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Let L1 and L2 be two disjoint relational signatures. Let K1
and K2 be Ramsey classes of rigid relational structures in L1
and L2 respectively. Let K1 ∗ K2 be the class of structures in 
L1 ∪ L2 whose reducts to L1 and L2 belong to K1 and K2
respectively. We give a condition on K1 and K2 which implies 
that K1 ∗K2 is a Ramsey class. This is an extension of a result 
of M. Bodirsky.
In the second part of this paper we consider classes OS(2), 
OS(3), OB and OH which are obtained by expanding the 
class of finite dense local orders, the class of finite circular 
directed graphs, the class of finite boron tree structures, and 
the class of rooted trees respectively with linear orderings. We 
calculate Ramsey degrees for objects in these classes.
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1. Introduction

In this paper we introduce some new Ramsey classes of finite relational structures. 
Examples of known Ramsey classes of finite structures include the class of ordered graphs 
and the class of ordered hypergraphs, see [1,15,16]; the class of ordered metric spaces, 
see [14]; the class of sets with two linear orderings (finite permutations), see [20]; the 
class of ordered incomparable chains in [21]; the class of ordered ultrametric spaces in 
which every open ball is an interval, see [17]; and the class of boron trees with ternary 
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relation, see [10]. In [19], a method is given for combining two Ramsey classes into a new 
Ramsey class. This is given by using a cross construction, and a similar idea is used 
in [22] in order to describe a diagonal property. In this paper we consider a more general 
approach described as follows.

Let L1 and L2 be disjoint relational signatures. Let K1 and K2 be Fraïssé classes in 
signature L1 and L2, respectively (see Section 3 for detailed definitions). Let K1 ∗ K2
be the class of finite structures A in the signature L1 ∪ L2 such that A|L1 ∈ K1 and 
A|L2 ∈ K2 where A|L1 and A|L2 are reducts of the structure A to the signatures L1
and L2 respectively. Then we have the following result:

Theorem 1. Let L1 and L2 be two disjoint relational signatures. Let K1 and K2 be Fraïssé 
classes in signatures L1 and L2 respectively. If K1 and K2 are Ramsey classes of rigid 
structures, each satisfying the strong amalgamation property, then K1 ∗ K2 is a Ramsey 
class.

This result is an extension of Bodirsky’s result from [3] who required that the sig-
natures L1 and L2 be finite. Moreover, we extend this result further by removing the 
assumption that K1 and K2 are Fraïssé classes with the strong amalgamation property 
(see Theorem 4 below). The proof in [3] uses model theoretic concepts such as core mod-
els, model complete cores and ω-categorical structures. It also relies on the main result 
from [12], which connects topological dynamics and Ramsey theory. It is well-known 
that certain Ramsey type statements are not provable by finitistic methods. For exam-
ple, one such a statement can be found in [11] involving Ramsey theorem for regressive 
functions. We use only elementary combinatorics to give a proof of Theorem 1 which in 
turn is motivated by the proof in [22]. We do not consider Ramsey numbers in this paper 
but our proof can give us some estimates on the corresponding Ramsey numbers; this is 
in contrast with the proof in [3] which cannot give us estimates on Ramsey numbers.

Many classical examples of Ramsey classes are obtained by adding arbitrary linear 
orderings to a given class of structures, such as ordered graphs or ordered metric spaces. 
Let S(2) be the class of dense local orders (see Section 5 for a precise definition). Let 
S(3) be the class of circular directed graphs (see Section 6 for definition). Let B be the 
class of boron trees (see Section 7 for a precise definition). By adding arbitrary linear 
orderings to structures in S(2), S(3) and B we obtain classes OS(2), OS(3) and OB
respectively, none of which is a Ramsey class, see [18] and [10]. In this case, structural 
Ramsey theory asks for a measure of deviation of a given class from being a Ramsey class, 
i.e. for a Ramsey degree, see Section 4 for a definition. We calculate Ramsey degrees for 
structures in OS(2), OS(3) and OB, see Theorem 9. In addition, we consider a certain 
class H of finite relational structures naturally related to B. The class consists of finite 
sets with C-relations (see Section 8 for a precise definition). We refer the reader to [2] for 
a more detailed treatment of C-relations and boron tree structures. By adding arbitrary 
linear orderings to structures in H we obtain the class OH. We calculate Ramsey degrees 
for structures in OH, see Theorem 9.
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In Section 2 we recall some preliminary definitions from model theory and we estab-
lish our notation, see [6,7,9]. In Section 3 we introduce lifting, thickening and diagonal 
thickening in order to facilitate the proofs in Section 4. We introduce the notion of an 
infinite sum of classes in order to obtain a Fraïssé class from a countable collection of 
Fraïssé classes. The main Ramsey statement in this paper is Theorem 4 and it is proved 
in Section 4. In order to calculate Ramsey degrees, we prove the expansion property (see 
Section 2 for definitions). This is done in Sections 5, 6, 7 and 8. The ordering property 
is a special case of the expansion property which is often proved as a corollary of the 
Ramsey property; this is done, for example, in the cases of ordered graphs and ordered 
metric spaces, see [14]. There are also cases in which one proves the Ramsey property 
by using the ordering property; see [20] where this is done in the case of finite posets 
with linear extensions. In Sections 5, 6, and 7 we use the Ramsey property to obtain the 
expansion property. In Section 8 we give two proofs of the ordering property, one based 
on the Ramsey property and another that is independent of it.

2. Preliminaries

For a non-empty set A, we denote by lo(A), the collection of all linear orderings on 
the set A. The cardinality of a set A we denote by |A|. For a natural number n we 
denote by [n] the set {1, . . . , n}. Let ≤ be a linear ordering on a set A, and let B, C ⊂ A

be such that B ∩ C = ∅. If for all b ∈ B and all c ∈ C we have b ≤ c then we write 
B ≤ C. If ≤, 	 ∈ lo(A) have the property that a ≤ b ⇔ b 	 a for every a, b ∈ A then 
we write 	 = op(≤) or ≤ = op(	), and we say that the linear orderings ≤ and 	 are 
opposite to each other. We say that a and b are consecutive in the linear ordering ≤ if 
for every c we have a ≤ c ≤ b ⇒ (a = c or a = b). For a linear ordering ≤ we denote its 
strict part by <. We denote by Q the set of rational numbers. We say that elements x

and y in a given relational structure are related if there is a tuple of elements containing 
both x and y which belongs to some relation from the given structure. If the projection 
of a set S ⊆ A × B to each coordinate is a bijection then we say that S is a diagonal 
set.

If L is a relational signature and A and B are structures in L then we write A ↪→ B

when A embeds into B, A ≤ B when A is a substructure of B and A ∼= B when A and B

are isomorphic. If S is a subset of the underlying set of a structure A then we write 
A � S for the substructure with the underlying set S. We say that a structure A is rigid
if it has only one automorphism. For structures A and B we denote by 

(
B

A

)
the collection 

{A′ ≤ B : A′ ∼= A}. For a given structure K we denote by Age(K) the class of all finite 
structures that can be embedded into K.

We assume that every class of structures in this paper is closed under taking isomor-
phic images.

Let I and J be index sets such that I ∩J = ∅. Let L = {Ri}i∈I and L′ = L ∪{Rj}j∈J

be relational signatures such that for all j ∈ J we have Rj /∈ L. If A′ is a structure in L′

and A is a structure in L such that
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A′ =
(
A,

{
RA

i

}
i∈I∪J

)
and A =

(
A,

{
RA

i

}
i∈I

)

then we say that A is a reduct of A′ or that A′ is an expansion of A. We denote this 
by A = A′|L and we write A′ = (A, {RA

j }j∈J ). Let K and K′ be classes of structures 
in L and L′ respectively. If for every A ∈ K there is some B ∈ K such that for every 
A′, B′ ∈ K′ with A = A′|L and B = B′|L there exists an embedding of A′ into B′ then 
we say that K′ satisfies the expansion property (EP) with respect to K. In this case we 
say that B verifies EP for A. If A′ ∈ K′ and B ∈ K are such that for every B′ ∈ K′

with B′|L = B we have A′ ↪→ B′, then we say that B verifies EP for A′. If L′ = {≤}, 
≤ is interpreted in all structures in K′ as a linear ordering and K′ satisfies EP with 
respect to K then we say that K′ satisfies the ordering property (OP) with respect to K. 
Similarly, we say that B verifies OP for A or A′. We say that K′ is a precompact expansion
of K if |{A′ ∈ K′ : A = A′|L}| is a non-zero natural number for every A ∈ K. If K′ is 
an expansion of the class K such that K′ contains structures of the form (A, ≤A) where 
A ∈ K and ≤A is a linear ordering then we say that K′ is an ordered expansion of K.

Let K be a class of finite relational structures in a signature L. We say that K satisfies 
the following:

• Hereditary property (HP) if A ↪→ B and B ∈ K then A ∈ K.
• Joint embedding property (JEP) if for all A ∈ K and B ∈ K there is some C ∈ K such 

that A ↪→ C and B ↪→ C.
• Strong joint embedding property (SJEP) if for all A ∈ K and B ∈ K there are 

A′, B′, C ∈ K such that A′ ≤ C, B′ ≤ C, A′ ∼= A, B′ ∼= B, and the underlying sets 
of A′ and B′ are disjoint.

• Amalgamation property (AP) if for all A, B, C ∈ K and all embeddings f : A → B

and g : A → C there are some D ∈ K and embeddings f̄ : B → D and ḡ : C → D

such that f̄ ◦ f = ḡ ◦ g.
• Strong amalgamation property (SAP) if for all A, B, C ∈ K with the underlying sets 

A, B, C respectively and all embeddings f : A → B and g : A → C there are some 
D ∈ K and embeddings f̄ : B → D and ḡ : C → D such that f̄ ◦ f = ḡ ◦ g and 
f̄(B) ∩ ḡ(C) = f̄ ◦ f(A) = ḡ ◦ g(A).

• Two point amalgamation property (2AP) if for all A, B, C ∈ K with the underlying 
sets A, B, C respectively and all embeddings f : A → B and g : A → C with 
the property |B \ f(A)| = 1 and |C \ g(A)| = 1 there are D ∈ K and embeddings 
f̄ : B → D and ḡ : C → D such that f̄ ◦ f = ḡ ◦ g.

It should be clear that AP implies 2AP. We also have the converse under an additional 
assumption.

Lemma 1. (See [6].) If a class K of finite relational structures satisfies HP and 2AP then 
it satisfies AP.
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A countable class K of finite structures, in a countable signature L which contains 
structures of arbitrary large finite cardinality, and satisfies HP, JEP and AP is called 
a Fraïssé class. We give the following lemma without a proof as a useful technical state-
ment.

