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1. Introduction

Conjectures in extremal combinatorics are often intricate – it can be easy to miss a 
better construction than the one we have, or to misjudge whether the conjecture is true 
or false for other reasons. Any general method that can tell us whether a statement is 
likely to be true or false can be extremely useful in practice.

In the present manuscript we argue that the use of linear programming and LP solvers 
is such a method in extremal combinatorics. Nothing about this method is new, but we 
use it to resolve a number of open conjectures, questions and problems from a variety of 
areas. Our new results are given in Section 2:
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• In 2.1 we disprove a claim and a conjecture of Frankl on the size of antichains of 
fixed diameter.

• In 2.2 we disprove two conjectures of Katona, and one conjecture of Frankl et al., on 
multipartite generalizations of the Erdős–Ko–Rado theorem.

• In 2.3 we solve a problem of Anstee related to a forbidden configuration in set 
systems.

• In 2.4 we answer a question of Ihringer–Kupavskii on regular set systems achieving 
a Hoffman-type bound.

• In 2.5 we disprove a conjecture of Frankl–Tokushige related to the Kleitman matching 
problem.

• In 2.6 we disprove a conjecture of Aharoni–Howard on bipartite graphs without 
rainbow matchings.

• In 2.7 we improve a construction given by De Silva–Heysse–Kapilow–Schenfisch–
Young related to a Turán-type problem.

For the basics on linear programming we refer the reader to e.g. [3,14,24]. We note 
that sometimes the LP (or even SDP) methods are used to prove a theorem by finding an 
optimal solution to the corresponding dual problem. Some such examples can be found 
in [22,23].

2. Main results

2.1. Antichains of fixed diameter

Define the diameter diam(F) of a family F ⊂ 2[n] as diam(F) = maxA,B∈F{|(A \
B) ∪ (B \ A)|}. Frankl [9] considered the problem of determining the largest size of an 
antichain in 2[n] of diameter at most d.

We phrase this problem as an integer program as follows. We introduce for each 
set A ⊂ [n] a 0-1 valued variable xA that indicates whether A ∈ F . We can force 
F to be an antichain by adding, for each comparable pair A � B a linear constraint 
xA + xB ≤ 1. Next, to ensure that the solution has diameter at most d, for each pair 
A, B with |(A \B) ∪ (B \A)| > d we add a restriction xA + xB ≤ 1. Frankl [9] made the 
following conjecture:

Conjecture 2.1 ([9]). Let n, d be positive integers, n > d. Suppose that F ⊂ 2[n] is an 
antichain with diameter diam(F) ≤ d. Then

|F| ≤
(

n

�d/2�

)
.

Frankl proved [9] Conjecture 2.1 for n ≥ 6(d + 1)2. Using an LP solver we were 
unsuccessful in finding a counterexample to this conjecture. Instead we could establish 
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that it holds for the values (n, d) = (10, 3), (8, 5), (8, 7), thus finding some more support 
for the conjecture.

Frankl also made a similar conjecture for k-chain free families. A k-chain is a collection 
of k sets A1 � A2 � . . . � Ak totally ordered under inclusion. Observe that, similarly 
to being an antichain, the property of being k-chain-free can be captured by an integer 
program by adding for each k-chain A1 � A2 � . . . � Ak a linear constraint xA1 +xA2 +
. . . + xAk

≤ k − 1.

Conjecture 2.2 ([9]). Let n, d, � be positive integers, n > d ≥ �. Suppose that F ⊂ 2[n]

is � + 1-chain-free with diameter diam(F) ≤ d. Then setting s = min{� − 1, �d/2�} one 
has

|F| ≤
∑

�d/2�≥i≥�d/2�−s

(
n

i

)
.

Frankl noted that the special case s = �d/2� follows directly from Kleitman’s diameter 
theorem [19]. Frankl also wrote [9] that it follows from the methods of his paper that 
Conjecture 2.2 holds for n large enough. This claim is incorrect, as shown below.

By solving the IP directly, we obtain a counterexample for n = 6, d = 5, � = 2. For 
these parameters the bound given in Conjecture 2.2 is 

(
n
2
)

+
(
n
1
)

= 21, but in fact a 
family of size 26 exists:

F =
(

[6]
2

)
∪
{
A ∈

(
[6]
3

)
: 1 ∈ A

}
∪ {23456}.

