closed permutation 
group, see Section 2.1). Following [13], we say that H is a CI(2)-group if all 2-closed 
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subgroups of Sym(H) containing HR are HR-transjugate. Clearly, if H is a CI(2)-group, 
then it is necessarily a DCI-group. Theorem 1.1 was proved by Conder and Li [5] for 
p = 2, hence it will be sufficient to consider only the case when p is odd. In fact, instead 
of Theorem 1.1 we prove the following slightly more general theorem:

Theorem 1.2. The group Z5
p is a CI(2)-group for any odd prime p.

We prove Theorem 1.2 following the so called S-ring approach (S-ring is the abbre-
viation of Schur ring, and for a definition, see Section 2.2). Roughly speaking, S-rings 
are certain subalgebras of the group algebra QH which were introduced by Schur [24] in 
order to study permutation groups containing a regular subgroup isomorphic to H. The 
usage of S-rings in the investigation of CI-groups was proposed by Klin and Pöschel [14,
15]. For a concise survey on S-rings and their applications in combinatorics, we refer the 
reader to [21].

We finish the introduction with a brief outline of the paper: Section 2 contains prelim-
inary material, especially, a thorough introduction to S-ring theory. We intend to keep 
our text as self-contained as possible. In Sections 3, we turn to S-rings over elementary 
abelian p-groups of arbitrary rank. In particular, an equivalent condition will be derived 
for the group Zn

p to be a CI(2)-group in terms of its S-rings (Proposition 3.4). We remark 
that, this condition is obtained by combining together several results proved in [13,19,
26]. Based on this equivalence, Theorem 1.2 will be reformulated in a statement involv-
ing a particular class of S-rings over the group Z5

p (Theorem 3.5). Then, in Section 4, 
we derive a property of S-rings over Z4

p which will be needed when dealing with S-rings 
over Z5

p. The proof of Theorem 3.5 will be divided into two parts depending on whether 
the S-rings in question are decomposable or not (for a definition of a decomposable S-
ring, see Section 2.2). The decomposable S-rings will be handled in Section 5, while the 
indecomposable ones in Section 6.

2. Preliminaries

All groups in this paper are finite. In this section we collect all concepts and facts 
needed in this paper.

2.1. Permutation groups

Let G ≤ Sym(Ω) be a permutation group of a finite set Ω. For ω ∈ Ω, we denote 
by Gω the stabilizer of ω in G, and by ωG the G-orbit of ω. For a subset Δ ⊆ Ω
and permutation γ ∈ Sym(Ω), we say that γ fixes Δ if Δγ = Δ, and that γ fixes Δ
pointwise if ωγ = ω for all ω ∈ Δ. The setwise stabilizer and pointwise stabilizer of 
Δ in G will be denoted by G{Δ} and GΔ, resp., that is, G{Δ} = {g ∈ G : Δg = Δ}
and GΔ = {g ∈ G : ωg = ω, ω ∈ Δ}. The set of all G-orbits is denoted by Orb(G, Ω). 
Suppose that G is transitive on Ω. If δ = {Δ1, . . . , Δn} is a block system for G, then we 
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write Gδ for the kernel of the action of G on δ, and Gδ for the permutation group of δ
induced by G.

Two permutation groups H, G ≤ Sym(Ω) are said to be 2-equivalent, denoted by 
H ≈2 G, if Orb(H, Ω2) = Orb(G, Ω2), see [31]. The equivalence class of G contains a 
largest subgroup, which is called the 2-closure of G, denoted by G(2). The group G is 
called 2-closed if G(2) = G.

Proposition 2.1. For any G ≤ Sym(Ω), Z(G) ≤ Z(G(2)).

Proof. Let g1 ∈ Z(G), γ ∈ G(2) and ω ∈ Ω. Since Orb(G, Ω2) = Orb(G(2), Ω2), we have 
(w, wg1)G = (w, wg1)G(2) , and so there exists g ∈ G, depending on w and wg1 , such that 
(w, wg1)g = (w, wg1)γ . Then ωg1γ = ωg1g = ωgg1 = ωγg1 . As ω was chosen arbitrarily 
from Ω and γ from G(2), it follows that g1 ∈ Z(G(2)), hence Z(G) ≤ Z(G(2)), and the 
assertion follows. �

A transitive permutation group G and its 2-closure G(2) have the same block systems 
(see [31, Theorem 4.11]).

Proposition 2.2. ([13, Proposition 2.1]) Let G ≤ Sym(Ω) be a transitive permutation 
group, and let δ be a block system for G. Then

(i) (G(2))δ ≤ (Gδ)(2).
(ii) If G is 2-closed and F δ is 2-closed for some F ≤ G, then FGδ is also 2-closed.

The following statement is given as Exercise 5.8 in [31]. It also appears as 5.1. Propo-
sition in the preprint [22], where the authors give a proof. Regarding the fact that [22]
is a university preprint, we also present a proof.

Proposition 2.3. (cf. [31]) If G ≤ Sym(Ω) is a p-group, then G(2) is also a p-group.

Proof. If G is intransitive, then G(2) is a subdirect product of the 2-closures of the tran-
sitive components of G. Thus, it is sufficient to prove the theorem for transitive groups 
G ≤ Sym(Ω). Suppose to the contrary that G is a counterexample to the proposition 
whose order is the smallest possible. If G is abelian, then it is regular on Ω. By Proposi-
tion 2.1, G(2) centralizes G, and it follows that G(2) = G. Thus, we may assume that G
is non-abelian, and so |G| ≥ p3. The center Z(G) is nontrivial. Let P ≤ Z(G) such that 
|P | = p, and let g ∈ G(2) be an element of order q for some prime q �= p. Then Orb(P, Ω)
is a block system of G on Ω. Let us consider the natural action of G on Orb(P, Ω). To 
simplify notation, we write δ = Orb(P, Ω). The permutation group Gδ ≤ Sym(δ) induced 
by G is transitive on δ and has order less than |G|. By the minimality of G the group 
(Gδ)(2) is a p-group. Thus (G(2))δ is also a p-group, see Proposition 2.2(i), which implies 
that g acts on δ as the identity permutation. Equivalently, g fixes any P -orbit Δ ∈ δ. By 
Proposition 2.1, P ≤ Z(G(2)), hence g centralizes P . This implies that g is semiregular 
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on Δ. Since g has order q and |Δ| = p, g fixes pointwise Δ, and as this is true for any 
Δ ∈ δ, g is the identity permutation of Ω, a contradiction. �
Proposition 2.4. ([13, Proposition 3.6(ii)]) Let H be an abelian p-group whose order |H| ≥
p3, and let G ≤ Sym(H) with G ≥ HR. If there exists a G1-orbit T such that |T | = p

and 〈T 〉 = H, then |G| = p · |H|.

Finally, we recall a recent result of Morris [19]. Let H ∼= Zn
p for an arbitrary prime p. 

Assume that G ≤ Sym(H) is a p-group such that

G =
〈
HR, π

−1HRπ
〉

for some π ∈ Sym(H).

Let P be a Sylow p-subgroup of Sym(H) with G ≤ P . Then P is permutation isomorphic 
to the iterated wreath product Zp � · · · �Zp (n copies of Zp), and this shows that P admits 
block systems δ0, . . . , δn−1 such that δi has blocks of size pi+1, and if 0 ≤ i < j ≤ n − 1, 
then each class of δi is contained in a class of δj. Since HR is abelian, the kernel (HR)δi
has order pi+1. In particular, there exist τ0, τ1 ∈ HR such that (HR)δ0 = 〈τ0〉 and 
(HR)δ1 = 〈τ0, τ1〉. Note that, we can write δ0 = Orb(〈τ0〉, H) and δ1 = Orb(〈τ0, τ1〉, H).

Proposition 2.5. ([19, Corollary 3.2]) With the above notation, there exists ψ ∈ G(2) such 
that ψ commutes with τ0, and ψ−1π−1HRπψ contains τ1.

Let us consider once more the above groups G = 〈HR, π−1HRπ〉 and P , where P is 
a Sylow p-subgroup of Sym(H) with G ≤ P . Then Z(P ) ≤ π−1HRπ because π−1HRπ

is abelian and regular on H. Similarly, Z(P ) ≤ HR. On the other hand, Pδ0 � P and 
τ0 ∈ Pδ0 , implying Pδ0 ∩ Z(P ) �= 1 because P is p-group. Then Pδ0 ∩ Z(P ) ≤ HR

implies Pδ0 ∩ Z(P ) = 〈τ0〉, hence τ0 ∈ Pδ0 ∩ Z(P ) ≤ π−1HRπ. Proposition 2.5 together 
with the condition that ψ centralizes τ0 shows that τ0, τ1 ∈ ψ−1π−1HRπψ, and hence 
|CHR

(ψ−1π−1HRπψ)| ≥ p2. This inequality will be used later.

2.2. S-rings

In this subsection, we give the definition of an S-ring, and review several basic proper-
ties. Let H be a finite group with identity element 1, and let QH denote the group algebra 
of H over the rational number field. For a subset T ⊆ H, we define the QH-element T as 
the formal sum T =

∑
h∈H ahh with ah = 1 if h ∈ T , and ah = 0 otherwise. We remark 

that the QH-element T is traditionally called simple quantity, see [30].
By a Schur-ring over H (S-ring for short) we mean a subalgebra A ⊆ QH, which can 

be associated with a partition π of H satisfying the following conditions:

• The set {1} belongs to π.
• For every T ∈ π, the set T−1 belongs to π.
• A is spanned by the QH-elements T , T ∈ π.
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The elements (classes) of π are also called the basic sets of A, and from now on we 
will use the notation Bsets(A) for π. The cardinality | Bsets(A)| is called the rank of 
A. The concept of S-ring is due to Wielandt [30], which was motivated by the following 
result of Schur [24]:

Theorem 2.6. (cf. [30, Theorem 24.1]) Let H be a finite group, and let G ≤ Sym(H) with 
HR ≤ G. Then the QH-elements T , T ∈ Orb(G1, H) span an S-ring over H.

The S-ring in the above theorem is also called the transitvity module of G1, denoted by 
V (H, G1). We note that, there exist S-rings which do not arise as transitivity modules. 
Given an arbitrary S-ring A over a group H, we say that A is Schurian if A = V (H, K1)
for some permutation group K ≤ Sym(H) with HR ≤ K, and that A is non-Schurian
otherwise.

Remark 2.7. It should be noted that the pair (H, {Cay(H, T ) : T ∈ Bsets(A)}) forms a 
Cayley (association) scheme in the sense of [21]. Thus, S-ring theory can be regarded as 
a part of the theory of association schemes, and several concepts defined for S-rings can 
be understood in this context.

Let A be any S-ring over a group H. A subset S ⊆ H (subgroup K ≤ H, resp.) is 
called an A-subset (A-subgroup, resp.) if S ∈ A (K ∈ A, resp.). The radical of a subset 
S ⊆ H is the subgroup of H defined as

rad(S) = {h ∈ H : hS = Sh = S}.

In other words, rad(S) is the largest subgroup E ≤ H for which S is equal to the union 
of some left E-cosets and also some right E-cosets. If S is an A-subset, then both groups 
rad(S) and 〈S〉 are A-subgroups (see [30, Propositions 23.5 and 23.6]). If K, L ≤ H

are two A-subgroups, then it can be easily checked that both K ∩ L and 〈K ∪ L〉 are 
A-subgroups. The thin radical of A is defined as

Oθ(A) = {g ∈ G : {g} ∈ Bsets(A)}.

The following simple, but useful property is a simple observation:

If e ∈ Oθ(A) and T ∈ Bsets(A), then both sets eT and Te are in Bsets(A). (1)

Here eT = {et : t ∈ T} and Te = {te : t ∈ T}. It follows that the thin radical Oθ(A) is 
an A-subgroup.

Let K ≤ H be an A-subgroup. Then, for any basic set T ∈ Bsets(A) there exist 
positive integers k and k′ such that

|Kh ∩ T | = k and |hK ∩ T | = k′ for all h ∈ T. (2)
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These can be verified by considering the products K · T and T · K. Here and in what 
follows the symbol · denotes the multiplication of QH. Since both products belong to A, 
these can be expressed as a linear combination of the simple quantities T ′, T ′ ∈ Bsets(A). 
The coefficient by T is equal to k in the case of K · T , and it is equal to k′ in the case 
of T ·K.

The subalgebra QK ∩ A is an S-ring over an A-subgroup K, denoted by AK, which 
is called the S-subring of A induced by K.

Assume, in addition, that K � H for an A-subgroup K. For a subset S ⊆ H, we let 
S/K = {Kh, h ∈ S}. Let T1, T2 ∈ Bsets(A) such that KT1 ∩KT2 �= ∅, or equivalently, 
k1t1 = k2t2 holds for some ki ∈ K and ti ∈ Ti (i = 1, 2). This shows that, the coefficient 
aT1 > 0 by the linear combination K·T2 =

∑
T∈Bsets(A) aTT . This implies that T1 ⊆ KT2, 

and hence KT1 ⊆ KT2. Similarly, bT2 > 0 by K · T1 =
∑

T∈Bsets(A) bTT , hence T2 ⊆
KT1, and so KT2 ⊆ KT1 also holds. We conclude that KT1 = KT2, and thus the sets 
KT, T ∈ Bsets(A) form a partition of H, and consequently, the sets T/K, T ∈ Bsets(A)
form a partition of H/K. The corresponding Q H/K-elements T/K span an S-ring over 
H/K, which is called the quotient of A by K, denoted by AH/K .

Assume that H = E×F is the internal direct product of its subgroups E and F , and 
that A is an S-ring over H such that both E and F are A-subgroups. Since E∩F = {1}, 
it follows that XY = X · Y for any subsets X ⊆ E and Y ⊆ F . A straightforward 
computation yields that the simple quantities RS, R ∈ Bsets(AE), S ∈ Bsets(AF ) span 
an S-ring over H. The latter S-ring is called the tensor product of AE with AF , denoted 
by AE ⊗AF . Clearly, AE ⊗AF = AF ⊗AE , and AE ⊗AF ⊆ A. The following lemma 
can be easily shown using Eq. (1).

Lemma 2.8. Let A be an S-ring of the internal direct product H = E × F such that both 
E and F are A-subgroups. If AE = QE or AF = QF , then A = AE ⊗AF .

The following result is also known as Schur’s first theorem on multipliers (see [21]).

Theorem 2.9. (cf. [30, Theorem 23.9(a)]) Let A be an S-ring over an abelian group H, 
T ∈ Bsets(A) be any basic set, and suppose that k is an integer coprime to |H|. Then 
the set T (k) := {hk : h ∈ T} is a basic set of A.

Finally, we recall the concept of E/F -wreath product after [21]. This was defined in 
[16] under the name wedge product, and independently in [11] under the name generalized 
wreath product. Let A be an S-ring over a group H. If there exist A-subgroups E and F
such that

F ≤ E, F 	 H, and F ≤ rad(T ) for all T ∈ Bsets(A), T ⊂ H \ E,

then we say that A is an E/F -wreath product and write A = AE �E/F AH/F . Note 
that, the S-ring A can be reconstructed uniquely from the S-rings AE and AH/F . In 
the particular case when E = F , we use term wreath product, and write AE � AH/E for 
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AE �E/EAH/E . In what follows we say that A is decomposable if it can be decomposed as 
A = AE �E/F AH/F where E �= H and F �= {1}, and that A is indecomposable otherwise.

2.3. Automorphisms of S-rings

Let A ⊆ QH be an S-ring over a group H. By an automorphism of A we mean 
a permutation of H that is an automorphism of all Cayley graphs Cay(H, T ), T ∈
Bsets(A). This definition is due to Klin and Pöschel [14] (see also [21]). The group of all 
automorphisms of A will be denoted by Aut(A), that is,

Aut(A) =
⋂

T∈Bsets(A)

Aut(Cay(H,T )).

In what follows, we write Aut(A)1 for the stabilizer (Aut(A))1. Note that, as a permu-
tation group of H, Aut(A) is 2-closed. Moreover, if A = V (H, G1) for some G ≤ Sym(H)
with G ≥ HR, then Aut(V (H, G1)) = G(2). If K ≤ G is a subgroup with HR ≤ K, then 
V (H, K1) ⊇ V (H, G1). Also, given two S-rings A and B of the same group H, the 
inequality B ⊆ A implies that Aut(B) ≥ Aut(A).