Lemma 2. Let K be a class of structures in a relational signature L. Let K′ be a class of 
structures in a relational signature L′ such that K′ is a precompact expansion of K. If K′

satisfies JEP and for every A′ ∈ K′ there is a B ∈ K that verifies EP for A′ then K′ has 
EP with respect to K.

3. Classes

Let L be a relational signature with arities {ni}i∈I . Let A = (A, {RA
i }i∈I) and B =

(B, {RB
i }i∈I) be structures in L. If A = B and RA

i ⊂ RB
i for all i ∈ I then we say 

that B is a thickening of A. If K is a class of structures in L and B ∈ K is a thickening 
of A then we say that B is a thickening of A in K.

Let A = (A, {RA
i }i∈I) be a structure in a relational signature L = {Ri}i∈I , with arities 

{ni}i∈I . For a non-empty set B we define a relational L-structure C = (C, {RC
i }i∈I) with 

C = A ×B. For i ∈ I we define relation RC
i as follows. Let c̄ = (c1, . . . , cni) be a sequence 

of points from C such that cs = (cs1, cs2), s ∈ [ni]. Then, RC
i (c̄) iff for all s, s′ ∈ [ni] we 

have:

• RA
i (c11, c21, . . . , c

ni
1 ),

• cs1 = cs
′

1 ⇒ cs = cs
′ .

In this case we say that C is a lifting of A by B. If D is a thickening of C such that for 
every diagonal S ⊂ C we have C � S = D � S then we say that D is a diagonal thickening
of C.

Let {Ki}i∈I be a sequence of classes of finite relational structures in the relational 
signatures {Li}i∈I , respectively, where the signatures are pairwise disjoint. We define 
the product of classes, 

∏
i∈I Ki, to be the class of all finite relational structures A in the 

signature L =
⋃

i∈I Li such that A|Li ∈ Ki for all i ∈ I. In particular, for I = [n] we 
write 

∏
i∈I Ki =

∏n
i=1 Ki = K1 ∗ · · · ∗ Kn. Let us emphasize that even if K1 and K2 are 

non-empty it could be that K1∗K2 = ∅. For example, if K1 contains only structures of odd 
cardinality and K2 contains only structures of even cardinality then we have K1∗K2 = ∅. 
If I is finite and each of the classes Ki is countable then their product is at most countable. 
If I is infinite and the classes Ki are non-empty then their product can be uncountable. 
For example, if I is infinite and each Ki is the class of finite graphs then their product 
is uncountable. Let {Kλ}λ∈Δ be a sequence of classes of finite relational structures in 
relational signatures {Lλ}λ∈Δ, respectively, where the signatures are pairwise disjoint. 
We define the sum of classes, 

∑
λ∈Δ Kλ, to be the class of all finite relational structures A

in the signature L =
⋃

λ∈Δ Lλ for which there is some finite Δ0 ⊆ Δ such that:
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• A is a structure in 
⋃

λ∈Δ0
Lλ and

• for every λ ∈ Δ0 we have A|Lλ ∈ Kλ.

For finite Δ1 = {λ1, . . . , λn} ⊆ Δ we have Kλ1 ∗ · · · ∗ Kλn
⊆

∑
λ∈Δ Kλ, but if Δ0 =

{μ1, . . . , μn} ⊆ Δ1 we do not have always Kμ1 ∗ · · · ∗ Kμm
⊆ Kλ1 ∗ · · · ∗ Kλn

. For finite 
Δ1 = {λ1, . . . , λn} we also write Kλ1 + · · ·+Kλn

instead of 
∑

λ∈Δ Kλ. If Δ is countable 
and Kλ is countable for each λ ∈ Δ, then their sum is at most countable. In particular 
the class 

∑
λ∈Δ Kλ is the union of all classes Kλ1 ∗ · · · ∗ Kλn

where {λ1, . . . , λn} ranges 
over all finite subsets of Δ. Note that for finite Δ of cardinality at least 2, typically, we 
have

∏
λ∈Δ

Kλ �=
∑
λ∈Δ

Kλ.

Example 1. Let K1 and K2 be classes of finite linearly ordered sets in two disjoint 
signatures {≤} and {	} respectively. Consider structures A = (A, ≤A) ∈ K1 and B =
(B, ≤B , 	B) ∈ K1 ∗ K2. Suppose there is some C ∈ K1 + K2 such that A ↪→ C and 
B ↪→ C. Since A ↪→ C we have that C contains at most one linear ordering, and from 
B ↪→ C we have that it must contain two linear orderings. Therefore there is no such C, 
and K1 + K2 does not satisfy JEP.

In order to avoid this obstacle we consider the following property. We say that the 
class K of finite structures in a relational signature {Ri}i∈I has the spacing property
(SP) if it contains structures (A, {RA

i }i∈I) of arbitrary large finite cardinality such that 
for every i ∈ I we have RA

i = ∅. Note that the class of finite graphs has SP, but the class 
of finite linear orderings does not have SP.

In order to simplify the presentation of the proof of Lemma 3 and the proof of Lemma 4
we introduce 2AP modification and doubling as follows. Let L be a relational signature. 
Let K be a class of finite structures in the signature L which satisfies 2AP and HP. Let 
A, B and C be finite structures in L, with the underlying sets A, B and C respectively. 
Then we have the following:

• If A ∈ K, B ∈ K, A ∩B ∈ K, A ∩B = S, A = S∪{a}, B = S∪{b} and C = S∪{a, b}
then there is some D ∈ K with the underlying set C such that A ≤ D and B ≤ D. 
We say that D is obtained by 2AP modification of C from A and B.

• If A ∈ K, B ∈ K, B = A ∪ {b}, b /∈ A and A ≤ B then there is some D ∈ K with the 
underlying set C = B ∪ {c}, c /∈ B, such that B ≤ C and C|(A ∪ {c}) ∼= B. We say 
that C is obtained by doubling B over A.

Lemma 3. Let L1 and L2 be disjoint signatures, and let K1 and K2 be classes of finite 
relational structures in L1 and L2 respectively. Let {Kλ}λ∈Δ be a sequence of classes 
of finite relational structures in the relational signatures {Lλ}λ∈Δ, respectively, where 
signatures are pairwise disjoint. Then we have:
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(i) [4] If K1 and K2 satisfy HP and SAP then K1 ∗ K2 satisfies HP and SAP.
(ii) If K1 and K2 satisfy HP and SJEP then K1 ∗ K2 satisfies SJEP.
(iii) If K1 satisfies HP, JEP and SAP, and every one point structure in K1 can be 

embedded in a larger structure in K1 then K1 satisfies SJEP.
(iv) Let Kλ, λ ∈ Δ, satisfy HP, JEP, SAP and suppose that every one point structure 

in Kλ can be embedded in a larger structure in Kλ. Then 
∏

λ∈Δ Kλ satisfies HP, 
SJEP and SAP. In particular if Δ is finite and each Kλ is a Fraïssé class which 
has SAP then 

∏
λ∈Δ Kλ is a Fraïssé class which has SJEP and SAP.

(v) Let Kλ, λ ∈ Δ, satisfy HP, JEP, SAP, SP and suppose that every one point struc-
ture in Kλ can be embedded in a larger structure in Kλ. If Δ is at most countable 
then 

∑
λ∈Δ Kλ satisfies HP, SJEP and SAP. In particular if Kλ, λ ∈ Δ, is a Fraïssé 

class which has SAP and SP then 
∑

λ∈Δ Kλ is a Fraïssé class which has SJEP and 
SAP.

Proof.

(i) This is Proposition 2.2 in [4].
(ii) Let A and B be structures in K1 ∗K2 with the underlying sets A and B respectively. 

Without loss of generality we may assume that A ∩B = ∅. Since K1 and K2 satisfy 
HP and SJEP there are C1 ∈ K1 and C2 ∈ K2 with the same underlying set A ∪B

such that C1 � A = A|L1, C1 � B = B|L1, C2 � A = A|L2, C2 � B = B|L2. Let 
C ∈ K1 ∗ K2 be such that C|L1 = C1 and C|L2 = C2. Therefore C � A = A and 
C � B = B. Since A ∩ B = ∅ this completes the verification of SJEP for the class 
K1 ∗ K2.

(iii) Let A0, A00, A and B be structures in K1 with underlying sets A0, A00, A and B
respectively. We assume that B = A0 ∪A00, A = A0 ∩A00 and that A0, A00 and A
are substructures of B induced by the sets A0, A00 and A respectively. Since every 
one point structure is contained in some larger structure, and since K1 satisfies 
HP we may assume |A| ≥ 2. Let A = {a1, . . . , an} for n ≥ 1. Let A1 ≤ B be 
induced by the set B \ {a1}, and let B1 ∈ K1 be obtained by doubling B over A1. 
So B1 has the underlying set B1 = B∪{a′1} such that a′1 /∈ B. We define recursively 
structures Ai and Bi with underlying sets Ai and Bi, respectively, for 2 ≤ i ≤ n. We 
take Ai = Bi−1 \ {ai}, and Bi is obtained by doubling Bi−1 over Ai. In particular 
we have Bi = Bi−1 ∪ {a′i} where a′i /∈ Bi−1. Now we take A′ = {a′1, . . . , a′n}, 
A′

0 = (A0 \A) ∪A′ and A′
0 to be substructures of Bn induced by the sets A′

0. Then 
we have A′

0 ∩A00 = ∅ and A′
0
∼= A0 so Bn verifies SJEP for A0 and A00.

(iv) This follows by the same arguments as (i), (ii) and (iii). We prove the claim for the 
class 

∏
λ∈Δ Kλ and then we prove the claim for the class 

∑
λ∈Δ Kλ. It is enough to 

check the claim for finite Δ, and this follows from (i), (ii), (iii) and by induction on 
the size of Δ. We use SP in order to verify SJEP for the class K =

∑
λ∈Δ Kλ. Let A

and B be structures in K such that A ∈ Kλ1 ∗ · · · ∗ Kλn
and B ∈ Kμ1 ∗ · · · ∗ Kμm

. 
Since Kλ satisfies SP for all λ ∈ Δ, we may consider structures A and B as structures 
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in 
∏

λ∈I Kλ where I = {λ1, . . . , λn} ∪ {μ1, . . . , μm}. Since 
∏

λ∈I Kλ satisfies SJEP, 
by the first part of this claim we have that 

∑
λ∈Δ Kλ satisfies SJEP.

(v) HP and SAP are verified in the same way as in (iv), but SJEP follows from SP. 
Let A and B be structures in K such that A ∈ Kλ1 ∗· · ·∗Kλn

and B ∈ Kμ1 ∗· · ·∗Kμm
. 