Given this example given by the computer, it is easy to realize that the family given 
by the entire 2-layer together with a star on the third layer has diameter 5 and is 
3-chain-free for any n. (Here a star means all sets containing a fixed element.) It has size (
n
2
)

+
(
n−1

2
)

= (n − 1)2 which is bigger than the construction implied by Conjecture 2.2
for all n ≥ 6, but as the example shows it is not best possible for n = 6. Surprisingly, 
according to the LP solver this bound is tight for n = 7, 8. It is plausible that this is 
tight for all n ≥ 7.

For n = 8, d = 7, � = 2 the LP solver gives that the best solution is to take stars 
centered at {1} in layers 2 and 4, together with all sets avoiding {1} on layers 3 and 
5, giving a family of size 

(7
1
)

+
(7
3
)

+
(7
3
)

+
(7
5
)

= 98 beating the value 84 given by 
Conjecture 2.2. For n = 9, d = 7, � = 2 a construction of size 141 is given by taking the full 
third layer, a star centered on {1} on the fourth layer and the single set {2, 3, 4, . . . , 9}. 
It is beyond our computational limits to see if this is best possible for n = 9, d = 7,
� = 2.

In general for d odd one can take the entire �d/2� layer together with a star on the 
layer above to get a construction of size 

(
n

�d/2�
)

+
(
n−1
�d/2�

)
and it is plausible that for 

n ≥ n0(d) this is the best one can do to avoid 3-chains.
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2.2. Multipartite intersecting families

A celebrated theorem of Erdős–Ko–Rado is the following:

Theorem 2.3 (Erdős–Ko–Rado [7]). Given integers n, k with k ≤ n/2, if F ⊂
([n]

k

)
is 

intersecting then

|F| ≤
(
n− 1
k − 1

)
.

Equality in Theorem 2.3 is attained by the family of all k-sets containing a fixed ele-
ment, which we refer to as a trivially intersecting family or a star. Hilton and Milner [15]
found the largest intersecting, but not trivially intersecting family:

Theorem 2.4 (Hilton–Milner [15]). If 2k ≤ n and F is an intersecting but not trivially 
intersecting family in 

([n]
k

)
then

|F| ≤ 1 +
(
n− 1
k − 1

)
−

(
n− k − 1
k − 1

)
.

Let X1 and X2 be disjoint sets of size n1 and n2 respectively, and denote by 
(
X1,X2
k,�

)
the family of all sets S ⊂ X1∪̇X2 with |S ∩ X1| = k and |S ∩ X2| = �. Frankl [8] and 
Katona [17] considered intersecting families in 

(
X1,X2
k,�

)
. As before, a family F ⊂

(
X1,X2
k,�

)
is trivially intersecting if all elements of F contain a fixed element. Katona [17] observed 
that if x ∈ X1 is an arbitrary element and K ⊂ X1 \{x} is a set of size k then the family

F =
{
F ∈

(
X1, X2

k, �

)
: x ∈ F, F ∩K 
= ∅

}
∪ {K}

is intersecting but not trivially intersecting. Motivated by this, Katona [17] made the 
following conjecture.

Conjecture 2.5 (Katona [17]). If F is an intersecting but not trivially intersecting sub-
family of 

(
X1,X2
k,�

)
then

|F| ≤ max
{(

1 +
(
n1 − 1
k − 1

)
−
(
n1 − k − 1

k − 1

))(
n2

�

)
,

(
n1

k

)(
1 +

(
n2 − 1
�− 1

)
−

(
n2 − �− 1

�− 1

))}
.

We assume that the conditions 2k ≤ n1 and 2� ≤ n2 are implicitly implied in 
Conjecture 2.5. Katona also made a conjecture on two-sided intersecting families, i.e. in-
tersecting families F ⊂

(
X1,X2
k,�

)
for which there exist members F11, F12, F21, F22 ∈ F

such that F11 ∩ F12 ∩X1 = ∅ and F21 ∩ F22 ∩X2 = ∅.
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Conjecture 2.6 ([17]). If F is a two-sided intersecting subfamily of 
(
X1,X2
k,�

)
then

|F| ≤ max
{((

n2 − 1
�− 1

)
−

(
n2 − �− 1

�− 1

))(
n1

k

)
+ 1 +

(
n1

k

)
−

(
n1 − k

k

)
,

((
n1 − 1
k − 1

)
−

(
n1 − k − 1

k − 1

))(
n2

�

)
+ 1 +

(
n2

�

)
−

(
n2 − �

�

)}
.

