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We say a family of sets is intersecting if any two of its sets 
intersect, and we say it is trivially intersecting if there is an 
element which appears in every set of the family. In this paper 
we study the maximum size of a non-trivially intersecting 
family in a natural “multi-part” setting. Here the ground set 
is divided into parts, and one considers families of sets whose 
intersection with each part is of a prescribed size. Our work is 
motivated by classical results in the single-part setting due to 
Erdős, Ko and Rado, and Hilton and Milner, and by a theorem 
of Frankl concerning intersecting families in this multi-part 
setting. In the case where the part sizes are sufficiently large 
we determine the maximum size of a non-trivially intersecting 
multi-part family, disproving a conjecture of Alon and Katona.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We say that a family of sets F is intersecting if the intersection of any two of its sets 
is non-empty. Moreover, we say that F is trivially intersecting if there is an element 
i such that i ∈ F for each set F ∈ F . The Erdős–Ko–Rado theorem [9] says that if 
F ⊆

([n]
k

)
is an intersecting family of k-element subsets of an n-element ground set, and 

if 1 ≤ k ≤ n/2, then
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|F| ≤
(
n− 1
k − 1

)
.

This bound is sharp: it is attained, for example, by the trivially intersecting family 
FEKR (n, k) consisting of all k-element subsets of [n] which contain 1. In fact, for k < n/2
this is essentially the only extremal family. We remark that if k > n/2 then 

([n]
k

)
itself is 

intersecting.
The Erdős–Ko–Rado theorem is of fundamental importance in extremal set theory, 

and many related questions have been asked and answered. In particular, Hilton and 
Milner [17] proved a stability version of the Erdős–Ko–Rado theorem, showing that for 
2 ≤ k < n/2, the maximum size of a non-trivially intersecting family F ⊆

([n]
k

)
is

MHM (n, k) :=
(
n− 1
k − 1

)
−

(
n− k − 1
k − 1

)
+ 1.

This bound is sharp: it is attained, for example, by the family FHM (n, k) consisting of the 
set F = {2, . . . , k + 1}, in addition to all possible sets that contain 1 and intersect F . Note 
that this family is significantly smaller than the Erdős–Ko–Rado bound. In particular, 
for constant k and n → ∞, we have 

∣∣FHM (n, k)
∣∣ = o 

(∣∣FEKR (n, k)
∣∣). We remark that if 

k = 1 then every intersecting family is trivially intersecting.

1.1. Multi-part intersecting families

A natural “multi-part” extension of the Erdős–Ko–Rado problem was introduced 
by Frankl [12], in connection with a result of Sali [20] (see also [13]). For p ≥ 1 and 
n1, . . . , np ≥ 1, our ground set is [

∑
s ns] = {1, 2, . . . , 

∑
s ns}. We interpret this ground 

set as the disjoint union of p parts [n1] , . . . , [np] and we write [
∑

s ns] = �s [ns]. More 
generally, for sets F1 ∈ 2[n1], . . . , Fp ∈ 2[np] let �s Fs be the subset of �s [ns] with Fs

in part s, and for families F1 ⊆ 2[n1], . . . , Fp ⊆ 2[np] let 
∏

s Fs = {�s Fs : Fs ∈ Fs}. 
Consider k1 ∈ [n1] , . . . kp ∈ [np], so that 

∏
s

([ns]
ks

)
is the collection of all subsets of �s [ns]

which have exactly ks elements in each part s. Families of the form F ⊆
∏

s

([ns]
ks

)
are 

the natural generalization of k-uniform families to the multi-part setting. Note that a 
multi-part family is intersecting if any two of its sets intersect in at least one of the parts.

Frankl proved that for any p ≥ 1, any n1, . . . , np and any k1, . . . , kp satisfying 1 ≤
ks ≤ ns/2, the maximum size of a multi-part intersecting family F ⊆

∏
s

([ns]
ks

)
is

max
t∈[p]

(
nt − 1
kt − 1

)∏
s �=t

(
ns

ks

)
=

(
max
t∈[p]

kt
nt

) p∏
s=1

(
ns

ks

)
.

This bound is sharp: it is attained, for example, by a product family of the form
(

[n1]
)
× · · · ×

(
[nt−1]

)
×FEKR (nt, kt) ×

(
[nt+1]

)
× · · · ×

(
[np]

)
.

k1 kt−1 kt+1 kp
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We remark that Frankl’s theorem can be interpreted as a result about the size of the 
largest independent set in a certain product graph. Recall that the Kneser graph KGn,k

is the graph on the vertex set 
([n]

k

)
, with an edge between each pair of disjoint sets. 

An intersecting subfamily of 
([n]

k

)
corresponds to an independent set in KGn,k, and an 

intersecting subfamily of 
∏

s

([ns]
ks

)
corresponds to an independent set in the graph (tensor) 

product KGn1,k1×· · ·×KGnp,kp
. Therefore Frankl’s theorem is an immediate consequence 

of the general fact that α (G×H) = max {α (G) |H| , |G|α (H)} for vertex-transitive 
graphs G, H. This fact was conjectured by Tardif [21] and recently proved by Zhang [22]. 
The study of independent sets in graph products, particularly graph powers, has a long 
history, and there are many research papers devoted to this topic. In particular we 
mention the work of Alon, Dinur, Friedgut and Sudakov [4] characterizing maximum 
and near-maximum independent sets in powers of certain graphs, and the subsequent 
work of Dinur, Friedgut and Regev [8] approximately characterizing all independent sets 
in powers of a much wider range of graphs.

Alon and Katona [5] independently rediscovered Frankl’s multi-part variant of the 
Erdős–Ko–Rado problem, and proved the same result. Furthermore, they also asked for 
the maximum size of a non-trivially intersecting family in this setting, and made the 
natural conjecture that for p = 2, the maximum possible size is

max
{
MHM(n1, k1)

(
n2

k2

)
,

(
n1

k1

)
MHM(n2, k2)

}
,

attained by one of the “product” families

FHM (n1, k1) ×
(

[n2]
k2

)
,

(
[n1]
k1

)
×FHM (n2, k2) .