Since Kλ satisfies SP for all λ ∈ Δ, we may consider A and B also as structures 
in 

∏
λ∈I Kλ where I = {λ1, . . . , λn} ∪ {μ1, . . . , μm}. Since 

∏
λ∈I Kλ satisfies SJEP, 

see (iv), we have that 
∑

λ∈Δ Kλ satisfies SJEP. �
4. Ramsey property

Let K be a class of finite structures in a given relational signature L. If for a natural 
number r and structures A, B, and C from K we have that for every coloring c :

(
C

A

)
→ [r], 

there is a B′ ∈
(
C

B

)
such that c �

(
B
′

A

)
= const, then we write C → (B)Ar . If for all A and B

from K and all natural numbers r there is C ∈ K such that C → (B)Ar , then we say 
that K is a Ramsey class or that K satisfies the Ramsey property (RP). In the case 
when a given class does not satisfy RP we measure its deviation from being Ramsey as 
follows. If for natural numbers r and t, and structures A, B, and C from K we have that 
for every coloring c :

(
C

A

)
→ [r], there is a B′ ∈

(
C

B

)
such that 

∣∣c((B′

A

))∣∣ ≤ t, then we write 
C → (B)Ar,t. If for A ∈ K there is a natural number t0 such that for any natural number r
and any B ∈ K there is a C ∈ K such that C → (B)Ar,t0 , then we say that K has finite 
Ramsey degree in K and the smallest t0 with this property is called the Ramsey degree
of A in K. The Ramsey degree of A in K is denoted by tK(A). We calculate Ramsey 
degrees by using the following.

Theorem 2. (See [12,18].) Let K be a relational Fraïssé class in the signature L and 
let K′ be a relational Fraïssé class in a signature L′ such that L ∩ (L′ \ L) = ∅. Suppose 
that K′ is a precompact expansion of K. If K′ satisfies RP and EP with respect to K then

tK(A) = |{A′ ∈ K′ : A′|L = A}|
|Aut(A)| .

In particular, if A is a rigid structure then tK(A) = |{A′ ∈ K′ : A′|L = A}|.

In this Section we will show how to transfer the Ramsey property to the product of 
classes. Our approach is motivated by the approach in [22], so we will use some notation 
from [22]. Let K1 and K2 be two classes of structures. Let �A = (A1, A2) and �B = (B1, B2)
be from K1 ×K2, and let A1 and A2 be the underlying sets for the structures A1 and A2
respectively. Then we define:

(1) �A ≤ �B iff Ai ≤ Bi for all i ∈ [2],
(2) �A ∼= �B iff Ai

∼= Bi for all i ∈ [2],
(3)

(�B
�

)
= {�C ∈ K1 ×K2 : �C ≤ �B and �C ∼= �A}.
A
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We refer to the following result as the product Ramsey theorem for classes, see [21].

Theorem 3. Let r be a natural number, and let K1, K2 be Ramsey classes. Then for 
all �A, �B ∈ K1 × K2 with 

(�B
�A

)
�= ∅ there is a �C ∈ K1 × K2 such that for every coloring 

χ :
(�C
�A

)
→ [r] there is a �B′ ∈ K1 ×K2 such that �B′ ∼= �B and χ �

(�B′
�A

)
= const.

If �A, �B, �C ∈ K1 × K2 satisfy the statement of the previous theorem then we write 
�C → (�B)�Ar . If in the previous theorem we take K1 and K2 to be the classes of finite 
linearly ordered sets then we obtain the classical product Ramsey theorem, see page 97 
in [8]. In the following we obtain the Ramsey statement for the product of two Ramsey 
classes.

Theorem 4. Let L1 = {Ri}i∈I and L2 = {Rj}j∈J be disjoint relational signatures with 
arities {ni}i∈I and {nj}j∈J . Let K1 and K2 be Ramsey classes of finite rigid structures 
in L1 and L2, respectively. If for every lifting of a structure in K1 (K2) there is a diagonal 
thickening in K1 (K2) then K = K1 ∗ K2 is a Ramsey class.

Proof. Let r be a given natural number. Let A = (A, {RA
i }i∈I , {RA

j }j∈J) and B =
(B, {RB

i }i∈I , {RB
j }j∈J ) be structures from K such that 

(
B

A

)
�= ∅. We consider structures:

A1 =
(
A,

{
RA

i

}
i∈I

)
= A|LI , A2 =

(
A,

{
RA

j

})
= A|LJ ,

B1 =
(
B,

{
RB

i

}
i∈I

)
= B|LI , B2 =

(
B,

{
RB

j

})
= B|LJ .

Note that A1, B1 ∈ K1 and A2, B2 ∈ K2, and that 
(
B1
A1

)
�= ∅ and 

(
B2
A2

)
�= ∅. Since K1 and K2

are Ramsey classes, by Theorem 3, there are structures C1 = (C1, {RC1
i }i∈I) ∈ K1 and 

C2 = (C2, {RC2
i }i∈I) ∈ K2 such that

(C1,C2) → (B1,B2)(A1,A2)
r .

We define a structure C = (C, {RC
i }i∈I , {RC

j }) with the underlying set C = C1 × C2 in 
signature L1 ∪ L2 such that:

• C|L1 is a lifting of C1 by C2,
• C|L2 is a lifting of C2 by C1.

We denote by πi : C → Ci the projection πi(c1, c2) = ci, i ∈ [2]. For diagonals S

and S′ in C, A1 ⊆ C1 and A2 ⊆ C2 we have the following four facts:

Fact 1. C � S ∈ K iff Ci � πi(S) ∈ Ki for i ∈ [2].

Fact 2. If C � S ∼= C � S′ ∈ K then Ci � πi(S) ∼= Ci � πi(S′) for i ∈ [2] and there are 
unique isomorphisms which verify this (because the classes K1 and K2 contain only rigid 
structures).
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Fact 3. If C � S ∈ K, C1 � A1 ∼= C1 � π1(S) and C2 � A2 ∼= C2 � π2(S) then there is 
a unique diagonal S′ ⊂ A1 ×A2 such that C � S ∼= C � S′.

We check Fact 3. From Fact 1 we have Ci � πi(S) ∈ Ki for i ∈ [2]. Since K1 and K2
are classes of rigid structures there are unique isomorphisms ϕ1 : π1(S) → A1 and 
ϕ1 : π2(S) → A2. Consider the map f : S → A1 ×A2 given by

f(x) =
(
ϕ1 ◦ π1(x), ϕ2 ◦ π2(x)

)
.

Clearly, f is a bijection from S to S′ = f(S) such that C � S ∼= C � S′. Uniqueness 
of S′ follows from the fact that C1 � π1(S′) and C2 � π2(S′) are rigid structures and 
π1(S′) = A1 and π2(S′) = A2.

Fact 4. For each K ∈ K, if C1 � A1 ∼= K|LI and C2 � A2 ∼= K|LJ then there is a unique 
diagonal S ⊂ A1 ×A2 such that C � S ∼= K.

The proof is similar to that of Fact 3. There are unique isomorphisms ϕ1 : K|LI →
C1 � A1 and ϕ2 : K|LJ → C2 � A2. If K is the underlying set for K, then the unique 
embedding f : K → A1 ×A2 is given by f(x) = (ϕ1(x), ϕ2(x)).

Since liftings of structures in K1 and K2 have diagonal thickenings in K1 and K2 there 
are D1 ∈ K1 and D2 ∈ K2 which are thickening of C|L1 and C|L2 respectively. Moreover, 
there is D = (D, {RC

i }i∈I , {RC
j }) ∈ K which is a thickening of C such that D|L1 = D1

and D|L2 = D2 and for every diagonal S ⊂ C we have D � S = C � S.
We claim that D → (B)Ar . Let p :

(
D

A

)
→ [r] be a given coloring. There is an induced 

coloring:

p̄ :
(

(C1,C2)
(A1,A2)

)
→ [r],

p̄
((
A′

1,A
′
2
))

= p
(
A′),

where A′, with underlying set A′, is the structure given by the unique diagonal such 
that:

• A′
1 is the underlying set for A′

1,
• A′

2 is the underlying set for A′
2,

• C � A′ ∼= A.

The coloring p̄ is well-defined by Fact 3 and since D � S = C � S for a given diagonal 
S ⊆ C. According to the choice of the sequence (C1, C2) there is a B′

1 ∈
(
C1
B1

)
, with 

underlying set B′
1, and a B′

2 ∈
(
C2
B2

)
, with underlying set B′

2, such that p̄ �
((B′

1,B
′
2)

(A1,A2)
)

=
const. There is a unique diagonal set B′ ⊂ B′

1 × B′
2 such that C � B′ = D � B′ ∼= B, by 

Fact 4. Therefore p �
(
D�B′

A

)
= const. �
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Corollary 1. Let {Lλ}λ∈Δ be a list of mutually disjoint relational signatures. Let {Kλ}λ∈Δ
be a list of classes of finite relational structures in the signatures {Lλ}λ∈Δ, respectively. 
For each λ ∈ Δ, let Kλ be a Ramsey class and suppose that for every lifting of a structure 
in Kλ there is a diagonal thickening in Kλ. Then S =

∑
λ∈Δ Kλ is a Ramsey class and 

if Δ is finite then K =
∏

λ∈Δ Kλ is a Ramsey class.

Proof. Note that from the definition of the classes K and S it is enough to consider only 
the case in which Δ is finite. For finite Δ we prove this by induction on |Δ|. This follows 
from Theorem 4 and the fact that if liftings of structures in K1 and K2 have diagonal 
thickenings then liftings of structures in K1 ∗ K2 have diagonal thickenings. �
Lemma 4. Let K be a relational Fraïssé class with SAP. Let A be a structure from K, 
and let C be a lifting of A by B where B is a non-empty set. Then there is a D ∈ K such 
that D is a diagonal thickening of C.

Proof. Let A = {a1, a2, . . . , an} be the underlying set of A, let B = {b1, b2, . . . , bm}, and 
let C = A × B be the underlying set of C. We modify the structure C to the structure 
D ∈ K in finitely many recursive steps by considering sets

Pi,j =
{
(ar, bs) :

(
s < j and r ∈ [n]

)
or

(
s = j and r ∈ [i]

)}
for i ∈ [n] and j ∈ [m]. Our recursion is based on the lexicographical ordering < of 
the set [n] × [m] such that (i, j) < (i′, j′) iff (j < j′) or (j = j′, i < i′). We start our 
construction from (n, 1) instead of (1, 1). During our construction we define structures 
Pi,j ∈ K for (n, 1) ≤ (i, j) ≤ (n, m). The main steps in our construction are:

Step (n, 1): Note that C � Pn,1 ∈ K by definition of lifting. We take Pn,1 = C � Pn,1.
Step (1, 2): By definition of the lifting we have C � Pn,1 ∼= C � (P1,2 \ {(a1, b1)}) ∈ K. 