Once again we assume the conditions 2k ≤ n1 and 2� ≤ n2 are implicit. Let us now try 
to disprove both Conjectures 2.5 and 2.6. We phrase them as IPs as follows. We fix some 
X1, X2, k, � and for each element F of 

(
X1,X2
k,�

)
we introduce an indicator variable xF . 

We force F to be intersecting by adding for each disjoint pair of sets F, G a constraint 
xF +xG ≤ 1. For Conjecture 2.5 we ensure that F is not trivially intersecting by adding 
for each x ∈ X1 ∪X2 a constraint

∑
x/∈F

xF ≥ 1.

For Conjecture 2.6 we force the two-sided intersecting property in a similar fashion. We 
pick two disjoint k-sets L1, L2 ⊂ X1 and two disjoint �-sets R1, R2 ⊂ X2. Then we add 
for each S ∈ {L1, L2, R1, R2} the constraint

∑
S⊂F

xF ≥ 1.

Solving the IP directly yields a counterexample for both conjectures for n1 = n2 = 5, 
k = � = 2 in less than a second. Let X = {x1, x2, . . . , x5} and Y = {y1, y2, . . . , y5}. Let 
F be the following family:

F =
{
{x1, x2} ∪ F : F ∈

(
Y

2

)
, F ∩ {y1, y2} 
= ∅

}

∪
{
{x1, x3} ∪ F : F ∈

(
Y

2

)
, F ∩ {y1, y2} 
= ∅

}

∪
{
{x1, x4} ∪ F : F ∈

(
Y

2

)}
∪
{
{x1, x5} ∪ F : F ∈

(
Y

2

)}

∪{{x4, x5, y1, y2}}

The size of F is 35, while the constructions in Conjectures 2.5 and 2.6 have sizes 30 and 
28 respectively. This construction generalizes for 

(
X,Y
2,2

)
. For simplicity assume |X| =

|Y | ≥ 5.

Proposition 2.7. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym} be two disjoint 
sets of size m ≥ 5. Then there is a F ⊂

(
X,Y
2,2

)
that is two-sided intersecting, with 

|F | ≥ 3m2 − 10m + 10.
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Proof. Let F be defined as follows.

F =
{
G ∪ F : G ∈

(
X

2

)
, F ∈

(
Y

2

)
, x1 ∈ G,F ∩ {y1, y2} 
= ∅

}

∪
{
{x1, x2} ∪ F : F ∈

(
Y

2

)}
∪
{
{x1, x3} ∪ F : F ∈

(
Y

2

)}

∪{{x2, x3, y1, y2}}

The size of F is then given by

|F| = (m− 3)
((

m

2

)
−

(
m− 2

2

))
+ 2

(
m

2

)
+ 1 = 3m2 − 10m + 10. �

We note that according to the LP solver, the construction in Proposition 2.7 is in fact 
the largest non-trivially intersecting (but not necessarily two-sided intersecting) family 
for m = 5, 6.

For (n1, n2, k, �) = (7, 7, 3, 3) we find a two-sided intersecting family of size 514, 
beating the values of 455 and 452 in Conjectures 2.5 and 2.6 respectively. Based on 
generalizing the construction given by the LP solver, we have the following bound.

Proposition 2.8. Let k, m be integers with 2k ≤ m. Let X = {x1, x2, . . . , xm} and Y =
{y1, y2, . . . , ym} be two disjoint sets of size m. Then there is a F ⊂

(
X,Y
k,k

)
that is two-sided 

intersecting, with

|F| ≥
((

m− 1
k − 1

)
−
(
m− k − 1

k − 1

))(
m

k

)
+

(
m− k − 1

k − 1

)((
m

k

)
−

(
m− k

k

))
+ 1.

Proof. Let K1 = {x2, x3, . . . , xk+1}, K2 = {y1, y2, . . . , yk} and define the family as

F =
{
F1 ∪ F2 : F1 ∈

(
X

k

)
, F2 ∈

(
Y

k

)
, x1 ∈ F1, F1 ∩K1 
= ∅,

}

∪
{
F1 ∪ F2 : F1 ∈

(
X

k

)
, F2 ∈

(
Y

k

)
, x1 ∈ F1, F1 ∩K1 = ∅, F2 ∩K2 
= ∅

}

∪{K1 ∪K2}. �
It would be interesting to see whether this construction is best possible.
Let us now turn to another related conjecture, by Frankl–Han–Huang–Zhao [10]. We 

say that a family has the EKR property if its largest intersecting subfamily is trivially 
intersecting.