This conjecture also appeared in a recent paper of Katona [18], which generalized Frankl’s 
theorem in a different direction.

Somewhat surprisingly, this natural guess is not true in general. Consider the family 
that contains F = {2, . . . , k1 + 1} � [k2] in addition to every set A = A1 �A2 ∈

([n1]
k1

)
×([n2]

k2

)
such that A1 contains 1 and A intersects F . Unless k1 = k2 = 1 (in which case 

there is no non-trivially intersecting family), this family is non-trivially intersecting and 
has size

Malt(n1, n2, k1, k2) :=
(
n1 − 1
k1 − 1

)(
n2

k2

)
−

(
n1 − k1 − 1

k1 − 1

)(
n2 − k2

k2

)
+ 1.

Observe that this can be larger than Alon and Katona’s conjecture (consider for example 
the case when n1 = n2 = 5 and k1 = k2 = 2).

If n1, n2 are large, we are able to prove that either one of the product constructions 
above, or this additional construction (or the corresponding construction where the roles 
of the parts are swapped) is best possible. That is,
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|F| ≤ max
{
MHM(n1, k1)

(
n2

k2

)
,

(
n1

k1

)
MHM(n2, k2), Malt(n1, n2, k1, k2),

Malt(n2, n1, k2, k1)
}
.

This will be an immediate corollary of a more general theorem giving the maximum size 
of a non-trivially intersecting multi-part family for any number of parts. To state this 
theorem we define a variety of potentially extremal families. Consider any p ≥ 1 and any 
k1, . . . , kp satisfying 1 ≤ ks ≤ ns/2. For any t ∈ [p] and S ⊆ [p] \ {t}, define the family 
FHM

t,S = FHM
t,S (n1, . . . , np, k1, . . . , kp) as follows. If kt > 1 then FHM

t,S consists of all sets 
�s Fs ∈

∏
s

([ns]
ks

)
such that one of the following conditions is satisfied:

• Ft = {2, 3, . . . , kt + 1} and Fs = [ks] for all s ∈ S, or,
• 1 ∈ Ft, and either Ft intersects {2, 3, . . . , kt + 1} or Fs intersects [ks] for some s ∈ S.

If instead kt = 1 then FHM
t,S consists of every set �s Fs ∈

∏
s

([ns]
ks

)
such that one of the 

following conditions is satisfied:

• Fs = [ks] for all s ∈ S, or,
• Ft = {1} and Fs intersects [ks] for some s ∈ S.

Unless S = ∅ and kt = 1, or S = {r} and kt = kr = 1 (for some r), the family FHM
t,S is 

non-trivially intersecting. In the case kt > 1 it has size

MHM
t,S =MHM

t,S (n1, . . . , np, k1, . . . , kp)

:=
((

nt − 1
kt − 1

) ∏
s∈S

(
ns

ks

)
−
(
nt − kt − 1

kt − 1

) ∏
s∈S

(
ns − ks

ks

)
+ 1

) ∏
s/∈S∪{t}

(
ns

ks

)
,

and in the case kt = 1, it has size

MHM
t,S =

(∏
s∈S

(
ns

ks

)
−

∏
s∈S

(
ns − ks

ks

)
+ (nt − 1)

) ∏
s/∈S∪{t}

(
ns

ks

)
.

Our main theorem is as follows, showing that one of the families FHM
t,S is extremal if 

the ns are sufficiently large.

Theorem 1. For any k1, . . . , kp ≥ 1, there is n0 = n0 (k1, . . . , kp) such that if n1, . . . , np ≥
n0 and if F ⊆

∏
s

([ns]
ks

)
is a non-trivially intersecting family, then

|F| ≤ Mmax (n1, . . . , np, k1, . . . , kp) := maxMHM
t,S
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where the maximum is over all t ∈ [p] and S ⊆ [p] \ {t}, except the case S = ∅ if kt = 1, 
and the case S = {r} if kt = kr = 1, for some r.

We remark that if p ≤ 2 and ks = 1 for all s, then there is no non-trivially intersecting 
family, in which case Theorem 1 holds vacuously. We also remark that none of the 
values MHM

t,S in Theorem 1 are redundant. For example, for any p, any t ∈ [p] and any 
S ⊆ [p] \ {t}, one can show (via a rather tedious computation) that MHM

t,S is the unique 
maximum in the expression in Theorem 1 in the following regime. Suppose that all the 
ks = 2, and nt is sufficiently large, and all the ns, for s ∈ S, are equal to nt + 1, and all 
the ns, for s /∈ S∪{t}, are equal and sufficiently large relative to nt. Intuitively speaking, 
if the ns and ks are about the same size then we should take S = [p]; we should exclude 
parts from S only when the parts are quite “imbalanced”.

The proof of Theorem 1 is conceptually rather simple, though the details are nontriv-
ial. We first define a notion of “shiftedness” and in Section 2 we show that there is a 
non-trivially intersecting family of maximum size which is shifted. So, it will suffice to 
prove Theorem 1 for shifted families, which we do in Section 3. Our notion of shiftedness 
forces enough structure that it is possible to prove that a maximum-size non-intersecting 
family must be of a certain parameterized form. We can explicitly write the size of the 
family as a function of the parameters, and then it remains to optimize this expression 
over choices of the parameters.