For two arbitrary S-rings A, B ⊆ QH, their intersection A ∩ B is also an S-ring over 
H (cf. [13,21]). Therefore, given any subset S ⊂ H, it is possible to define the S-ring 
〈 〈S〉 〉 := ∩A∗A∗, where A∗ runs over the set of all S-rings over H that contain S. Then, 
the following identity holds:

Aut(Cay(H,S)) = Aut(〈〈S〉〉). (3)

Indeed, let G = Aut(Cay(H, S)) and A = V (H, G1). The fact that G ≥ Aut(〈 〈S〉 〉) follows 
if we observe that S can be expressed as S = ∪k

i=1Ti for some basic sets Ti ∈ Bsets(〈 〈S〉 〉), 
and thus Aut(〈 〈S〉 〉) ≤

⋂k
i=1 Aut(Cay(H, Ti)) ≤ G. On the other, since G is 2-closed, 

G = Aut(A). Also, as any element of G1 maps S to itself, it follows that S ∈ A. This 
implies in turn that 〈 〈S〉 〉 ⊆ A, and so Aut(〈 〈S〉 〉) ≥ Aut(A) = G, and Eq. (3) follows.

Suppose that K ≤ H is an A-subgroup and write G = Aut(A). Then any element of 
the stabilizer G1 maps K to itself. This implies that the setwise stabilizer G{K} factorizes 
as G{K} = G1KR. In particular, G1 ≤ G{K}, and hence the G{K}-orbit of 1 is a block 
for G (see [6, Theorem 1.5A]). The latter orbit is K, and we conclude that the induced 
block system δ = {Kg : g ∈ G} is equal to the set H/K of all right cosets of K in H.

Finally, we point out a relation between Aut(A) and the thin radical Oθ(A). For h ∈
H, the left translation hL ∈ Sym(H) is the permutation acting as xhL = h−1x, x ∈ H. 
If A is a Schurian S-ring over H, then its thin radical Oθ(A) satisfies the following:

Oθ(A) = {h ∈ H : hL ∈ CSym(H)(Aut(A))}. (4)

Indeed, if h ∈ Oθ(A) then every g ∈ Aut(A) acts as an automorphism of Cay(H, {h}). 
It is straightforward to check that this implies that g and (h−1)L commute, and so 
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hL ∈ CSym(H)(Aut(A)). On the other hand, if hL ∈ CSym(H)(Aut(A)) and g ∈ Aut(A)1, 
then (h−1)g = 1hLg = 1ghL = h−1. Therefore, the orbit of h−1 under Aut(A)1 is equal 
to the set {h−1}. Now, since A is Schurian, its basic sets are the Aut(A)1-orbits on H, 
in particular, h−1 ∈ Oθ(A), and this implies that h ∈ Oθ(A) as well.

2.4. Isomorphisms of S-rings

Let A be an S-ring over a group H and B be an S-ring over a group K. A bijection 
f : H → K is called an (combinatorial) isomorphism between A and B if

{
Cay(H,T )f : T ∈ Bsets(A)

}
=

{
Cay(K,S) : S ∈ Bsets(B)

}
.

Here Cay(H, T )f is the image of the digraph Cay(H, T ) under f , that is, it has vertex 
set K and arc set {(xf , yf ) : x, y ∈ H and yx−1 ∈ T}.

It follows from the definition that f induces a bijection f∗ : Bsets(A) → Bsets(B)
defined by T f∗ = S for T ∈ Bsets(A) exactly when Cay(H, T )f = Cay(K, S). We say 
that f is normalized if f maps the identity element 1H to the identity element 1K . In the 
special case when f is an isomorphism from H to K, we call f a Cayley isomorphism. 
Notice that, when f is a normalized isomorphism of A, then T f∗ = T f holds for all 
T ∈ Bsets(A). It is well-known that the linear map defined by T �→ T f∗ is an algebra 
isomorphism between the Q-algebras A and B (cf. also [13,21]). Using this fact, it is not 
hard to show that (ST )f = SfT f holds for any normalized isomorphism f of A and any 
basic sets S, T ∈ Bsets(A). Some properties are listed below.

Proposition 2.10. ([13, Proposition 2.7]) Let f : A → B be a normalized isomorphism 
from an S-ring A over a group H to an S-ring B over a group K, and let E ≤ H be an 
A-subgroup. Then,

(i) the image Ef is a B-subgroup of K. Moreover, the restriction fE : E → Ef is an 
isomorphism between AE and AEf .

(ii) For each h ∈ H, (Eh)f = Efhf .
(iii) If E � H and Ef � K, then the mapping fH/E : H/E → K/Ef , defined by 

(Eh)fH/E := Efhf is a normalized isomorphism between AH/E and BK/Ef .

In this paper, we will be interested exclusively in isomorphisms between S-rings over 
the same group H. We adopt the notation used in [13], and denote by Iso(A) the set of 
all isomorphisms from A to S-rings over H, that is,

Iso(A) = {f ∈ Sym(H) : f is an isomorphism from A onto an S-ring over H};

and let Iso1(A) = {f ∈ Iso(A) : 1f = 1}.
Note that, Iso(A) ⊆ Sym(H), but it is not necessarily a subgroup. It follows from the 

definition that for any γ ∈ Aut(A) and ψ ∈ Aut(H), their product γψ is an isomorphism 
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from A to an S-ring over H. Therefore, Aut(A) Aut(H) ⊆ Iso(A). Now, we say that A
is a CI-S-ring or simply that A is CI, if Iso(A) = Aut(A) Aut(H). This definition was 
given by Hirasaka and Muzychuk in [13], where the following proposition was proved:

Proposition 2.11. ([13, Theorem 2.6]) Let G ≤ Sym(H) be a 2-closed group with HR ≤ G, 
and let A = V (H, G1). Then the following conditions are equivalent:

(i) G is HR-transjugate.
(ii) Iso(A) = Aut(A) Aut(H).
(iii) Iso1(A) = Aut(A)1 Aut(H).

Thus, the CI(2)-property for a group H is equivalent to the CI-property for all Schurian 
S-rings over H. In the last lemma of this subsection we collect further properties of S-ring 
isomorphisms.

Lemma 2.12. Let A be an S-ring over a group H, and let f ∈ Iso1(A).

(i) If H is abelian and T f = T for some T ∈ Bsets(A), then (T (k))f = T (k) for any 
integer k coprime to |H|.

(ii) Let E ≤ H be an A-subgroup such that E ≤ rad(T ) for some T ∈ Bsets(A). If 
(TE)f = TE then T f = T .

Proof. (i): Since T f = T , f ∈ Aut(Cay(H, T )). Let us consider the S-ring 〈 〈T 〉 〉. By 
Eq. (3), f ∈ Aut(〈 〈T 〉 〉). On the other hand, by Theorem 2.9, T (k) ∈ Bsets(〈 〈T 〉 〉), and (i) 
follows.

(ii): This follows from (TE)f = TE and ET = TE = T as E ≤ rad(T ). �
2.5. p-S-rings

We say that an S-ring A over a group H is a p-S-ring if H is a p-group, and all 
basic sets T ∈ Bsets(A) have p-power size, see [13]. The following proposition follows 
from results about p-schemes proved in [32] (see [13, Theorem 3.3]). For sake of easier 
reading, we give a proof using only the definition of an S-ring.

Proposition 2.13. Let A be a p-S-ring over a p-group H. Then

(i) the thin radical Oθ(A) is nontrivial;
(ii) there exists a chain of A-subgroups

H0 = {1} < H1 < · · · < Hr = H,

such that |Hi+1 : Hi| = p for all i ∈ {0, . . . , r − 1}.
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Table 1
p-S-rings over Z3

p for an odd prime p.

No. p-S-ring Schurity Indecomposability

1. QZ3
p yes yes

2. QZ2
p � QZp yes no

3. QZp � QZ2
p yes no

4. (QZp � QZp) ⊗ QZp yes no
5. QZp � QZp � QZp yes no

6. V (Z3
p, 〈x〉), x =

(
1 1 0
0 1 1
0 0 1

)
yes yes

Proof. By definition, 
∑

T∈Bsets(A),T 	={1} |T | = |H| − 1. Since all cardinality |T | as well 
as |H| are p-powers, (i) follows.

We prove (ii) by induction on |H|. The statement is trivial for |H| = p. For the 
rest of the proof it is assumed that |H| > p. Choose a maximal nontrivial A-subgroup 
K < H, that is, H is the only A-subgroup which contains properly K. Let |K| = pm. 
Let us consider the sets KTK, T ∈ Bsets(A). These sets form a partition of H because 
T1 ⊆ KT2K or T1 ∩ KT2K = ∅ for any basic sets T1, T2 ∈ Bsets(A) by Eq. (2), and 
therefore, KT1K = KT2K or KT1K∩KT2K = ∅. Note that, pm divides |KTK| for all T , 
and KTK = K for all basic sets T ⊂ K. Thus, |H| =

∑
T∈Bsets(A),T�K |KTK| +|K|, and 

so there exists a basic set T1 such that T1 � K and |KT1K| = pm. Then, Kt ⊆ KT1K

and tK ⊆ KT1K for all t ∈ T1. This together with |Kt| = |tK| = |KT1K| = pm shows 
that any t ∈ T1 normalizes K. Thus, K � 〈K, T1〉 = H, where the latter equality follows 
by the maximality of K. Now, (ii) follows by applying the induction hypothesis to the 
S-rings AK and AH/K . �
Proposition 2.14. ([13, Proposition 3.4(i)]) Let A be a p-S-ring over an abelian p-group H. 
If there exists a basic set T ∈ Bsets(A) with |T | = |H|/p, then A decomposes to the wreath 
product A = AK � AH/K , where K ≤ H is an A-subgroup with index |H : K| = p.

The next result is the classification of all p-S-rings over Z3
p.

Theorem 2.15. ([13,28]) Every p-S-ring over the group Z3
p for an odd prime p is Cayley 

isomorphic to one of the S-rings given in Table 1.

Remark 2.16. Hirasaka and Muzcyhuk [13] classified the Schurian S-rings, and it was 
proved later by Spiga and Wang [28] that all p-S-rings over Z3

p are Schurian (see [28, 
Theorem 1]).

Let H be a group isomorphic to Z3
p for an odd prime p. An S-ring A over H is called 

exceptional if it is Cayley isomorphic to the S-ring in the 6th row of Table 1, see [13]. 
Exceptional S-rings will play an important role in later sections.
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Lemma 2.17. Let A be an exceptional S-ring over a group H, H ∼= Z3
p. Then | Aut(A)| =

p4 and Iso1(A) = Aut(H).

Proof. Consider the S-ring in the 6th-row of Table 1. Denote by T its basic set containing 
the element (1, 0, 0) ∈ Z3

p. Since p > 2, it follows quickly that |T | = p and 〈T 〉 = Z3
p. This 

implies that A has also a basic set T ′ such that |T ′| = p and 〈T ′〉 = H. The S-ring A
is Schurian. Thus, T ′ is equal to an Aut(A)1-orbit, and by Proposition 2.4, | Aut(A)| =
p4. Thus, HR � Aut(A), and so Aut(A)1 ≤ Aut(H). Since H is a CI(2)-group, A
is a CI-S-ring, see Proposition 2.11, and we can write Iso1(A) = Aut(A)1 Aut(H) =
Aut(H). �

We finish the subsection with further properties.

Lemma 2.18. Let A be a p-S-ring over a group H, K ≤ H be an A-subgroup with index 
|H : K| = p, and let T ∈ Bsets(A). Then the following hold:

(i) T is contained in a K-coset. In particular, rad(T ) ≤ K.
(ii) Let L ≤ H be an A-subgroup of order p such that L � H and L �≤ rad(T ). Then 

for any h ∈ T , hL ∩ T = Lh ∩ T = {h}.
(iii) If H is an abelian group and |Oθ(A) ∩K||T | > |H|/p, then Oθ(A) ∩ rad(T ) �= {1}.

Proof. (i): Let us consider the quotient S-ring AH/K . By Eq. (2), AH/K is a p-S-ring. 
Since H/K ∼= Zp, its only p-S-ring is Q H/K, and so AH/K = Q H/K. In particular, 
|T/K| = 1, hence T ⊆ Kh for a coset Kh and (i) follows.

(ii) By Eq. (2), there is a positive integer k such that |hL ∩ T | = |Lh ∩ T | = k for 
all h ∈ T . As |T | is a p-power, k = 1 or p. If k = p, then we find LT = TL = T , so 
L ≤ rad(T ), which is excluded by one of the assumptions. Thus, k = 1 and (ii) follows.

(iii): Assume that |Oθ(A) ∩K||T | > |H|/p. Let us consider the sets eT, e ∈ Oθ(A) ∩K. 
By Eq. (1) and (i), these are all basic sets contained in a coset Kh. If these are pairwise 
distinct, then |Oθ(A) ∩ K||T | =

∑
e∈Oθ(A)∩K |eT | ≤ |Kh| = |H|/p, a contradiction. 

Thus, eT = e′T for distinct e, e′ ∈ Oθ(A) ∩K. Using this and that H is abelian, we find 
e−1e′T = Te−1e′ = T , and so e−1e′ ∈ Oθ(A) ∩ rad(T ), by which (iii) follows. �
3. On CI-S-rings over ZZZn

p

In this section we give three propositions about CI properties of S-rings over the groups 
Zn
p . The first one is a necessary condition for an S-ring to be non-CI. It is essentially 

contained in the proof of [13, Proposition 3.9].

Proposition 3.1. Suppose that A = V (H, P1) is a non-CI-S-ring, where H ∼= Zn
p and 

HR ≤ P ≤ Sym(H) is a p-group. Then the normalizer NAut(A)(HR) contains a subgroup 
K for which the following hold:
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(i) K ∼= Zn
p , it is regular on H, and K �= HR.

(ii) The stabilizer (KHR)1 is elementary abelian, and

|CHR
((KHR)1)| ≥ |K ∩HR|.

Proof. Let G = Aut(A) and N = NAut(A)(HR). Note that, since G = P (2) and P is 
a p-group, G is a p-group as well, see Proposition 2.3. We first show the existence of 
a subgroup K ≤ N that has all properties given in (i). If G = N , then the existence 
of the required subgroup K follows from the condition that A is a non-CI-S-ring. Now, 
suppose that N < G. Then, since G is a p-group, the normalizer NG(N) �= N , hence we 
may choose some g ∈ NG(N) \N . We let K = (HR)g. It is straightforward to see that 
K has all properties given in (i).

Now, we turn to part (ii). Consider the group Q = KHR. Clearly, Q = Q1K = Q1HR

and Q1 ∼= Q/HR
∼= K/(K ∩ HR). Thus, Q1 is an elementary abelian group. Also, as 

both K and HR are abelian, K ∩ HR ≤ Z(Q), implying that |CHR
(Q1)| ≥ |K ∩ HR|. 

This completes the proof of part (ii). �
The second proposition will be a sufficient condition for an S-ring over Zn

p to be CI.

Definition 3.2. We say that an S-ring A over a group H is ≈2-minimal if

{X ≤ Sym(H) : X ≥ HR and X ≈2 Aut(A)} = {Aut(A)}.

For example, the full group algebra QH is a ≈2-minimal S-ring. The obvious examples 
for non-≈2-minimal S-rings are the S-rings of rank 2 (the two basic sets are {1} and 
H \ {1}). Clearly, Aut(A) = Sym(H), and thus Aut(A) ≈2 X whenever HR ≤ X ≤
Sym(H) and X is 2-transitive on H.

Proposition 3.3. Let A be a Schurian p-S-ring over a group H ∼= Zn
p , and K ≤ H be 

an A-subgroup of order p such that AH/K is a ≈2-minimal CI-S-ring. Then A is a 
CI-S-ring.

Proof. Let G = Aut(A) and choose L ≤ G such that L is regular on H and L ∼= H. 
Because of Proposition 2.11 it is enough to show that L and HR are conjugate in G.

We write Ḡ = GH/K , H̄R = (HR)H/K and L̄ = LH/K . Note that H̄R = (H/K)R. 
The group L̄ is abelian acting transitively on H/K. It follows that it is regular, and 
L̄ ∼= Zn−1

p . Since AH/K is a CI-S-ring, L̄ = (H̄R)x for some x ∈ Aut(AH/K). For sake of 
simplicity we denote by 1̄ the identity of H/K.