Then we take P1,2 to be a structure in K obtained by 2AP modification of C � P1,2
from C � Pn,1 and C � (P1,2 \ {(a1, b1)}). So we have Pn,1 ≤ P1,2 and P1,2 is a diagonal 
thickening of C � P1,2. In particular we assume that the underlying set of P1,2 is P1,2.

Step (i, j), i > 1, j > 2: The structure Pi−1,j ∈ K was previously defined as a diagonal 
thickening of C � Pi−1,j . The structure Pi,j ∈ K is obtained by doubling

Pi−1,j over Pi−1,j �
(
Pi−1,j \

{
(ai, bj−1)

})
.

Without loss of generality we may assume that the underlying set of Pi,j is Pi,j , so we 
also have Pi−1,j ≤ Pi,j and that Pi,j is a diagonal thickening of C � Pi,j .

Step (1, j), j > 2: The structure Pn,j−1 ∈ K was previously defined as a diagonal thick-
ening of C � Pn,j−1. The structure P1,j ∈ K is obtained by doubling

Pn,j−1 over Pn,j−1 �
(
Pn,j−1 \

{
(a1, bj−1)

})
.
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Without loss of generality we may assume that P1,j is the underlying set of Pi,j. Then 
we have Pn,j−1 ≤ P1,j and that P1,j is a diagonal thickening of C � P1,j .

In the end we take D = Pn,m. �
Corollary 1 and Lemma 4 imply the following.

Corollary 2. Let {Lλ}λ∈Δ be a list of pairwise disjoint relational signatures. Let {Kλ}λ∈Δ
be a list of Fraïssé classes in signatures {Lλ}λ∈Δ, respectively. Suppose that for every 
λ ∈ Δ, the class Kλ has RP and SAP. Then 

∑
λ∈Δ Kλ is a Ramsey class and if Δ is 

finite then 
∏

λ∈Δ Kλ is a Ramsey class.

5. Dense local order

Let T denote the unit circle in the complex plane. We define an oriented graph struc-
ture T = (T, −→T ) in a relational binary signature {−→}. For x, y ∈ T we define 
x −→T y iff 0 < arg( yx ) < π. The dense local order is the structure S(2) = (S(2), −→S(2))
which is the substructure of T determined by the set S(2) = {t ∈ T : arg(t) ∈ Q}. 
We consider S(2) = Age(S(2)), the class of finite dense local orders. It is a Fraïssé 
class which satisfies SAP. Let L and R be unary relational symbols. Let US(2) =
(S(2), −→S(2), LS(2), RS(2)) be the structure such that US(2)|{−→} = S(2) and for 
x ∈ S(2) we have LS(2)(x) iff x is in the left half plane, and RS(2)(x) iff x is in the 
right half plane. We consider US(2) = Age(US(2)), a Fraïssé class which satisfies SAP. 
If a point from a structure in US(2) is indicated by L then we say that it lies in the 
left half of the structure, and otherwise we say it lies in the right half of the structure. 
For more on the structure S(2) we refer the reader to [6] and [18], and for more on the 
structure US(2) we refer the reader to [18].

Theorem 5. (See [18].) For dense local order we have the following:

(i) The class US(2) has RP and EP with respect to S(2).
(ii) No order expansion of S(2) has RP and EP with respect to S(2).

We consider the class

OS(2) =
{(

A,−→A,≤A
)

:
(
A,−→A

)
∈ S(2) and ≤A ∈ lo(A)

}
.

Since S(2) satisfies SAP, OS(2) also satisfies SAP, see Proposition 5.3 in [12]. We consider 
UOS(2), a Fraïssé class, given by

UOS(2) =
{(

A,≤A, LA, RA
)

: A ∈ S(2) and(
A,≤A

)
∈ OS(2) and

(
A, LA, RA

)
∈ US(2)

}
.
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We say that ordering and arrow agree on a structure A = (A, −→A, ≤A, LA, RA) if 
for all a, b ∈ A we have a −→A b and a ≤A b. Otherwise we say that they disagree.

Corollary 3. UOS(2) is a Ramsey class.

Proof. We have UOS(2) = US(2) ∗ L where L is the class of finite linearly ordered sets. 
Since US(2) and L are both Fraïssé classes of rigid structures with SAP and RP, it 
follows from Corollary 2 that UOS(2) is a Ramsey class. �

We use RP in order to obtain EP. More precisely, we compare two expansions of 
a structure from OS(2) to structures from UOS(2).

For the purpose of Proposition 1 and Proposition 2 we consider the following struc-
tures:

• L1 = (L1, −→L1 , ≤L1 , LL1 , RL1), L1 = {l1,1, l1,2}, l1,1 −→L1 l1,2, l1,1 ≤L1 l1,2, 
LL1(l1,1), LL1(l1,2).

• L2 = (L2, −→L2 , ≤L2 , LL2 , RL2), L2 = {l2,1, l2,2}, l2,1 −→L2 l2,2, l2,2 ≤L2 l2,1, 
LL2(l2,1), LL2(l2,2).

• R1 = (R1, −→R1 , ≤R1 , LR1 , RR1), R1 = {r1,1, r1,2}, r1,1 −→R1 r1,2, r1,1 ≤R1 r1,2, 
RR1(r1,1), RR1(r1,2).

• R2 = (R2, −→R2 , ≤R2 , LR2 , RR2), R2 = {r2,1, r2,2}, r2,1 −→R2 r2,2, r2,2 ≤R2 r2,1, 
RR2(r2,1), RR2(r2,2).

• X1 = (X1, −→X1 , ≤X1 , LX1 , RX1), X1 = {x1,1, x1,2, x1,3}, x1,1 −→X1 x1,2, 
x1,1 −→X1 x1,3, x1,2 −→X1 x1,3, x1,1 ≤X1 x1,2 ≤X1 x1,3, LX1(x1,1), LX1(x1,2), 
LX1(x1,3).

• X2 = (X2, −→X2 , ≤X2 , LX2 , RX2), X2 = {x2,1, x2,2, x2,3}, x2,1 −→X2 x2,2, 
x2,1 −→X2 x2,3, x2,2 −→X2 x2,3, x2,3 ≤X2 x2,2 ≤X2 x2,1, LX2(x2,1), LX2(x2,2), 
LX2(x2,3).

• Y1 = (Y1, −→Y1 , ≤Y1 , LY1 , RY1), Y1 = {y1,1, y1,2, y1,3}, y1,1 −→Y1 y1,2, y1,1 −→Y1

y1,3, y1,2 −→Y1 y1,3, y1,1 ≤Y1 y1,2 ≤Y1 y1,3, RY1(y1,1), RY1(y1,2), RY1(y1,3).
• Y2 = (Y2, −→Y2 , ≤Y2 , LY2 , RY2), Y2 = {y2,1, y2,2, y2,3}, y2,1 −→Y2 y2,2, y2,1 −→Y2

y2,3, y2,2 −→Y2 y2,3, y2,3 ≤Y2 y2,2 ≤Y2 y2,1, RY2(y2,1), RY2(y2,2), RY2(y2,3).
• Z1 = (Z1, −→Z1 , ≤Z1 , LZ1 , RZ1), Z1 = {z1,1, z1,2, z1,3}, z1,1 −→Z1 z1,2, z1,1 −→Z1

z1,3, z1,2 −→Z1 z1,3, z1,3 ≤Z1 z1,1 ≤Z1 z1,2, LZ1(z1,1), LZ1(z1,2), LZ1(z1,3).
• Z2 = (Z2, −→Z2 , ≤Z2 , LZ2 , RZ2), Z2 = {z2,1, z2,2, z2,3}, z2,1 −→Z2 z2,2, z2,1 −→Z2

z2,3, z2,2 −→Z2 z2,3, z2,3 ≤Z2 z2,1 ≤Z2 z2,2, RZ2(z2,1), RZ2(z2,2), RZ2(z2,3).
• W = (W, −→W , ≤W , LW , RW ), W = {w1, w2, w3}, w1 −→W w2, w2 −→W w3, 

w3 −→W w1, w1 ≤W w2 ≤W w3, RW (w1), LW (w2), RW (w3).

Each of the structures L1, L2, R1, R2, X1, X2, Y1, Y2, Z1 and Z2 has only one half. 
Structure W has two halves, but arrows in this structure make a circle, so any expansion 
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of the structure W|{−→, ≤} to a structure in UOS(2) must have points in both halves. 
Ordering and arrow agree on L1, R1, X1, Y1; while they disagree on L2, R2, X2, Y2.

Proposition 1. UOS(2) satisfies EP with respect to OS(2).

Proof. By Lemma 2, it is enough to fix A = (A, −→A, ≤A, LA, RA) ∈ UOS(2) and find 
E = (E, −→E , ≤E) ∈ OS(2) that verifies EP for A. Since the class UOS(2) satisfies JEP 
there exists a B = (B, −→B , ≤B , LB , RB) ∈ UOS(2) containing A, L1, L2, R1, R2, X1, 
X2, Y1, Y2, Z1, Z2 and W as substructures. There is a structure C ∈ UOS(2) with the 
same underlying set as B such that for all x, y ∈ B we have:

• C = (B, −→C , ≤C , LC , RC),
• x −→B y ⇔ x −→C y,
• x ≤B y ⇔ x ≤C y,
• LB(x) ⇔ RC(x) and
• RB(x) ⇔ LC(x).

The structures B and C agree on arrow relations, agree on orderings and they are 
opposite with respect to L and R. Again, using JEP for the class UOS(2) there is some 
D = (D, −→D, ≤D, LD, RD) ∈ UOS(2) such that B ↪→ D and C ↪→ D.

Using RP for the class UOS(2) we recursively define structures E1, E2, E3, E4 ∈
UOS(2) such that:

E1 → (D)L1
4 , E2 → (E1)L2

4 , E3 → (E2)R1
4 , E4 → (E3)R2

4 .

Let E4 = (E, −→E , ≤E , LE , RE) and take E = (E, −→E , ≤E) ∈ OS(2). We claim that E
verifies EP for A. Let Γ = {(L, L), (L, R), (R, L), (R, R)} be a set of colors and let Γ0 =
{(L, L), (R, R)}. In order to check our claim we need to consider an arbitrary expansion 
of the structure E to a structure in UOS(2), say (E, L0, R0). We define colorings

χ1 :
(
E4

L1

)
→ Γ, χ2 :

(
E4

L2

)
→ Γ, χ3 :

(
E4

R1

)
→ Γ, χ4 :

(
E4

R2

)
→ Γ,

such that for each i ∈ [4] we have χi(U) = (γ1, γ2) where U has the underlying set 
U = {x, y} with x −→E y and

γ1 =
{
L; L0(x)
R; R0(x)

; and γ2 =
{
L; L0(y)
R; R0(y)

.