Finally, we remark that the case where n1 = · · · = np = n and k1 = · · · = kp = 1
is of special interest. In this case, 

∏
s

([ns]
ks

)
corresponds to Kp

n (the pth tensor power of 
an n-vertex clique), and an intersecting family F ⊆

∏
s

([ns]
ks

)
corresponds to an indepen-

dent set in Kp
n. The problem of characterizing maximum independent sets in Kp

n was 
solved by Greenwell and Lovász [16] well before Frankl considered the general multi-part 
Erdős–Ko–Rado problem, and there has actually already been interest in proving sta-
bility theorems in this setting. Indeed, a result in the above-mentioned paper by Alon, 
Dinur, Friedgut and Sudakov [4], improved by Ghandehari and Hatami [15], says that if 
an independent set in Kp

n has almost maximum size, then it is “close” in structure to a 
maximum family. When n is large relative to p, then Theorem 1 gives a much stronger 
stability result. Actually, in this simplified setting one can use the machinery in Section 2
to give a simple proof of a non-asymptotic version of Theorem 1.

Theorem 2. For any n ≥ 2 and p ≥ 3, suppose F ⊆
([n]

1
)p

is a non-trivially intersecting 
family. Then

|F| ≤ FHM
1,[p]\{1}(n, . . . , n, 1, . . . , 1) = np−1 − (n− 1)p−1 + n− 1.

A proof of Theorem 2 appeared in a previous version of this paper (which can still be 
found on the arXiv), but we were since informed that Theorem 2 is actually a special 
case of a theorem proved a few years ago by Borg [6] concerning intersecting families of 
“signed sets”. His proof follows basically the same approach.
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2. Shifting for multi-part families

First we define our notion of shiftedness via a shifting operation that makes a family 
more structured without interfering too much with its size or intersection properties. Our 
shifting operation will be a multi-part adaptation of the well-known shifting operation 
for single-part families, introduced by Erdős, Ko and Rado [9] (see also [11] for a survey).

Definition 3 (Shifting). For t ∈ [p], 1 ≤ i < j ≤ nt, and F = �s Fs ∈
∏

s

([ns]
ks

)
, define 

Si,j
t (F ) as follows. If i ∈ Ft or j /∈ Ft then Si,j

t (F ) = F . Otherwise, Si,j
t (F ) is defined 

by replacing Ft with (Ft\ {j}) ∪ {i}. For a family F ⊆
∏

s

([ns]
ks

)
, define

Si,j
t (F) =

{
Si,j
t (F ) : F ∈ F

}
∪
{
F : F, Si,j

t (F ) ∈ F
}
.

That is, change F by shifting every F ∈ F except those that would cause a conflict. We 
call the result a t-shift (or simply a shift) of F . A family F ⊆

∏
s

([ns]
ks

)
is t-shifted if it 

is stable under t-shifts, and a family is shifted if it is t-shifted for all t ∈ [p].

In the single-part case, it is well-known (see for example [11, Propositions 2.1-2]) that 
any shift of any intersecting family is again an intersecting family of the same size, and 
one can always obtain a shifted family by repeatedly applying shifting operations. The 
corresponding facts for the multi-part case immediately follow. In particular, it follows 
that we can always reach a shifted family by repeated shifts.

It is not in general true that a shift of a non-trivially intersecting family is again 
non-trivially intersecting, but in the single-part case, there is nevertheless a non-trivially 
intersecting family of maximum size which is shifted. This was recently proved by Ku-
pavskii and Zakharov [19], and was also previously proved in a more general setting by 
Borg [7]. In the multi-part case this fact is still true, but is more difficult to prove, as 
follows.

Theorem 4. For any p ≥ 1, any k1, . . . , kp and any n1, . . . , np, if there is a non-trivially 
intersecting family F ⊆

∏
s

([ns]
ks

)
then there is a maximum-size non-trivially intersecting 

family F ′ ⊆
∏

s

([ns]
ks

)
which is shifted.

Theorem 4 will follow immediately from a sequence of three lemmas. Say a non-
trivially intersecting family F ⊆

∏
s

([ns]
ks

)
is Q-shifted if it is s-shifted for each s ∈ Q, 

and if for each s /∈ Q there are is < js such that Sis,js
s (F) is trivially intersecting. In 

particular, note that if Q = [p] and F is Q-shifted then F is shifted. We now prove the 
following very basic lemma concerning Q-shiftedness.

Lemma 5. Under the assumption of Theorem 4, there is a maximum-size non-trivially 
intersecting family F ′ ⊆

∏
s

([ns]
ks

)
which is Q-shifted for some Q ⊆ [p].
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Proof. Let F ⊆
∏

s

([ns]
ks

)
be a maximum-size non-trivially intersecting family. Starting 

with F1 = F , for m ≥ 1 as long as there is a shift Si,j
s for which the family Si,j

s (Fm)
is non-trivially intersecting and different from Fm, set Fm+1 = Si,j

s (Fm) (for any such 
choice of s, i, j). Similarly to the single-part setting, this process must eventually ter-
minate with a non-trivially intersecting family F ′ of size |F ′| = |F| such that for any 
s ∈ [p] either F ′ is s-shifted or there are 1 ≤ is < js ≤ ns such that Sis,js

s (F ′) is trivially 
intersecting. With Q = {s ∈ [p] : F ′ is s-shifted}, it follows that F ′ is Q-shifted. �
Lemma 6. Suppose there is a maximum-size non-trivially intersecting family F ⊆∏

s

([ns]
ks

)
which is Q-shifted for some Q � [p] such that kt > 1 for some t /∈ Q. Then 

there is a maximum-size non-trivially intersecting family F ′ which is shifted.

Proof. Here we adapt the approach of Kupavskii and Zakharov [19]. Since F is Q-shifted, 
for each s /∈ Q there are is < js such that Sis,js

s (F) is trivially intersecting. By permuting 
the elements of the ground set in each part s /∈ Q in such a way that is �→ 1 and js �→ 2, 
we may assume that (is, js) = (1, 2) for each s /∈ Q.