We claim that Aut(AH/K) = Ḡ. To settle this it is sufficient to show that 
Aut(AH/K) ≈2 Ḡ, and use the assumption that AH/K is ≈2-minimal. We have to show 
that AH/K = V (H/K, Ḡ1̄). Here we copy the proof of [13, Proposition 2.8(ii)]. Since 
K is an A-subgroup, Kg = K for any g ∈ G1, and thus by Proposition 2.10(ii), the 
coset Kh is mapped by gH/K to (Kh)gH/K = Khg. A basic set of AH/K is in the form 
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T/K where T ∈ Bsets(A). Since A = V (H, G1), we find that T = hG1 for some h ∈ H. 
Observe that G{K} = KRG1, and for any g ∈ G, gH/K ∈ Ḡ1̄ if and only if g fixes setwise 
the subgroup K. This implies that g = kRg

′ for some k ∈ K and g′ ∈ G1. Now, we can 
express the Ḡ1̄-orbit of Kh as

(Kh)Ḡ1̄ = {(Kh)x
H/K

: x = kRg, k ∈ K, g ∈ G1} = {K(kh)g : k ∈ K, g ∈ G1}
= {Khg : g ∈ G1} = hG1/K = T/K.

We conclude that T/K is an orbit of Ḡ1̄, and the claim follows.
Recall that L̄ = (H̄R)x for some x ∈ Aut(AH/K) = Ḡ. Choose g ∈ G such that 

gH/K = x−1. Then Lg ≤ GH/KHR, where GH/K denotes the kernel of G acting on 
H/K. Write M = GH/KHR. Since both G and (HR)H/K are 2-closed groups, it fol-
lows by Proposition 2.2(ii) that M is also 2-closed. We are done if we show that M is 
HR-transjugate, because then (Lg)g′ = HR for some g′ ∈ M , showing that L and HR

are indeed conjugate in G.
Again, because of Proposition 2.11 we are done if we show that the S-ring B =

V (H, M1) is CI. Then A ⊆ B, and thus K is also a B-subgroup. Note that GH/K ∩HR =
KR and M = M1HR. Then |M1| = |M |/|HR| = |GH/KHR|/|HR| = |GH/K |/|KR| and 
|GH/K | = |(GH/K)1||KR|. It follows |M1| = |(GH/K)1| and hence M1 = (GH/K)1. Since 
(GH/K)1 � G1 and all orbits of GH/K are the cosets of K in H which have order p, 
we have K ≤ Oθ(B) and all basic sets of B = V (H, M1) not contained in Oθ(B) are 
K-cosets.

Let f ∈ Iso1(B). In order to prove that B is a CI-S-ring, we have to find an automor-
phism ϕ ∈ Aut(H) such that

T fϕ = T for all T ∈ Bsets(B). (5)

Choose a minimal generating set {h1, . . . , hn} of H such that {h1, . . . , h�}, 
 ≤ n, is a 
generating set of Oθ(B) with h1 ∈ K. By Proposition 2.10, Kf ≤ H and (Khi)f = Kfhf

i . 
Since 1f = 1, T f ∈ Bsets(Bf ) for every basic set T ∈ Bsets(A). Using this and that each 
Khi is a B-subset, we find that each Kfhf

i is a Bf -subset, and so 〈Kfhf
1 , . . . , K

fhf
n〉 ≤ H

is a Bf -subgroup. By Proposition 2.10(i), |〈Kfhf
1 , . . . , K

fhf
n〉| = |〈Kfhf

1 , . . . , K
fhf

n〉f−1|. 
Thus, H = 〈Kfhf

1 , . . . , K
fhf

n〉. Since h1 ∈ K, it follows that Kfhf
1 = Kf , and 

{hf
1 , · · · , hf

n} is also a minimal generating set of H. Define ϕ as the induced automor-
phism of H by ϕ : hf

i �→ hi for 1 ≤ i ≤ n. Then hfϕ
i = hi. To finish the proof, it suffices 

to show that Eq. (5) holds.
Set f1 = fϕ. Clearly, f1 ∈ Iso1(B). Recall that for any S, T ∈ Bsets(B), (ST )f1 =

Sf1T f1 (see the paragraph preceding Proposition 2.10). Then f1 fixes each element in 
Oθ(B) because f1 fixes a generating set of Oθ(B). In particular, Kf1 = K as K ≤
Oθ(B), and Eq. (5) holds whenever T ⊂ Oθ(B). Now, suppose that T �⊂ Oθ(B). Let us 
consider the isomorphism fH/K

1 of BH/K induced by f1 (for the definition of fH/K
1 , see 

Proposition 2.10(iii)). The quotient S-ring BH/K = Q H/K. Since Q H/K is a CI-S-ring 
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and Aut(Q H/K) = (H/K)R, it follows that Iso1(BH/K) = Aut(Q H/K)1 Aut(H/K) =
Aut(H/K). Also, fH/K

1 ∈ Iso1(BH/K), because Kf1 = K, and so fH/K
1 ∈ Aut(H/K). 

On the other hand, as f1 fixes all generators hi, fH/K
1 fixes a generating set of H/K, 

and so fH/K
1 is the identity mapping. Since T �⊂ Oθ(B), T = Kh for some h ∈ H \K, 

and we can write T f1 = (Kh)f1 = (Kh)f
H/K
1 = Kh = T . �

Proposition 3.3 will be especially useful in conjunction with the fact that all indecom-
posable Schurian p-S-rings over Z4

p are ≈2-minimal. We prove the latter fact in Section 4.
Recall that, the CI(2)-property for a group H is equivalent to the CI-property for all 

Schurian S-rings over H (see Proposition 2.11). The third proposition is the following 
refinement:

Proposition 3.4. Let H be a group isomorphic to Zn
p for a prime p. Then the following 

conditions are equivalent:

(i) H is a CI(2)-group.
(ii) All S-rings V (H, A) are CI-S-rings where A < Aut(H) is a p-group with 

|CHR
(A)| ≥ p2.

Proof. Notice that, the implication (i) ⇒ (ii) is a direct consequence of Proposition 2.11.
Now, we turn to the implication (ii) ⇒ (i). Let G ≤ Sym(H) be a 2-closed subgroup 

with HR ≤ G, and let K ≤ G be a regular subgroup such that K ∼= H. We have to show 
that K and HR are conjugate in G.

Now, choose a Sylow p-subgroup P of G such that HR ≤ P . Since G is 2-closed, 
by Proposition 2.3, P is 2-closed, that is, P (2) = P . By Sylow Theorem, Kx ≤ P for 
some x ∈ G, hence we may assume that K ≤ P . According to Proposition 2.5 there 
exists some y ∈ 〈HR, K〉(2) ≤ P (2) = P such that |CHR

(Ky)| ≥ p2. Let Q = 〈HR, Ky〉. 
Then Q(2) ≤ P (2) = P , and Q(2) is also a p-group. It is sufficient to show that Q(2) is 
HR-transjugate.

Let us consider the normalizer N = NQ(2)(HR). Since |CHR
(Ky)| ≥ p2, it follows that 

|CHR
(Q)| ≥ p2. By Proposition 2.1, CHR

(Q) = HR∩Z(Q) ≤ HR∩Z(Q(2)) = CHR
(Q(2)). 

Therefore, |CHR
(Q(2))| ≥ p2, and as N (2) ≤ Q(2), it follows that |CHR

(N1)| ≥ p2. By 
the hypothesis in (ii), the S-ring V (H, (N (2))1) = V (H, N1) is a CI-S-ring. Equivalently, 
N (2) is HR-transjugate.

We finish the proof by showing that N (2) = Q(2). In doing this we use the same idea 
as in the proof of [27, Proposition 1]. Assume to the contrary that N (2) < Q(2). Since 
Q(2) is a p-group, we can choose an element z ∈ NQ(2)(N (2)) \N (2). Then (HR)z ≤ N (2). 
Since N (2) is HR-transjugate, (HR)z = (HR)z′ for some z′ ∈ N (2), and so we find 
z′z−1 ∈ NQ(2)(HR) = N , from which z ∈ N (2), a contradiction. Therefore, Q(2) = N (2), 
showing that Q(2) is HR-transjugate, as required. �
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In fact, we are going to derive Theorem 1.2 by showing that the condition in case (ii) 
of Proposition 3.4 holds when H ∼= Z5

p.

Theorem 3.5. Let H ∼= Z5
p for an odd prime p. Then all S-rings V (H, A) are CI-S-rings 

where A < Aut(H) is a p-group with |CHR
(A)| ≥ p2.

The proof of Theorem 3.5 will be given in Sections 5 and 6.

4. Indecomposable Schurian p-S-rings over ZZZn
p are ≈2-minimal for n ≤ 4

We set some notation that will be used throughout the rest of the paper:

Notation. From now on p will stand for an odd prime, and H will denote a group iso-
morphic to Zn

p . The group H will be regarded as the additive group of an n-dimensional 
vector space over the field GF (p). The elements of H will be denoted by lower case letters 
u, v, etc., while the subgroups of H by upper case letters U , V , etc. As usual, the identity 
element will be denoted by 0, and the inverse of an element u ∈ H by −u. For an integer 
k and a subset T ⊆ H we write T (k) = kT = {ku : h ∈ T}, where ku = u + · · ·+ u, with 
|k| summands if k > 0, and ku = −(u + · · · + u) otherwise.

It turns out that all indecomposable p-S-rings over the group Zn
p are ≈2-minimal for 

any odd prime p and n ≤ 3. This is not hard to see for the groups Zp and Z2
p. The 

full group algebra QZp is the only p-S-ring over Zp; and up to Cayley isomorphisms, 
there are two p-S-rings over Z2

p: QZ2
p and QZp �QZp, and the latter one is decomposable. 

Theorem 2.15 shows that, up to Cayley isomorphisms, there are two indecomposable 
p-S-rings over Z3

p: QZ3
p and the exceptional p-S-ring given in the 6th row of Table 1. 

By Lemma 2.17, the automorphism group of an exceptional p-S-ring has order p4, hence 
it is ≈2-minimal. In this section, we extend this result to the Schurian indecomposable 
p-S-rings over Z4

p.

Theorem 4.1. All indecomposable Schurian p-S-rings over the group Z4
p are ≈2-minimal 

for any odd prime p.

Remark 4.2. We would like to remark that the above theorem cannot be generalized 
to Schurian indecomposable p-S-rings over Z5

p. A counterexample is the indecomposable 
S-ring V (H, L) defined in Lemma 6.4, where H ∼= Z5

p and L ≤ Aut(H) of order |L| = p2. 
It is proved in Lemma 6.5 that | Aut(V (H, L))| = p8, hence HRL ≈2 Aut(V (H, L)) but 
HRL < Aut(V (H, L)), and so V (H, L) is not ≈2-minimal.

The proof of the theorem will be given in the end of the section following three 
preparatory lemmas.

Recall that, if A is an S-ring over H and W ≤ H is an A-subgroup, then the W -cosets 
in H form a block system for Aut(A).
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Lemma 4.3. Let A be an indecomposable S-ring over a group H ∼= Zn
p , and let W be an 

A-subgroup with |W | = p. Then the kernel

Aut(A)δ = WR = {wR : w ∈ W},

where δ denotes the block system H/W .

Proof. Let K = Aut(A)δ. It is clear that WR ≤ K, and thus it is enough to prove that 
the stabilizer K0 is trivial. By Lemma 2.18(ii), for every basic set T ∈ Bsets(A),

W �≤ rad(T ) ⇒ T ∩ (W + u) = {u} for all u ∈ T. (6)

We define recursively a finite sequence T1, . . . , Tr of basic sets of A as follows. Let 
T1 = {w} where w is an arbitrary nonzero element in W . Now, suppose that the sets 
T1, . . . , Ti are already defined for i ≥ 1. If H = 〈T1 ∪ · · · ∪ Ti〉, then finish the procedure 
and let r = i. Otherwise, choose Ti+1 to be a basic set in H \ 〈T1 ∪ · · · ∪ Ti〉 such that 
W �≤ rad(Ti+1). Notice that, such Ti+1 does exist because A is indecomposable.

Let S = T1 ∪ · · · ∪Tr and consider the Cayley graph Cay(H, S). Note that, Aut(A) ≤
Aut(Cay(H, S)). It is clear from the construction that 〈S〉 = H, hence Cay(H, S) is 
connected. We claim that S has the property that, whenever a W -coset intersects S, 
it does intersect it at exactly one element. Suppose to the contrary that there exist 
u1, u2 ∈ S such that u1 �= u2 and u1 − u2 ∈ W . Then u1 ∈ Ti and u2 ∈ Tj for 
some i, j ∈ {1, . . . , r}. It follows from the construction of S and Eq. (6) that i �= j, 
and we may assume w. l. o. g. that i < j. Thus, u2 ∈ 〈Ti, W 〉 ≤ 〈T1, . . . , Ti〉, and so 
u2 ∈ 〈T1 ∪ · · · ∪ Tj−1〉 ∩ Tj , a contradiction. Now, using that Aut(A) ≤ Aut(Cay(H, S))
and the above property of S, we find that every element in K0 fixes all neighbors of 0 in 
Cay(H, S). This and the connectedness of Cay(H, S) yield that |K0| = 1. �

For x ∈ Aut(H), we define CH(x) = {u ∈ H : ux = u}. Note that for u ∈ H, 
u ∈ CH(x) is equivalent to the condition that uR and x commute with each other.

Lemma 4.4. Let A be an indecomposable S-ring over a group H ∼= Z4
p and let x ∈

NAut(A)(HR) such that x �= idH and 0x = 0. Then |CH(x)| ≤ p2.

Proof. Since x �= idH , it follows that |CH(x)| ≤ p3. Assume to the contrary that 
|CH(x)| = p3. Let U = CH(x), and for a fixed v1 ∈ H \ U , let W = 〈vx1 − v1〉. Then 
|W | = p, and it follows that the orbit v〈x〉 = W + v for all v ∈ H \ U . Observe that, W
is not an A-subgroup. For otherwise, x belongs to the kernel of Aut(A) acting on H/W , 
which is impossible by Lemma 4.3.

Let U ′ be an A-subgroup of order p3. If U = U ′, then define V =⋂
T∈Bsets(A), T⊆H\U rad(T ). Clearly, V is an A-subgroup such that W ≤ V ≤ U , and A

is an U/V -wreath product, a contradiction. Hence, U ′ �= U , and in particular, U is not 
an A-subgroup.
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Let T1 ∈ Bsets(A) such that T1 ⊂ U ′ and T1 �⊂ U . Then |T1| ≥ p, and since W is 
not an A-subgroup, it follows that |T1| = p2. Indeed, if |T1| = p, then T1 is necessarily 
a W -coset, implying that W = rad(T1), and so W is an A-subgroup, which is not the 
case. By Proposition 2.14, T1 is equal to a U ′′-coset for some A-subgroup U ′′ such that 
|U ′′| = p2 and W < U ′′. We find U ′′ = W + W ′ for an A-subgroup W ′ of order p. Since 
W ′ ≤ Oθ(A), W ′ < U , and it follows that U ′′ = U ′ ∩ U .

Now, choose T ∈ Bsets(A) such that T �⊂ U ∪ U ′ and T ∩ U �= ∅. Notice that such T
exists because U is not an A-subgroup. Since T �⊂ U , it follows that T contains at least 
one W -coset not contained in U . This together with T ∩ U �= ∅ gives that |T | > p. Fix 
an element v ∈ T ∩U . Then T ⊆ U ′ + v, see Lemma 2.18(i). Since A is indecomposable, 
it follows from Proposition 2.14 that |T | = p2. Let v′ ∈ T \ U . If W ′ ≤ rad(T ), then we 
find U ′′ + v′ = W ′ + (W + v′) ⊆ W ′ + T = T . Thus, T = U ′′ + v′, contradicting that 
T ∩U �= ∅. Thus, W ′ �≤ rad(T ), and by Eq. (2), every W ′-coset intersects T in at most 1
element. Consequently, any U ′′-coset intersects T in at most p elements. The U ′′-cosets 
contained in U ′ + v can be listed as U ′′ + ku + v, where k ∈ {0, 1, . . . , p − 1} and u is 
any fixed element in U ′ \ U . Let Ti = T ∩ (U ′′ + iu + v), i ∈ {0, 1, . . . , p − 1}. It follows 
that the sets Ti form a partition of T , Ti is a W -coset for all i > 0, and |T0| = p.

Let us consider the product T · (−T ) in QH. Writing T · (−T ) =
∑

u∈H auu, it 
follows quickly from the above description of the sets Ti that 

∑
u∈U ′′\{0} au = p3 − p2. 