Conjecture 2.9 ([10]). Suppose n = n1 + . . .+nd and k ≥ k1 + . . .+kd, where ni > ki ≥ 0
are integers. Let X1 ∪ . . . ∪Xd be a partition of [n] with |Xi| = ni, and
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H =
{
F ⊆

(
[n]
k

)
: |F ∩Xi| ≥ ki for i = 1, . . . , d

}
.

If ni ≥ 2ki for all i and ni > k −
∑d

j=1 kj + ki for all but at most one i ∈ [d] such that 
ki > 0, then H has the EKR property.

We first observe that if e.g. d = 2, n1 = 3, n2 = 4, k1 = 1, k2 = 2, k = 4 then all 
conditions of the conjecture are satisfied but H itself is (non-trivially) intersecting, and 
so Conjecture 2.9 cannot be true. In particular for this set of parameters |H| = 30 but 
the largest trivially intersecting subfamily of H has size 18. We will thus assume that 
the n ≥ 2k condition was intended to be a part of the statement of Conjecture 2.9.

We phrase this problem as an IP in much the same way as before. Fix some val-
ues for the parameters, and introduce indicator variables xF for each F ∈ H. Then 
add constraints xF + xH ≤ 1 for each disjoint F, H ∈ H. Solving the LP yields coun-
terexamples for several sets of parameters. The smallest we could find is for the values 
d = 2, n1 = n2 = 4, k1 = 2, k2 = 1, k = 4, so that

H =
{
F ⊆

(
[8]
4

)
: |F ∩ {1, 2, 3, 4}| ≥ 2, |F ∩ {5, 6, 7, 8}| ≥ 1

}
.

The largest trivially intersecting family in H has size 30, but its largest intersecting 
subfamily has size 341:

F = {1235, 1236, 1237, 1238, 1245, 1246, 1247, 1248, 1256, 1267, 1268, 1278,

1345, 1346, 1347, 1348, 1358, 1368, 1378, 1467, 1468, 2345, 2346, 2347,

2348, 2356, 2367, 2368, 2378, 2458, 2468, 2478, 3467, 3468}

2.3. A forbidden trace problem

To introduce the definition of a forbidden configuration, we will use the language of 
matrix theory and identify set systems with their adjacency matrix. An m × n simple 
matrix (i.e. with no repeated columns) A with all entries in {0, 1} can be thought of as 
a family A of n subsets of [m]: the rows index the elements of the ground sets and the 
columns index the subsets. So the number of columns of A is equal to |A|.

Now let F be a k × � matrix with all entries in {0, 1}. We say that a matrix A has 
a configuration F if a submatrix of A is a row and column permutation of F (this is 
sometimes called trace in the language of sets).

Many classical problems in extremal set theory can be phrased as problems about 
forbidden configurations. One standard example is bounding the size of a family of VC 

1 An anonymous referee has pointed out that a construction of the same size can be obtained by taking 
all sets that intersect {1, 2, 3} in at least two elements and {5, 6, 7, 8} in at least one element. It is plausible 
that a suitable generalization of this construction is optimal for a large range of the parameters.
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dimension at most k. We say that a family A ⊂ 2[n] has VC dimension at least k if there 
exists a set S ⊂ [n] of size |S| = k such that |A ∩ S : A ∈ A| = 2k. Hence a family A
has VC dimension less than 3 if and only if the corresponding matrix A does not have 
configuration F3, where F3 is the matrix

F3 =
[0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

]

Denote by forb(m, F ) the maximum number of columns in a matrix A without 
a configuration F . So for example by a classical theorem of Sauer–Shelah we have 
forb(m, F3) =

(
m
0
)
+
(
m
1
)
+
(
m
2
)
. We refer the reader to the excellent survey of Anstee [2]

on more background on forbidden configuration problems.
Steiner triple systems are one of the most classical objects studied in combinatorial 

design theory, dating back to Kirkman [18]. We say a family of 3-element subsets, called 
blocks, of an n-element set X is a triple system of multiplicity λ if any pair of distinct 
elements of X are contained in precisely λ blocks. Anstee raised the following problem, 
which we will disprove:

Problem 2.10 ([2]). Show that for those m for which a triple system of multiplicity 2 
exists,

forb
(
m,

[1 1 1 1
1 1 1 1
1 0 0 0

])
= 5

3

(
m

2

)
+
(
m

1

)
+

(
m

0

)
+

(
m

m

)
.