According to the construction of the sequence (Ei)4i=1 there is a sequence (E′
i)3i=0 such 

that:

E′
0 ≤ E′

1 ≤ E′
2 ≤ E′

3 ≤ E4, E′
0
∼= D, E′

1
∼= E1, E′

2
∼= E2, E′

3
∼= E3,
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χ4 �
(
E′

3
R2

)
= (γ41, γ42), χ3 �

(
E′

2
R1

)
= (γ31, γ32),

χ2 �
(
E′

1
L2

)
= (γ21, γ22), χ1 �

(
E′

0
R1

)
= (γ11, γ12).

In particular we have that

χ4 �
(
E′

0
R2

)
= (γ41, γ42), χ3 �

(
E′

0
R1

)
= (γ31, γ32),

χ2 �
(
E′

0
L2

)
= (γ21, γ22), χ1 �

(
E′

0
R1

)
= (γ11, γ12).

Since X1 and X2 can be embedded into B and B ↪→ E′
0, we must have

(γ11, γ12), (γ21, γ22) ∈ Γ0.

We use here the fact that every two substructures of X1 (X2) isomorphic with L1 (L2) 
must have a point in common. For the similar reason, since Y1 and Y2 can be embedded 
into B and B ↪→ E′

0, we must have

(γ31, γ32), (γ41, γ42) ∈ Γ0.

Moreover, Z1 ↪→ B ↪→ E′
0 and Z2 ↪→ B ↪→ E′

0, so we have

(γ11, γ12) = (γ21, γ22) ∈
{
(L,L), (R,R)

}
,

(γ31, γ32) = (γ41, γ42) ∈
{
(L,L), (R,R)

}
.

This follows from the fact that Z1 contains two copies of L1 and L2 which have a point 
in common, and similarly for Z2 and R1 and R2. We recall the earlier observation that 
in every expansion of the structure (W, −→W , ≤W ) (which is in OS(2)) to a structure 
in UOS(2), there are points indicated by L as well as points indicated by R, i.e. each 
expansion contains both halves. Since W ↪→ B ↪→ E′

0, we have

(γ11, γ12) = (γ21, γ22) �= (γ31, γ32) = (γ41, γ42).

Now we have two cases:

(1) (L, L) = (γ11, γ12) = (γ21, γ22) �= (γ31, γ32) = (γ41, γ42) = (R, R),
(2) (R, R) = (γ11, γ12) = (γ21, γ22) �= (γ31, γ32) = (γ41, γ42) = (L, L).

In the first case, this means that the relations L0 and LE agree on the underlying set 
of E′

0. The same holds for R0 and RE . Furthermore, A ↪→ B ↪→ E′
0, so A ↪→ (E, L0, R0). 

In the second case, we have that L0 and RE agree on the underlying set of E′
0; and the 
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same for R0 and LE . Since C ↪→ E′
0, there is C′ ≤ E′

0 with the underlying set C ′ such 
that C′ ∼= C. By the construction of the structure C, we get B ∼= (C ′, −→E � C ′, ≤E � C ′,

L0 � C ′, R0 � C ′), and in particular that A ↪→ (E, L0, R0). This completes the verification 
of EP for A by E. �
6. Circular directed graph

Let J denote the unit circle in the complex plane and let −→ be a binary relational 
symbol. We define an oriented graph structure J = (J, −→J) such that for x, y ∈ J

we have x −→J y iff 0 < arg( yx ) < 2π
3 . The circular directed graph is the structure 

S(3) = (S(3), −→S(3)) which is a substructure of J such that S(3) = {t ∈ J : arg(t) ∈ Q}. 
Note that the structures S(2) and S(3) have the same underlying set but the graph 
relation is defined differently. We consider S(3) = Age(S(3)), the class of finite circular 
directed graphs. It is a Fraïssé class which satisfies SAP. Let L, R and D be unary 
relational symbols. Let US(3) = (S(3), −→S(3), LS(3), RS(3), DS(3)) be the structure such 
that US(3)|{−→} = S(3) and for x ∈ S(2) we have

LS(3)(x) ⇔ π

2 < arg(x) < 7π
6 ,

RS(3)(x) ⇔ −π

6 < arg(x) < π

2 ,

DS(3)(x) ⇔ 7π
6 < arg(x) < 11π

6 .

We consider US(3) = Age(US(3)), a Fraïssé class which has SAP. Structures in S(2)
are partitioned into three parts which we call the left, right and down part and they are 
indicated by L, R and D respectively. More details about the classes S(2) and S(3) can 
be found in [6], and more details about the class US(3) in [18].

Theorem 6. (See [18].) For the circular directed graph we have the following:

(i) The class US(3) satisfies RP and EP with respect to S(3).
(ii) No order expansion of S(3) has RP and EP with respect to S(3).

We consider the class

OS(3) =
{(

A,−→A,≤A
)

:
(
A,−→A

)
∈ S(3) and ≤A ∈ lo(A)

}
.

Since S(3) satisfies SAP, OS(3) satisfies SAP. We consider UOS(3), a Fraïssé class, given 
by

UOS(3) =
{(

A,≤A, LA, RA, DA
)

: A ∈ S(3) and(
A,≤A

)
∈ OS(3) and

(
A, LA, RA, DA

)
∈ US(3)

}
.
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Similar to dense local orderings, we say that ordering and arrow agree on A =
(A, −→A, ≤A, LA, RA, DR) if for all a, b ∈ A we have a −→A b and a ≤A b. Other-
wise, we say that they disagree.

Corollary 4. UOS(3) is a Ramsey class.

Proof. We have UOS(3) = US(3) ∗ L where L is the class of finite linearly ordered sets. 
Since US(3) and L are Fraïssé classes of rigid structures with SAP and RP, Corollary 2
applies, and we obtain RP for the class UOS(3). �

For the purpose of Proposition 2 we consider structures L1, L2, R1, R2, X1, X2, Y1, 
Y2, Z1, and Z2, introduced in Section 5, as structures in the class UOS(3). In addition 
to those structures we need to consider the following structures:

• D1 = (D1, −→D1 , ≤D1 , LD1 , RD1 , DD1), D1 = {d1,1, d1,2}, d1,1 −→D1 d1,2, d1,1 ≤D1

d1,2, DD1(d1,1), DD1(d1,2).
• D2 = (D2, −→D2 , ≤D2 , LD2 , RD2 , DD2), D2 = {d2,1, d2,2}, d2,1 −→D2 d2,2, d2,2 ≤D2

d2,1, DD2(d2,1), DD2(d2,2).
• P1 = (P1, −→P1 , ≤P1 , LP1 , RP1 , DP1), P1 = {p1,1, p1,2, p1,3}, p1,1 −→P1 p1,2, 

p1,1 −→P1 p1,3, p1,2 −→P1 p1,3, p1,1 ≤P1 p1,2 ≤P1 p1,3, DP1(p1,1), DP1(p1,2), 
DP1(p1,3).

• P2 = (P2, −→P2 , ≤P2 , LP2 , RP2 , DP2), P2 = {p2,1, p2,2, p2,3}, p2,1 −→P2 p2,2, 
p2,1 −→P2 p2,3, p2,2 −→P2 p2,3, p2,3 ≤P2 p2,2 ≤P2 p2,1, DP2(p2,1), DP2(p2,2), 
DP2(p2,3).

• Z3 = (Z3, −→Z3 , ≤Z3 , LZ3 , RZ3 , DZ3), Z3 = {z3,1, z3,2, z3,3}, z3,1 −→Z3 z3,2, 
z3,1 −→Z3 z3,3, z3,2 −→Z3 z3,3, z3,3 ≤Z3 z3,1 ≤Z3 z3,2, DZ3(z3,1), DZ3(z3,2), 
DZ3(z3,3).

• Wrl = (Wrl, −→Wrl , ≤Wrl , LWrl , RWrl , DWrl), Wrl = {wrl,1, wrl,2, wrl,3},
wrl,1 −→Wrl wrl,2, wrl,2 −→Wrl wrl,3, wrl,1 ≤Wrl wrl,2 ≤Wrl wrl,3, RWrl(wrl,1), 
RWrl(wrl,2), LWrl(wrl,3).

• Wld = (Wld, −→Wld , ≤Wld , LWld , RWld , DWld), Wld = {wld,1, wld,2, wld,3},
wld,1 −→Wld wld,2, wld,2 −→Wld wld,3, wld,1 ≤Wld wld,2 ≤Wld wld,3, LWld(wld,1), 
LWld(wld,2), DWld(wld,3).

• Wdr = (Wdr, −→Wdr , ≤Wdr , LWdr , RWdr , DWdr ), Wdr = {wdr,1, wdr,2, wdr,3},
wdr,1 −→Wdr wdr,2, wdr,2 −→Wdr wdr,3, wdr,1 ≤Wdr wdr,2 ≤Wdr wdr,3, DWdr (wdr,1), 
DWdr (wdr,2), RWdr (wdr,3).

Structures D1, D2, P1, P2 and Z3 are obtained from L1, L2, X1, X2 and Z1 by changing 
the left part into the down part. Each of the structures Wrl, Wld and Wdr contains points 
from exactly two parts and contains points which are not connected by an edge.

Proposition 2. UOS(3) satisfies EP with respect to OS(3).
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Proof. It is enough to fix A = (A, −→A, ≤A, LA, RA, DA) ∈ UOS(3) and find an F ∈
OS(3) that verifies EP for A. Since the class UOS(3) satisfies JEP there exists a B =
(B, −→B , ≤B , LB , RB , DB) ∈ UOS(3) that contains A, L1, L2, R1, R2, D1, D2, X1, X2, 
Y1, Y2, P1, P2, Z1, Z2, Z3, Wrl, Wld and Wdr as substructures. We define structures B1
and B2 in UOS(3) which have the same underlying set as B such that for all x, y ∈ B

we have:

• B1 = (B, −→B1 , ≤B1 , LB1 , RB1 , DB1),
• B2 = (B, −→B2 , ≤B2 , LB2 , RB2 , DB2),
• x −→B y ⇔ x −→B1 y ⇔ x −→B2 y,
• x ≤B y ⇔ x ≤B1 y ⇔ x ≤B2 y,
• LB(x) ⇔ RB1(x) ⇔ DB2(x),
• RB(x) ⇔ DB1(x) ⇔ LB2(x) and
• DB(x) ⇔ LB1(x) ⇔ RB2(x).

