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The classical correlation inequality of Harris asserts that any 
two monotone increasing families on the discrete cube are non-
negatively correlated. In 1996, Talagrand [19] established a 
lower bound on the correlation in terms of how much the two 
families depend simultaneously on the same coordinates. Ta-
lagrand’s method and results inspired a number of important 
works in combinatorics and probability theory.
In this paper we present stronger correlation lower bounds 
that hold when the increasing families satisfy natural regu-
larity or symmetry conditions. In addition, we present several 
new classes of examples for which Talagrand’s bound is tight.
A central tool in the paper is a simple lemma asserting that for 
monotone events noise decreases correlation. This lemma gives 
also a very simple derivation of the classical FKG inequality 
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for product measures, and leads to a simplification of part of 
Talagrand’s proof.

© 2016 Published by Elsevier Inc.

1. Introduction

Definition 1.1. Let Ωn denote the discrete cube {0, 1}n, and identify elements of Ωn with 
subsets of [n] = {1, 2, . . . , n} in the natural manner. A family A ⊂ Ωn is increasing if 
(S ∈ A) ∧ (S ⊂ T ) implies T ∈ A (alternatively, if the characteristic function 1A is 
non-decreasing with respect to the natural partial order on Ωn).

One of the best-known correlation inequalities is Harris’ inequality [10] which asserts 
that any two increasing families A, B ⊂ Ωn are nonnegatively correlated, i.e., satisfy

Cov(A,B) = μ(A ∩ B) − μ(A)μ(B) ≥ 0,

where μ is the uniform measure on Ωn. In 1996, Talagrand [19] presented a lower bound 
on the correlation, in terms of influences of the variables on A, B.

Definition 1.2. The influence of the kth variable on A ⊂ Ωn is

Ik(A) = 2μ({x ∈ A|x⊕ ek /∈ A}),

where x ⊕ ek is obtained from x by replacing xk by 1 − xk. The total influence of A is 
I(A) =

∑n
k=1 Ik(A).

We also write W1(A, B) =
∑n

i=1 Ii(A)Ii(B).

Theorem 1.3 (Talagrand). Let A, B ⊂ Ωn be increasing. Then

Cov(A,B) ≥ c
n∑

i=1

Ii(A)Ii(B)
log(e/

∑n
i=1 Ii(A)Ii(B))

= cϕ (W1(A,B)) , (1)

where ϕ(x) = x/ log(e/x) and c is a universal constant.

Talagrand’s theorem and the central lemma used in its proof (Lemma 2.7 below) were 
used in several subsequent works in combinatorics and probability theory (e.g., [1,9,13,
20]), most notably in the BKS noise sensitivity theorem [2].

So far, only two classes of tightness examples for Talagrand’s lower bound are known. 
Talagrand [19] showed that his lower bound is tight when A, B are increasing Hamming 
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balls, i.e., have the form {x :
∑

xi > t}, where the thresholds tA and tB are chosen such 
that μ(A) = ε and μ(B) = 1 − ε. In [11], the second author presented another example, 
based on Ben-Or and Linial’s tribes function [3], defined as follows. Partition [n] into 
n/r disjoint sets T1, . . . , Tn/r of r elements, where r ≈ log n − log logn, and define A by 
setting x ∈ A iff there exists j such that xi = 1 for all i ∈ Tj . Let B be the dual family 
of A, i.e., x = (x1, . . . , xn) ∈ B iff x̄ = (1 −x1, . . . , 1 −xn) /∈ A. Then (1) is tight for A, B.

While the two examples seem dissimilar, they share a central common feature: in both 
examples, Ii(A) = Ii(B) for all i ∈ [n]. (Moreover, in both cases B is the dual of A.) 
Thus, a first motivation of the current paper is seeking to find other tightness examples, 
especially examples in which the relation between the structures of A and B is not so 
strong.

A second motivation is an alternative correlation lower bound, proved recently by 
Keller, Mossel, and Sen [14].

Theorem 1.4. Let A, B ⊂ Ωn be increasing. Then

Cov(A,B) ≥ c
n∑

i=1

Ii(A)√
log e

Ii(A)

Ii(B)√
log e

Ii(B)

= c
n∑

i=1
ψ(Ii(A))ψ(Ii(B)), (2)

where ψ(x) = x/
√

log(e/x) and c is a universal constant.

It turns out that neither of the lower bounds is strictly stronger than the other. While 
Talagrand’s bound is better for A being a small Hamming ball and B being its dual, 
there are cases of interest for which (2) is better. E.g., for A being a small Hamming ball 
and B being the “majority” (i.e., {x :

∑
xi > n/2}), (2) is always stronger, and may be 

stronger even by a multiplicative factor of 
√
n/ logn. Hence, it is tempting to find an 

improved lower bound that will combine the advantages of (1) and (2).
Our main result is such a “combined” lower bound that holds under a weak regularity 

assumption on the families.

Definition 1.5. A family A ⊂ Ωn is regular if all its influences are equal.

Note that in all examples mentioned so far (and actually, in most examples in the 
field, except for “dictatorships” and “juntas”), both A and B are regular. In fact, in 
those cases the families are weakly symmetric, namely invariant under a transitive group 
of permutations on the variables.

Definition 1.6. Two increasing families A and B are similar if all ratios Ii(A)/Ii(B) are 
equal, and weakly similar if for some c′ > 0, max{Ii(A)/Ii(B)} ≤ c′ min{Ii(A)/Ii(B)}. 
Of course, all regular families are mutually similar.
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Theorem 1.7. Let A, B ⊂ Ωn be increasing and similar. Then

Cov(A,B) ≥ c
W1(A,B)√

log e
W1(A,A)

√
log e

W1(B,B)

, (3)

where c > 0 is a universal constant.
In particular, if A, B ⊂ Ωn are regular, then

Cov(A,B) ≥ c

n∑
i=1

Ii(A)√
log e

nIi(A)2

Ii(B)√
log e

nIi(B)2
= c

I(A)I(B)
n
√

log en
I(A)2

√
log en

I(B)2
. (4)

When we let c depend on c′, the theorem extends to weakly similar increasing families 
A and B. It is easy to show (see Claim 3.1) that (3) is always at least as strong as both (1)
and (2). Moreover, in some cases of interest it is strictly stronger. For example, in the 
case of A being a Hamming ball with μ(A) = O(1/n) and B being the “majority”, (3) is 
tight, while (2) is off by a factor of 

√
log n, and (1) is off by 

√
log(1/μ(A)), that may be 

as large as 
√
n.

We achieve Theorem 1.7 by proposing a somewhat simpler proof of Theorem 1.3 that 
allows to handle better similarity and regularity assumptions on the families. The new 
proof uses a simple lemma regarding a property of the classical noise operator.

Definition 1.8. Let 0 ≤ ρ ≤ 1. The noise operator Tρ : RΩn → R
Ωn is defined by

Tρf(x) = E[f(Nρx)],

where Nρ(x) is obtained from x by leaving each coordinate of x unchanged with proba-
bility ρ and replacing it by a random value with probability 1 − ρ.

Lemma 1.9. Let f, g : Ωn → R be increasing. Then the function ρ �→ 〈Tρf, g〉 (where 〈·, ·〉
is the usual inner product on (Ωn, μ)) is non-decreasing.