Denote the forbidden matrix by A. As a triple system of multiplicity one has order 
1
3
(
m
2
)
, it is our guess that the intended construction achieving the bound on the right 

hand side is 
([m]
≤2

)
∪ {[m]} together with a triple system of multiplicity two. However, 

this construction does in fact contain the forbidden matrix A as a configuration, but 
removing the single set {[m]} would fix the issue. Nevertheless, we are able to find a 
construction that is larger than the value on the right hand side.

We can phrase this problem as an IP as follows. We introduce for each set S ⊆ [n] a 
0-1 valued indicator variable xS . For any four distinct sets A, B, C, D if there exist three 
elements of the ground set such that the trace of A, B, C, D on these three elements 
would give the forbidden matrix A, then we add a constraint xA + xB + xC + xD ≤ 3. 
The objective is then to maximize the sum of all variables.

We begin by noting that there exists a triple system of multiplicity two for m =
4, 6, 7, 9, see [4]. Denote by S2(m) a triple system of multiplicity two and order m, for 
those m where it exists. Next we observe that we may assume the family F contains 
all sets of size 0 or 1 as these do not affect containment of our forbidden configuration, 
hence we may restrict our search space on 

([m]
≥2

)
. Solving the IP directly for m = 6 we 

find that statement of Problem 2.10 is false, the correct answer is 25 rather than 26 – 
here 25 is given by the natural construction F =

( [6]) ∪ S2(6).
≤2
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For m = 9 solving the IP was infeasible with the author’s laptop. By making the 
heuristic assumption that the optimal family should contain all sets of size at most 
two and restricting the search to 

([m]
3
)
∪
([m]

4
)

we find a construction of size 71 within 
three minutes – this matches the bound given in Problem 2.10, and hence beats the 
natural construction of F =

([m]
≤2

)
∪ S2(m) by one! The construction given by the LP 

solver is as follows: take all sets of size at most two, together with a triple system 
of multiplicity two, which contains the triples {123, 124, 134, 234}, and add the single 
set {1234}. Such a triple system indeed exists, see for example [4]. Hence if we could 
find a triple system of multiplicity two of some higher order, that contains the triples 
{123, 124, 134, 234, 567, 568, 578, 678} then we could add two 4-sets and beat the bound in 
Problem 2.10. We will need the following theorem of Colbourn–Hamm–Lindner–Rodger:

Theorem 2.11 (Colbourn–Hamm–Lindner–Rodger [5]). A partial triple system of order 
m and multiplicity λ can be embedded in a triple system of multiplicity λ and order at 
most 4(3λ/2 + 1)m + 1.

Proposition 2.12. For every k ≥ 1 there exists an m ≤ 64k + 1 such that

forb
(
m,

[1 1 1 1
1 1 1 1
1 0 0 0

])
≥ 5

3

(
m

2

)
+
(
m

1

)
+

(
m

0

)
+ k.

Proof. Construct a partial triple system of multiplicity 2 by taking, for all 0 ≤ i ≤ k−1, 
the triples {4i + 1, 4i + 2, 4i + 3}, {4i + 1, 4i + 2, 4i + 4}, {4i + 1, 4i + 3, 4i + 4} and 
{4i + 2, 4i + 3, 4i + 4}. These 4k triples form a partial triple system of multiplicity 2 
and order 4k. By Theorem 2.11 these triples are contained in some triple system F with 
λ = 2 and order m, with m ≤ 16 · 4k+ 1. Adding to F all sets of size two or less and the 
4-sets {4i + 1, 4i + 2, 4i + 3, 4i + 4} for all 0 ≤ i ≤ k− 1 we obtain a family of the correct 
size, which does not contain the forbidden configuration given by the matrix A. �

We observe that the bound in Proposition 2.12 is not sharp, in particular any two of 
the added 4-sets could be allowed to intersect in one element. Indeed, if four sets are 
witnesses for the configuration A then any two of the four sets intersect in at least two 
elements. This leads us to an even stronger bound, giving an improvement in the leading 
coefficient.