Let A denote the (non-empty) family of all sets in 
∏

s

([ns]
ks

)
which contain both 1 and 

2 in part t. Since F is non-trivially intersecting but S1,2
t (F) is trivially intersecting it 

follows that every set in F contains 1 or 2 in part t. Therefore, by maximality of F , 
we must have A ⊆ F . Observe that A is a shifted family and that the only elements 
that belong to every set in A are 1 and 2 in part t. Since F is non-trivially intersecting 
and contains A, repeatedly applying to F shifts of the form Si,j

t with 3 ≤ i < j ≤ nt, 
and s-shifts with s �= t, cannot create a trivial intersection. Call such shifts safe-shifts. 
Starting from F repeatedly perform safe-shifts to obtain a non-trivially intersecting 
family F ′′ that contains A and is stable under such shifts.

Now, by non-triviality of F ′′, there is a set F ∈ F ′′ containing 1 but not 2 in part t. 
Note that F ′ := [k1] � · · · � {1, 3, 4, . . . , kt + 1} � · · · � [kp] can be reached from F by a 
sequence of safe-shifts, and therefore F ′ ∈ F ′′. Similarly, there is a set G ∈ F ′′ containing 
2 but not 1 in part t and one can reach the set G′ := [k1] � · · · � {2, 3, 4, . . . , kt + 1} �
· · · � [kp] from G by a sequence of safe-shifts, implying that G′ ∈ F ′′.

Set G :=
⋃

s Gs where Gs := {[k1]}×· · ·×
([ks+1]

ks

)
×· · ·×{[kp]}. Note that the only sets 

in G which are not in A are precisely F ′ and G′. Therefore, we conclude that G ⊆ F ′′. 
Since G is a shifted non-trivially intersecting family, further shifts applied to F ′′ cannot 
create a trivial intersection. Therefore, we can repeatedly apply shifts to F ′′ in order to 
obtain a shifted maximum-size non-trivially intersecting family F ′. �
Lemma 7. Suppose there is a maximum-size non-trivially intersecting family F ⊆∏

s

([ns]
ks

)
which is Q-shifted for some Q � [p] such that kt = 1 for every t /∈ Q. Then 

there is a maximum-size non-trivially intersecting family F ′ which is shifted.

Proof. We remark that this is the part of the proof with the bulk of the new ideas specific 
to the multi-part case. Define the order of a family F ⊆

∏
s

([ns]) as follows:
ks
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ord(F) :=
∑

�sFs∈F

∑
s∈[p]

∑
x∈Fs

x.

Consider F as in the lemma statement, chosen to have minimum possible order, and 
suppose without loss of generality that F is Q-shifted with Q = {q + 1, q + 2, . . . , p} for 
some q ≥ 1.

Since F is Q-shifted, for each t ∈ [q] there are it < jt such that Sit,jt
t (F) is trivially 

intersecting. This implies that every set in F contains it or jt in each part t ∈ [q]. Since 
kt = 1 for each t ∈ [q], this actually implies that each set is equal to {it} or {jt} in each 
such part. Note that actually (it, jt) = (1, 2) for each t ∈ [q], because otherwise we could 
permute the elements of the ground set in each part t ∈ [q] in such a way that it �→ 1 and 
jt �→ 2, and obtain a maximum-size Q-shifted non-trivially intersecting family of smaller 
order. Therefore, for any �s Fs ∈ F and any t ∈ [q], we have Ft = {1} or Ft = {2}. 
Furthermore, since F is t-shifted for t ∈ {q+1, q+2, . . . , p}, we know that if �s Fs ∈ F
then also F1 � · · · � Fq � [kq+1] � · · · � [kp] ∈ F . Consider the set

H = {(x1, . . . , xq) ∈ {1, 2}q : {x1} � · · · � {xq} � [kq+1] � · · · � [kp] ∈ F},

which we can think of as the set of possible projections onto the first q coordinates of sets 
in F . We view H as a subset of the hypercube {1, 2}q. For any P = (x1, . . . , xq) ∈ {1, 2}q
define its complement P := (3 − x1, . . . , 3 − xq) ∈ {1, 2}q. Note that if P /∈ H then P
shares at least one coordinate with every point in H. This implies that {x1} � · · · �
{xq} � [kq+1] � · · · � [kp] intersects any set in F . By maximality of F , we conclude that 
P ∈ H. Therefore, for any pair {P, P}, with P ∈ {1, 2}q, at least one of P or P is in 
H. In particular, since these pairs partition {1, 2}q into 2q−1 parts, we conclude that 
|H| ≥ 2q−1.

Next, suppose that H contains two Hamming-adjacent points. By the definition of H, 
this would imply that for some s ∈ [q] and x1, . . . , xs−1, xs+1, . . . , xq ∈ {1, 2}, for both 
choices of y ∈ {1, 2}, we have

{x1} � · · · � {xs−1} � {y} � {xs+1} � · · · � {xq} � [kq+1] � · · · � [kp] ∈ F .

This would mean that S1,2
s (F) is non-trivially intersecting, contradicting the fact that 

s /∈ Q. Hence, any two points in H are at Hamming distance at least 2. For any s ∈ [q]
we can partition {1, 2}q into 2q−1 pairs of points which differ only in coordinate s, so we 
conclude that |H| ≤ 2q−1.

By the last two paragraphs, we conclude that |H| = 2q−1 and

(1) H contains exactly one point from any pair of adjacent points in {1, 2}q,
(2) H contains exactly one point from any pair of complementary points in {1, 2}q.

Note that (1) implies that H and {1, 2}q \ H form a partition of the hypercube {1, 2}q
into independent sets. Since the hypercube {1, 2}q is a connected bipartite graph, this 
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partition is unique up to switching the parts. Therefore, we conclude that either H =
Heven := {(x1, . . . , xq) ∈ {1, 2}q : x1 + · · · + xq is even} or H = Hodd := {(x1, . . . , xq) ∈
{1, 2}q : x1 + · · · + xq is odd}. Note that if q = 2 (or more generally, if q is even) then 
neither Heven nor Hodd satisfy (2). Moreover, q �= 1 as otherwise F would be trivially 
intersecting. It follows that q ≥ 3.