Lemma 1.9 is of independent interest. For example, it yields an instant proof of the 
FKG correlation inequality [8] for product measures. Indeed, as 〈T0f, g〉 = E[f ]E[g] and 
〈T1f, g〉 = E[fg], we immediately obtain

Cov(f, g) := E[fg] − E[f ]E[g] ≥ 0.

A consequence of Theorem 1.7 is:

Corollary 1.10. If A is increasing, regular and balanced and B is the majority function, 
then

Cov(A,B) ≥ c
√

log n/
√
n, (5)

where c > 0 is a universal constant.
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We note that both Theorems 1.3 and 1.4 give a weaker lower bound of c/
√
n. On 

the other hand, we can show that when A is the tribes family, then Cov(A, MAJ) =
Θ(log n/

√
n), and we conjecture that this lower bound holds in general. Furthermore, 

we conjecture that the following holds:

Conjecture 1.11. If A is increasing and balanced then there exists an increasing B rep-
resented by a linear threshold function (i.e., B = {x :

∑
aixi > t} for nonnegative 

weights ai), such that Cov(A, B) ≥ c logn/
√
n, for a universal constant c.

Our next result gives a hybrid of the bounds (1) and (2), under a strong symmetry 
condition on only one of the families A, B.

Definition 1.12. A family A ⊂ Ωn is fully symmetric if it is invariant under the action 
of Sn.

For example, while the Hamming balls considered above are fully symmetric, the 
tribes functions are only weakly symmetric but not fully symmetric.

Theorem 1.13. Let A ⊂ Ωn be increasing and B ⊂ Ωn be increasing and fully symmetric. 
Then

Cov(A,B) ≥ c1

n∑
i=1

Ii(A)√
log e

Ii(A)

Ii(B)√
log e2

W1(B,B)

≥ c2
μ(B)(1 − μ(B))√

n

n∑
i=1

Ii(A)√
log e

Ii(A)

,

(6)

where c1, c2 are universal constants.

It can be seen that (6) is always stronger than (2), but sometimes weaker than (1). 
In particular, it is tight for the correlation of a small Hamming ball and the “majority” 
family considered above. The proof of Theorem 1.13 follows Talagrand’s original proof, 
with an enhancement that allows to handle different assumptions on A, B in a better 
way. Without additional assumptions on A and B, the proof techniques of Theorem 1.13
give a new proof of Theorem 1.4.

Finally, we prove simple sufficient conditions for tightness of Talagrand’s lower 
bound (1), and use them to show that (1) is tight for several new examples, including 
(among others) A representing an increasing linear threshold function with low influences 
and B being A’s dual.

All our results extend verbatim to bounded functions f : Ωn → [−1, 1], with influences 
defined as

Ik(f) = E[|f(x) − f(x⊕ ek)|].
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For sake of completeness, in the following sections we prove our results in the more 
general form.4

This paper is organized as follows. In Section 2 we present the proof of Lemma 1.9
and use it to simplify the proof of Theorem 1.3. In Section 3 we present the proof 
of Theorem 1.7 along with some examples showing that the similarity conditions are 
necessary. The (more involved) proof of Theorem 1.13 is given in Section 4. Section 5
features new tightness examples of Talagrand’s lower bound. We conclude the paper with 
a few open problems in Section 6.

2. Noise and correlation

2.1. Preliminaries

Notation 2.1. For x, y ∈ Ωn we write x ≤ y if xi ≤ yi for all i. A function f : Ωn → R is 
called increasing or monotone if f(x) ≤ f(y) whenever x ≤ y.

The main technical tool used in this paper, as well as in Talagrand’s work, is the 
Fourier–Walsh expansion.

Definition 2.2. Let f : Ωn → R. The Fourier–Walsh expansion of f is the unique expan-
sion

f =
∑
S⊂[n]

αSuS ,

where for T ⊂ [n],

uS(T ) = (−1)|S∩T |.

The coefficients αS are also denoted by f̂(S), and the level of the coefficient f̂(S) is |S|.

Since {uS}S⊂[n] is an orthonormal basis for the function space RΩn (relative to the 
usual inner product 〈·, ·〉 with respect to uniform measure), the representation is indeed 
unique, with f̂(S) = 〈f, uS〉, and we have Parseval’s identity:

〈f, g〉 =
∑

f̂(S)ĝ(S) ∀f, g. (7)

The noise operator Tρ has a simple representation in terms of the Fourier–Walsh expan-
sion: For any f =

∑
S f̂(S)uS and ρ ∈ [0, 1], we have

4 We note that there are several alternative generalizations of the notion of influences to general functions 
on Ωn (see, e.g., [7] and the references therein).
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Tρf =
∑
S

ρ|S|f̂(S)uS . (8)

A standard operator we consider is the ith discrete derivative:

Definition 2.3. For i ∈ [n], define Δi : RΩn → R
Ωn by Δif(x) = 1

2 [f(x) − f(x ⊕ ei)].

It is easy to see that the Fourier expansion of Δif is

Δif =
∑
S�i

f̂(S)uS .

We use the following basic properties of the Fourier expansion and the noise operator:

Claim 2.4.

(a) For any f, g : Ωn → R, we have Cov(f, g) =
∑

S �=∅ f̂(S)ĝ(S) (this follows immedi-
ately from (7), since f̂(∅)ĝ(∅) = E[f ]E[g]).

(b) For any increasing f : Ωn → R and any ρ ∈ [0, 1], Tρf is increasing (see, e.g., [12, 
Proof of Proposition 4.4]).

(c) For any increasing f : Ωn → [−1, 1] and any i ∈ [n], Ii(f) = f̂({i}) (this follows 
immediately from the definitions). As a result, 

∑
i Ii(f)2 =

∑
i f̂({i})2 ≤ 1 by (7).

For more background on the Fourier–Walsh expansion the reader is referred to [16].

2.2. Noise decreases correlation

We present two proofs of Lemma 1.9, which essentially shows that application of noise 
reduces the correlation of increasing functions. The first proof uses the Fourier–Walsh 
expansion of the noise operator, while the second uses only the chain rule and resembles 
the simple proof of Russo’s lemma [18]. Recall the formulation of the Lemma:

Lemma. Let f, g : Ωn → R be increasing. Then the function h(ρ) = 〈Tρf, g〉 is non-
decreasing.

First proof. First, we note that since for any decomposition ρ = ρ1 · ρ2 we have Tρf =
Tρ2(Tρ1f), and since Tρ′f is increasing for any ρ′ (Claim 2.4(b)), it is sufficient to show 
that h′(1) is nonnegative. By (7) and (8), we have

h(ρ) = 〈Tρf, g〉 =
∑
S

ρ|S|f̂(S)ĝ(S),

and thus,
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h′(1) =
∑
S

|S|f̂(S)ĝ(S) =
∑
i

∑
S�i

f̂(S)ĝ(S) =
∑
i

〈Δif,Δig〉,

the last equality using (7) once again. This completes the proof, as Δif(x) · Δig(x) ≥ 0
for any x by the monotonicity of f, g. �
Second proof. Define an “asymmetric” noise operator Tρ1,...,ρn

by

Tρ1,...,ρn
f(x) = E[f(Nρ1,...,ρn

x)],

where Nρ1,...,ρn
(x) is obtained from x by leaving the i’th coordinate of x unchanged 

with probability ρi and replacing it by a random value with probability 1 − ρi. As 
h(ρ) = 〈Tρ,ρ,...,ρf, g〉, we can apply the chain rule to assert

h′(1) =
n∑

i=1

∂

∂ρi
〈Tρ1,...,ρn

f, g〉
∣∣∣
(ρ1,...,ρn)=(1,...,1)

=
∑
i

〈Δif,Δig〉.