Proposition 2.13. For every sufficiently large m with m ≡ 1, 4 (mod 12) we have

forb
(
m,

[1 1 1 1
1 1 1 1
1 0 0 0

])
≥ 11

6

(
m

2

)
+

(
m

1

)
+

(
m

0

)
.

Proof. Given a sufficiently large integer m ≡ 1, 4 (mod 12), by a theorem of Wilson [25]
there exists a family S of 4-sets in [m] such that any pair x, y ∈ [m] of distinct elements 
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are covered by precisely one set in S. Note that |S| =
(
m
2
)
/6. Construct a family F ′ of 

3-sets by including, for each set S ∈ S, all four 3-subsets of S. Note that since any two 
sets in S intersect in at most one element, we have |F ′| = 2

3
(
m
2
)

and in fact F ′ is a triple 
system of order m and multiplicity two. Then the family

F =
(

[m]
≤ 2

)
∪ F ′ ∪ S

does not contain the forbidden configuration and has the correct size. �
2.4. A Hoffman-type eigenvalue bound on regular set systems

We say that a family F ⊂ 2[n] is s-subset-regular if every set of size s lies in the same 
number of elements of F . Ihringer and Kupavskii [16] proved the following Hoffman-type 
eigenvalue upper bound on such regular families:

Theorem 2.14 (Ihringer–Kupavskii [16]). Fix odd s ≥ 1. An s-subset-regular k-uniform 
intersecting family F on [n] satisfies

|F| ≤
(
n
k

)
1 +

(n−k
k

)(n−k−s−2
k−s−2

) .

They proved [16] that equality in Theorem 2.14 is achieved with (n, k, s) = (7, 3, 1)
and (9, 4, 1). They asked whether there are other values of the parameters with n ≥ 2k+1
for which Theorem 2.14 is tight. We will show that the answer is yes, by constructing 
such a family with parameters (11, 5, 3).

We phrase this problem as an IP as follows. We fix some n, k, s. For each A ∈
([n]

k

)
we 

introduce a 0-1 variable xA. We force F to be intersecting as before, by adding for each 
disjoint pair of sets A, B a constraint xA + xB ≤ 1. To ensure that F is s-subset-regular 
for each S ⊂ [n] we add a constraint

∑
[s]⊂A∈

([n]
k

)xA −
∑

S⊂B∈
([n]

k

)xB = 0.

Solving this IP directly gives the following construction for (n, k, s) = (11, 5, 3) in about 
30 seconds:

F ={{1, 2, 3, 4, 11}, {1, 2, 3, 5, 6}, {1, 2, 3, 7, 8}, {1, 2, 3, 9, 10}, {1, 2, 4, 5, 10},
{1, 2, 4, 6, 7}, {1, 2, 4, 8, 9}, {1, 2, 5, 7, 9}, {1, 2, 5, 8, 11}, {1, 2, 6, 8, 10},
{1, 2, 6, 9, 11}, {1, 2, 7, 10, 11}, {1, 3, 4, 5, 7}, {1, 3, 4, 6, 9}, {1, 3, 4, 8, 10},

{1, 3, 5, 8, 9}, {1, 3, 5, 10, 11}, {1, 3, 6, 7, 10}, {1, 3, 6, 8, 11}, {1, 3, 7, 9, 11},
{1, 4, 5, 6, 8}, {1, 4, 5, 9, 11}, {1, 4, 6, 10, 11}, {1, 4, 7, 8, 11}, {1, 4, 7, 9, 10},
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{1, 5, 6, 7, 11}, {1, 5, 6, 9, 10}, {1, 5, 7, 8, 10}, {1, 6, 7, 8, 9}, {1, 8, 9, 10, 11},
{2, 3, 4, 5, 8}, {2, 3, 4, 6, 10}, {2, 3, 4, 7, 9}, {2, 3, 5, 7, 10}, {2, 3, 5, 9, 11},
{2, 3, 6, 7, 11}, {2, 3, 6, 8, 9}, {2, 3, 8, 10, 11}, {2, 4, 5, 6, 9}, {2, 4, 5, 7, 11},

{2, 4, 6, 8, 11}, {2, 4, 7, 8, 10}, {2, 4, 9, 10, 11}, {2, 5, 6, 7, 8}, {2, 5, 6, 10, 11},
{2, 5, 8, 9, 10}, {2, 6, 7, 9, 10}, {2, 7, 8, 9, 11}, {3, 4, 5, 6, 11}, {3, 4, 5, 9, 10},
{3, 4, 6, 7, 8}, {3, 4, 7, 10, 11}, {3, 4, 8, 9, 11}, {3, 5, 6, 7, 9}, {3, 5, 6, 8, 10},