On the other hand, T · (−T ) ∈ A, and it can be expressed as the linear combination 
T · (−T ) =

∑
T ′∈Bsets(A) bT ′T ′. Let w ∈ W, w �= 0. Since W is not an A-subgroup, it 

follows that the coset W ′ + w is a basic set of A. Let us denote the latter basic set 
by T (w). It also follows from the description of the sets Ti that aw ≥ p2 − p. Thus, 
bT (w) ≥ p2 − p as well, and as w was chosen arbitrarily from W \ {0}, we arrive at a 
contradiction as follows:

p3 − p2 =
∑

u∈U ′′\{0}
au ≥

∑
w∈W\{0}

bT (w)|T (w)| ≥ (p− 1)(p3 − p2). �

Let A be a p-S-ring over H. In what follows, we call an ordered n-tuple (v1, . . . , vn)
of generators of H an A-basis if all subgroups in the chain below are A-subgroups

{0} < 〈vn〉 < 〈vn−1, vn〉 < · · · < 〈v1, . . . , vn〉 = H.

Notice that, if x ∈ Aut(A) normalizes HR and 0x = 0, then x ∈ Aut(H), and it can be 
written in an A-basis as an upper triangular matrix having 1’s in the diagonal.

Lemma 4.5. Let A be an indecomposable p-S-ring over a group H ∼= Z4
p. Then

(i) |NAut(A)(HR)| ≤ p6;
(ii) HR is normal in Aut(A).
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Proof. Let G = Aut(A) and N = NAut(A)(HR).
(i): Assume to the contrary that |N | > p6, that is, for the stabilizer N0 we have 

|N0| > p2. Let us fix an A-basis (v1, v2, v3, v4). This means that 〈v4〉 is an A-subgroup, 
and we can consider the action of N0 on H/〈v4〉. By Lemma 4.3, the latter action is 
faithful, and hence N0 is isomorphic to a subgroup of the group of all upper triangular 
3 × 3 matrices with each diagonal element equal to 1. Therefore, |N0| = p3, and we can 
choose x ∈ Z(N0) that can be written in the basis (v1, v2, v3, v4) as

x =

⎛
⎜⎝

1 0 1 a
0 1 0 b
0 0 1 c
0 0 0 1

⎞
⎟⎠ .

Then, the orbit vN0
1 has size at most p2. This follows from Proposition 2.14 and 

the fact that A is indecomposable. Therefore, there exists y ∈ N0 such that y �= idH

and y fixes v1. Using also that [x, y] = 1, we find that (vx1 )y = (vy1 )x = vx1 , hence 
vx1 = v1 + v3 + av4 ∈ CH(y). It follows that each of v1, v3 and v4 is in CH(y). This, 
however, contradicts Lemma 4.4.

(ii): We have to show that G = N . Assume to the contrary that G > N . Then 
NG(N) > N . Choose g ∈ NG(N) \N and let P = (HR)gHR. Since P0 ≤ N0, |P0| ≤ p2. 
If |P0| = p, then |P | = |HR| · |P0| = p5, hence |(HR)g ∩ HR| = p3. Then every x ∈ P0
satisfies |CHR

(x)| ≥ |(HR)g ∩ HR| = p3, a contradiction to Lemma 4.4. Therefore, 
|P0| = p2, P0 = N0 and each z ∈ N0 satisfies |CHR

(z)| ≥ |(HR)g ∩ HR| = p2. By 
Lemma 4.4, CHR

(z) = (HR)g ∩HR whenever z �= idH . Therefore, letting U = {u ∈ H :
uR ∈ Hg

R ∩HR}, we can write

CH(z) = U for all z ∈ N0, z �= idH . (7)

Let us consider the S-ring B = V (H, N0). Clearly, U ≤ Oθ(B). Fix a B-subgroup V
such that V has order p3 and U < V . Let v ∈ H \ V and T ∈ Bsets(B) be a basic 
set such that v ∈ T . By Lemma 2.18(i), vz − v ∈ V . Suppose that vz − v ∈ U for all 
z ∈ N0. This implies that T ⊆ U +v, and thus either T = U +v, or |T | ≤ p. In the latter 
case, however, it follows from |N0| = p2 that N0 contains a non-identity element z fixing 
some v ∈ T , and hence CH(z) ≥ 〈U, v〉 > U , which contradicts Eq. (7). Observe that, if 
T = U + v, then it is also a basic set of A. For otherwise, A would have a basic set of 
size p3, contradicting that A is indecomposable (see Proposition 2.14). Now, since A is 
not a V/U -wreath product, there exists v1 ∈ H \ V and x ∈ N0 for which vx1 − v1 /∈ U .

Now, define the elements v2 = vx1 − v1, v3 = vx2 − v2, and let v4 ∈ U be an element 
such that U = 〈v3, v4〉. It follows that (v1, v2, v3, v4) is a B-basis, in which

x =

⎛
⎜⎝

1 1 0 0
0 1 1 0
0 0 1 0

⎞
⎟⎠ .
0 0 0 1
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Let y ∈ N0 such that N0 = 〈x, y〉. By Eq. (7), CH(y) = U = 〈v3, v4〉, and thus y can 
be written in the basis (v1, v2, v3, v4) in the form

y =

⎛
⎜⎝

1 a b c
0 1 d e
0 0 1 0
0 0 0 1

⎞
⎟⎠ .

Using also that [x, y] = 1, we find d = a and e = 0. Thus, vy2 = v2 + dv3. On the other 
hand, v(xd)

2 = v2 + dv3 also holds, and we find v2 ∈ CH(xdy−1), where xdy−1 �= idH . 
This contradicts Eq. (7). �

All Schurian p-S-rings over Z4
p are CI [13, Theorem 3.1]. Combining this with 

Lemma 4.5 yields the following corollary (see also the proof of Lemma 2.17):

Corollary 4.6. Let A be an indecomposable Schurian p-S-ring over a group H, H ∼= Z4
p

for an odd prime p. Then Iso0(A) = Aut(H).

Everything is prepared to prove the main result of this section.

Proof of Theorem 4.1. Assume to the contrary that A is a Schurian indecomposable 
p-S-ring over H, which is not ≈2-minimal. Let G = Aut(A). By Lemma 4.5, HR � G and 
|G| ≤ p6. As A is not ≈2-minimal, |G| = p6, and there exists x ∈ G0 such that x has order 
p, and A = V (H, 〈x〉). In other words, G ≈2 K where K = 〈HR, x〉. Note that G = K(2). 
Let u ∈ CH(x). Then uR ∈ Z(K), and by Proposition 2.1, uR ∈ Z(K(2)) = Z(G), 
implying that u ∈ CH(y) for any y ∈ G0. We obtain that CH(x) ≤ CH(y) for all y ∈ G0. 
Also, as A = V (H, 〈x〉), every basic set of A has size at most p. Suppose for the moment 
that |CH(x)| = p2. Let T be a basic set of size p and fix an element v ∈ T . Clearly, 
T �⊂ CH(x). Also, since T is a G0-orbit and |G0| = p2, we find that G0∩Gv is nontrivial. 
Hence if y ∈ G0 ∩Gv and y �= idH , then CH(y) = 〈CH(x), v〉, contradicting Lemma 4.4. 
It remains to consider the case when |CH(x)| = p. Equivalently, rank(x −I) = 3, and this 
implies that, in a suitable basis, denoted by (v1, v2, v3, v4), x has the following Jordan 
normal form:

x =

⎛
⎜⎝

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎞
⎟⎠ .

Since x has order p, it follows that p > 3. Let T be the orbit of v1 under 〈x〉 (hence 
under G0). It is not hard to check that |T | = p and 〈T 〉 = H. Then, by Proposition 2.4, 
|G0| = p, a contradiction. This completes the proof of the theorem. �

We finish the section with a corollary of Proposition 3.3 and Theorem 4.1, which will 
be used several times in the next two sections.
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Corollary 4.7. Let A be a Schurian p-S-ring over the group H ∼= Z5
p, and let W be an 

A-subgroup of order p. If A is a non-CI-S-ring, then the S-ring AH/W is decomposable.

5. Proof of Theorem 3.5 I: the decomposable S-rings

We record all assumptions of Theorem 3.5 in the following hypothesis:

Hypothesis 5.1. A = V (H, A) is an S-ring over a group H ∼= Z5
p for some odd prime p, 

and for some subgroup A ≤ Aut(H) with |CH(A)| ≥ p2.

Our eventual goal is to show that, assuming Hypothesis 5.1, the S-ring A is CI. In 
this section, we deal with the particular case when A is decomposable.

Theorem 5.2. Assuming Hypothesis 5.1, suppose that A is decomposable. Then A is a 
CI-S-ring.

The theorem will be proved in the end of the section following four preparatory lem-
mas. In the next three lemmas we study the S-ring A described in Theorem 5.2 which 
satisfies additional conditions.

Lemma 5.3. Assuming Hypothesis 5.1, suppose that there exist A-subgroups U1, U2, W1
and W2 with |U1| = |U2| = p4, |W1| = |W2| = p, U1 �= U2, W1 �= W2 and W1 + W2 <

U1 ∩ U2, and also that the following hold:

(1) A is both a U1/W2- and a U2/W1-wreath product.
(2) Both AU1/W1 and AU2/W2 are indecomposable.
(3) |Av| �= 1 for some v ∈ H \ U1 ∪ U2.

Then one of the following possibilities holds:

(i) |NAut(A)(HR)| = p8, and there exists an A-subgroup U3 such that |U3| = p4, U3 �= Ui

for i ∈ {1, 2}, and every basic set of A not contained in U1 ∪ U2 ∪ U3 is equal to a 
(U1 ∩ U2)-coset.

(ii) |NAut(A)(HR)| = p9, and every basic set of A not contained in U1 ∪U2 is equal to a 
(U1 ∩ U2)-coset.

Proof. We let N = NAut(A)(HR), W = W1 + W2 and U = U1 ∩ U2. Note that A =
V (H, N0), where N0 denotes the stabilizer of 0 in N . Also notice that, wγ = w for 
all w ∈ W and γ ∈ N0. Fix a non-identity element x ∈ Av, and some u1 ∈ U1 \ U

which is not fixed by x. Then there exists an integer k such that ku1 + v ∈ U2. Since 
v /∈ U1, it follows that ku1 + v /∈ U . We define the elements v1 = ku1, v2 = ku1 + v and 
v3 = vx1 −v1. We find that vx2 = v2+v3. For i ∈ {1, 2}, let Ti = vAi , the A-orbit containing 
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vi (in other words, Ti is the basic set of A that contains vi). Note that, since AUi/Wi

is indecomposable, it follows that rad(Ti) = Wi for both i = 1, 2. Since v3 = vxi − vi, 
it follows that v3 ∈ Ti − Ti, hence v3 ∈ Ui. We conclude that v3 ∈ U1 ∩ U2. Suppose 
that v3 ∈ W . Fix i ∈ {1, 2}. Then both vi and vxi are in Ti ∩ 〈v3〉 + vi. Notice that 
vx1 �= v1 because v1 = ku1 and u1 was chosen so that it is not fixed by x. Thus v3 �= 0, 
and so vx2 �= v2 also holds. We get |Ti ∩ 〈v3〉 + v1| > 1, and this together with Eq. (2)
shows that |Ti ∩ 〈v3〉 + v′| = p for all v′ ∈ Ti, implying that 〈v3〉 ≤ rad(Ti). It follows 
that 〈v3〉 ≤ rad(T1) ∩ rad(T2) = W1 ∩ W2, contradicting that v3 �= 0. We obtain that 
v3 ∈ (U1 ∩ U2) \W .

Next, assume for the moment that vx3 − v3 ∈ W1. Let us consider the automorphism 
xU1/W1 . First, as vx1 − v1 = v3 /∈ W1, we see that xU1/W1 is not the identity mapping. 
On the other hand, xU1/W1 fixes W/W1 pointwise and fixes also the element W1 + v3

(here W1 + v3 is regarded as an element of the group U1/W1). By all these we find 
|CU1/W1(xU1/W1)| = p2, which implies that AU1/W1 is a nontrivial generalized wreath 
product, a contradiction to the assumption given in (2). We conclude that vx3 −v3 /∈ W1.

Notice that, there is a symmetry between the conditions satisfied by the pairs (U1, W1)
and (U2, W2). Therefore, any statement, which involves the subgroups U1, U2, W1

and W2, and which can be derived from these conditions, gives always rise to yet 
another statement that is obtained by replacing U1 with U2 and W1 with W2. In 
what follows, we will refer to the new statement as the dual counterpart. For in-
stance, the statement vx3 − v3 /∈ W1 has dual counterpart: vx3 − v3 /∈ W2. Now, as 
vx3 − v3 /∈ W1 ∪W2, we can choose non-zero elements v4 ∈ W1 and v5 ∈ W2 such that 
vx3 = v3 + v4 + v5.

Now, it follows from the above construction that (v1, v2, v3, v4, v5) is an A-basis. In 
this basis, the automorphism x is represented by the matrix as shown in Eq. (8).

x =

⎛
⎜⎜⎜⎝

1 0 1 0 0
0 1 1 0 0
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ y1 =

⎛
⎜⎜⎜⎝

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ y2 =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ (8)

Furthermore, it is straightforward to check that each of y1 and y2, defined in 
Eq. (8), acts on H as an automorphism of A, and therefore, it belongs to N0. Let 
M = 〈x, y1, y2〉. Clearly, M ≤ N0, and for i ∈ {1, 2}, the basic set Ti is equal to the 
orbit vMi .

Now, let z ∈ N0 ∩ Nv1 . For i ∈ {1, 2}, let us consider the automorphism zUi/Wi ∈
Aut(AUi/Wi

)0. The latter group is generated by the element xUi/Wi , and we find 
zUi/Wi ∈

〈
xUi/Wi

〉
. Moreover, as vz1 = v1, it follows that zU1/W1 is the identity mapping. 

All these yield that z can be written in the following form:
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z =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 a a(a− 1)/2 b
0 0 1 a 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ , a, b ∈ GF (p). (9)

This shows that |N0 ∩Nv1 | ≤ p2, and therefore, |N | = p8 or p9.
Fix an element v′ = kv1 + v2 for some k ∈ {1, . . . , p − 1}, and let T be the basic set 

of A that contains v′. Since A = V (H, N0) we can write T = (v′)N0 . It follows from 
Eqs. (8) and (9) that W + v′ ⊆ T ⊆ U + v′. This together with Lemma 2.14 yields that 
T = W + v′ or T = U + v′. By Eq. (8), (v′)x = kv1 + kv3 + v2 + v3 = v′ + (k + 1)v3.

Assume at first that k �= p − 1. Then (v′)x /∈ v′ + W , and hence T = U + v′. The 
latter condition together with Theorem 2.9 yields that every basic set of A contained in 
〈U, v′〉 \ U is equal to a U -coset.

If |N | = p8, then M = N0, vN0
3 = v3 + 〈v4 +v5〉, and this with the previous paragraph 

implies that (i) holds with U3 = 〈U, −v1 + v2〉. Finally, suppose that |N | = p9. Then 
for z with a = 1 and b = 0 in Eq. (9), we find (−v1 + v2)z = −v1 + v2 + v3, thus 
(−v1 + v2)N0 = U + (−v1 + v2), and (ii) follows. �
Lemma 5.4. With the notation of Lemma 5.3, the S-ring A is CI.

Proof. We keep all notations from the previous proof, and let, in addition, W3 = 〈v4+v5〉. 
Let f ∈ Iso0(A) such that f fixes all elements vi with i �= 2, and also −v2. Recall that, 
(v1, . . . , v5) is the A-basis defined in the proof of Lemma 5.3. We settle the lemma by 
showing that T f = T for all basic sets T ∈ Bsets(A). This will be done in five steps.

Claim (a). T f = T for all T ∈ Bsets(A), T ⊂ U1 ∪ U2.

This is trivial for the basic sets {v4} and {v5}, and hence Claim (a) follows for all basic 
sets T ⊂ W = 〈v4, v5〉. Let N = NAut(A)(HR). It follows from the proof of Lemma 5.3
that any basic set T ⊂ U \ W is in the form T = k(W3 + v3 + w) for some w ∈ W

and some k ∈ {1, . . . , p − 1} if |N | = p8; whereas in the form T = k(W + v3) for some 
k ∈ {1, . . . , p − 1} if |N | = p9.