The rest of the argument is the same as in the first proof. �
Remark 2.5. Note that as E[Tρf ] = E[f ], an equivalent formulation of Lemma 1.9 is that 
the function ρ �→ Cov(Tρf, g) is non-decreasing. This formulation will be used in the 
proof of Theorem 1.3 below.

2.3. A simpler proof of Talagrand’s inequality

Notation 2.6. From now on, for f, g : Ωn → R and d ∈ N, we denote Wd(f, g) =∑
|S|=d f̂(S)ĝ(S) and Wd(f) = Wd(f, f). Note that for increasing A and B, W1(1A, 1B) =∑
i Ii(A)Ii(B).

A generalized formulation of Theorem 1.3 (using Claim 2.4(c)) is the following:

Theorem. Let f, g : Ωn → [−1, 1] be increasing. Then

Cov(f, g) ≥ cW1(f, g) (log(e/W1(f, g)))−1
, (9)

where c is a universal constant.

The original proof of Theorem 1.3 presented in [19] consists of two parts. The first part 
which is more complex and which we keep virtually unchanged, is proving the following 
lemma, which bounds the second-level Fourier–Walsh coefficients of f, g in terms of the 
first-level ones:
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Lemma 2.7 (Talagrand). Let f, g : Ωn → [−1, 1] be increasing. Then

W2(f, g) ≤ cW1(f, g) log(e/W1(f, g)),

where c is a universal constant.

This lemma appears to be of independent interest, and probably has more applications 
than Theorem 1.3. A somewhat simpler (but still rather complex) proof of the lemma is 
given in [13], along with some generalizations.

Our argument uses the following generalization of Lemma 2.7, proved in [2] (a quali-
tative version) and in [13] (a quantitative version).

Lemma 2.8. For all increasing f, g : Ωn → [−1, 1], and for all 2 ≤ d ≤ log(e/W1(f, g))/2,

Wd(f, g) ≤
5e
d

(
2e

d− 1

)d−1

W1(f, g) (log(d/W1(f, g)))d−1
.

The proof of Lemma 2.8 is essentially the same as the proof of Lemma 2.7. To simplify 

notations, we denote C(d) = 5e
d

(
2e
d−1

)d−1
, as in the sequel we use only the fact that 

C(d) = O(1).
The second part of Talagrand’s proof, is a somewhat complex inductive argument 

that deduces the theorem from Lemma 2.7. We show now that the inductive argument 
in the second part of Talagrand’s proof can be replaced with a very simple argument, 
using Lemma 1.9.

Before presenting the proof, we explain the main idea behind it, which is quite dif-
ferent from the ideas used in Talagrand’s proof. By Claim 2.4(a), the correlation can be 
expressed in terms of the Fourier–Walsh coefficients as Cov(f, g) =

∑
S �=∅ f̂(S)ĝ(S). By 

Claim 2.4(c), all first-level terms in the right hand side (i.e., all terms with |S| = 1) 
are nonnegative and their total contribution is W1(f, g). The other terms may be 
negative, and the assertion of the theorem is that they cannot be “too negative”, 
in the sense that their total contribution is bounded from below by −W1(f, g) +
cW1(f, g)(log(e/W1(f, g)))−1. Hence, our goal is to bound from below the contribution 
of all levels d ≥ 2.

To obtain this, we use the noise operator Tρ whose application suppresses the high-
level coefficients. By replacing Cov(f, g) with Cov(Tρf, g) for an appropriate choice of ρ, 
we obtain an expression 

∑
S �=∅ ρ

|S|f̂(S)ĝ(S) in which the (possibly negative) contribution 
of all levels d ≥ 2 is dominated by the positive contribution of the first level. Lemma 1.9
then allows to go back to Cov(f, g).

Proof of Theorem 1.3. Let ρ = c0 (log(e/W1(f, g)))−1, where c0 is a sufficiently small 
constant. By Claim 2.4(a) and Equation (8),
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Cov(Tρf, g) =
∑
S �=∅

ρ|S|f̂(S)ĝ(S) =

=
∑
d≥1

ρdWd(f, g) = ρW1(f, g) +

+
∑

2≤d≤log(e/W1(f,g))/2

ρdWd(f, g) +
∑

d>log(e/W1(f,g))/2

ρdWd(f, g).

By Lemma 2.8, for every 2 ≤ d ≤ log(e/W1(f, g))/2 we have

ρdWd(f, g) ≤ ρdC(d)W1(f, g) (log(d/W1(f, g)))d−1 ≤ 2−dρW1(f, g),

where the last inequality holds by the choice of ρ (here is where c0 should be taken 
sufficiently small). For any d > log(e/W1(f, g))/2, we use the bound

ρdWd(f, g) ≤ ρd < 2−dρW1(f, g).

Combining, we get

∑
d≥2

|ρdWd(f, g)| ≤
∑
d≥2

2−dρW1(f, g) ≤ ρW1(f, g)/2. (10)

Hence,

Cov(Tρf, g) = ρW1(f, g) +
∑
d≥2

ρdWd(f, g) ≥ ρW1(f, g)/2

= c′W1(f, g) (log(e/W1(f, g)))−1
.

Therefore, by Lemma 1.9,

Cov(f, g) ≥ Cov(Tρf, g) ≥ c′W1(f, g) (log(e/W1(f, g)))−1
,

as asserted. �
Remark 2.9. We stress that the new proof replaces only the inductive part of Talagrand’s 
proof. The main part of the proof (i.e., the proof of Lemma 2.7) remains unchanged.

3. Improved correlation bound under similarity

In this section we present the proof of Theorem 1.7, and demonstrate by several 
examples that the similarity assumption in the theorem is essential.
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3.1. Proof of Theorem 1.7

A generalized statement of Theorem 1.7 (using Claim 2.4(c) once again) is:

Theorem. Let f, g : Ωn → [−1, 1] be increasing and similar. Then

Cov(f, g) ≥ cW1(f, g) (log(e/W1(f)))−1/2 (log(e/W1(g)))−1/2
, (11)

where c is a universal constant.

We note that the lower bound of Theorem 1.7 is stronger (up to a constant) than the 
bounds of Theorems 1.3 and 1.4:

Claim 3.1. Let f, g : Ωn → [−1, 1] be increasing. Then

(a) W1(f, g) (log(e/W1(f)))−1/2 (log(e/W1(g)))−1/2 ≥ W1(f, g)(log(e/W1(f, g))−1,
(b) W1(f, g) (log(e/W1(f)))−1/2 (log(e/W1(g)))−1/2 ≥ 0.5 

∑n
i=1

Ii(f)√
log e

Ii(f)

Ii(g)√
log e

Ii(g)
.

Proof. For (a), as the numerators are equal, it is sufficient to compare the denominators. 
We have

log(e/W1(f, g)) ≥ log( e√
W1(f)

√
W1(g)

) = 1
2

(
log( e

W1(f) ) + log( e

W1(g)
)
)

≥
√

log(e/W1(f))
√

log(e/W1(g)),

where the first inequality uses Cauchy–Schwarz and the second uses the inequality be-
tween the arithmetic and geometric means.