{3, 5, 7, 8, 11}, {3, 6, 9, 10, 11}, {3, 7, 8, 9, 10}, {4, 5, 6, 7, 10}, {4, 5, 7, 8, 9},
{4, 5, 8, 10, 11}, {4, 6, 7, 9, 11}, {4, 6, 8, 9, 10}, {5, 6, 8, 9, 11}, {5, 7, 9, 10, 11},
{6, 7, 8, 10, 11}}

It can be checked that F covers every 4-set exactly once, and hence this family F is 
in fact the (unique) Steiner system with parameters v = 11, k = 5, t = 4.

2.5. The Kleitman matching problem

Let s ≥ 3 be an integer, and let k(n, s) denote the maximum size of a family F ⊂ 2[n]

without s pairwise disjoint members. Kleitman [20] determined k(n, s) for n ≡ 0 or 
−1 (mod s), see Theorem 2.16. In the case n ≡ −2 (mod s), the value of k(n, s) was 
determined by Quinn [21] if s = 3 and by Frankl and Kupavskii [11,12] for all s.

Recall that k(n + l, s) ≥ 2lk(n, s). Indeed, if F ⊂ 2n has no s pairwise disjoint 
members, then neither does F ′ = {F ⊂ [n + l] : F ∩ [n] ∈ F}. Kleitman showed [20] that 
k(n, s) = 2k(n − 1, s) if s divides n. Motivated by this, Frankl and Tokushige [13] made 
the following conjecture:

Conjecture 2.15 ([13], p. 213). Let s ≥ 4. If n ≡ 1 (mod s), then

k(n, s) = 4k(n− 2, s).

Theorem 2.16 (Kleitman [20]). Let s ≥ 2 be an integer and F ⊂ 2[n] a family without s
pairwise disjoint members. Then for n = s(m + 1) − � with � ∈ [s] we have

|F| ≤ �− 1
s

(
n

m

)
+

∑
t≥m+1

(
n

t

)
,

and this is sharp for � ∈ {1, s}.

This gives k(7, 4) = 120 and hence in order to disprove Conjecture 2.15 our goal is 
to show k(9, 4) ≥ 481. One can formulate this problem as an IP as follows. As before, 
we introduce a 0-1 valued indicator variable for every A ⊂ [n]. For each quadruple of 
pairwise disjoint sets A, B, C, D we add the constraint xA +xB +xC +xD ≤ 3. Our goal 
is then simply to maximize the sum of the variables.
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To speed up the solution of this IP it helps if one makes the heuristic, though certainly 
unjustified, assumption that xA = 1 whenever |A| ≥ 4 and xA = 0 whenever |A| ≤ 1. 
Indeed, intuitively it makes sense to include ‘large’ sets, and so far our family does 
not even contain three disjoint sets. This restricts the search space to the considerably 
smaller world 

([n]
2
)
∪
([n]

3
)
.

Note that 480 = 29−32 =
( 9
≥4

)
+98. The LP solver finds a family G of size 99 in 

([9]
2
)
∪([9]

3
)

without four pairwise disjoint sets. This gives a counterexample to Conjecture 2.15, 
as then G ∪

( [9]
≥4

)
does not contain four pairwise disjoint sets either, and 

∣∣∣G ∪
( [9]
≥4

)∣∣∣ =
4k(7, 2) + 1. The search takes around 2 seconds:

G =
(

[9]
3

)
∪
{
A ∈

(
[9]
2

)
: |A ∩ [2]| ≥ 1

}
.

As it turns out, this construction has already appeared in a paper by Frankl–
Kupavskii [11] but they were not aware of Conjecture 2.15.

2.6. Rainbow matchings

Aharoni and Howard [1] considered problems related to rainbow matchings in hy-
pergraphs. Given a collection F = (F1, F2, . . . , Fk) of hypergraphs, a choice of disjoint 
edges, one from each Fi, is called a rainbow matching for F . They made the following 
conjecture:

Conjecture 2.17 ([1]). Let d > 1, and let F1, . . . , Fk be bipartite graphs on the same 
ground set, satisfying Δ(Fi) ≤ d and |Fi| > (k − 1)d. Then the system F1, . . . , Fk has a 
rainbow matching.