Choose P = (x1, . . . , xq) ∈ H such that x1 + · · · + xq is as large as possible (that is, 
P = (2, 2, . . . , 2) if H = Heven and say P = (2, 2, . . . , 2, 1) if H = Hodd). Let F ′′ denote 
the family obtained from F by replacing every set of F of the form {x1} � · · · � {xq} �
Fq+1 � · · · �Fp with {3 −x1} � · · · � {3 −xq} �Fq+1 � · · · �Fp. Note that the latter set is 
not in F since P /∈ H by (2). Therefore, |F ′′| = |F|. Moreover, ord(F ′′) < ord(F) by the 
choice of P and the fact that q ≥ 3. We claim now that F ′′ is a non-trivially intersecting 
family, and is still s-shifted for s ∈ Q. Indeed, since we removed from F every set whose 
first q parts agree with P , every set in F ′′ has at least one of its first q parts agreeing 
with P . Hence, every set in F ′′ \F intersects any set in F ′′ in one of the first q parts, and 
so F ′′ is an intersecting family. It remains to show that F ′′ is non-trivially intersecting. 
If this were not the case, then for some part s ∈ [q] all the sets in F ′′ would have to agree 
with P in part s. However, since q ≥ 3 there is some point P ′ ∈ H at Hamming distance 
2 from P which agrees with P in coordinate s. Since P ′ ∈ H, there is some set in F
which coincides with P ′ in its first q parts and therefore belongs to F ′′ and does not agree 
with P in part s. Therefore, F ′′ is non-trivially intersecting, as claimed. Note that F ′′

is still s-shifted for s ∈ Q, and note that shifting F ′′ can only decrease its order further. 
Therefore, by repeatedly applying shifts to F ′′ which do not make the family trivially 
intersecting (as in Lemma 5), we can obtain a maximum-size non-trivially intersecting 
family F ′ which is Q′-shifted for some Q′ ⊆ [p] and which has smaller order than F . By 
the order-minimality of the choice of F we conclude that either Q′ = [p] or Q′ � [p] and 
kt > 1 for some t /∈ Q′. In the first case, it follows that F ′ is shifted, as desired. In the 
second case, the result follows from Lemma 6. �
3. Proof of Theorem 1

In this section we prove Theorem 1. By Theorem 4, it suffices to prove the required 
bound for shifted non-trivially intersecting families F ⊆

∏
s

([ns]
ks

)
.

The crucial property of shifted families is that one can observe that they are inter-
secting just by looking at the first few elements of each part. For F = �s Fs ∈ �s 2[ns], 
let Ps (F ) = Fs ∩ [2ks] be the “projection” onto the first 2ks elements of part s, let 
P (F ) = �s Ps (F ), and let P(F) = {P (F ) : F ∈ F}.

Lemma 8. For any p ≥ 1, any k1, . . . , kp and any n1, . . . , np, if F ⊆
∏

s

([ns]
ks

)
is inter-

secting and shifted then P (F ) ∩ P (G) �= ∅ for any F, G ∈ F .

Proof. Suppose that there were F = �s Fs, G = �s Gs ∈ F such that P (F ) and P (G)
are disjoint, and let Bs = Fs∩Gs. Note that 2 |Bs| ≤ 2ks−|Ps (F ) | −|Ps (G) | since Bs ⊆
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Fs \ Ps(F ) and Bs ⊆ Gs \ Ps(G). For each s, choose some B′
s ⊆ [2ks] \(Ps (F ) ∪ Ps (G))

with |B′
s| = |Bs| and note that F ′ := �s (Fs\Bs) ∪ B′

s can be obtained from F by a 
sequence of shifts. Therefore, by shiftedness F ′ ∈ F . But G is disjoint from F ′, which is 
a contradiction. �

Let F be a shifted non-trivially intersecting family of maximum size. Lemma 8 implies 
that |P (F )| ≥ 2 for each F ∈ F , because otherwise P(F), and therefore F , would be 
trivially intersecting. Let F∗ = {F ∈ F : |P (F )| = 2}. Now, since P (F∗) is a 2-uniform 
intersecting family, it has very restricted structure. We distinguish between two cases, 
depending on whether P (F∗) is trivially intersecting.

All asymptotic notation in the following sections is to be taken as n0 → ∞, treating 
p, k1, . . . , kp as constants. In particular, this means that there are only O(1) possibilities 
for a projected family P(F). Where relevant we assume that n0 is sufficiently large.

3.1. Case 1: P (F∗) is trivially intersecting (or empty)

For this case, without loss of generality assume n1 ≤ · · · ≤ np. It will be important 
to note that for any Z ∈ �s 2[ns] with zs ≤ ks elements in each part s, there are 
Θ 
(∏

s n
ks−zs
s

)
sets in 

∏
s

([ns]
ks

)
which include Z. In particular, note that

Mmax =
{

Θ
((∏

s n
ks
s

)
/ (n1n2)

)
if k1 = 1;

Θ
((∏

s n
ks
s

)
/n2

1
)

otherwise,

and note that if |Z| > 2 then there are at most o(Mmax) sets in 
∏

s

([ns]
ks

)
which contain Z. 

This means that |F| = |F∗|+o (Mmax). It follows that if |F∗| is empty, then |F| < Mmax. 
So, in what follows assume F∗ is not empty, in which case P (F∗) is non-empty.

Assume that P (F∗) = {{x, y1}, {x, y2}, . . . {x, yq}} with q ≥ 1, and let t be the part 
of x. Noting that q ≤

∑
s 2ks = O(1), we have

|F∗| ≤
q∑

i=1

∣∣∣∣∣
{
F ∈

∏
s

(
[ns]
ks

)
: {x, yi} ⊆ F

}∣∣∣∣∣ = O

((∏
s

nks
s

)
/(ntn1)

)
.

This means that in order to have |F∗| = Ω(Mmax) (which is necessary to have |F| >
Mmax), we must have nt = O(n1) in the case k1 > 1, and nt = O(n2) in the case k1 = 1.