The inequality (b) is immediate, as for any i we have

√
log e

Ii(f) =
√

1/2

√
log e2

Ii(f)2 ≥
√

1/2
√

log(e/W1(f)),

and similarly for g. �
The strategy of the proof of (11) is similar to the simpler proof of Theorem 1.3 pre-

sented above, the only difference being the similarity assumption that allows applying 
Lemma 2.8 to f and g separately and then combining the results using the Cauchy–
Schwarz inequality.

Proof of Theorem 1.7. Let

ρ = c′0 (log(e/W1(f)))−1/2 (log(e/W1(g)))−1/2
,

where c′0 is a sufficiently small constant. As in the proof of Theorem 1.3 above, we want 
to upper bound 

∑
d≥2 |ρdWd(f, g)|. By Cauchy–Schwarz, it is sufficient to bound
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∑
d≥2

ρd
√
Wd(f)

√
Wd(g).

Applying the argument used above to obtain (10) to each of the functions f, g separately 
(with ρf = cf (log(e/W1(f)))−1 and ρg = cg (log(e/W1(g)))−1), we obtain

ρdfWd(f) ≤ 2−dρfW1(f) and ρdgWd(g) ≤ 2−dρgW1(g), (12)

for all d ≥ 2. As √ρfρg = √
cfcg (log(e/W1(f)))−1/2 (log(e/W1(g)))−1/2 = ρ, we can 

combine the inequalities in (12) and sum over d to get

∑
d≥2

ρd
√
Wd(f)

√
Wd(g) ≤

∑
d≥2

2−dρ
√

W1(f)W1(g) ≤ ρ
√

W1(f)W1(g)/2. (13)

By the similarity of f and g, we have

√
W1(f)W1(g) = W1(f, g), (14)

and thus, (13) reads

∑
d≥2

ρd
√

Wd(f)Wd(g) ≤ ρW1(f, g)/2.

Subsequently,

Cov(Tρf, g) = ρW1(f, g) +
∑
d≥2

ρdWd(f, g) ≥ ρW1(f, g) −
∑
d≥2

ρd
√
Wd(f)Wd(g) ≥

≥ ρW1(f, g)/2 = cW1(f, g) (log(e/W1(f)))−1/2 (log(e/W1(g)))−1/2
.

(15)

The assertion now follows from Lemma 1.9. �
Remark 3.2. The proof applies almost without change if we only assume that f, g are 
weakly similar (with respect to a constant c′). The only change is that (14) holds only 
up to a multiplicative factor that depends on c′, and that should be compensated by 
multiplying ρf and ρg by the same factor. As a result, (15) holds, with the constant c
depending on c′.

3.2. A few counterexamples

As the formulation of Theorem 1.7 makes sense for general increasing families, one 
could hope that it holds without the similarity assumption. The following examples 
indicate that this is not the case. In the examples, we denote by ma(x1, . . . , x�) an 
increasing Hamming ball C ⊂ {0, 1}� with μ(C) = a.
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Example 3.A. For a small constant a, let A = ma(x1, . . . , xn), and let B =
m1−a(x1, . . . , xn) be the dual of A. A direct computation (see [19]) shows that The-
orem 1.3 is tight for (A, B), as Cov(A, B) = a2 and W1(1A, 1B) = Θ(a2 log(1/a)), where 
Θ(·) “hides” a constant factor independent of a, n (the latter holds since Ii(A) = Ii(B) =
Θ(a

√
log(1/a)/

√
n) for all i).

Define A′, B′ ⊂ Ωn+1 by

A′ = {(x1, . . . , xn, y) : ((x1, . . . , xn) ∈ A) ∨ (y = 1)}, and B′ = m1−a(x1, . . . , xn, y).

We claim that the assertion of Theorem 1.7 does not hold for (A′, B′).
The influences of A′ are Ii(A′) = Ii(A)/2 for i ∈ [n] and In+1(A′) = 1 − a, and the 

influences of B′ are Ii(B′) ∼ Ii(B) (where as usual α ∼ β means α/β → 1 as n → ∞). 
Hence,

W1(1A′ ,1B′) ∼
∑
i≤n

Ii(A)Ii(B)/2 + Θ(a
√

log(1/a)/
√
n) = Θ(a2 log(1/a)),

while W1(1A′) = Θ(1) and W1(1B′) ∼ W1(1B) = Θ(a2 log(1/a)). Hence,

W1(1A′ ,1B′)√
log(1/W1(1A′))

√
log(1/W1(1B′))

= Θ(a2
√

log(1/a)). (16)

On the other hand, we claim that Cov(A′, B′) ∼ a2. To see this, let z be a new variable 
independent of all others, denote B′′ = m1−a(x1, . . . , xn, z), and consider A′, B′′ as sub-
sets of {0, 1}n+2. As A′ does not depend on z and B′′ does not depend on y, a direct 
computation yields Cov(A′, B′′) ∼ Cov(A, B)/2 = a2/2. Since E(B′′) = E(B′), we have

|Cov[A′,B′] − Cov[A′,B′′]| = |E[1A′(1B′ − 1B′′)]| ≤ Pr[1B′ �= 1B′′ ] = O(n−1/2),

and thus,

Cov[A′,B′] ∼ a2/2. (17)

Comparing Equations (16) and (17), we see that (3) fails for (A′, B′), as asserted.

Remark 3.3. Note that the family B′ in the example is not only regular but even fully 
symmetric. This shows that a symmetry assumption on only one of the families is in-
sufficient. A weaker bound that does hold when one of the families is fully symmetric is 
Theorem 1.13.

Since the conclusion of Theorem 1.7 is not true in general, we can ask about the 
following weaker bound.
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Statement 3.4. Let A, B ⊂ Ωn be increasing. Then

Cov(A,B) ≥ c
W1(1A,1B)

log(e/W1(1A)W1(1B)) , (18)

where c is a universal constant.

Recall that Theorem 1.7 strengthens Theorem 1.3 by decreasing the denominator 
of the right hand side twice: First, it replaces W1(1A, 1B) inside the logarithm by √

W1(1A)
√
W1(1B), applying Cauchy–Schwarz. Second, it replaces the arithmetic mean 

log
(
e/
√
W1(1A)

√
W1(1B)

)
by the geometric mean 

√
log(e/W1(1A))

√
log(e/W1(1B)). 

Statement 3.4 suggests to make only the first step.
While the families (A, B) of Example 3.A satisfy Statement 3.4, the following example 

shows that Statement 3.4 is false, even under an additional assumption that one of the 
families is regular.

Example 3.B. For a small constant a, let A, B be A = ma(x1, . . . , xn), B =
m1−a(x1, . . . , xn) as in Example 3.A, and let C = m1/2(y1, . . . , y�), where 	 = 	(n)
is chosen such that Ii(C) = Ij(B) for all i, j. Define A′, B′ ⊂ Ωn+� by A′ = {(x1, . . . , xn,

y1, . . . , y�) : ((x1, . . . , xn) ∈ A) ∨ (y1 = 1)} and B′ = {(x1, . . . , xn, y1, . . . , y�) :
((x1, . . . , xn) ∈ B) ∧ (y1, . . . , y�) ∈ C}. Note that by the choice of 	, B′ is regular.

We claim that (18) fails for (A′, B′). Indeed, a computation similar to that of Ex-
ample 3.A shows that Cov(A′, B′) ∼ a2/4, while W1(1A, 1B) = Θ(a2 log(1/a)) and 
W1(1A) = W1(1B) = Θ(1). Hence, the right hand side of (18) is Θ(a2 log(1/a)) which is 
significantly larger than the left hand side (Θ(a2)), rendering (18) false.