The structures B1 and B2 are obtained from the structure B by rotating the labeling 
counterclockwise for one or two places. JEP for the class UOS(3) implies that there is 
an E0 ∈ UOS(3) such that B ↪→ E0, B1 ↪→ E0 and B2 ↪→ E0. Since UOS(2) is a Ramsey 
class, we can recursively define a sequence (Ei)6i=0 of structures in UOS(3) such that:

E1 → (E0)L1
6 , E2 → (E1)L2

6 ,

E3 → (E2)R1
6 , E4 → (E3)R2

6 ,

E5 → (E4)D1
6 , E6 → (E5)D2

6 .

Let E6 = (F, −→F , ≤F , LF , RF , DF ), and let F = (F, −→F , ≤F ) ∈ OS(3). We claim 
that F verifies EP for A. Let Λ = {(λ1, λ2) : λi ∈ {R, L, D} for i ∈ [2]} be a set of colors 
and let Λ0 = {(L, L), (R, R), (D, D)}. In order to check our claim we need to consider 
an arbitrary expansion of the structure F to a structure in UOS(3), say (F, L0, R0, D0). 
We define colorings

χ1 :
(
E6

L1

)
→ Λ, χ2 :

(
E6

L2

)
→ Λ, χ3 :

(
E6

R1

)
→ Λ,

χ4 :
(
E6

R2

)
→ Λ, χ5 :

(
E6

P1

)
→ Λ, χ6 :

(
E6

P2

)
→ Λ,

such that for each i ∈ [6] we have χi(U) = (γ1, γ2) where U = {x, y} is the underlying 
set of the structure U with x −→F y and

γ1 =

⎧⎪⎨
⎪⎩

R; R0(x)
L; L0(x)

0

; and γ2 =

⎧⎪⎨
⎪⎩

R; R0(y)
L; L0(y)

0

.

D; D (x) D; D (y)
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The construction of the sequence (Ei)6i=0 implies the existence of a sequence (E′
i)5i=0

such that for each 0 ≤ i ≤ 5 we have

E′
i ≤ E′

i+1, E′
5 ≤ E6, E′

i
∼= Ei,

χ6 �
(
E′

0
P2

)
= (γ61, γ62), χ5 �

(
E′

0
P1

)
= (γ51, γ52),

χ4 �
(
E′

0
R2

)
= (γ41, γ42), χ3 �

(
E′

0
R1

)
= (γ31, γ32),

χ2 �
(
E′

0
L2

)
= (γ21, γ22), χ1 �

(
E′

0
L1

)
= (γ11, γ12).

Since X1, X2, Y1, Y2, P1 and P2 can be embedded into B and B ↪→ E′
0, the same reason 

as in the proof of Proposition 1 implies that

(γ11, γ12), (γ21, γ22), (γ31, γ32), (γ41, γ42), (γ51, γ52), (γ61, γ62) ∈ Λ0.

Moreover, Z1 ↪→ B ↪→ E′
0, Z2 ↪→ B ↪→ E′

0 and Z3 ↪→ B ↪→ E′
0 so we have

(γ11, γ12) = (γ21, γ22) ∈ Λ0, (γ31, γ32) = (γ41, γ42) ∈ Λ0,

(γ51, γ52) = (γ61, γ62) ∈ Λ0.

Since Wrl ↪→ B, Wld ↪→ B, Wdr ↪→ B and B ↪→ E′
0, we have

(γ11, γ12) �= (γ31, γ32), (γ11, γ12) �= (γ51, γ52), (γ51, γ52) �= (γ31, γ32).

This follows from the fact that points wrl,1 and wrl,3 are not in the same part. Similarly 
points wld,1 and wrl,3, and points wdr,1 and wrl,3 are in different parts. Therefore, we 
are left with three cases:

(1) (γ11, γ12) = (L, L), (γ31, γ32) = (R, R), (γ51, γ52) = (D, D). This means that the 
relations L0 and LE agree on the underlying set of E′

0; and the same for R0 and RE , 
and D0 and DE . Furthermore, A ↪→ B ↪→ E′

0, so A ↪→ (F, L0, R0, D0).
(2) (γ11, γ12) = (R, R), (γ31, γ32) = (D, D), (γ51, γ52) = (L, L). This means that the 

relations L0, R0, D0 agree with the relations DE , LE , RE respectively on the un-
derlying set of E′

0. Since B1 ↪→ E0, there is an embedding A ↪→ (F, L0, R0, D0).
(3) (γ11, γ12) = (D, D), (γ31, γ32) = (L, L), (γ51, γ52) = (R, R). In this case we have 

agreement of the relations L0, R0, D0 with the relations RE , DE , LE respectively on 
the underlying set of E′

0. Since B2 ↪→ E0, there is an embedding A ↪→ (F, L0, R0, D0).

We point out that the case where (γ11, γ12) = (L, L) and (γ31, γ32) = (D, D) is 
impossible since there is no arrow from the down part to the left part. This completes 
verification of EP for A by F. �
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7. Boron trees

Let A = (A, EA) be a graph. A path in the graph A is a sequence of points x1, x2,

. . . , xn, n ≥ 2, such that for all 1 ≤ i < n we have xiE
Axi+1; the path is said to connect 

the vertices x1 and xn. If x1 = xn then we call such a path a circle. A graph is connected
if for every two points there is a path that connects two vertices. A connected graph 
without circles is called a graph theoretic tree. In every graph theoretic tree there is 
a unique shortest path connecting distinct vertices x and y which we denote by xy. If 
for distinct vertices x, y, z, w, we have that the paths xy and zw do not intersect then 
we write xy|zw. If x is a vertex in a graph A then we denote by val(x), the valence of 
the vertex x, the cardinality of the set |{y : xEAy}|. If val(x) = 1 then we say that x is 
a terminal node of the graph. Let T denote the class of finite graph theoretic trees all 
of whose vertices have valence 1 or 3. Every structure from the class T is of the form 
T = (T, ET ) for some non-empty set T with graph relation ET . We consider a relational 
symbol R with arity 4 and to each T ∈ T we assign the structure B(T) = (B(T ), RB(T ))
where

• B(T ) = {x ∈ T : val(x) = 1},
• RB(T )(x, y, z, w) ⇔ (xy|zw and |{x, y, z, w}| = 4) for x, y, z, w ∈ B(T ).

The class of all structures of the form B(T) where T ∈ T , together with the one point 
structure, is denoted by B and is called the class of boron tree structures. The class B
is a Fraïssé class with SAP, see [4]. By adding arbitrary linear orderings to structures 
from B we obtain the class

OB =
{(

A,RA,≤A
)

:
(
A,RA

)
∈ B and ≤A ∈ lo(A)

}
.

It is straightforward to see that OB is also a Fraïssé class with SAP.
We denote by Tn = (Tn, ETn) ∈ T , n ≥ 1, where:

• Tn = {(x1, . . . , xk) : k ∈ [n] and xi ∈ {0, 1} for all i ∈ [k]}.
• For x = (x1, . . . , xk) and y = (y1, . . . , yl) in Tn we have xETny iff (l = k+1 and x =

(y1, . . . , yk)) or (k = l + 1 and y = (x1, . . . , xl)) or (k = l = 1 and x1 �= y1).

Let ≤n be a lexicographic ordering on the set B(Tn) such that for x = (x1, . . . , xn)
and y = (y1, . . . , yn) in B(Tn) we have

x ≤n y ⇔
(
(x = y) or

(
x �= y and xk ≤ yk where k = min{j : xj �= yj}

))
.

Let Bn = B(Tn) = (Bn, RBn) and let B0 = (B0, RB0) where |B0| = 1 and RB0 = ∅.
We consider S as a relational symbol of arity 3. Let A = (A, RA) ∈ B and let 

φ : A → Bn be an embedding. We define a structure Aφ = (A, RA, SA) by taking
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SA(x, y, z) ⇔
{
φ(x), φ(y) ≤n φ(z) and
min

{
k : φ(x)k+1 �= φ(y)k+1

}
> min

{
k : φ(y)k+1 �= φ(z)k+1

}
for all x, y, z ∈ A. We denote by SB the class of all structures obtained from structures 
in B via the previous embeddings. Recall that a rooted tree is a graph theoretic tree 
with distinguished point. So far we have not used rooted trees, but the expansion SB
indirectly selects a root. A vertex in our structure is not chosen to be a root, rather 
an edge is selected to have an imaginary root at its midpoint. Every structure in SB
comes with a unique graph theoretic tree, which induces a boron tree structure, and with 
a ternary relation that selects an edge to carry a root.

We consider the following class

SOB =
{(

A,RA,≤A, SA
)

:
(
A,RA,≤A

)
∈ OB and

(
A,RA, SA

)
∈ SB

}
.

More details about boron tree structures can be found in [5] and [4], and more details
about the class SB can be found in [10].

Theorem 7. (See [10].) For the boron tree structures we have the following:

(i) The class SB has RP and EP with respect to B.
(ii) The class OB is not a Ramsey class.

It is proved that SB satisfies RP also in [23] by a different method than in [10].

Corollary 5. SOB is a Ramsey class.

Proof. We have SOB = SB ∗ L where L is the class of linearly ordered sets. Since SB
and L are Fraïssé classes of rigid structures which satisfy RP and SAP, Corollary 2
applies, and the class SOB satisfies RP. �

In the proofs of Proposition 1 and Proposition 2 we used RP to obtain EP, but in the 
following we obtain EP without using RP.

Proposition 3. SOB satisfies EP with respect to OB.

Proof. By Lemma 2 it is enough to find a structure in OB that verifies EP for a given 
A = (A, RA, ≤A, SA) ∈ SOB. Since the class SB has EP with respect to B there is 
a structure B′ = (B′, RB′) ∈ B which verifies EP for A′ = (A, RA) (see Theorem 7). 
There is a tree T′ = (T ′, ET ′) ∈ T such that B(T′) = B′. Let (A′

i)ni=1 be the list of all 
substructures of B′ isomorphic with A′. Let k be the number of all expansions of the 
structure A′ to structure (A′, SA′) ∈ SB isomorphic to (A, RA, SA). For each A′

i we have 
a list (A′

i,j)kj=1 of all such expansions. Let l be a natural number such that 2l > nk. We 
construct a tree T = (T, ET ) ∈ T by attaching a copy of Tl to T′ over each b ∈ B′ as 
follows:
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• T = T ′ � (�b∈B′ Tl,b) where Tl,b is a copy of Tl for b ∈ B′.
• There is a sequence of bijections (φb : Tl → Tl,b)b∈B′ such that for each b ∈ B′

we have a structure Tl,b = (Tl,b, ETl,b) ∈ T which is isomorphic to Tl by φb. Let 
b0 = φb((0)) and let b1 = φb((1)).