Now, we prove that every set in F is of a very specific form. Let Y = {y1, . . . , yq}.

Claim 9. Every set F ∈ F has x ∈ F and F ∩ Y �= ∅ or satisfies F ⊇ Y .

Proof. Note that every F ∈ F with x /∈ P (F ) must have Y ⊆ P (F ) in order for P (F )
to intersect everything in P (F∗). Moreover, there must be at least one such F because 
F is non-trivially intersecting.
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We now claim that every F ∈ F intersects Y . Let FY ⊂ F be the non-empty subfamily 
of sets F ⊇ Y not containing x, and assume for the purpose of contradiction that there 
is a set in F which does not intersect Y . This means that P(FY ) does not contain Y , 
because P(F) is intersecting. Choose z /∈ Y in some set in P(FY ), in a part r for which 
nr is as small as possible, and set Z = Y ∪ {z}. Now consider the family F ′ consisting 
of all the sets in 

∏
s

([ns]
ks

)
which include Z, in addition to all the sets in 

∏
s

([ns]
ks

)
that 

contain x and intersect Z. Note that this family is non-trivially intersecting. We will 
show that |F ′| > |F|, contradicting maximality.

Observe that P(F ′) includes P(F∗) = {{x, y1}, . . . , {x, yq}}, so for each F ∈ F \ F ′, 
the projection P (F ) has size at least 3. Moreover we claim that each such P (F ) contains 
some w /∈ Y appearing in some set in P(FY ). Indeed, this holds if F ∈ FY since Y is 
not in P(FY ). Otherwise, if F ∈ F \ (F ′∪FY ) then F ∩Y = ∅ yet P (F ) intersects every 
set in P(FY ). Note that the part of w has size at least nr by the choice of z. Noting 
that if k1 = 1 then P (F ) can contain at most one element from part 1, and recalling 
that there are only O(1) different possibilities for P (F ) among F ∈ F \ F ′, we have

|F \ F ′| =
{
O
((∏

s n
ks
s

)
/
(
n2

1nr

))
if k1 > 1;

O
((∏

s n
ks
s

)
/ (n1n2nr)

)
otherwise.

Recall that if k1 > 1 then nt = O(n1), and if k1 = 1 then nt = O(n2). It follows that 
|F \ F ′| = o 

((∏
s n

ks
s

)
/ (ntnr)

)
. On the other hand,

|F ′ \ F| ≥
∣∣∣∣∣
{
F ∈

∏
s

(
[ns]
ks

)
: P (F ) = {x, z}

}∣∣∣∣∣ = Θ
((∏

s

nks
s

)
/ (ntnr)

)
.

So, F was not of maximum size, which is a contradiction. �
We have proved that every set F ∈ F has x ∈ F and F ∩ Y �= ∅, or Y ⊆ F . Note 

that we must have |Y | ≥ 2 since F is non-trivially intersecting. By maximality, F must 
actually be the family of all F ∈

∏
s

([ns]
ks

)
satisfying x ∈ F and F ∩ Y �= ∅, or Y ⊆ F , 

since this family is still non-trivially intersecting. If we had |Y | = 2 then we would have 
Y ∈ P(F∗), contradicting the fact that P(F∗) = {{x, y1}, . . . , {x, yq}}. So, |Y | > 2.

Note that |F| is entirely determined by t and each |Ps(Y )|. Note that if kt = 1 then 
|Pt(Y )| = 0, since {x, y} ∈ P(F∗) for each y ∈ Y . Alternatively, if kt > 1, then we claim 
|Pt(Y )| = kt. Suppose not, and let z /∈ Y ∪ {x} be an element of part t. Let F ′ be the 
family of all F ∈

∏
s

([ns]
ks

)
such that x ∈ F and F ∩ (Y ∪ {z}) �= ∅, or Y ∪ {z} ⊆ F . We 

remark that this is a non-trivially intersecting family. Note that, since |Y | > 2,

|F \ F ′| ≤
∣∣∣∣∣
{
F ∈

∏
s

(
[ns]
ks

)
: Y ⊆ F

}∣∣∣∣∣ =
{
O
((∏

s n
ks
s

)
/n3

1
)

if k1 > 1,
O
((∏

s n
ks
s

)
/(n1n

2
2)
)

if k1 = 1.

On the other hand,
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|F ′ \ F| ≥
∣∣∣∣∣
{
F ∈

∏
s

(
[ns]
ks

)
: x ∈ F, F ∩ (Y ∪ {z}) = {z}

}∣∣∣∣∣ = Ω
((∏

s

nks
s

)
/n2

t

)
.

Recalling that nt = O(n1) if k1 > 1 and nt = O(n2) otherwise, this contradicts the 
maximality of F . We have proved that |Pt(Y )| = kt.

Now, let Lt be the set of sequences � ∈
∏p

s=1{0, . . . , ks} satisfying the following 
conditions:

•
∑

s �s ≥ 2,
• �t = 0 if kt = 1,
• �t = kt if 

∑
s �s > 2 and kt > 1.

For each � ∈ Lt, define

Y� = [�1] � · · · � [�t−1] � {2, . . . , �t + 1} � [�t+1] � · · · � [�p] ,

and let Ft,� be the family of all F = �s Fs ∈
∏

s

([ns]
ks

)
such that 1 ∈ Ft and F ∩ Y� �= ∅, 

or Y� ⊆ F . We remark that this family is shifted and non-trivially intersecting. Note 
that

|Ft,�| =: Mt,� =
(
nt − �t − 1
kt − �t

)∏
s �=t

(
ns − �s
ks − �s

)
+

(
nt − 1
kt − 1

)∏
s �=t

(
ns

ks

)

−
(
nt − �t − 1

kt − 1

)∏
s �=t

(
ns − �s

ks

)
.