Remark 3.5. We note that the same example, with a = n−α for α ∈ (0, 1/2), shows 
that in Theorem 1.13, the assumption that B is fully symmetric cannot be replaced by 
assuming that B is merely regular. Indeed, for (A′, B′) of the example, the right hand 
side of (6) is

c
n+�∑
i=1

Ii(A)√
log e

Ii(A)

Ii(B)√
log e2

nIi(B)2

= Θ
(
a2 log(1/a)√

log n

)
= Θ(a2 · α

√
log n),

which is asymptotically larger than Cov(1A′ , 1B′) = Θ(a2).

4. An asymmetric correlation bound

In this section we present the proof of Theorem 1.13. This proof follows the original 
proof strategy of Talagrand [19], with a few enhancements that allow to handle in a 
better way different assumptions on A and B. Due to this feature, we refer to the result 
as an “asymmetric” correlation bound.
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4.1. A few lemmas

In [19], the following simple lemma is proved and deployed.

Lemma 4.1. [19, Lemma 4.1] The function ϕ(x) = x
log(e/x) is increasing and convex 

in (0, 1), and for all 0 < u ≤ v < 1 we have

ϕ(v) ≤ ϕ(u) + 2(v − u)
log(e/v) . (19)

We shall use Lemma 4.1, along with the following two strengthenings.

Lemma 4.2. For any n ∈ N, the function ψn(x) = x√
log(e3/nx2) is increasing and convex 

in (0, 1/
√
n), and for any 0 < u ≤ v < 1/

√
n we have

ψn(v) ≤ ψn(u) + 2(v − u)√
log e3

n((v+u)/2)2

.

Lemma 4.3. The function ψ(x) = x/
√

log(e2/x) is increasing and convex in (0, 1), and 
for any 0 < u ≤ v < 1 we have

ψ(v) ≤ ψ(u) + 1.5(v − u)√
log e2

(v+u)/2

.

We note that the main advantage of Lemmas 4.2 and 4.3 over Lemma 4.1 is replace-
ment of v by (v + u)/2 in the denominator. This makes the proof of these lemmas a 
bit more complex than Talagrand’s proof of Lemma 4.1. For sake of completeness, we 
present the proof of both lemmas below.

Proof of Lemma 4.2. We have

ψ′
n(x) = (log(e3/nx2))−1/2 + x · (−1/2) · (log(e3/nx2))−3/2 · (nx2/e3) · (−2e3/nx3)

= (log(e3/nx2))−1/2(1 + (log(e3/nx2))−1) = h(x)(1 + h(x)2),

where h(x) = log(e3/nx2)−1/2. As h(x) is nonnegative and increasing in (0, 1/
√
n), it 

follows that ψ′
n is nonnegative and increasing, and thus ψn is increasing and convex. 

Furthermore, we have h(x) ≤ 1 and thus, ψ′
n(x) ≤ 2h(x). Hence,

ψn(v) = ψn(u) +
v∫

u

ψ′
n(x)dx ≤ ψn(u) +

v∫
u

2h(x)dx. (20)

Now, we claim that h(x) is concave in (0, 1/
√
n). Indeed, we have h′(x) =

x−1 log(e3/nx2)−3/2 and
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h′′(x) = −x−2 log(e3/nx2)−3/2 + x−1 · 3x−1 log(e3/nx2)−5/2

= x−2 log(e3/nx2)−3/2 (−1 + 3 log(e3/nx2)−1) < 0,

where the last inequality holds since log(e3/nx2)−1 < 1/3 for all x ∈ (0, 1/
√
n). Thus, 

by concavity of h, (20) implies

ψn(v) ≤ ψn(u) +
v∫

u

2h(x)dx ≤ ψn(u) + 2(v − u)h((v + u)/2)

= ψn(u) + 2(v − u)√
log e3

n((v+u)/2)2

,

as asserted. �
Proof of Lemma 4.3. We have

ψ′(x) = (log(e2/x))−1/2 + x · (−1/2) · (log(e2/x))−3/2 · (x/e2) · (−e2/x2)

= (log(e2/x))−1/2(1 + 1
2(log(e2/x))−1) = h(x)(1 + h(x)2/2),

where h(x) = log(e2/x)−1/2. As h(x) is nonnegative and increasing in (0, 1), it follows 
that ψ′ is nonnegative and increasing, and thus ψ is increasing and convex. Furthermore, 
we have h(x) ≤ 1 and thus, ψ′(x) ≤ 1.5h(x). Hence,

ψ(v) = ψ(u) +
v∫

u

ψ′(x)dx ≤ ψ(u) +
v∫

u

1.5h(x)dx. (21)

Now, we claim that h(x) is concave in (0, 1). Indeed, we have h′(x) = 0.5x−1 log(e2/x)−3/2

and

h′′(x) = 0.5
(
−x−2 log(e2/x)−3/2 + x−1 · 1.5x−1 log(e2/x)−5/2

)
= 0.5x−2 log(e2/x)−3/2 (−1 + 1.5 log(e2/x)−1) < 0,

where the last inequality holds since log(e2/x)−1 < 1/2 for all x ∈ (0, 1). Thus, by 
concavity of h, (21) implies

ψ(v) ≤ ψ(u) +
v∫

u

1.5h(x)dx ≤ ψ(u) + 1.5(v − u)h((v + u)/2) = ψ(u) + 1.5(v − u)√
log e2

((v+u)/2)2

,

as asserted. �
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Another simple but important lemma from [5,19] (see also [16, Remark 5.28]) we use 
is the following:

Lemma 4.4. [19, Proposition 2.2] For any f : Ωn → [−1, 1], with E[|f |] ≤ 1/2, we have

n∑
i=1

f̂({i})2 ≤ cE[|f |]2 log(e/E[|f |]),

where c is an absolute constant.

As noted in [19], the following is an immediate corollary.

Corollary 4.5. For any f : Ωn → [−1, 1], and for any k, we have

∑
i�=k

f̂({i, k})2 ≤ cIk(f)2 log(e/Ik(f)).

4.2. Proof of Theorem 1.13

A generalized statement of the theorem is the following.

Theorem. Let f : Ωn → [−1, 1] be increasing and fully symmetric and g : Ωn → [−1, 1]
be increasing. Then

Cov(f, g) ≥ c

n∑
i=1

Ii(f)√
log e3

nIi(f)2

Ii(g)√
log e2

Ii(g)

=
n∑

i=1
ψn(Ii(f))ψ(Ii(g)), (22)

where ψn(x) = x√
log(e3/nx2) , ψ(x) = x√

log(e2/x) , and c is a universal constant.

Proof. The proof is by induction on n. The case n = 1 is trivial, since in this case:

Cov(f, g) = I1(f)I1(g) ≥ ψ1(I1(f))ψ(I1(g)).

We now prove the induction step. We choose to induct on the coordinate j such that 
Ij(g) = maxi Ii(g) and assume w.l.o.g. j = n. Define f0, f1 : Ωn−1 → [−1, 1] by

f0(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) and f1(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1).