To disprove Conjecture 2.17 we need to find a collection of bipartite graphs satisfying 
the bounds above, without a rainbow matching. We phrase this problem as an IP as 
follows. First, we fix parameters n, k, d. Next we fix the partite sets (Li, Ri) for each of 
the k bipartite graphs,2 so that Li∪̇Ri = [n] for each 1 ≤ i ≤ k. We introduce indicator 
variables x(i)

ab for each 1 ≤ i ≤ k and pair of vertices a ∈ Li, b ∈ Ri. The maximum degree 
condition is then a collection of nk simple linear constraints, one for each vertex and 
each 1 ≤ i ≤ k. To ensure the system does not have a rainbow matching, for all k-tuple 
of disjoint edges (ai, bi) ∈ (Li, Ri) for 1 ≤ i ≤ k, we add a constraint 

∑k
i=1 x

(i)
ai,bi

≤ k−1. 
For the sizes of the graphs, we add linear constraints for all 2 ≤ i ≤ k saying that ∑

a∈Li,b∈Ri
x

(i)
ab ≥ (k − 1)d + 1. Our goal is then to maximize 

∑
a∈L1,b∈R1

x
(1)
ab and hope 

that the value of this maximum is greater than (k − 1)d.
Solving this IP with n = 6, k = 3, d = 2, and partite set L1 = {1, 2, 3}, L2 = {2, 3, 4}

and L3 = {3, 4, 5} gives the following counterexample to Conjecture 2.17:

2 We are fairly certain that the phrase “same ground set” in Conjecture 2.17 only means same vertex set, 
given the original context in [1].
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F1 = {15, 16, 24, 26, 34, 35}, F2 = {14, 25, 26, 35, 36}, F3 = {13, 23, 25, 46, 56}.

Here we have |F2| = |F3| = (k − 1)d + 1 and |F1| = (k − 1)d + 2.

2.7. A Turán-type problem in multipartite graphs

For graphs G and H denote by ex(G, H) the maximum number of edges in a subgraph 
of G that contains no copy of H. For integers k, r let kKr denote k vertex-disjoint copies 
of Kr. De Silva et al. considered [6] the problem of determining ex(G, H) where H = kKr

and G is a complete multi-partite graph. They completely solved this problem when the 
number of partite sets in G is equal to r:

Theorem 2.18 (De Silva et al. [6]). For any integers k ≤ n1 ≤ n2 ≤ . . . ≤ nr,

ex(Kn1,...,nr
, kKr) =

⎛
⎝ ∑

1≤i<j≤r

ninj

⎞
⎠− n1n2 + n2(k − 1).

De Silva et al. [6] observed that the graph

((n1 + n2 − k + 1)K1 ∪Kk−1,n3) + K4

does not contain kK3, hence

ex(Kn1,n2,n3,n4 , kK3) ≥ (n1 + n2 + n3)n4 + (k − 1)n3.

They stated that it is not clear that this is an extremal construction. Using our methods 
we will show that their intuition was correct, and there exist better constructions.

We phrase the problem as an IP in the standard way. We fix some n1, n2, n3, n4, k and 
for each edge e of Kn1,n2,n3,n4 we introduce an indicator variable xe. For every collection 
of 3k edges e1, . . . , e3k forming a kK3 we include the constraint 

∑3k
i=1 ei ≤ 3k − 1.

Solving this IP directly we find that already in the n1 = n2 = n3 = n4 case there exist 
better constructions. Generalizing the constructions given by the IP solver, we have the 
following result:

Proposition 2.19. For all integers k ≤ n, we have

ex(Kn,n,n,n, kK3) ≥ 4n2 + (k − 1)n.

Proof. Let the four partite sets of size n be A, B, C, D. Remove all 2n2 edges between 
the pairs A −B and between C −D. Between C and D add a copy of Kk−1,n. �
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3. Concluding remarks

In this paper we presented a general method that can be used to quickly check whether 
a conjecture has small counterexamples. Nothing about the method itself is new. We 
hope to have convinced the reader of the usefulness and versatility of this technique in 
combinatorics with the number of counterexamples to open conjectures in Section 2. 
In practice, the main advantage of writing linear programs is the time saved – small 
counterexamples are always found eventually, but it is better to find them in a few 
minutes rather than a few weeks.
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