The significance of the families Ft,� is that |F| = Mt,� for � ∈ Lt defined by �s = |Ps(Y )|.
Observe that for any S ⊆ [p] \ {t} as in the statement of Theorem 1, we have FHM

t,S =
Ft,�(S), where �(S) ∈ Lt is defined by

�s(S) =
{
ks if kt > 1 and s = t, or if s ∈ S;
0 otherwise.

In the remainder of this section we show that Mt,� (as a function of � ∈ Lt) is maximized 
when � = �(S) for some S ⊆ [p] \ {t}, or when 

∑
s �s = 2. For any s ∈ [p] \ {t} and 

any �1, . . . , �s−1, �s+1, . . . , �p, let �(x) = (�1, . . . , �s−1, x, �s+1, . . . , �p) and define f : x �→
Mt,�(x).

Claim 10. The function −f is unimodal (that is, monotone nondecreasing then monotone 
nonincreasing).

Proof. Note that f(x) is of the form α
(
ns−x

a

)
− β

(
ns−x

b

)
+ c for a ≥ b ≥ 1 (a = ns − ks, 

b = ks), α, β > 0, and some c ∈ N. It suffices to prove that for all b ≥ 1, d ≥ 0 and 
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γ > 0, the function gb,d,γ : N �→ R : y �→
(
y
b

)
− γ

(
y

b+d

)
is unimodal. We can do this 

by induction on b, noting that the case b = 1 follows from convexity of the function 
y �→

(
y

d+1
)
. Let Δ be the difference operator, meaning that Δh(y) = h(y + 1) − h(y); we 

can compute Δgb,d,γ(y) = gb−1,d,γ(y). Note that gb−1,d,γ(0) = 0 if b > 1, so if gb−1,d,γ

is unimodal then it is nonnegative until it reaches its maximum, after which point it is 
monotone nonincreasing. This means that if gb−1,d,γ ever becomes negative then it will 
never become positive after that point. That is to say, unimodality of gb,d,γ follows from 
unimodality of gb−1,d,γ = Δgb,d,γ . �

Claim 10 implies that Mt,� is maximized on the boundary of Lt, implying that �s ∈
{0, ks} for all s �= t, or 

∑
s �s = 2. Indeed, otherwise we could increase or decrease 

some �s without decreasing the value of Mt,�. First consider the case where �s ∈ {0, ks}
for s �= t, and 

∑
s �s > 2. Since � ∈ Lt, we have �t = kt if kt > 1, and �t = 0

if kt = 1. Therefore, � = �(S) for S being the set of all s �= t such that �s = ks. 
This means that |F| ≤ Mt,�(S) = MHM

t,S ≤ Mmax. Next consider the case that Mt,� is 
maximized for some � = �max ∈ Lt satisfying 

∑
s �

max
s = 2. Recall that Ft,�max is a 

shifted non-trivially intersecting family of maximum size. Moreover note crucially that 
in this case P(F∗

t,�max) is non-trivially intersecting. We will show in the next subsection 
that this implies |Ft,�max | ≤ Mmax.

3.2. Case 2: P (F∗) is non-trivially intersecting

If P(F∗) is not trivially intersecting, it must consist of three sets of the form 
{x, y}, {x, z}, {y, z}. Therefore, by Lemma 8, every set in F must contain at least two 
of x, y, z, and by maximality we can assume F is in fact the family consisting of every 
possible set in 

∏
s

([ns]
ks

)
with this property. Suppose without loss of generality that x, y, z

appear in parts 1, . . . , q (so q ≤ 3, with q = 3 only when x, y, z are in different parts). 
Let F ′ ⊆

∏
s≤q

([ns]
ks

)
be the q-part family consisting of all sets containing at least two of 

x, y, z, so that

|F| = |F ′|
∏
s>q

(
ns

ks

)
.

It suffices to prove that |F ′| ≤ Mmax(n1, . . . , nq, k1, . . . , kq), because

MHM
t,S (n1, . . . , np, k1, . . . , kp) = MHM

t,S (n1, . . . , nq, k1, . . . , kq)
∏
s>q

(
ns

ks

)

for any t ∈ [q] and S ⊆ [q] \{t}. In the case where q = 1, this fact follows immediately from 
the Hilton–Milner theorem, because F ′ ⊆

([n1]
k1

)
is a non-trivially intersecting single-part 

family and Mmax(n1, k1) = MHM(n1, k1) is the Hilton–Milner bound.
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The remaining cases q = 2 and q = 3 will require some rather tedious calculations. 
We write f ∼ g to denote f = (1 + o(1))g and we write f � g to denote f ≥ (1 + o(1))g. 
Recall that all asymptotics are taken as n0 → ∞.

First, consider the case where q = 2. Suppose without loss of generality that x, y are 
in part 1 (and so k1 ≥ 2) and z is in part 2. Then, we compute

|F ′| ∼ nk1
1 nk2

2
k1!k2!

(
k1(k1 − 1)

n2
1

+ 2k1k2

n1n2

)
,

MHM
1,{2}(n1, n2, k1, k2) ∼

nk1
1 nk2

2
k1!k2!

(
k2
1(k1 − 1)

n2
1

+ k1k
2
2

n1n2

)
,

MHM
2,{1}(n1, n2, k1, k2) ∼

⎧⎨
⎩

n
k1
1 n

k2
2

k1!k2!

(
k2
2(k2−1)

n2
2

+ k2
1k2

n1n2

)
if k2 > 1

n
k1
1 n

k2
2

k1!k2! · k2
1k2

n1n2
+ n2 if k2 = 1.

Suppose now that k2 > 1. If n2 is much smaller than n1 (say 10k10
1 k10

2 n2 ≤ n1) then 
k2
2(k2 − 1)/n2

2 is much larger than k1(k1 − 1)/n2
1 +2k1k2/(n1n2) and therefore MHM

2,{1} >

|F ′|. Otherwise, n1 = O(n2), so 1/n2
1 = Ω(1/(n1n2)) and recalling that k1, k2 ≥ 2, we 

have

MHM
1,{2} � nk1

1 nk2
2

k1!k2!