Denote by a� (	 = 0, 1) the expectation E(f �), by aj (j ∈ [n]) the influence Ij(f), and by 
a�j (	 = 0, 1, j ∈ [n −1]) the influence Ij(f �). Define g0, g1, b�, bj , b�j in the same way, with 
g in place of f . Since f0, f1 are fully symmetric, we have by the induction hypothesis
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Cov(f0, g0) = E[f0g0] − a0b0 ≥ c
n−1∑
i=1

ψn−1(a0
i )ψ(b0i ), and

Cov(f1, g1) = E[f1g1] − a1b1 ≥ c
n−1∑
i=1

ψn−1(a1
i )ψ(b1i ).

Since E[fg] = (E[f0g0] + E[f1g1])/2, we have

E[fg] − (a0b0 + a1b1)/2 ≥ c

2

n−1∑
i=1

(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

)
.

As E[f ] = (a0 + a1)/2 and E[g] = (b0 + b1)/2, we obtain

Cov(f, g) = E[fg] − E[f ]E[g]

≥ c

2

n−1∑
i=1

(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

)
+ 1

4(a1 − a0)(b1 − b0).

Note that a1 − a0 = In(f) = an and b1 − b0 = bn, and hence we actually have

Cov(f, g) ≥ c

2

n−1∑
i=1

(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

)
+ 1

4anbn.

Thus, it is sufficient to show

c

2

n−1∑
i=1

(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

)
+ 1

4anbn ≥ c

n∑
i=1

ψn(ai)ψ(bi),

or equivalently,

cψn(an)ψ(bn) + c

n−1∑
i=1

(
ψn(ai)ψ(bi) −

1
2
(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

))
≤ 1

4anbn.

(23)

In the next steps, we consider the term ψn−1(ai)ψ(bi) instead of ψn(ai)ψ(bi), and we 
shall take care of the difference between them at a later stage. As for 	 = 0, 1 and for 
any i ∈ [n − 1], we have (n − 1)(a�i)2 =

∑
i Ii(f �)2 ≤ 1 by Claim 2.4(c), we can deduce 

a�i ∈ (0, 1/
√
n− 1). Hence, we can use the convexity of ψn−1 and of ψ (see Lemmas 4.2

and 4.3) to assert

ψn−1(ai)ψ(bi) = ψn−1((a0
i + a1

i )/2)ψ((b0i + b1i )/2)

≤ 1(ψn−1(a0
i ) + ψn−1(a1

i ))(ψ(b0i ) + ψ(b1i )),
4
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for each i ∈ [n − 1]. Thus,

ψn−1(ai)ψ(bi) −
1
2
(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

)
≤ 1

4(ψn−1(a0
i ) − ψn−1(a1

i ))(ψ(b1i ) − ψ(b0i )). (24)

Now, note that a1
i − a0

i = 2f̂({i, n}), and hence, by Lemma 4.2,

|ψn−1(a0
i ) − ψn−1(a1

i )| ≤
2 · 2f̂({i, n})√

log e3

(n−1)((a0
i+a1

i )/2)2

= 2 · 2f̂({i, n})√
log e3

(n−1)a2
i

.

Similarly, b1i − b0i = 2ĝ({i, n}), and hence, by Lemma 4.3,

|ψ(b0i ) − ψ(b1i )| ≤
2 · 2ĝ({i, n})√

log e2

bi

.

Therefore, from (24) we get

n−1∑
i=1

(
ψn−1(ai)ψ(bi) −

1
2
(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

))

≤
n−1∑
i=1

4|f̂({i, n})ĝ({i, n})|√
log e3

(n−1)a2
i

√
log e2

bi

. (25)

In the denominator of the right hand side, we can replace bi by bn due to the choice of n. 
In the numerator, we replace 

∑n−1
i=1 |f̂({i, n})ĝ({i, n})| by

(
n−1∑
i=1

f̂({i, n})2
)1/2 (n−1∑

i=1
ĝ({i, n})2

)1/2

using Cauchy–Schwarz, and bound the terms related to f and the terms related to g
separately. For g, by Corollary 4.5 we have

n−1∑
i=1

ĝ({i, n})2 ≤ c1b
2
n log(e/b2n),

and for f , by the full symmetry of A we can use Lemma 2.7 to get

n−1∑
f̂({i, n})2 = 2

n
W2(f) ≤ c

n
W1(f) log(e/W1(f)) = c2a

2
n log(e/na2

n).

i=1
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Combining the bounds and summing over i, we obtain

(
n−1∑
i=1

f̂({i, n})2
)1/2 (n−1∑

i=1
ĝ({i, n})2

)1/2

≤ √
c1c2anbn

√
log e

na2
n

√
log e

bn
.

Substituting into (25) yields

n−1∑
i=1

(
ψn−1(ai)ψ(bi) −

1
2
(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

))

≤
4√c1c2anbn

√
log e

na2
n

√
log e

bn√
log e3

(n−1)a2
i

√
log e2

bn

≤ 4
√
c1c2anbn. (26)

As ψn(an)ψ(bn) ≤ anbn, this almost proves (23), and thus the theorem. In order to 
complete the proof, we only have to “replace” ψn−1(ai) which we used in our argument 
with ψn(a). This is done using the following calculation:

∣∣∣∣∣
n−1∑
i=1

ψn(ai)ψ(bi) − ψn−1(ai)ψ(bi)

∣∣∣∣∣
≤ bn

n−1∑
i=1

|ψn(ai) − ψn−1(ai)|

≤ nanbn

((
log(e3/na2

n)
)−1/2 −

(
log(e3/(n− 1)a2

n)
)−1/2

)
. (27)

Since for any x, y > 1 we have x−1 − y−1 ≤ y − x ≤ y2 − x2, we obtain((
log(e3/na2

n)
)−1/2 −

(
log(e3/(n− 1)a2

n)
)−1/2

)
≤ log(e3/(n− 1)a2

n) − log(e3/na2
n) = log( n

n− 1).

Substituting into (27) yields
∣∣∣∣∣
n−1∑
i=1

ψn(ai)ψ(bi) − ψn−1(ai)ψ(bi)

∣∣∣∣∣ ≤ nanbn log( n

n− 1) ≤ 2anbn. (28)

Combining Equations (26) and (28), we obtain

n−1∑
i=1

(
ψn(ai)ψ(bi) −

1
2
(
ψn−1(a0

i )ψ(b0i ) + ψn−1(a1
i )ψ(b1i )

))
≤ (4

√
c1c2 + 2)anbn, (29)

which implies that Equation (23) holds with c = 1/(16√c1c2 + 12), completing the 
proof. �
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Remark 4.6. We note that without the full symmetry assumption on f , we can use the 
same argument (using ψ for both functions) to obtain an alternative proof of Theo-
rem 1.4. The original proof presented in [14] is rather different, using a reduction from 
the Gaussian case and the so-called reverse isoperimetric inequality of Borell [4].

As demonstrated by Example 3.B above, the full symmetry assumption on f cannot 
be replaced by a regularity assumption. It will be interesting to find less restrictive 
sufficient conditions for Theorem 1.13.

5. Tightness of Theorem 1.3

In this section we present several new tightness examples of Theorem 1.3. We present 
a few simple sufficient conditions and one necessary condition for tightness of (1), and 
then we give several concrete examples. Throughout the section, we use the notation 
E
′[h] = min(E[h], 1 − E[h]) for any h : Ωn → [0, 1], E′′[h] = min(1 − E[h], E[h] + 1) for 

any h : Ωn → [−1, 1], and μ′(C) = min(μ(C), 1 − μ(C)) for any family C.