• ET = ET ′ �(�b∈B′ ETl,b \{(b0, b1), (b1, b0)}) �(�b∈B′{(b, b0), (b0, b), (b, b1), (b1, b)}). 
The edge between “the lowest” vertices in each tree Tl,b is removed and replaced by 
adding two edges between these vertices and the corresponding vertex in the tree T′.

Terminal nodes of the tree T are the underlying set of the structure B(T) =
(B(T ), RB(T )). Before we introduce a linear ordering ≤B(T ) on the set B(T ) we em-
phasize the following fact.

Fact. Let A′
i be one of the structures from our list with the set of nodes A′

i ⊆ B′. Let 
A′′

i ⊆ B be the set obtained when we replace each node b′ ∈ A′
i with a node b ∈ B which 

is a terminal node of the tree Tl,b′ . Let A′′
i be the substructure of B(T) induced on the 

set A′′
i . Then we have the following:

(1) A′
i
∼= A′′

i .
(2) Every expansion of the structure A′′

i to a structure in SB is an expansion of the 
structure A′

i to a structure in SB.

For i ∈ [n] and j ∈ [k] we define a set A′′
i,j ⊆ B(T ) such that:

• (i, j) �= (i′, j′) ⇒ A′′
i,j ∩A′′

i′,j′ = ∅.
• If b′ ∈ Ai,j where Ai,j is the underlying set of A′

i,j then A′′
i,j has exactly one point 

among terminal nodes of Tl,b′ .
• If b′ /∈ Ai,j where Ai,j is the underlying set of A′

i,j then A′′
i,j has no points among 

terminal nodes of Tl,b′ .

Also, every set A′′
i,j induces a substructure A′′

i,j ≤ B(T) such that A′′
i,j

∼= A′
i. More-

over, each structure A′
i,j naturally gives A′′′

i,j , an expansion A′′′
i,j of the structure A′′

i,j to 
a structure in SB, such that A′′′

i,j
∼= A′

i,j . On each set Ai,j we define a linear ordering ≤i,j

such that
(
A′′′

i,j ,≤i,j
) ∼= A.

We take ≤B(T ) to be a linear ordering on the set B(T ) such that for all i, j we have:

≤B(T ) �
(
A′′

i,j

)2 = ≤i,j .

We claim that the structure (B(T), ≤B(T )) = (B(T ), RB(T ), ≤B(T )) verifies EP for A. 
Let S0 be a relation defined on the set B(T ) such that (B(T ), RB(T ), ≤B(T ), S0) ∈ SOB. 
We have the following fact.
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Fact. Let b′1, b′2, b′3 be distinct points in B′. Let a1, a2, a3 and a′1, a′2, a′3 be points from 
B(T ) such that for each i points ai and a′i are terminal nodes in Tl,b′i

. Then we have

S0(a1, a2, a3) ⇔ S0(a′1, a′2, a′3),
S0(a1, a1, a2) ⇔ S0(a′1, a′1, a′2).

In other words, the expansion is independent of the attached trees Tl,b.

By the last fact, there is an induced relation S1 on the set B′ such that (B′, RB′
, S1) ∈

SB. For distinct b′1, b′2, b′3 in B we consider a1, a2, a3 ∈ B(T ) where each ai is a terminal 
node in Tl,b′i

and we consider S1 defined by:

S1(b′1, b′2, b′3) ⇔ S0(a1, a2, a3),

S1(b′1, b′1, b′2) ⇔ S0(a1, a1, a2).

Since B′ verifies EP for A′, there is an A′
i with underlying set A′

i such that (A′
i,

S1 � (A′
i)3) ∼= (A, RA, SA) and there is some j such that (A, RA, SA) = A′

i,j . Further-
more, we have A′′′

i,j
∼= A′

i,j and by the choice of the linear ordering ≤B(T ) we have that 
(A′′′

i,j , ≤i,j) ∼= A. Therefore there is an embedding of A into (B(T ), RB(T ), ≤B(T ), S0). �
8. Rooted trees

In this section we consider C as a ternary relational symbol. We recall that the class T
was introduced in Section 7. For a structure T = (T, ET ) ∈ T and a terminal node ∞T

in T we denote by (T, ∞T ) = (T, ET , ∞T ) the tree T with the root ∞T . The height of the 
tree (T, ∞T ) is the length of the longest path ∞Tx in T. The height of a vertex in a tree is 
the length of the shortest path between the root and the vertex. Let T∞ denote the class 
of all rooted trees (T, ∞T ) where T ∈ T . To every (T, ∞T ) ∈ T∞ we assign a structure 
H(T, ∞T ) = H(T, ET , ∞T ) = (H(T ), CH(T )) ∈ H such that H(T ) = B(T ) \ {∞T } and 
for x, y, z ∈ H(T ) we have

CH(T )(x, y, z) ⇔ RB(T )(∞, x, y, z) ⇔ ∞Tx|yz.

We consider H = {H(T, ∞T ) : (T, ∞T ) ∈ T∞}, a Fraïssé class with SAP.
Let A = (H(A), CH(A)) = H(A, EA, ∞A) and B = (H(B), CH(B)) = H(B, EB , ∞B)

be structures from H such that A ≤ B. Let V be the set of vertices in the tree (B, EB)
which are on the paths of the form xy for x, y ∈ H(A). Let v be the vertex with the 
smallest height in V and let valV (x) denote the valence of a given vertex x in the tree 
(V, EB � V 2). We consider set W = {w ∈ V : valV (w) ∈ {1, 3}} and a binary relation EW

on W such that for w1, w2 ∈ W we have

w1E
Ww2 ⇔

({
v ∈ w1w2 : valV (v) ∈ {1, 3}

}
= {w1, w2}

)
.
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Clearly, (W, EW , v) ∈ T∞ and H(W, EW , v) = A. For a natural number n we denote by 
Tn,∞ = (Tn,∞, ETn,∞ , ∞n) ∈ T∞, the structure with the property that all terminal nodes 
x �= ∞n in Tn,∞ have height n. In particular if the height of a tree (T, ∞T ) ∈ T∞ is n, 
then the structure H(T, ∞T ) can be embedded in any structure H(TN,∞) for N ≥ n.

Let (T, ∞T ) = (T, ET , ∞T ) ∈ T∞. A function φ : T \ {∞T } → {0, 1} is a valuation
on (T, ∞T ) if it has the property that for every non-terminal vertex v ∈ T and vertices 
v1, v2 ∈ T such that vET v1, vET v2 and v1 and v2 have height greater than v we have 
φ(v1) �= φ(v2). Let Val(T, ∞T ) denote the set of all valuations on the rooted tree (T, ∞T ). 
Then every valuation φ gives, for each terminal node x ∈ T \ {∞T }, a sequence φ(x) =
(v1, . . . , vn) such that ∞Tx = ∞T , x1, . . . , xn = x and vi = φ(xi). For a given valuation φ

we consider the lexicographic ordering on all terminal nodes of (T, ∞T ), excluding ∞, 
such that for x, y we have

x <φ y ⇔ φ(x)k < φ(y)k,

where k = min{l : φ(x)l �= φ(y)l}. Consequently, we have a linear ordering on the 
set H(T ) and an ordered structure (H(T ), CH(T ), ≤φ). We consider CH, the class of 
the structures of the form (A, CA, ≤A) with the property that: (A, CA) ∈ H, there are 
(T, ET , ∞T ) ∈ T∞ and φ ∈ Val(T, ET , ∞T ) such that H(T, ET , ∞T ) = (A, CA) and 
≤A = ≤φ. We also consider

OH =
{(

A,CA,≤A
)

:
(
A,CA

)
∈ H and ≤A ∈ lo(A)

}
.

It is straightforward to see that CH and OH are Fraïssé classes with SAP. More details 
about the class H can be found in [2] and [3]. We point out a difference in definition of 
the relation C in this paper and in [2]. In our consideration we assume that only three 
distinct points can be related in C. On the other hand for distinct a �= b we note that 
C(a, b, b) is allowed in [2]. Since we are considering only embedding, this can be done 
without loss of generality.

Theorem 8. (See [13].) CH is a Ramsey class.

We also have the following.

Lemma 5. CH satisfies OP with respect to H.

Proof. Let A = (A, CA) ∈ H. There is a structure (T, ET , ∞T ) ∈ T∞ such that 
H(T, ET , ∞T ) = (A, CA). Let n be the height of the tree (T, ET , ∞T ). From the defini-
tion of the classes CH and H it follows that H(Tn,∞) verifies OP for the structure A. �

We combine classes CH and OH into the class

COH =
{(

A,CA,≤A,	A
)

:
(
A,CA,≤A

)
∈ OH and

(
A,CA,	A

)
∈ CH

}
.
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Corollary 6. COH is a Ramsey class.

Proof. This follows from Corollary 2 and the fact that COH = CH ∗L where CH and L
are Fraïssé classes of rigid structures with RP and SAP. �

At this point we compare proofs from the previous three sections. It is not clear how 
to obtain EP for the classes UOS(2) and UOS(3) with respect to OS(2) and OS(3)
without using RP. On the other hand, it is not clear how to obtain EP for the class 
SOB with respect to OB from RP. In the following we show that COH satisfies EP with 
respect to OH, in this case EP is OP. Moreover we give two proofs, the first is obtained 
without using RP and the second is based on RP. The first proof is similar to the proof of 
Proposition 3, and the second is similar to the proofs of Proposition 1 and Proposition 2.

Proposition 4 (1st proof). COH satisfies OP with respect to OH.

Proof. By Lemma 2 it is enough to find a structure in OH that verifies EP for a given 
A = (A, CA, ≤A, 	A) ∈ COH. Since the class CH has OP with respect to H there is 
a structure B′ = (B′, CB′) ∈ H which verifies OP for A′ = (A, CA). There is a tree 
(T′, ∞T ′) = (T ′, ET ′

, ∞T ′) ∈ T∞ such that H(T′, ∞T ′) = B′. Let (A′
i)ni=1 be the list of 

all substructures of B′ isomorphic with A′. Let k be the number of all ordered expansions 
of the structure A′ to a structure (A′, 	A′

) ∈ CH which are isomorphic to (A, ≤A, 	A). In 
particular for each A′

i we have a list (A′
i,j)kj=1 of all such expansions. We choose a natural 

number l such that 2l > nk. We construct a tree (T, ∞T ) = (T, ET , ∞T ) ∈ T∞ using 
(T′, ∞T ′) and copies of Tl,∞ = (Tl,∞, ETl,∞ , ∞l) ∈ T∞ such that:

• T = T ′ � (�b∈B′ Tl,b) and |Tl,b| = |Tl,∞| − 1.
• There is a sequence of bijections (φb : Tl,∞ → Tl,b ∪ {b})b∈B′ such that for each 

b ∈ B′ we have φb(∞l) = b. Each φb gives naturally a graph structure Eb on the 
set Tl,b ∪ {b} such that φb is also isomorphism between structure (Tl,∞, ETl,∞) and 
structure (Tl,b ∪ {b}, Eb).