Assume that |N | = p8. As both W3 + v3 and {w} are basic sets, we can write (W3 +
v3 +w)f = (W3 + v3)f +wf = W f

3 + vf3 +wf = W3 + v3 +w, where the second equality 
follows by Lemma 2.10(ii). Now, this together with Lemma 2.12(i) yields T f = T in the 
case when |N | = p8. Similarly, (W + v3)f = W + v3, and this with Lemma 2.12(i) yields 
T f = T if |N | = p9.

Next, let us consider the isomorphism fU1/W1 . Since AU1/W1 is indecomposable, 
fU1/W1 ∈ Aut(U1/W1), see Lemma 2.17. This together with the fact that f fixes point-
wise a generating set of U1 shows that fU1/W1 is the identity mapping. Using this and that 
AU1 is a U1/W1-wreath product, we deduce that T f = T for all basic sets T ⊂ U1 \ U . 
Observe that, the latter statement has dual counterpart: T f = T for all basic sets 
T ⊂ U2 \ U . This completes the proof of Claim (a).
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Claim (b). There exist an integer k and a function F2 : U2 → {0, 1, . . . , p − 1} such that

(v1 + u)f = v1 + uxk

+ F2(u)v5 for all u ∈ U2. (10)

The S-ring AH/U = Q H/U . From this and the fact that f fixes a basis of H, we 
deduce that fH/U is the identity mapping, and therefore, f maps every U -coset to itself. 
In particular, it fixes the coset U2 + v1. Let f̃ denote the permutation of U2 + v1 induced 
by the action of f on U2 + v1. Choose an arbitrary basic set T ∈ Bsets(AU2), and let Σ
be the subdigraph of Cay(H, T ) induced by the set U2 + v1. By Claim (a), T f = T , and 
this in turn implies that f ∈ Aut(Cay(H, T )), and f̃ ∈ Aut(Σ). It is straightforward to 
check that (v1)R is an isomorphism between Cay(U2, T ) and Σ. This implies that

(v1)Rf̃(−v1)R ∈ Aut(Cay(U2, T )). (11)

We set g for (v1)Rf̃(−v1)R. As T ∈ Bsets(AU2) was chosen arbitrarily, by definition, 
g ∈ Aut(AU2). Furthermore, 0g = 0(v1)Rf̃(−v1)R = 0. We have already shown that 
Aut(AU2/W2)0 =

〈
xU2/W2

〉
, and thus we can write gU2/W2 = (xk)U2/W2 for some integer 

k. This allows us to define the function F2 : U2 → {0, 1, . . . , p − 1}, by letting F2(u)v5 =
ug − uxk for each u ∈ U2. Then, uxk + F2(u)v5 = ug = u(v1)Rf̃(−v1)R = (u + v1)f − v1, 
and Claim (b) follows.

Recall that N = NAut(A)(HR).

Claim (c). Suppose that |N | = p8. Then for any u, u′ ∈ U2 with u − u′ ∈ U , F2(u) =
F2(u′).

Suppose that u, u′ ∈ U2 such that u − u′ ∈ U . Recall that g ∈ Aut(AU2) and g fixes 
every U -coset. Let us consider the automorphism gU2/W3 . It can be easily seen from the 
proof of Lemma 5.3(i) that AU/W3 = Q U/W3. By repeating the argument used to derive 
Eq. (11), we obtain that gU2/W3 acts on the coset (U + u)/W3 = (U/W3) + (W3 + u) as 
a translation by some element from U/W3. This implies that, ug − u + u′ − (u′) g ∈ W3. 
It follows from Eq. (8) that uxk − u + u′ − (u′) xk ∈ W3 also holds, and by the definition 
of F2 we can write

(F2(u) − F2(u′))v5 = ug − uxk − (u′)g + (u′)x
k ∈ W3.

On the other hand, 〈v5〉 ∩W3 = {0}, and this yields Claim (c).

We turn next to the action of f on the coset U1−v2. Notice that, the arguments given 
in (b) and (c) can be repeated after one replaces U2 with U1, W2 with W1, v1 with −v2, 
and w5 with w4. This gives rise to the following analogous statements:

Claim (d). Suppose that |N | = p8. Then there exist an integer l and a function F1 : U1 →
{0, 1, . . . , p − 1} such that
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(−v2 + u)f = −v2 + uxl

+ F1(u)v4 for all u ∈ U1. (12)

Moreover, if u, u′ ∈ U1 with u − u′ ∈ U , then F1(u) = F1(u′).

We are ready to handle the remaining basic sets of A.

Claim (e). T f = T for all T ∈ Bsets(A).

In view of Claim (a), we can assume that T �⊂ U1 ∪ U2. If |N | = p9, then T is equal 
to a U -coset, see Lemma 5.3(ii). Using this and that f maps every U -coset to itself, 
Claim (e) follows at once if |N | = p9.

In the rest of the proof it will be assumed that |N | = p8. Let us consider the coefficient 
of v3 in the linear combination of (v1 − v2)f with respect to the basis (v1, . . . , v5). By 
Eq. (10), (v1 − v2)f = v1 − (v2)x

k + F2(−v2)v5. Thus the required coefficient is equal 
to the coefficient of v3 in −(v2)x

k , which can be computed directly using Eq. (8) to be 
equal to −k. On the other hand, by Eq. (12), (v1 − v2)f = −v2 +(v1)x

l +F1(v1)v4. Thus 
the required coefficient is equal to the coefficient of v3 in (v1)x

l , which can be computed 
directly using Eq. (8) to be equal to l. We conclude that l = −k.

Next, let us consider the element w = (v1 − v2 + v3)f − (v1 − v2)f . Using Eq. (10) and 
Claim (c), we find

w = v1 + (−v2)x
k

+ vx
k

3 + F2(−v2 + v3)v5 −
(
v1 + (−v2)x

k

+ F2(−v2)v5
)

= vx
k

3 = v3 + kv4 + kv5.

On the other hand, using Eq. (12), the fact that l = −k and Claim (d), we find

w = −v2 + (v1)x
−k

+ vx
−k

3 + F1(v1 + v3)v4 −
(
− v2 + (v1)x

−k

+ F1(v1)v4
)

= vx
−k

3 = v3 − kv4 − kv5.

We conclude that k = 0.
Let U3 = 〈U, v1 − v2〉. We have shown in the proof of Lemma 5.3(i) that all basic sets 

of A not contained in U1 ∪ U2 ∪ U3 are U -cosets, and all basic sets contained in U3 \ U
are W -cosets. Combining this with the fact that f maps every U -coset to itself, we get 
that Claim (e) holds whenever T �⊂ U1 ∪ U2 ∪ U3. It remains to check whether the basic 
sets contained in U3 \U are fixed by f . By Theorem 2.9, these basic sets are in the form 
T (k) = kT = {ku : u ∈ T}, where k ∈ {1, . . . , p − 1} and T ⊂ U3 ∩ (U2 + v1). Then, by
Lemma 2.12(i), we are done if we show that T f = T . Since T ⊂ U2 + v1, there exists 
some u ∈ U2 such that T = W + v1 + u. Now, applying Eq. (10) and using that k = 0, 
we finally get

T f = W + (v1 + u)f = W + v1 + u + F2(u)v5 = W + v1 + u = T.

This completes the proof of Claim (e), and thus the proof of the lemma as well. �
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Lemma 5.5. Assuming Hypothesis 5.1, suppose that A is an U/W -wreath product, where 
|U | = p4, |W | = p and AU is indecomposable. Then the S-ring A is CI.

Proof. If |A| = p, then each basic set has size at most p, and therefore, each basic set 
T ⊂ H \ U is equal to a W -coset. This implies that AH/W = Q H/W . In particular, 
AH/W is indecomposable, and we can apply Corollary 4.7 to get that A is a CI-S-ring. 
For the rest of the proof we assume that |A| ≥ p2.

Let AU denote the group of automorphisms of U induced by restricting A to U . 
We show next that |AU | ≤ p. Assume to the contrary that |AU | > p. Since AU is 
indecomposable, it follows by Lemma 4.4 that |Oθ(A)| = p2. Fix u1, u2 ∈ Oθ(A) such 
that Oθ(A) = 〈u1, u2〉. Now, let V < U be an A-subgroup such that |V | = p3 and 
Oθ(A) < V , and fix an element u3 ∈ V \ Oθ(A). If AU is not semiregular on the orbit 
uA

3 , then it follows that |CU (z)| = p3 for any non-identity z ∈ (AU )u3 . This contradicts 
Lemma 4.4, and thus uA

3 = Oθ(A) + u3 and |AU | = p2. There exist unique elements 
x, y ∈ A that satisfy ux

3 = u1 + u3 and uy
3 = u2 + u3. Now, let u be an arbitrary element 

from U \V . Then both ux−u and uy −u are in V . Therefore, there are integer numbers 
k, l, m, k′, l′, m′ ∈ {0, 1, . . . , p − 1} for which

ux = u + ku1 + lu2 + mu3 and uy = u + k′u1 + l′u2 + m′u3.

Since |AU | = p2, the group AU is abelian, and uxy = uyx. The coefficients of u1 and 
u2, resp., have to be the same in both sides, and this results in the equalities: k + k′ =
k + k′ + m′ and l + l′ + m = l + l′, resp., which gives that m = m′ = 0. This implies 
that the orbit u〈x,y〉 = Oθ(A) + u, and therefore, rad(T ) = Oθ(A) for the basic set of A
that contains u. As u was chosen arbitrarily from U \ V , we obtain finally that AU is a 
V/Oθ(A)-wreath product. This contradicts the assumption that AU is indecomposable, 
and by this we have proved that |AU | ≤ p.

Let us fix T1 ∈ Bsets(A) such that T1 ⊂ H \U and | rad(T1)| is the smallest among all 
| rad(T )| where T runs over the basic sets T ∈ Bsets(A), T ⊂ H \U . Now, let (v1 . . . , v5)
be an A-basis such that vi ∈ U for all i < 5 and v5 ∈ T1. Let f ∈ Iso0(A) such that f
fixes vi for all i ∈ {1, . . . , 5}. We settle the lemma by showing that T f = T for all basic 
sets T ∈ Bsets(A).

Since f fixes all vi and U = 〈v1, . . . , v4〉, the A-subgroup U is mapped to itself by f . 
Then fU is a normalized isomorphism of AU . Since AU is indecomposable, by Corol-
lary 4.6, fU ∈ Aut(U), which implies that fU is the identity mapping. In particular, 
T f = T for all basic sets T ⊂ U .

Now, we turn to the basic sets contained in H \ U . Let

V =
⋂

T∈Bsets(A), T⊂H\U
rad(T ).

Let us consider the S-ring AH/V . Since V ≤ U and f fixes U pointwise, we get V f = V , 
and thus fH/V ∈ Iso0(AH/V ) (see Proposition 2.10(iii)). We finish the proof by showing 
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that fH/V = idH/V . Indeed, then any basic set T ⊂ H \ U satisfies (T + V )f = T + V , 
and since V ≤ rad(T ), it follows by Lemma 2.12(ii) that T f = T .

Case 1. |A| = p2.

Let V1 = rad(T1). Clearly, V ≤ V1. We show at first that we may choose v5 such that

T1 = V1 + v5 and V = V1. (13)

Since |AU | ≤ p, there exists x ∈ A such that CH(x) = U . Then the 〈x〉-orbits not 
contained in U coincide with the cosets of a subgroup W ′ < H of order p. Let T be 
a basic set of A outside U . It follows that T + W + W ′ = T . On the other hand, as 
|A| = p2, |T | ≤ p2. Thus if W �= W ′, then T is equal to a coset of W + W ′, and this 
implies that Eq. (13) holds. Let W ′ = W . Let A = 〈x, y〉. Let us consider the S-ring 
AH/W . It follows that AH/W = V (H/W, 〈yH/W 〉), where yH/W is the automorphism 
of H/W induced by the action of y on H/W . In view of Corollary 4.7 we may assume 
that AH/W is decomposable. This implies that any 〈yH/W 〉-orbit is contained in a coset 
of a fixed subgroup of H/W of order p. It is not hard to show that this implies that 
|CH/W (yH/W )| = p3. Let U ′ be the unique subgroup of H that contains W and for which 
U ′/W = CH/W (yH/W ).

Suppose at first that U ′ = U . Then, any 〈y〉-orbit in U is contained in a W -coset, 
and hence |CU (y)| ≥ p3. On the other hand, AU indecomposable, and it follows from 
Lemma 4.4 that y acts as the identity on U . Hence, CH(y) = U , and so CH(A) = U . 
This shows that any basic set T ⊂ H \ U is equal to a V -coset, in particular, Eq. (13)
follows.

Next, suppose that U ′ �= U , and choose an element v ∈ U ′ \ U . Then the basic 
set T (v) containing v is equal to the coset W + v. Thus, | rad(T (v))| = p, which is 
clearly minimal among all orders | rad(T )|, T ⊂ H \U . Then choosing v5 to be v, we get 
T1 = T (v) = W + v5 and also W = V1 = V , that is, Eq. (13) holds also in this case.

Let U ′′ = 〈V, v5〉. The group H/V decomposes to the internal direct sum H/V =
Ū + Ū ′′, where both factors Ū = U/V and Ū ′′ = U ′′/V are AH/V -subgroups. To simplify 
notation, we write v̄ for the coset V + v, where v is any element in H, and S̄ for the 
set S/V ⊆ H/V , where S ⊆ H. Notice that, fH/V fixes pointwise both Ū and Ū ′′. Let 
v̄ ∈ H/V be an arbitrary element. Then, Ū + v̄ = Ū + ū′′ for some ū′′ ∈ Ū ′′, and we can 
write

Ū + v̄f
H/V

= (Ū + v̄)f
H/V

= (Ū + ū′′)f
H/V

= Ū + ū′′ = Ū + v̄.

Similarly, Ū ′′ + v̄ = Ū ′′ + ū for some ū ∈ Ū , and hence

Ū ′′ + v̄f
H/V

= (Ū ′′ + v̄)f
H/V

= (Ū ′′ + ū)f
H/V

= Ū ′′ + ū = Ū ′′ + v̄.

Therefore, v̄fH/V − v̄ ∈ Ū ∩ Ū ′′ = {0̄}, and fH/V = idH/V , as claimed.
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Case 2. |A| ≥ p3.

Let K denote the kernel of A acting on the set U . Since |AU | ≤ p, |K| ≥ p2. Since 
K ≤ Aut(H) and each element of K fixes U pointwise, there exists a subgroup V ′ ≤ U

such that |V ′| = |K| ≥ p2, and the K-orbits not contained in U are equal to the V ′-cosets 
not contained in U . Note that, V ≥ V ′, and thus |V1| ≥ |V | ≥ p2, where V1 = rad(T1).

Suppose at first that T1 �= V1 + v5. By Proposition 2.4, |T1| = p3, which implies that 
|V1| = p2, and hence V = V1. Also, the S-ring AH/V is an exceptional S-ring over the 
group H/V , and it follows that fH/V ∈ Aut(H/V ). Since f fixes all generators vi, it 
follows that fH/V = idH/V .

Now, suppose that T1 = V1 + v5. It is sufficient to show that V = V1. Then the 
conditions in Eq. (13) hold, and fH/V = idH/V follows as in Case 1. Since V ≤ V1, |V | ≥
p2 and |V1| ≤ p3, the equality V = V1 follows if |V1| = p2. We are left with the case 
when |V1| = p3. Then, for each basis set T ⊂ H \ U , | rad(T )| = p3, implying that T
is a coset of a subgroup that contains V . Assume to the contrary that V �= V1. Then 
|H/V | = p3, and AH/V has two basic sets which are cosets of distinct subgroups of order 
p. Since |H/V | = p3, the S-ring AH/V is Cayley isomorphic to one of the S-rings given 
in Table 1. A quick look at the table shows that none of these S-rings has two basic sets 
which are cosets of distinct subgroups of order p. Therefore, V = V1, and this completes 
the proof of the lemma. �

Before we prove Theorem 5.2, one more technical lemma is needed.

Lemma 5.6. Assuming Hypothesis 5.1, suppose that A is a U/W -wreath product, where 
|U | = p4 and |W | = p. Furthermore, let V be an A-subgroup such that W < V <

U, |V | = p3 and |Oθ(A) ∩ V | ≥ p2, and let f ∈ Iso0(A). Then there exists ϕ ∈ Aut(H)
such that fϕ maps each of U and W to itself, and the following conditions hold:

(i) T fϕ/W = T/W for all T ∈ Bsets(A).
(ii) T fϕ = T for all T ∈ Bsets(A) with T ⊂ V ∪ (H \ U).
(iii) If either V ⊆ Oθ(A), or each basic set of A contained in V \ Oθ(A) is equal to a 

W -coset, then fϕ fixes pointwise V .