5.1. Conditions for tightness of Theorem 1.3

We start with a simple necessary condition, which states that (1) can be tight only if 
the correlation of f, g is rather small.

Proposition 5.1. Theorem 1.3 may be tight for f, g : Ω → [0, 1] only if Cov(f, g) =
O(E′[f ]E′[g]).

Proof. Clearly, it is sufficient to prove that the right hand side of (1) is at most 
O(E′[f ]E′[g]). By Cauchy–Schwarz and the inequality between the arithmetic and geo-
metric means, we have

n∑
i=1

Ii(f)Ii(g)
log(e/

∑n
i=1 Ii(f)Ii(g))

= W1(f, g)
log(e/W1(f, g))

≤
√
W1(f)W1(g)

0.5 log(e2/W1(f)W1(g))

≤
√
W1(f)W1(g)√

log(e/W1(f)) log(e/W1(g))
=

√
ϕ(W1(f))ϕ(W1(g)),

where ϕ(x) = x/ log(e/x) as above. By Lemma 4.4, we have W1(f) ≤ cE′[f ]2 log(e/E′[f ])
and similarly for g. As ϕ is increasing (Lemma 4.1), we obtain

√
ϕ(W1(f))ϕ(W1(g)) ≤

√
ϕ(cE′[f ]2 log(e/E′[f ]))

√
ϕ(cE′[g]2 log(e/E′[g])) ≤ c′E′[f ]E′[g],

completing the proof. �
Our first sufficient condition is also related to Lemma 4.4.
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Notation 5.2. An increasing family A ⊂ Ωn is called first-level optimal if it is a tightness 
example (up to a constant) for Lemma 4.4, that is, if W1(1A) ≥ c0E

′[1A]2 log(e/E′[1A])
for a universal constant c0. First-level optimality of a function f : Ωn → [−1, 1] is defined 
similarly, with E′′[f ] in place of E′[1A].

As usual, the formally correct definition is to consider a family of families {Am ⊂ Ωm}, 
with an asymptotic property W1(1Am

) = Ω(E′[1Am
] log(e/E′[1Am

])). For sake of sim-
plicity, we treat a single family A = An and assume that n is sufficiently large.

Proposition 5.3. If A is first-level optimal and B is the dual of A then (1) is tight 
for (A, B) (up to the constant c).

Proof. We have to show that Cov(A, B) ≤ cϕ(W1(1A, 1B)). Since Ii(A) = Ii(B) for all i, 
we have

ϕ(W1(1A,1B)) = ϕ(W1(1A)) ≥ ϕ(c0E′[1A] log(e/E′[1A])) ≥ c′μ′(A), (30)

the penultimate inequality using the first-level optimality of A and monotonicity of ϕ. 
On the other hand,

Cov(A,B) = μ(A ∩ B) − μ(A)μ(B) ≤ min(μ(A), μ(B)) = μ′(A), (31)

the last equality using μ(B) = 1 − μ(A). Comparing (30) and (31) completes the 
proof. �

The second sufficient condition is a simple composition lemma.

Notation 5.4. Let f : Ωn → R and let g1, g2, . . . , gn : Ωm → {0, 1}. The composition 
f ◦ (g1, . . . , gn) : Ωmn → R is defined by

f ◦ (g1, . . . , gn)
(
x1

1, . . . , x
1
m, x2

1, . . . , x
2
m, . . . , xn

1 , . . . , x
n
m

)
=

= f
(
g1(x1

1, . . . , x
1
m), g2(x2

1, . . . , x
2
m), . . . , gn(xn

1 , . . . , x
n
m)

)
.

Proposition 5.5. Let (f1, f2), with f1, f2 : Ωn → {0, 1}, be a tightness example for (1), 
and let g1, . . . , gn : Ωm → {0, 1} be increasing functions such that

• E[gi] = 1/2 for all i, and
• W1(gi) ≥ c0 for all i, where c0 is a universal constant.

Then (f1 ◦ (g1, . . . , gn), f2 ◦ (g1, . . . , gn)) is also a tightness example for (1) (though, with 
a different constant).
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Proof. For 	 = 1, 2, denote f̃� = (f� ◦ (g1, . . . , gn)). It is clear that E[f̃�] = E[f�], and 
E[f̃1f̃2] = E[f1f2] (here we use the fact that g1, . . . , gn are the same for f1, f2). Hence, 
Cov(f̃1, f̃2) = Cov(f1, f2). On the other hand, denoting by Ii,j(f�) the influence on the 
variable xi

j on f�, we have Ii,j(f�) = Ii(f�)Ij(gi). Thus,

W1(f̃1, f̃2) =
∑
i

Ii(f1)Ii(f2)
∑
j

Ij(gi)2 ≥ c0
∑
i

Ii(f1)Ii(f2) = c0W1(f1, f2),

where the inequality uses the assumption on {gi}. Therefore, ϕ(W1(f̃1, f̃2)) ≥
cϕ(W1(f1, f2)), completing the proof. �
5.2. A few properties of linear threshold functions

Before we present the specific examples, we cite a few definitions and results on linear 
threshold functions that will be a central ingredient of the examples.

Definition 5.6. A linear threshold function is f : Ωn → {−1, 1} of the form f(x1, . . . , xn) =
sign(

∑
aixi − θ), where ai, θ ∈ R and sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise.

Linear threshold functions (LTFs) are a central object of study in computer science 
(see, e.g., [16]). It is clear that an LTF is increasing iff ai ≥ 0 for all i, and balanced 
(i.e., satisfies E[f ] = 0) iff θ = 0. The next definition captures the notion of low-influence
functions.

Definition 5.7. A function f : Ωn → R is called τ -regular if Ii(f) ≤ τ ||f ||2 for all i.

Intuitively, having low influences allows to approximate the function by a Gaussian 
via the Central Limit Theorem and to use Gaussian tools to handle it (see, e.g., [15]).

Notation 5.8. For x ∈ (0, 1), let u(x) = 2[φ(Φ−1(x))]2, where φ is the density function 
and Φ the cumulative distribution function of a Gaussian N(0, 1) random variable.

It is easy to see that if x = 1 −η, then u(x) = Θ(η2 log(1/η)) (see [15, Proposition 24]). 
We use the following theorem of Matulef et al. [15].

Theorem 5.9. ([15, Theorem 48]) Let f1(x1, . . . , xn) = sign(
∑

aixi − θ1) with 
∑

a2
i = 1

be a τ -regular LTF. Then

|W1(f1) − u(E[f1])| ≤ τ1/6.

Furthermore, if f2(x1, . . . , xn) = sign(
∑

aixi − θ2) is another LTF with the same 
weights ai then

∣∣W1(f1, f2)2 − u(E[f1])u(E[f2])
∣∣ ≤ τ1/6.
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An immediate corollary of Theorem 5.9 is that if f is τ -regular, where τ ≤
c(E′′[f ]2 log(1/E′′[f ]))6 for a sufficiently small c, then f is first-level optimal.

For balanced LTFs, we can deduce the same conclusion without the τ -regularity 
assumption, using the following theorem of Peres [17] (which shows that LTFs are asymp-
totically noise stable, see [2]).

Notation 5.10. ([16, Definition 2.43]) For a function f : Ωn → {−1, 1} and 0 < ε < 1, 
the noise sensitivity of f at ε is

NSε(f) := 1
2 − 1

2
∑
S⊂[n]

(1 − 2ε)|S|f̂(S)2.