• ET = ET ′ � (�b∈B′ Eb).
• The root ∞T in the new tree is the same as the root ∞T ′ .

Now we have a structure H(T, ∞T ) = (H(T ), CH(T )) ∈ H. Before we define ≤H(T ), 
a linear ordering on the set H(T ), we have the following fact.

Fact. Let A′
i be one of the structures from our list with the set of nodes A′

i ⊆ B′. Let 
A′′

i ⊆ B be the set obtained when we replace each node b′ ∈ A′
i with a node b ∈ B which 

is a terminal node of the tree Tl,b′ . Let A′′
i be the substructure of B(T) induced on the 

set A′′
i . Then we have the following:

(1) A′
i
∼= A′′

i .



M. Sokić / Journal of Combinatorial Theory, Series A 132 (2015) 142–171 167
(2) Every expansion of the structure A′′
i to a structure in CH is an expansion of the 

structure A′
i to a structure in CH.

For i ∈ [n] and j ∈ [k] we consider a set A′′
i,j ⊆ H(T ) such that:

• (i, j) �= (i′, j′) ⇒ A′′
i,j ∩A′′

i′,j′ = ∅.
• If b′ ∈ Ai,j where Ai,j is the underlying set of A′

i,j then A′′
i,j has exactly one point 

among terminal nodes of Tl,b′ .
• If b′ /∈ Ai,j where Ai,j is the underlying set of A′

i,j then A′′
i,j has no points among 

terminal nodes of Tl,b′ .

Also, every set A′′
i,j induces a substructure A′′

i,j ≤ H(T, ∞T ) such that A′′
i,j

∼= A′
i. 

Moreover, each structure A′
i,j naturally gives an expansion A′′′

i,j of the structure A′′
i,j to 

a structure in CH such that A′′′
i,j

∼= A′
i,j . On each set Ai,j we define linear ordering ≤i,j

such that

(
A′′′

i,j ,≤i,j
) ∼= A.

Finally, we have only one requirement for the linear ordering ≤H(T ) on the set H(T ). 
For all i, j it must be:

≤H(T ) � (Ai,j)2 = ≤i,j .

We claim that the structure (H(T), ≤H(T )) = (H(T ), CH(T ), ≤H(T )) verifies OP for A. 
Let 	0 be a linear ordering on the set H(T ) such that (H(T ), RH(T ), ≤H(T ), S0) ∈ COH. 
We have the following fact.

Fact. Let b′1 and b′2 be distinct points in B′. Let a1, a2 and a′1, a′2 be points from H(T )
such that for each i points ai and a′i are terminal nodes in Tl,b′i

. Then we have

a1 	0 a2 ⇔ a′1 	0 a′′2 .

By this fact, there is an induced relation 	1 on the set B′ such that (B′, CB′
, 	1) ∈

CH. For distinct b′1, b′2 points in B′ we take points a1, a2 ∈ H(T ) such that each ai is 
a terminal node in Tl,b′i

. Then take

b′1 	1 b′2 ⇔ a1 	0 a2.

Since B′ verifies EP for A′, there is an A′
i with the underlying set A′

i such that (A′
i,

	1 � (A′
i)2) ∼= (A, CA, 	A) and there is j such that (A, CA, 	A) = A′

i,j . Further-
more, we have A′′′

i,j
∼= A′

i,j and by the choice of the linear ordering ≤H(T ) we have that 
(A′′′

i,j , ≤i,j) ∼= A. Therefore there is an embedding of A into (H(T ), RH(T ), ≤H(T ), S0). �
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Proposition 5 (2nd proof). COH satisfies OP with respect to OH.

Proof. By Lemma 2 it is enough to find a structure in OH that verifies EP for a given 
A = (A, CA, ≤A, 	A) ∈ COH. We consider structures I, J, K in COH given as follows:

• I = (I, CI , ≤I , 	I), I = {i1, i2}, CI = ∅, i1 ≤I i2, i1 	I i2.
• J = (J, CJ , ≤J , 	J), J = {j1, j2}, CJ = ∅, j1 ≤J j2, j2 	J j1.
• K = (K, CK , ≤K , 	K), (K, CK , ≤K) /∈ CH, (K, CK , op(≤K)) /∈ CH.

By JEP for the class COH there is B = (B, CB , ≤B , 	B) ∈ COH such that A ↪→ B, 
I ↪→ B, J ↪→ B, K ↪→ B. Moreover we have Bop = (B, CB , ≤B , op(	B)) ∈ COH. Using 
JEP for the class COH there is D = (D, CD, ≤D, 	D) ∈ COH such that B ↪→ D and 
Bop ↪→ D. By RP for the class COH there are structures E and F in COH such that:

E → (D)I2 and F → (E)J2.

Let F = (F, CF , ≤F , 	F ). We claim that (F, CF , ≤F ) verifies OP for A. Let 	0 be 
a linear ordering on the set F such that (F, CF , ≤F , 	0) ∈ COH. We have induced 
colorings:

χI :
(
F

I

)
→ {0, 1} and χJ :

(
F

J

)
→ {0, 1},

χI

(
I′
)

=
{

1 if 	0 � I ′ = 	F � I ′

0 if otherwise
and χJ

(
J′
)

=
{

1 if 	0 � J ′ = 	F � J ′

0 if otherwise

where I ′ and J ′ are the underlying sets of the structures I′ and J′ respectively. By the 
choice of the structures E and F there are structures D′ and E′ such that D′ ≤ E′ ≤ F, 
D′ ∼= D, E′ ∼= E, and numbers pI , pJ ∈ {0, 1} such that:

χI �
(
D′

I

)
= pI and χJ �

(
D′

J

)
= pJ .

Let D′ be the underlying set of the structure D′. We complete the verification by checking 
four cases depending on the value of the pair (pI , pJ):

(1) (pI , pJ) = (0, 0) – In this case we have 	0 � D′ = op(	F � D′), and also we have 
Bop ↪→ D′. So there is B′ ≤ D′ such that B′ ∼= Bop, where B′ has the underlying set B′. 
Therefore the substructure of (F, CF , ≤F , 	0) induced by the set B′ is isomorphic 
to B, and it contains substructures isomorphic with A.

(2) (pI , pJ) = (0, 1) – Now we have 	0 � D′ = ≤F � D′. This is in contradiction with the 
fact that K ↪→ B ↪→ D′ and with the definition of the linear ordering ≤K . Therefore 
this case is impossible.

(3) (pI , pJ) = (1, 0) – Same as the previous case.
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(4) (pI , pJ) = (1, 1) – In this case we have 	0 � D′ = 	F � D′, so there is an embedding 
of A into (F, CF , ≤F , 	0). �

9. Conclusion

In the following we give a list of Ramsey degrees.

Theorem 9. Let K ∈ {OS(2), OS(3), OB, H, OH} and let A ∈ K. Then we have that 
tK(A) is equal to:

(i)
∣∣{A′ ∈ UOS(2) : A′|{−→,≤} = A

}∣∣
=

∣∣{A′ ∈ US(2) : A′|{−→} = A|{−→}
}∣∣ = 2|A|

for K = OS(2).
(ii)

∣∣{A′ ∈ UOS(3) : A′|{−→,≤} = A
}∣∣

=
∣∣{A′ ∈ US(3) : A′|{−→} = A|{−→}

}∣∣ = 3|A|

for K = OS(3).
(iii)

∣∣{A′ ∈ SOB : A′|{R,≤} = A
}∣∣

=
∣∣{A′ ∈ SB : A′|{R} = A|{R}

}∣∣
for K = OB.

(iv)
∣∣{A′ ∈ CH : A′|{C} = A

}∣∣ · ∣∣Aut(A)
∣∣−1

for K = H.
(v)

∣∣{A′ ∈ COH : A′|{C,≤} = A
}∣∣

=
∣∣{A′ ∈ CH : A′|{C} = A|{C}

}∣∣
for K = OH.

Proof. This follows from Theorem 2 and the following results:

(i) Corollary 3, Proposition 1 and from the calculation of the Ramsey degree in the 
class S(2), see [18].

(ii) Corollary 4, Proposition 2 and from the calculation of the Ramsey degree in the 
class S(3), see [18].

(iii) Corollary 5 and Proposition 3.
(iv) Theorem 8 and Lemma 5.
(v) Corollary 6 and Proposition 4 or Proposition 5. �

Since calculation of the Ramsey degree for objects in B is not simple, see [10], we 
avoid going into more details. Since the only Ramsey objects in B are one, two and three 
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point structures we have the same for the class OB. Even OS(2) and OS(3) are classes 
of rigid structures they have no Ramsey objects. A structure A ∈ H is a Ramsey object 
iff there is some n such that A = H(Tn,∞). The only Ramsey object in OH is the one 
point structure.

Let L1 and L2 be disjoint relational signatures, and let K1 and K2 be classes of finite 
relational structures in L1 and L2 respectively. Let L∗

1 and L∗
2 be disjoint relational 

signatures such that L1 ⊂ L∗
1 and L2 ⊂ L∗

2. Suppose that K∗
1 and K∗

2 are expansions 
of the classes K1 and K2 respectively. If K1, K2, K∗

1 and K∗
2 are Fraïssé classes such 

that K∗
1 and K∗

2 are also Ramsey classes of rigid structures then we know that K∗
1 ∗ K∗

2
is a Ramsey class by the results from Section 4. Moreover we know that K∗

1 ∗ K∗
2 is 

a Ramsey expansion of the class K1 ∗K2. Furthermore, we may suppose that K∗
1 and K∗

2
satisfy EP with respect to K1 and K2 respectively. Now we would like to know whether 
or not K∗

1 ∗ K∗
2 satisfies EP with respect to K1 ∗ K2. According to Theorem 10.7. in [12]

we may expect that there is a class K ⊆ K1 ∗ K2 which is a Ramsey class and satisfies 
EP with respect to K1 ∗ K2. Since there is no characterization of the class K we ask the 
following question.

Problem 1. Find a characterization of the class K in terms of the classes K∗
1 and K∗

2.
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