(
2k1(k1 − 1)

n2
1

+ 2k1k2

n1n2

)
= (1 + Ω(1))|F ′| > |F ′|.

Alternatively, suppose that k2 = 1. If |F ′| > MHM
1,{2} then

k1(k1 − 1)
n2

1
+ 2k1

n1n2
� k2

1(k1 − 1)
n2

1
+ k1

n1n2
,

implying that 1/n2 � (k1 − 1)2/n1. However, if |F ′| > MHM
2,{1} then

k1(k1 − 1)
n2

1
+ 2k1

n1n2
� k2

1
n1n2

,

implying that (k1−1)/n1 � (k1−2)/n2. So, (k1−1)/n1 � (k1−2)(k1−1)2/n1, which is 
a contradiction unless k1 = 2. But in the case k1 = 2, k2 = 1, note that the definitions of 
F ′ and FHM

2,{1} are the same up to a permutation of the ground set and so |F ′| = MHM
2,{1}.

Next, consider the case where q = 3. We compute

|F ′| ∼ nk1
1 nk2

2 nk3
3

k1!k2!k3!

(
k1k2

n1n2
+ k1k3

n1n3
+ k2k3

n2n3

)
,

MHM
t,[3]\{t}(n1, n2, n3, k1, k2, k3) � nk1

1 nk2
2 nk3

3
k1!k2!k3!

· kt
nt

∑
s �=t

k2
s

ns

for t ∈ {1, 2, 3}. We then consider the weighted average
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Mavg :=
∑

t∈{1,2,3}

∑
s �=t ks

2
∑

s ks
MHM

t,[3]\{t}

� nk1
1 nk2

2 nk3
3

k1!k2!k3!
∑

t∈{1,2,3}

kt
nt

∑
s �=t

k2
s

ns

= nk1
1 nk2

2 nk3
3

k1!k2!k3!
∑

t∈{1,2,3}

⎛
⎝∑

s �=t k
2
s + kt

∑
s �=t ks

2
∑

s ks

∏
s �=t

ks
ns

⎞
⎠ .

(Note that the simplification for the second line is obtained by expanding the outer 
summation as well as the inner one.) Now, define the function f : (Z+)3 → R by

(k1, k2, k3) �→ (k2
1 + k2

2 + k1k3 + k2k3)/(2k1 + 2k2 + 2k3).

One can show that f(k1, k2, k3) ≥ 11/10 = 1 + Ω(1) unless two of k1, k2, k3 are equal 
to 1. So, if at most one of k1, k2, k3 is equal to 1 then Mavg = (1 + Ω(1))|F ′| > |F ′|, 
implying that at least one of the bounds MHM

t,[3]\{t} is bigger than |F ′|.
It remains to consider the case where at least two of k1, k2, k3 are equal to 1. Without 

loss of generality, say k2 = k3 = 1. Then, |F ′| > MHM
2,{1,3} implies 1/(n1n3) � (k1 −

1)/(n1n2), while |F ′| > MHM
3,{1,2} implies 1/(n1n2) � (k1 − 1)/(n1n3). These inequalities 

cannot simultaneously be satisfied unless k1 ≤ 2. If k1 = k2 = k3 = 1 then note that F ′

and FHM
1,{2,3} = FHM

2,{1,3} = FHM
3,{1,2} are the same up to a permutation of the ground set, 

so |F ′| = MHM
1,{2,3}. Finally, if k1 = 2, k2 = k3 = 1, assume without loss of generality that 

n2 ≤ n3. Using the definitions of |F ′| and MHM
2,{1,3} we can directly compute

MHM
2,{1,3} − |F ′| =

((
n1

2

)
n3 −

(
n1 − 2

2

)
(n3 − 1) + (n2 − 1)

)

−
(

(n1 − 1)(n3 − 1) + (n1 − 1)(n2 − 1) +
(
n1

2

))

= (n3 − n2)(n1 − 2) ≥ 0.

4. Concluding remarks

In this paper we have investigated a natural multi-part generalization of the Hilton–
Milner problem, solving this problem in the case where the parts are large. We found 
that, surprisingly, the extremal families need not be of “product” type.

There are a few immediate questions that remain open. First is the question of whether 
the bound in Theorem 1 remains valid when we do not make the assumption that the 
parts are large. As an intermediate problem, one might hope to prove a version of The-
orem 1 where each ns is only assumed to be large relative to its corresponding ks, not 
necessarily relative to all the ks at once.
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Second, there is the question of characterizing the extremal families. It is certainly 
not true that the families FHM

s,S are the only extremal families up to isomorphism; under 
certain circumstances families of the type discussed in Subsection 3.2 may also be of 
maximum size. We imagine that the proof of Theorem 1 can be adapted to characterize 
the extremal shifted families, when the part sizes are large, but it is less clear how to 
deal with potential non-shifted extremal families.

Finally, we think that the idea of adapting extremal theorems to a multi-part setting 
is interesting in general, and several natural problems remain unexplored. For example, 
we could ask for a multi-part generalization of Ahlswede and Khachatrian’s celebrated 
complete intersection theorem [2]: what is the maximum size of an intersecting family 
F ⊆

∏
s

([ns]
ks

)
such that every F, F ′ ∈ F intersect in at least t elements? Ahlswede, 

Aydinian and Khachatrian [1] studied and resolved a slightly different problem where 
the intersection sizes are restricted “locally” on a per-part basis; this gives rise to ex-
tremal families of product type, but we suspect the “global” problem might have a 
richer solution. We remark that in the setting of Theorem 2 where n1, . . . , ns = n and 
k1 = · · · = kp = 1, this problem is equivalent to the question of finding the largest 
possible set of length-p strings over an alphabet of size n with Hamming diameter at 
most n − t. This problem was solved independently by Ahlswede and Khachatrian [3]
and Frankl and Tokushige [14].
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