Proof. Let us fix five elements of H as follows:

v5 ∈ W \ {0}, v4 ∈ (V ∩ Oθ(A)) \W, v3 ∈ V \ 〈v4, v5〉, v2 ∈ U \ V and v1 ∈ H \ U.

Clearly, (v1, . . . , v5) is an A-basis. Let ϕ1 ∈ Aut(H) be the automorphism defined by 
ϕ : vfi �→ vi, i ∈ {1, . . . , 5}, and let f1 = fϕ. It follows that f1 ∈ Iso0(A), and f1 fixes all 
vi. In particular, W f1 = W , and thus fH/W

1 ∈ Iso0(AH/W ).
The S-ring AH/W is a CI-S-ring. Therefore, there exists some φ ∈ Aut(H/W ) such that 

T f1/W = (T/W )φ for all T ∈ Bsets(A). Let φ1 ∈ Aut(H) such that φ1 fixes W pointwise, 
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and φH/W
1 = φ. Then we have W+vφ1

4 = (W+v4)φ
H/W
1 = (W+v4)φ = W+vf1

4 = W+v4. 
Thus, vφ1

4 = v4 + w for some w ∈ W . Now, let φ2 ∈ Aut(H) be defined by

φ2 : vi �→
{
vi if i = 1, 2, 3, 5,
vi − w if i = 4,

and let ϕ2 = φ1φ2. It follows that ϕ2 satisfies the following:

(a) uϕ2 = u for all u ∈ 〈v4, v5〉,
(b) ϕ

H/W
2 = φ.

Let T1 ∈ Bsets(A) such that v3 ∈ T1. Then T1 = X + v3 for some subgroup X ≤
〈v4, v5〉, and we find T f1

1 = Xf1 + vf1
3 = X + v3 = T1. Thus, Tϕ2

1 /W = (T1/W )ϕ
H/W
2 =

(T1/W )φ = T f1
1 /W = T1/W . This gives Tϕ2

1 +W = T1 +W , and thus Tϕ−1
2

1 is contained 
in the coset T1 +W = X+W +v3. On the other hand, Xϕ2 = X follows by (a), implying 

that Tϕ−1
2

1 = X + v
ϕ−1

2
3 . This with the previous observation yields that Tϕ−1

2
1 = T1 + w1

for some w1 ∈ W . Now, we define ϕ3 ∈ Aut(H) by letting

ϕ3 : vi �→

⎧⎪⎪⎨
⎪⎪⎩
vi if i = 1, 2, 4, 5,
v3 + w1 if i = 3 and X �= W,

v
ϕ−1

2
3 if i = 3 and X = W.

Let ϕ = ϕ1ϕ
−1
2 ϕ−1

3 . Then fϕ = f1ϕ
−1
2 ϕ−1

3 . It is easily seen that f1 maps each of U
and W to itself. The condition that ϕ2 maps W to itself follows from (a) and the fact that 
W = 〈v5〉. Then, W ≤ Uϕ2 , and for Uϕ2 = U it is enough to show that Uϕ2/W = U/W . 
This follows along the line: Uϕ2/W = (U/W )ϕ

H/W
2 = (U/W )φ = Uf1/W = U/W . The 

definition of ϕ3 shows that it also maps U and W to itself, and therefore, we obtain that 
fϕ maps each of U and W to itself. We finish the proof by showing that all conditions 
(i)–(iii) hold for fϕ.

(i): Recall that f1 = fϕ1. It follows from (b) that T f1ϕ
−1
2 /W = T/W for all T ∈

Bsets(A). We claim that (W + vi)ϕ3 = W + vi for all i ∈ {1, . . . , 5}. This is obvious if 
i �= 3, or i = 3 and X �= W . Let i = 3 and X = W . Then T1 = W + v3, and since 

T f1
1 = T1, it follows that Tϕ2

1 /W = T f1
1 /W = T1/W , implying that W + v

ϕ−1
2

3 = W + v3. 
Therefore, (W + v3)ϕ3 = Wϕ3 + vϕ3

3 = W + v
ϕ−1

2
3 = W + v3. Since H = 〈v1, . . . , v5〉, it 

follows that (W +x)ϕ3 = W +x for all x ∈ H. Consequently, T fϕ/W = T f1ϕ
−1
2 ϕ−1

3 /W =
Tϕ−1

3 /W = T/W for all T ∈ Bsets(A), and (i) follows.

(ii): Let T be an arbitrary basic set of A. Note that, if W ≤ rad(T ), then using that 
fϕ maps W to itself, we can write W + T fϕ = (W + T )fϕ = T fϕ. Combining this with 
(i) yields T fϕ = T fϕ + W = T + W = T . In particular, (ii) holds whenever T ⊂ H \ U
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or T = T1 and W = X. Also, by (a) and the definition of ϕ3, fϕ fixes pointwise 〈v4, v5〉, 
and this gives that (ii) also holds when T ⊂ 〈v4, v4〉. It remains to consider the case 
when T ⊂ V \ 〈v4, v5〉. Observe that, T can be written in the form T = kT1 + v for some 
k ∈ {1, . . . , p − 1} and some v ∈ 〈v4, v5〉. In view of Eq. (1) and Theorem 2.9, in order 
to prove T fϕ = T it is sufficient to show that T fϕ

1 = T1. We have already shown above 
that this holds if X = W . If X �= W , then the statement follows along the following line:

T fϕ
1 = T

f1ϕ
−1
2 ϕ−1

3
1 = T

ϕ−1
2 ϕ−1

3
1 = (T1 + w1)ϕ

−1
3 = (X + v3 + w1)ϕ

−1
3 = X + v3 = T1.

(iii): Since V = 〈v3, v4, v5〉, we are done if we show that vfϕi = vi for all i ∈ {3, 4, 5}. 
Using that fϕ = f1ϕ

−1
2 ϕ−1

3 and all vi are fixed by f1, it reduces to show that vϕ
−1
2 ϕ−1

3
i = vi

for all i ∈ {3, 4, 5}. This follows immediately from (a) and the definition of ϕ3 if i = 4
or i = 5. The condition V ⊂ Oθ(A) is equivalent to T1 = {v3}, and therefore, T1 = {v3}
or T1 = W + v3. Now, recall that Tϕ−1

2
1 = T1 + w1. This shows that, if T1 = {v3}, then 

v
ϕ−1

2
3 = v3 + w1, and so vϕ

−1
2 ϕ−1

3
3 = (v3 + w1)ϕ

−1
3 = v3. Finally, if T1 = W + v3, then 

vϕ3
3 = v

ϕ−1
2

3 , that is, vϕ
−1
2 ϕ−1

3
3 = v3. �

Everything is prepared to settle the main result of the section.

Proof of Theorem 5.2. Since A is decomposable, it is a U/W -wreath product where 
W < U, |W | = p and |U | = p4. Furthermore, we may assume because of Lemma 5.5 that 
AU is a V/X-wreath product where X < V < U, |X| = p and |V | = p3.

Let f ∈ Iso0(A). We have to show that there exists some ϕ ∈ Aut(H) such that 
T fϕ = T for all basic sets T ∈ Bsets(A). By Lemma 5.6(i)–(ii), there exists some 
ϕ1 ∈ Aut(H) such that f1 = fϕ1 satisfies

T f1/W = T/W for all T ∈ Bsets(A), (14)

and

T f1 = T for all T ∈ Bsets(A) with T ⊂ V ∪H \ U. (15)

Now, if W ≤ rad(T ) for every basic set T ⊂ V \U , then Eq. (14) and Lemma 2.12(ii) 
imply that T f1 = T also holds, and hence we are done by letting ϕ = ϕ1. For the rest 
of the proof it will be assumed that there exists some basic set T1 ⊂ U \ V such that 
W �≤ rad(T1). Note that, this implies that |T1| = p or |T1| = p2. We consider below the 
two cases separately. For the rest of the proof u1 will be a fixed element in T1.

Case 1. |T1| = p.

In this case T1 = X + u1. Since W �≤ rad(T1), it follows that X �= W . Since X < V , 
by Eq. (15), Xf1 = X, and thus T f1

1 = Xf1 +uf1
1 = X +uf1

1 . Using this and Eq. (14), we 
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conclude that T f1
1 +W = T1+W , implying that T f1

1 is contained in the coset X+W+u1. 
Thus, T f1

1 = T1+w1 for some w1 ∈ W . Choose an automorphism ϕ2 ∈ Aut(H) satisfying 
the following:

ϕ2 : u1 �→ u1 − w1, |CH(ϕ2)| = p4 and CH(ϕ2) ∩ U = V.

Let f2 = f1ϕ2. It is not hard to show that f2 satisfies both Eqs. (14) and (15). We 
show below that T f2 = T also holds for each T ∈ Bsets(A) with T ⊆ U \V , and therefore, 
we will be done by letting ϕ = ϕ1ϕ2.

First, T f2
1 = (T1 + w1)ϕ2 = (X + u1 + w1)ϕ2 = T1. Let us consider the S-ring AU/X

and its isomorphism fU/X
2 . Note that, the latter isomorphism belongs to Iso0(AU/X)

because f2 maps each of U and X to itself. The group U/X can be written as the 
internal direct sum V/X + 〈X, u1〉/X where both subgroups V/X and 〈X, u〉/X are 
AU/X -subgroups. By Lemma 2.8, AU/X = AV/X ⊗ A〈X,u1〉/X . Also, fU/X

2 fixes every 
basic set T ′ ∈ Bsets(AU/X) if T ′ ⊂ V/X or T ′ ⊂ 〈X, u1〉/X. This together with AU/X =
AV/X ⊗ A〈X,u1〉/X yields that fU/X

2 fixes all basic sets of AU/X . Then, using also that 
AU is a V/X-wreath product, we conclude f2 fixes all basic sets of A contained in U \V , 
as required.

Case 2. |T1| = p2.

Assume for the moment that T1 is equal to a coset X ′ + u1 for some subgroup X ′ <

V, |X ′| = p2, and |W ∩X ′| = 1. It follows from Eq. (14) that T f1
1 = T1 + w1 for some 

w1 ∈ W . Repeating the argument used in Case 1, we find ϕ2 ∈ Aut(H) such that 
f2 = f1ϕ2 satisfies both Eqs. (14) and (15), and also T f2

1 = T1. Now, if T ∈ Bsets(A)
is an arbitrary basic set such that T ⊂ U \ V , then it can be written in the form 
T = k(T1 +w2) for some k ∈ {1, . . . , p −1} and some w2 ∈ W . In view of Lemma 2.12(i), 
T f2 = T follows because (T1 +w2)f2 = T f2

1 +wf2
2 = T1 +w2. All these show that we are 

done by choosing ϕ = ϕ1ϕ2.
For the rest of the proof it will be assumed that T1 is not a coset. Equivalently, AU/X

is an exceptional S-ring. This implies that any basic set in U \ V generates U , and 
therefore, V is the only A-subgroup of order p3 contained in U . This fact will be used 
later. Also, as AU/X is exceptional, we have rad(T1) = X. Using also that W �≤ rad(T1), 
we obtain that W �= X.

By Corollary 4.7, the S-ring AH/W must be decomposable. Equivalently, there exist 
A-subgroups Y and U ′ such that W < Y < U ′, |Y | = p2 and |U ′| = p4, and AH/W is a 
(U ′/W )/(Y/W )-wreath product.

Case 2.1. U ′ = U .
Assume that Y = W +X. In this case A is a U/X-wreath product, and we can finish 

this case by replacing first W with X, and then apply the argument used right after 
Eq. (15).
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Now, suppose that Y �= W+X. Since W < Y , this gives X∩Y = {0} and |X+Y | = p3. 
Then Y < U ′ = U . We obtain that X + Y is an A-subgroup of order p3 contained in U . 
As it was noted above, this forces that X+Y = V , in particular, Y < V . It follows that, 
either V ⊆ Oθ(A), or any basic set contained in V \ (W + X) is equal to a W -coset. 
By Lemma 5.6(iii), f1 fixes pointwise V . Let us consider fU/X

1 , the isomorphism of 
AU/X induced by f1 acting on U/X. Then, fU/X

1 ∈ Iso0(AU/X), and since AU/X is 
exceptional, fU/X

1 ∈ Aut(U/X), see Lemma 2.17. Also, as f1 fixes pointwise V , fU/X
1

centralizes V/X. This implies that fU/X
1 acts on U/X \ V/X as a translation by some 

element X + v where v ∈ V . In particular, T f1
1 /X = (T1 + v)/X, and thus T f1

1 + X =
T1 + v + X. Since X ≤ rad(T1), it follows that X = Xf1 ≤ rad(T f1

1 ), and we can write 
T f1

1 = T f1
1 +X = T1 + v+X = T1 + v. Using also that |X ∩Y | = 1, we can further write 

T1 + v = T1 + v′ for some v′ ∈ Y . Then choose an automorphism ϕ2 ∈ Aut(H) such that

uϕ2
1 = u1 − v′, |CH(ϕ2)| = p4 and CH(ϕ2) ∩ U = V.

Recall that u1 is the fixed element in T1. Let f2 = f1ϕ2. Using that v′ ∈ Y and Y ≤
rad(T ) for all T ∈ Bsets(A) with T ⊂ H \ U , it is not hard to show that f2 satisfies 
Eq. (15). Also, T f2

1 = (T1 + v′)ϕ2 = T1. Finally, let T ∈ Bsets(A) be an arbitrary basic 
set such that T ⊂ U \V . Then, T can be written in the form T = T1 +w2, w2 ∈ W , and 
thus we can write T f2 = T f2

1 + wf2
2 = T1 + w2 = T . All these show that we are done by 

choosing ϕ = ϕ1ϕ2.

Case 2.2. U ′ �= U .
Recall that, V is the only A-subgroup of order p3 contained in U . This implies that 

U ∩U ′ = V . Let T ∈ Bsets(A) such that T �⊂ U ∪U ′. Since A is a U/W -wreath product 
and AH/W is a (U ′/W )/(Y/W )-wreath product, it follows that Y ≤ rad(T ) ≤ U ∩U ′ =
V .

Suppose that Y �= W +X. Then we obtain that X+Y = V and it follows that, either 
V ⊆ Oθ(A), or any basic set contained in V \ (W + X) is equal to a W -coset. We can 
repeat the above argument used in Case 2.1 and find that T f1

1 = T1 + v′ holds for some 
v′ ∈ Y . Then choose an automorphism ϕ2 ∈ Aut(H) such that

uϕ2
1 = u1 − v′, |CH(ϕ2)| = p4 and CH(ϕ2) = U ′.

It follows along the same line of reasoning as in Case 2.1 that the desired ϕ will be ϕ1ϕ2.
We are left with the case when Y = W + X. This shows that A is a U ′/X-wreath 

product. The S-ring AU ′ is a U ′/W -wreath product, and we may assume that AU ′/W

is indecomposable. Observe that, letting U1 = U, U2 = U ′, W1 = X and W2 = W , 
conditions (1) and (2) of Lemma 5.3 hold. Therefore, in view of Lemma 5.4, we may 
assume that condition (3) does not hold, that is, A acts regularly on any of its orbits 
not contained in U ∪ U ′. Now, fix an A-basis (v1, . . . , v5) as follows:

v1 ∈ U \ V, v2 ∈ U ′ \ V, v3 ∈ V \ (W + X), v4 ∈ X and v5 ∈ W.
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Then, let ψ be the automorphism of H defined by ψ : vfi �→ vi for all i ∈ {1, . . . , 5}, and 
let f3 = fψ. We finish the proof by showing that T f3 = T for all basic sets T ∈ Bsets(A). 
One can settle the equality T f3 = T for T ⊂ U ∪ U ′ by copying the argument used in 
the proof of Claim (a) in the proof of Lemma 5.4.

Now, suppose that T ∈ Bsets(A) with T ⊂ H \ (U ∪ U ′). By Lemma 2.18, T is 
contained in both a U -coset and a U ′-coset, hence it is contained in a V -coset, recall 
that V = U ∩ U ′. We claim that T is, in fact, equal to a V -coset. Assume to the 
contrary that T is properly contained in a V -coset. In particular, we have |T | ≤ p2. Let 
G = HRA, N = NAut(A)(HR), and N0 be the stabilizer of 0 in N . Then, Aut(A) = G(2)

and CHR
(A) ≤ Z(G). By Proposition 2.1, CHR

(A) ≤ Z(Aut(A)), and hence CHR
(A) ≤

CHR
(N0). The S-ring A can be expressed as A = V (H, N0) such that p2 ≤ |CH(N0)|. 