Theorem 5.11. [17] Let f : Ωn → {−1, 1} be a balanced LTF and let 0 < ε < 1. Then 
NSε(f) ≤ O(

√
ε).

Theorem 5.11 immediately implies that balanced LTFs are first-level optimal (using, 
e.g., [13, Theorem 4]).

5.3. Specific examples

Recall that there are two previously known examples: A being a small Hamming ball 
and B being its dual (presented by Talagrand) [19], and A being the tribes function and 
B being its dual [11].

Example 5.A. Our first example is an extension of Talagrand’s example from [19].

Proposition 5.12. Let f be an increasing τ -regular LTF, with τ ≤ c(E′′[f ]2 log(1/E′′[f ]))6
for a sufficiently small c. Let A ⊂ Ωn be a family such that f = 2 · 1A − 1, and let B be 
the dual of A. Then (1) is tight for (A, B).

Proof. As mentioned above, Theorem 5.9 implies that A is first-level optimal. The as-
sertion now follows from Proposition 5.3. �

Talagrand’s example is a special case, with f = sign(
∑

i
1√
n
xi−θ), for any θ such that 

E
′′[f ] is not too small. It is plausible that Proposition 5.12 actually holds for any LTF 

(i.e., without the τ -regularity assumption), which would yield a wider class of tightness 
examples.

Example 5.B. The second example is a generalization of a layered majority function with 
a constant number of layers. For simplicity of notation, we replace our domain Ωn by 
Ω′

n = {−1, 1}n.
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Definition 5.13. A 1-layer weighted majority function is an increasing balanced LTF (on 
any number of coordinates, including a single coordinate). A k-layer weighted majority 
function is defined inductively as f ◦ (g1, g2, . . . , gn), where f : Ω′

n → {−1, 1} is an 
increasing balanced LTF and g1, . . . , gn are k − 1-layer weighted majority functions.

Proposition 5.14. Let k ∈ N be constant, let (f1, f2) be a pair of functions on Ω′
n for 

which (1) is tight, and let g1, . . . , gn be layered majority functions with at most k layers. 
Then (1) is tight for the functions (f1 ◦ (g1, . . . , gn), f2 ◦ (g1, . . . , gn)).

Proof. As mentioned above, Theorem 5.11 implies that any balanced increasing LTF g
satisfies W1(g) ≥ c. By induction on k, the same holds for any k-layer weighted majority 
(with a constant that depends on k). Since k is assumed to be constant, the assertion 
follows from Proposition 5.5. �
Example 5.C. The two example classes presented above consist of a family and its dual, 
as the previously known examples. A conceptually different type of examples is those 
presented in Section 3.2. For sake of completeness, we restate them here.

Proposition 5.15. For a small constant a, let A = ma(x1, . . . , xn), and let B =
m1−a(x1, . . . , xn) be the dual of A. Then the following pairs are tightness examples 
for (1).

(a) A′, B′ ⊂ Ωn+1, defined by

A′ = {(x1, . . . , xn, y) : ((x1, . . . , xn) ∈ A) ∨ (y = 1)}, and

B′ = m1−a(x1, . . . , xn, y).

(b) A′, B′ ⊂ Ωn+�, defined by A′ = {(x1, . . . , xn, y1, . . . , y�) : ((x1, . . . , xn) ∈ A) ∨
(y1 = 1)} and B′ = {(x1, . . . , xn, y1, . . . , y�) : ((x1, . . . , xn) ∈ B) ∧ (y1, . . . , y�) ∈ C}, 
where C = m1/2(y1, . . . , y�) and 	 = 	(n) is chosen such that Ii(C) = Ij(B) for all i, j.

Proof. The tightness of (1) for both pairs of examples follows immediately from the 
computations presented in Section 3.2. �

Our concluding example is not a tightness example of Theorem 1.3, but rather provides 
a case study for comparing all lower bounds considered in the paper.

Example 5.D. Let f1 = sign(
∑

aixi − θ) be a τ -regular LTF, with E[f ] = 1 − a for a 
small constant a and τ ≤ c(E′′[f ]2 log(1/E′′[f ]))12 for a sufficiently small c. Let f2 =
sign(

∑
aixi).

Since f1f2(x) = f2(x) for all x, we have Cov[f1f2] = E[f2] −E[f1]E[f2] = a/2. On the 
other hand, by Theorem 5.9, we have
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W1(f1, f2) = Θ(a
√

log(1/a)), W1(f1) = Θ(a2 log(1/a)), and W1(f2) = Θ(1).

Hence, for the pair of functions (f1, f2) the bound (3) is tight, while the bounds (1)
and (18) are off by a factor of Θ(

√
log(1/a)). In the specific case of f1 corresponding 

to a Hamming ball, i.e., f1 = sign(
∑ 1√

n
xi − θ), we can compute also the bounds (2)

and (6) and find that (2) is off by a factor of logn/
√

log(1/a), while (6) is off by a factor 
of 

√
log(n)/ log(1/a).

This example demonstrates the advantage of Theorem 1.7 over all other bounds we 
consider. Note however that while Theorem 1.7 holds for f1 = sign(

∑ 1√
n
xi − θ), we do 

not know whether it can be generalized to any low-influence LTF. We do know that it 
does not hold for LTFs in general (Example 3.A being a counterexample), but it seems 
plausible that it should hold under an appropriate τ -regularity assumption.

6. Open problems

We conclude this paper with a few open problems.

Problem 6.1. A much stronger, and more “nice-looking”, correlation lower bound is

Cov(f, g) ≥
∑
i

Ii(f)Ii(g). (32)

It was shown in [11] that (32) holds “on average”, i.e., when correlation is averaged over 
all pairs of elements in a family T . While it clearly does not hold in general (all examples 
of Section 5 being counterexamples), it will be interesting to find additional conditions 
under which (32) holds, both for Boolean functions and for general functions. One con-
dition that may be relevant is the submodularity condition which is of great interest in 
combinatorics and optimization. As shown in [9], for families of sets Equation (32), as 
well as several weaker correlation inequalities, are related to a conjecture of Chvátal [6]
in extremal set theory.

Problem 6.2. It will be interesting to understand in which cases Lemma 4.4 is tight. That 
is, what are the families A that satisfy

∑
i

I2
i (A) ≥ cμ(A)2 log(1/μ(A)), (33)

for a universal constant c. This question seems to be of independent interest, due to the 
abundance of applications of Lemma 4.4, and also can provide more tightness examples 
for Theorem 1.3 (using Proposition 5.3). In [15], it is shown that if W1(f) is very close 
to the maximum possible, then f must be a linear threshold function. However, when 
we ask for tightness only up to a constant factor, the question looks harder. One specific 
case that may be easy to handle is to show that (33) holds for any LTF (and not only 
for low-influence LTFs as shown in Theorem 5.9).
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Problem 6.3. It will be interesting to find additional conditions under which Theorem 1.7
holds, i.e.,

Cov(A,B) ≥ c
W1(1A,1B)√

log(e/W1(1A))
√

log(e/W1(1B))
, (34)

for a universal constant c. In particular, it seems plausible that (34) holds for any pair 
of low-influence LTFs. If true, this will provide an additional tightness example of The-
orem 1.7, in a case where all other bounds considered in this paper are not tight (see 
Example 5.D).
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