Now, we can replace A with N0, and assume, in addition, that N0 is regular on T . 
Therefore, |N0| = |T | ≤ p2. On the other hand, N0 contains two elements x and x′ such 
that CH(x) = U and x acts on the elements v ∈ H \U as the right translation vx = v+w

for a fixed nonzero w ∈ W , and CH(x′) = U ′ and x′ acts on the elements v ∈ H \ U ′

as the right translation vx = v + w′ for a fixed nonzero w′ ∈ X. It is easily seen that 
V (H, 〈x, x′〉) �= A = V (H, N0), implying that 〈x, x′〉 < N0. This, however, contradicts 
the previously obtained bound |N0| ≤ p2, and by this we have proved that T is indeed 
equal to a V -coset.

Finally, let us consider the S-ring AH/V , and the induced isomorphism fH/V
3 ∈

Iso0(AH/V ). It is easily seen that AH/V = Q (H/V ), and therefore, fH/V
3 ∈ Aut(H/V ). 

Using this and that f3 fixes all vi, i ∈ {1, . . . , 5}, we find fH/V
3 = idH/V . Thus, 

(T + V )f3 = T + V , and combining this with V ≤ rad(T ), Lemma 2.12(ii) gives that 
T f3 = T . This completes the proof of Case 2.2. �
6. Proof of Theorem 3.5 II: the indecomposable S-rings

In this section, we turn to the indecomposable S-rings in Theorem 3.5 and prove the 
following theorem:

Theorem 6.1. Assuming Hypothesis 5.1, suppose that A is indecomposable. Then A is a 
CI-S-ring.

Our main result Theorem 3.5 follows then as the consequence of Theorems 5.2 and 
6.1.

Theorem 6.1 will be proved in the end of the section after six preparatory lemmas. 
In the first two lemmas we derive some properties of indecomposable p-S-rings with thin 
radical of order at least p2.

Lemma 6.2. Let B be an indecomposable p-S-ring over a group H ∼= Z5
p such that 

|Oθ(B)| ≥ p2, and let x ∈ NAut(B)(HR) such that x �= idH and 0x = 0. Then 
|CH(x)| ≤ p3.
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Proof. Since x �= idH , it follows that CH(x) ≤ p4. Assume to the contrary that |CH(x)| =
p4. Let U = CH(x), and for a fixed v1 ∈ H \U , let W = 〈vx1 − v1〉. Then |W | = p, and it 
follows that the orbit v〈x〉 = W + v for all v ∈ H \ U . It can be shown in the same way 
as in the proof of Lemma 4.4 that neither U nor W are B-subgroups.

Let V1 ≤ Oθ(B) such that |V1| = p2 and let V2 = V1 +W . Then V1 < U, |V1 ∩W | = 1, 
and therefore |V2| = p3. Let U ′ be a B-subgroup of order p4 such that V1 < U ′. Then 
U �= U ′, and thus there exists u /∈ U ∪ U ′. Let T ∈ Bsets(B) such that u ∈ T . Then 
W + u ⊆ T , implying that W ≤ U ′. We conclude that U ∩ U ′ = V1 + W = V2.

Let xU ′ denote the restriction of x to the B-subgroup U ′. Clearly, CU ′(xU ′) = V2, and 
thus by Lemma 4.4, BU ′ is a V ′/W ′-wreath product for some B-subgroups 0 < W ′ <

V ′ < U ′, where |W ′| = p and |V ′| = p3. Let T ∈ Bsets(B) such that T ⊆ U ′ \ V ′

and T �⊂ U . Then using that T contains a W -coset and W ′ ≤ rad(T ), it follows that 
T contains a (W + W ′)-coset (recall that W ′ �= W as W is not an A-subgroup). This 
together with Proposition 2.18(ii) yields that W ≤ rad(T ) ≤ V ′, and thus W < V ′. On 
the other hand it is clear that V1 < V ′, and this with the previous observation yields 
V ′ = W + V1 = V2. In particular, V2 is a B-subgroup. Since U is not a B-subgroup, the 
S-ring BH/V2

∼= QZp � QZp, and this implies that U ′ is the only B-subgroup which has 
order p4 and contains V2. This property will be used later. Note also that,

W ′ + W ≤ rad(T ) for all T ∈ Bsets(B) such that T ⊂ U ′ \ V2. (16)

Next, let us consider the S-ring BH/V1 . Let T ∈ Bsets(B) such that T ∩ U �= ∅ and 
T �⊂ U . The latter condition implies that T contains some W -coset, and thus |T/V1| ≥ p2. 
It follows by Proposition 2.14, that T/V1 is equal to a U ′/V1 coset. It is easy to see that 
AU ′/V1

∼= QZp �QZp; and we conclude that BH/V1
∼= QZp �QZp �QZp.

Now, fix a coset U ′+v1 distinct from U ′, and let T1 ∈ Bsets(B) such that T1 ⊆ U ′+v1. 
Let T ∈ Bsets(B) be another basic set contained in U ′+v1. Since BH/V1

∼= QZp�QZp�QZp, 
it follows that both T1 ∩V1 + v1 and T ∩V1 + v1 are nonempty. Choose u1 ∈ T1 ∩V1 + v1
and u2 ∈ T ∩ V1 + v1. Then, u2 − u1 ∈ V1 ≤ Oθ(B), hence by Eq. (1), T1 + u2 − u1 =
T . Thus, rad(T ) = rad(T1), and combining this with Theorem 2.9, we conclude that 
rad(T ′) = rad(T1) for any basic set T ′ �⊂ U ′. Since B is indecomposable, it follows that 
rad(T1) is trivial. This together with Lemma 2.18(ii) yields that

|T1 ∩ V1 + v| = 1 for all v ∈ U ′ + v1. (17)

Indeed, if u1, u2 ∈ T1 ∩ V1 + v, then for W = 〈u1 − u2〉, |T1 ∩ W + u2| ≥ 2, and so 
W ≤ rad(T1), a contradiction. Thus, |T1 ∩ V1 + v| ≤ 1, and since |T1 ∩ V1 + v| ≥ 1 also 
holds, see the above paragraph, Eq. (17) follows.

By Eq. (16), we can choose a subgroup W1 < V1 which satisfies the following property: 
for all T ∈ Bsets(B), T ⊂ U ′ \ V2, either |T | = p3 or W1 ≮ rad(T ). Notice that, this 
property implies that BU ′/W1

∼= QZp �QZp �QZp.
Let us consider xH/W1 , the automorphism of H/W1 induced by x acting on H/W1. 

By Lemma 4.3, x cannot be in the kernel of Aut(B) acting on H/W1, and so 
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xH/W1 �= idH/W1 . Then, CH/W1(xH/W1) = U/W1, and thus by Lemma 4.4, BH/W1 is 
an (X/W1)/(Y/W1)-wreath product for some B-subgroups X and Y , where |X| = p4, 
|Y | = p2 and W1 < Y < X. Notice that, X ∩ U ′ is a B-subgroup of order p3. On the 
other hand, since BU ′/W1

∼= QZp �QZp �QZp, V2 is the only B-subgroup in U ′ that has 
order p3 and contains W1. Using this and that W1 < X ∩U ′, it follows that V2 = X ∩U ′. 
We have shown above that U ′ is the only B-subgroup containing V2, hence X = U ′. 
Thus, W1 < Y < U ′, and using again that BU ′/W1

∼= QZp � QZp � QZp, we can see that 
V1 is the only B-subgroup in U ′ that has order p2 and contains W1, and so Y = V1. To 
sum up, BH/W1 is an (U ′/W1)/(V1/W1)-wreath product. Recall that, T1 is a basic set 
contained in the coset U ′ + v1. Then, T1 satisfies V1/W1 < rad(T1/W1). In particular, 
for any u ∈ T1, |T1 ∩ (V1 +u)| ≥ |T1/W1 ∩ (V1 +u)/W1| = p, which, however, contradicts 
Eq. (17). This completes the proof of the lemma. �
Lemma 6.3. Let B be an indecomposable non-CI p-S-ring over a group H ∼= Z5

p such that 
|Oθ(B)| ≥ p2. Then |NAut(B)(HR)| ≥ p7.

Proof. Let N = NAut(B)(HR). Assume to the contrary that |N | < p6. Let K ≤ N be the 
subgroup given in Proposition 3.1. The stabilizer (KHR)0 ≤ N0, hence we can write

|K||HR|
|K ∩HR|

= |KHR| = |(KHR)0| · |H| ≤ p · |H|.

Since K �= HR, we can choose a non-identity element x ∈ (KHR)0. Then the above 
inequality yields |CH(x)| ≥ |K ∩ HR| ≥ |K|/p = p4. This, however, contradicts 
Lemma 6.2. �

The key step in proving Theorem 6.1 will be to show that, if A is non-CI, then 
Aut(A) ∩Aut(H) contains a subgroup L such that |L| = p2 and |CH(L)| = p3. The next 
three lemmas are devoted to the arising S-ring V (L, H).

Lemma 6.4. Assuming Hypothesis 5.1, suppose that A is indecomposable, and let L ≤
Aut(A) ∩ Aut(H) such that |L| = p2 and |CH(L)| = p3. Then the following conditions 
hold:

(i) The S-ring V (H, L) is indecomposable.
(ii) Let T be a basic set of V (H, L) such that |T | > 1. Then T is equal to an X-coset 

for some subgroup X < CH(L) of order |X| = p2.
(iii) Let T and T ′ be two basic sets of V (H, L) of size p2 for which 〈T, CH(L)〉 �=

〈T ′, CH(L)〉. Then rad(T ) �= rad(T ′).

Proof. Let N = NAut(A)(HR) and N0 be the stabilizer of 0 in N . Note that, L ≤ N0

and A = V (H, N0). Furthermore, we let B = V (H, L) and U = CH(L).
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(i): Assume to the contrary that B is a X/Y -wreath product, where X > Y, |X| = p4

and |Y | = p. Let x ∈ Aut(H) be defined by vx = v for all v ∈ X, and vx = v + v1 for all 
v ∈ H \X, where v1 ∈ Y is a fixed non-zero element. Then CH(x) = X and x ∈ Aut(B). 
Also, as L ≤ N0, B = V (H, L) ⊇ V (H, N0) = A, and thus Aut(B) ≤ Aut(A). In 
particular, x ∈ Aut(A), which contradicts Lemma 6.2.

(ii): As |L| = p2, |T | ≤ p2, and if |T | < p2, then Lv is nontrivial, where v ∈ T , and Lv

is the stabilizer of v in L. Then for x ∈ Lv, v ∈ CH(x), and thus |CH(x)| ≥ |〈U, v〉| = p4, 
which contradicts Lemma 6.2, recall that B is indecomposable. We deduce that |T | = p2. 
Note that, since there is no basic set of size p, it follows that every B-subgroup of order 
p2 must be contained in U . This fact will be used later.

Let V < H be a B-subgroup such that U < V and |V | = p4. If T ⊂ V , then it easy to 
see that T is equal to a coset of a subgroup of U of order p2, and (ii) follows.

Now, suppose that T �⊂ U . By Lemma 2.18(iii), U ∩ rad(T ) �= {0}, and thus we can 
choose W < U such that |W | = p and W ≤ rad(T ). Let us consider the S-ring BH/W . 
Then T/W is a basic set of BH/W of size |T/W | = p. Denote by LH/W the subgroup of 
Aut(BH/W ) induced by L acting on H/W . By Lemma 4.3, |LH/W | = p2. It follows from 
this and Proposition 2.4 that T/W cannot generate H/W . This together with the fact 
that W ≤ rad(T ) shows that 〈T 〉 �= H, and thus |〈T 〉| = p3 or |〈T 〉| = p4. If |〈T 〉| = p3, 
then it is easily seen that T is equal to a coset of a subgroup of U , and so (ii) follows.

Assume that 〈T 〉 = p4, and let V ′ = 〈T 〉. We show below that this case cannot occur. If 
U < V ′, then it is easy to see that T is equal to a coset of a subgroup of U , contradicting 
that 〈T 〉 = p4. Thus, |U ∩ V ′| = p2, and H can be expressed as the internal direct sum 
H = V ′ + X for some subgroup X < U, |X| = p. Note that, as X ≤ Oθ(B), it follows 
from Lemma 2.8 that B = BV ′ ⊗ BX .

Let Y = V ∩ V ′. Then Y is a B-subgroup of order p3 such that U ∩ V ′ < Y . Since 
〈T 〉 = V ′, T �⊂ Y . The radical rad(T ) �= U ∩ V ′, for otherwise, T cannot generate V ′. It 
follows that the basic sets of B contained in V ′ \ Y are in the form k(T + u) for some 
k ∈ {1, . . . , p − 1} and some u ∈ U ∩ V ′. Since W ≤ rad(T ), we obtain that BV ′ is a 
Y/W -wreath product. This implies that B = BV ′ ⊗BX is a (Y +X)/W -wreath product, 
which contradicts (i).

(iii): Assume to the contrary that rad(T ) = rad(T ′) and 〈U, T 〉 �= 〈U, T ′〉. Let X =
rad(T ), and let us consider the S-ring BH/X . By (ii), both T and T ′ are X-cosets. Since 
〈U, T 〉 �= 〈U, T ′〉, we find that the elements T/X and T ′/X generate a subgroup of H/X

of order p2, and this subgroup intersects U/X trivially. We conclude that BH/X
∼= Q Z3

p. 
Consequently, every basic set of B is contained in some X-coset. This together with (ii) 
shows that B is an U/X-wreath product, which contradicts (i). �
Lemma 6.5. With the notation of Lemma 6.4, | Aut(V (H, L))| = p8.

Proof. As in the previous lemma, we let B = V (H, L) and U = CH(L). We start with 
fixing a suitable B-basis. Fix an element v1 ∈ H \ U , and another v2 ∈ H \ 〈U, v1〉. For 
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i = 1, 2, let Ti ∈ Bsets(B) such that vi ∈ Ti. By Lemma 6.4(ii)–(iii), Ti−vi is a subgroup 
of U of order p2. It will be convenient to denote these subgroups by U∞ and U0, namely, 
we let T1 = U∞ + v1 and T2 = U0 + v2. Then |U∞ ∩ U0| = p. Let v4 ∈ U∞ ∩ U0, v4 �= 0. 
Then, there exist x, y ∈ L satisfying vx2 − v2 = vy1 − v1 = v4. Let v3 = vx1 − v1 and 
v5 = vy2−v2. We prove next that 〈v1, v2, v3, v4, v5〉 = H and 〈x, y〉 = L. For the first part it 
is enough to show that 〈v3, v4, v5〉 = U . Now, vx1 ∈ T1 = U∞+v1, hence v3 ∈ U∞. Suppose 
for the moment that v3 = kv4 for some integer k. Then (kv2)x−kv2 = kv4 = v3 = vx1−v1, 
implying that kv2−v1 is fixed by x, and hence kv2−v1 ∈ CH(x) = U , which is impossible. 
We conclude that U∞ = 〈v3, v4〉. We obtain by a similar argument that U0 = 〈v4, v5〉, 
and therefore, 〈v3, v4, v5〉 = U∞+U0 = U . For the second part, if y = xm for some integer 
m, then we can write v2 + v5 = vy2 = vx

m

2 = v2 + mv4, contradicting that 〈v4, v5〉 = U0
has order p2. Thus, 〈x, y〉 = L, as required. It is clear that (v1, . . . , v5) is a B-basis.

Let V = 〈v1, v2〉. Then H can be written as the internal direct sum H = V + U . For 
w ∈ H, let wV and wU denote the projection of w into V and U , resp. Furthermore, let 
I = GF (p) ∪ {∞}; and for i ∈ I, define the elements v̂i ∈ V , and subgroups Ui ≤ U as 
follows

v̂i =
{

v1 if i = ∞
iv1 + v2 otherwise,

Ui =
{

〈v3, v4〉 if i = ∞
〈iv3 + v4, iv4 + v5〉 otherwise.

Let G = Aut(B) and Gw be the stabilizer of an element w in G. Observe that, the 
lemma is equivalent to show that |G0| = p3. We are going to derive this in six steps.

Claim (a). The basic sets of B not contained in U are in the form

Ui + jv̂i + u, i ∈ I, j ∈ GF (p) \ {0}, u ∈ U. (18)

By definition, the basic sets in question are equal to the L-orbits wL, w ∈ H \ U , 
where L = 〈x, y〉. Now, w = jv̂i + u for some j ∈ GF (p) \ {0}, i ∈ I and u ∈ U . A 
direct computation yields that the L-orbit v̂Li = Ui + v̂i. This together with the fact that 
u ∈ CH(L) yields Claim (a).

Let Fun0(V, U) denote the set of all functions F : V → U such that F (0) = 0. For 
F ∈ Fun0(V, U), we define the permutation gF ∈ Sym(H) as follows:

wgF = w + F (wV ), w ∈ H, (19)

where wV denotes the projection of w to V (recall that, we have H = V + U).

Claim (b). For every g ∈ G0, g = gF for some F ∈ Fun0(V, U).

Since U is a B-subgroup, the set H/U form a block system for G. Let us consider 
gH/U , the permutation of H/U induced by g acting on H/U . Then, gH/U ∈ Aut(B/U). 
It is easy to see that B/U = Q H/U , and thus we get that gH/U = idH/U . Equivalently, 
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g fixes setwise every U -coset. On the other hand, by Eq. (4), g centralizes uR for all 
u ∈ U . These two facts imply Claim (b).

Claim (c). For every F ∈ Fun0(V, U), gF ∈ G0 if and only if the following conditions 
hold:

F (v + v̂i) − F (v) ∈ Ui for all v ∈ V and i ∈ I. (20)

Let F ∈ Fun0(V, U). By definition, gF ∈ G0 if and only if gF ∈ Aut(Cay(H, T )) for 
any basic set T ∈ Bsets(B). It is clear that gF centralizes uR for all u ∈ U . Hence, 
gF ∈ Aut(Cay(H, T )) whenever T ⊂ U . Now, suppose that T �⊂ U . By Claim (a), T =
Ui + jv̂i +u for some j ∈ GF (p) \{0}, i ∈ I and u ∈ U . Therefore, gF ∈ Aut(Cay(H, T ))
if and only if

(Ui + jv̂i + u + w)gF = Ui + jv̂i + u + wgF for all w ∈ H.

By Eq. (19), this reduces to

Ui + jv̂i + w + u + F (jv̂i + wV ) = Ui + jv̂i + w + u + F (wV ).

Equivalently, F (v + jv̂i) − F (v) ∈ Ui for all v ∈ V . Since,

F (v + jv̂i) − F (v) =
j∑

k=1

(
F (v + kv̂i) − F (v + (k − 1)v̂i)

)
,

it follows that F (v + jv̂i) − F (v) ∈ Ui for all v ∈ V if and only if F (v + v̂i) − F (v) ∈
Ui for all v ∈ V , and Eq. (20) follows.

Claim (d). If i, j, k ∈ I are pairwise distinct, and u1, u2, u3 ∈ U are arbitrary elements, 
then |Ui + u1 ∩ Uj + u2 ∩ Uk + u3| = 1.

It is not hard to show that Claim (d) follows from Ui∩Uj ∩Uk = {0}. Let αv3 +βv4 +
γv5 ∈ Ui ∩ Uj ∩ Uk. Suppose at first that none of i, j and k is equal to ∞. Then, using 
the definition of the subgroups Ui, Uj and Uk, we find α1, α2 and α3 in GF (p) such that

α = α1i = α2j = α3k

β = α1 + γi = α2 + γj = α3 + γk.

Using also that i, j and k are pairwise distinct, we deduce that β = γ(i + j) = γ(i +k) =
γ(j + k), and hence α = β = γ = 0, and so Ui ∩ Uj ∩ Uk = {0}.

Now, suppose that k = ∞. Since U∞ = 〈v3, v4〉, γ = 0, and αv3+βv4 = α1(iv3+v4) =
α2(jv3 + v4). Since i �= j, it follows that α1 = α2 = α = β = 0, and Ui ∩ Uj ∩ Uk = {0}, 
as required.
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Claim (e). |G0 ∩Gv1 | ≤ p.

Let g ∈ G0 ∩ Gv1 . By Claim (b), g = gF for some F ∈ Fun0(V, U). Notice that, 
F (0) = F (v1) = 0. Let us consider the image F (2v1). Then, we can express 2v1 as 
2v1 = v1 + v̂∞, hence by Eq. (20), F (2v1) − F (v1) ∈ U∞. Also, v1 + v2 = 2v1 + v̂−1
and v2 = 2v1 + v̂−2, and using again Eq. (20), we find F (v1 + v2) − F (2v1) ∈ U−1 and 
F (v2) − F (2v1) ∈ U−2. All these yield

F (2v1) ∈ U∞ + F (v1) ∩ U−1 + F (v1 + v2) ∩ U−2 + F (v2). (21)

On the other hand, F (v2) ∈ U0∩U−1 = 〈−v4+v5〉 and F (v1+v2) ∈ U0∩U1 = 〈v4+v5〉. 
Using also that F (v1 + v2) − F (v2) ∈ U∞ = 〈v3, v4〉, we find F (v2) = α(−v4 + v5) and 
F (v1 + v2) = α(v4 + v5) for some α ∈ GF (p). Substitute these in Eq. (21). After a direct 
computation we find F (2v1) = 2αv3. This shows that the orbit of 2v1 under the group 
G0 ∩Gv1 has size at most p. Therefore, |G0 ∩Gv1 | ≤ |G0 ∩Gv1 ∩G2v1 | · p, and to derive 
Claim (e) it is enough to show that |G0 ∩Gv1 ∩G2v1 | = 1.

Now, choose g ∈ G0 ∩Gv1 ∩G2v1 . Then, F (0) = F (v1) = F (2v1) = 0, thus applying 
Eq. (20) to F (iv1+v2), i ∈ GF (p), and using Claim (d), we find F (iv1+v2) ∈ Ui∩Ui−1∪
Ui−2 = {0}. Therefore, F (iv1 + v2) = 0 for all i ∈ GF (p). In particular, F (v2) = F (v1 +
v2) = F (2v1 + v2) = 0, and we can repeat the same argument to have F (iv1 + 2v2) = 0
for all i ∈ GF (p). Since V = 〈v1, v2〉, the process can be continued to cover all v ∈ V , 
and this leads to that F (v) = 0 for all v ∈ V , that is, g = idH , as required.

Claim (f). |G0| = p3.

The G0-orbit of v1 is the basic set U∞ + v1. This together with Claim (e) shows 
that |G0| ≤ p2 · |G0 ∩ Gv1 | ≤ p3. To settle Claim (f) it is enough to find a non-identity 
automorphism g ∈ G0 ∩ Gv1 . We claim that gF is such an automorphism where F is 
defined as follows:

F (iv1 + jv2) = i(i− 1)v3 + (2i− 1)jv4 + j2v5, i, j ∈ GF (p).

Then, F (0) = 0, and by Claim (c), we have gF ∈ G0 if F satisfies the conditions in 
Eq. (20). This can be verified directly. After letting v = iv1 + jv2 and using the above 
definition of F , we compute for k ∈ GF (p),

F (v + v̂∞) − F (v) = 2iv3 + 2jv4,

F (v + v̂k) − F (v) = (2i− 1 + k)(kv3 + v4) + (2j + 1)(kv4 + v5).

These show that the conditions in Eq. (20) hold, and gF ∈ G0. Also, F (v1) = 0 and 
F (2v1) = 2v3, and hence gF is a non-identity element in G0 ∩ Gv1 . This completes the 
proof of the lemma. �
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Lemma 6.6. With the notation of Lemma 6.4, V (H, L) is a CI-S-ring.

Proof. We keep all notations from the previous proof, that is,

L = 〈x, y〉, G = Aut(V (H,L)), U = Oθ(V (H,L)) = 〈v3, v4, v5〉, V = 〈v1, v2〉.

In addition, let N = NG(HR). In view of Lemma 2.11, it is enough to show that all regular 
subgroups of G isomorphic to H are conjugate in G. First, the number of subgroups of 
G that are conjugate to HR is equal to the index |G : N |. By Lemma 6.5, |G| = p8, and 
since HRL ≤ N , it follows that |N | ≥ p7. If G = N , then for every non-identity element 
z ∈ G0 ∩ Gv1 , CH(z) = 〈v1, v3, v4, v5〉, contradicting Lemma 6.2. Thus, |N | = p7, and 
there are exactly p subgroups of G that are conjugate to HR.

Therefore, to finish the proof it is sufficient to show that there are exactly p regular 
subgroups of G isomorphic to H. Note that, we have L = N0. Let K ≤ G be any regular 
subgroup isomorphic to HR such that K �= HR. Let M = 〈K, HR〉. Since K �= HR, 
|M | ≥ p6. This implies that |M ∩L| > 1. Indeed, if |M | = p6, then HR � M , and hence 
M0 �= 1 and M0 ≤ N0 = L. If |M | > p6, then |M ∩ L| > 1 follows because |L| = p2

and |LM | ≤ |G| = p8. Using also that K ∩ HR ≤ Z(M) and Lemma 6.2, we deduce 
that |K ∩HR| ≤ p3. On the other hand, since K is regular and abelian, it follows that 
Z(G) ≤ K, and hence K ∩ HR = UR. Note that, we have proved that every regular 
subgroup isomorphic to H intersects HR at UR, unless it is equal to HR. This fact will 
be used in the next paragraph.

We claim that K ≤ N . Suppose to the contrary that there exists some g ∈ K \ N . 
Then g = z1vR for some z1 ∈ G0 \ L and v ∈ H. Since UR ≤ K, the element v cannot 
be in U . On the other hand, |N ∩ K| ≥ p4, and thus K also contains an element in 
the form z2wR, z2 ∈ L and w ∈ H \ U (again, w /∈ U because of UR ≤ K). Then, 
z1z2(vR)z2wR = z1vRz2wR = z2wRz1vR = z2z1(wR)z1vR. By Lemma 6.5, G0 is abelian, 
and we get (wR)z1 = (vR)z2wR(vR)−1 = (vz2 + w − v)R. Thus, (wR)z1 ∈ HR, and since 
w /∈ U , (wR)z1 /∈ UR, and |Hz1

R ∩HR| ≥ p4. Now, it follows by the previous paragraph 
that Hz1

R = HR, and hence z1 ∈ L, a contradiction.
Now, there exist z1, z2 ∈ L such that

K =
〈
z1(v1)R, z2(v2)R, UR

〉
.

Recall that, the L-orbit of v1 is in the form vL1 = U∞ + v1, and the L-orbit of v2 is 
in the form vL2 = U0 + v2. Let u = vz21 − v1. Clearly, u ∈ U∞. Then, since z1(v1)R and 
z2(v2)R commute, 0z1(v1)Rz2(v2)R = vz21 +v2 and 0z2(v2)Rz1(v1)R = vz12 +v1, it follows that 
u = vz12 − v2. This shows that u ∈ U0 also holds, and hence u ∈ U∞ ∩ U0 = 〈v4〉. Now, 
as L is regular on both orbits vL1 and vL2 , the automorphisms z1 and z2 are uniquely 
determined by u, and thus K is determined as well. This yields that there are exactly p
regular subgroups of G isomorphic to H. This completes the proof of the lemma. �
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Lemma 6.7. Assuming Hypothesis 5.1, suppose that A is indecomposable, and let U and 
W be A-subgroups such that W < Oθ(A) < U, |W | = p and |U | = p4. Then A has a 
basic set T such that

T ⊂ H \ U, 1 < |T | ≤ p2 and W �≤ rad(T ). (22)

Proof. Since A is indecomposable, there exists a basic set T1 ⊂ H \ U such that W �≤
rad(T1). It is clear that |T1| > 1. We have to show that |T1| ≤ p2. To the contrary assume 
that |T1| ≥ p3. If |T1| = p4, then A is decomposable, see Proposition 2.14, thus |T1| = p3. 
This together with |Oθ(A) ∩ U | = |Oθ(A)| ≥ p2 gives |Oθ(A) ∩ U | · |T1| > p4 = |H|/p, 
and we can apply Lemma 2.18(iii) to obtain that Oθ(A) ∩ rad(T1) �= {0}. Let W ′ ≤
Oθ(A) ∩ rad(T1) such that |W ′| = p. Since W �≤ rad(T1), we get, using Eq. (1), pairwise 
distinct basic sets in the form T1+w, w ∈ W . As the union of the latter basic sets is equal 
to the coset U + v1, it follows that W ′ ≤ rad(T ) for all T ∈ Bsets(A) with T ⊂ U + v1. 
This together with Theorem 2.9 yields that W ′ ≤ rad(T ) for all T ∈ Bsets(A) with 
T �⊂ U , that is, A is a U/W ′-wreath product, a contradiction. �

Everything is prepared to settle the main result of the section.

Proof of Theorem 6.1. Let U = Oθ(A), N = NAut(A)(HR) and N0 be the stabilizer of 0
in N . Assume to the contrary that A is a non-CI-S-ring. We prove first the following:

There exists L ≤ N0 such that |L| = p2 and |CH(L)| = p3. (23)

If |U | ≥ p3, then we are done by choosing L to be any subgroup of N0 of order p2

(see also Lemma 6.3). Thus we assume for the moment that |U | = p2. Let K ≤ N be 
the subgroup given in Proposition 3.1, and let M = (KHR)0. If |M | ≤ p2, then

CH(M) ≥ |K ∩HR| = |K| · |HR|
|KHR|

= |K| · |HR|
|M ||H| ≥ p3.

By Lemma 6.2, M must have order p2, and therefore, we are done by choosing L to be 
M .

Let |M | ≥ p3. It follows from Lemma 6.7 that there exists a basic set T such that 
|T | ≤ p2 and rad(T ) �= U . Let v ∈ T , and Mv be the stabilizer of v in M . Then 
CH(Mv) ≥ 〈U, v〉. If |T | = p or the orbit vM �= T , then it follows that |Mv| ≥ p2. 
Using this and that |〈U, v〉| = p3, we can choose L to be any subgroup of Mv of order 
p2. Now, suppose that |T | = p2, and the orbit vM = T . Choose a non-identity element 
x0 ∈ Mv, and let u ∈ T be an arbitrary element. Then u = vx for some x ∈ M , and 
since M is abelian, we can write ux0 = vxx0 = vx0x = vx = u. As a corollary we find 
CH(x0) ≥ 〈U, T 〉. Clearly, |〈U, T 〉| ≥ p3; in fact, 〈U, T 〉| = p3 must hold by Lemma 6.2. 
It follows that T is equal to a U -coset, that is, rad(T ) = U . This is a contradiction, and 
Eq. (23) follows.
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By Lemma 6.6, the S-ring V (H, L) is a CI-S-ring. Therefore, A �= V (H, L), hence 
A > L, in particular, |A| ≥ p3. For sake of simplicity we let V = Oθ(V (H, L)). Clearly, 
U ≤ V and |V | = p3. Fix W1 < U, |W1| = p. By Lemma 6.7, there exists a basic 
set T1 ∈ Bsets(A) such that 1 < |T1| ≤ p2 and W1 ≮ rad(T1). Since every basic set 
of V (H, L) outside V is a coset of a subgroup of V of order p2, we find that either 
T1 is contained in H \ V , |T1| = p2 and rad(T1) < V , or T1 ≤ V . In the former case 
V = rad(T1) + W1, whereas in the latter case V = 〈T1, W1〉 because W1 ≮ rad(T1). We 
conclude that V is an A-subgroup. This shows that we may choose the above T1 such that 
T1 ⊂ H\V . Fix some v1 ∈ T1. Since |N0| ≥ p3, there exists a non-identity element x ∈ N0
such that vx1 = v1, and thus CH(x) ≥ 〈U, v1〉, and so |CH(x)| ≥ p ·|U |. This together with 
Lemma 6.2 shows that |U | = p2, in particular, U < V . Now, using also that W1 < U

and W1 ≮ rad(T1), we infer in turn that |U ∩ rad(T1)| = p, Arad(T1) = QCp �QCp, and 
finally that, AV = (QCp � QCp) ⊗ QCp. Let W2 = U ∩ rad(T1). It is easy to see that 
every A-subgroup of order p2 contained in V contains W2. (In fact, such an A-subgroup 
intersects rad(T1) at exactly W2.) Now, apply Lemma 6.7 with W = W2. We obtain 
that, there exists a basic set T2 of A such that T2 �⊂ V, |T2| = p2 and W2 ≮ rad(T2). As 
before, rad(T2) is an A-subgroup of order p2 contained in V , contradicting our earlier 
observation that such an A-subgroup must contain W2. This completes the proof of the 
theorem. �
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