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1. Introduction
1.1. Background

A hyperplane arrangement A = {Hy,..., H,} is a finite collection of affine hyper-
planes in an /-dimensional vector space K. Despite its simplicity, the theory of hyper-
plane arrangements has fruitful connections with many areas in mathematics ([20,23]).
One of the most important invariants of an arrangement A is the characteristic poly-
nomial x(A,t) € Z[t]. Indeed the characteristic polynomial is related to several other
invariants, such as the Poincaré polynomial of the complexified complement M (A) [19],
the number of chambers for real arrangements [31], the number of F -rational points
[10,26], Chern classes of certain vector bundles [18,1], and lattice points countings
[7,14-16,30].

1.2. Main results

Let V = R be an /-dimensional Euclidean space. Let ® C V* be an irreducible root
system. Fix a positive system ®* C ®. For a positive root o € ®* and k € Z, define

Hyr={xeV|alz) =k}

The set of all such hyperplanes is called the affine Weyl arrangement. Finite truncations
of the affine Weyl arrangement have received considerable attention ([2-5,11,21,22,27,
29]). Among others, the (extended) Linial arrangement £} is defined by

BW={Hopp|ae€d®  k=1,2...,m},

(where £§ = 0 by convention). In [21], Postnikov and Stanley studied combinatorial
aspects of Linial arrangements. They posed the following conjecture.

Conjecture 1.1 ([21, Conjecture 9.14]). Suppose m > 1. Then every root a € C of the

mh where h denotes the Coxeter number of ®.

equation x(Lg',t) = 0 satisfies Rea = 7,
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The conjecture was verified for ® = A, by Postnikov and Stanley [21], and for ® =
By, Cy, and Dy by Athanasiadis ([4]). These works are based on explicit representations
of x(L£F,t) for the corresponding root systems. (The case ® = G is also easy.)

For exceptional root systems, some partial answers have recently been reported in [30].
Namely, for ® € {Eg, Fr, Es, F4}, Conjecture 1.1 has been verified when the parameter
m > 0 satisfies

S { mod 6, & = Eg, Ey, F,
mod 30, & = Eg.

The purpose of this paper is to prove Conjecture 1.1 for exceptional root systems
when m > 0. The main result is the following.

Theorem 1.2 (Corollary 5.1/). Let ® € {Fg, B, Eg, Fy}. Suppose m > 0. Then, every
root o € C of the equation x(LF,t) =0 satisfies Rea = ’"Th

1.8. What makes roots lie on a line?

The proof of Theorem 1.2 relies on the expression of the characteristic quasi-
polynomial Xquasi (£, ¢) in terms of the Ehrhart quasi-polynomials and Eulerian poly-
nomials developed in [30]. (See §2.) However, the key result that enables us to conclude
“having the same real part” is the following elementary lemma.

Lemma 1.3. Let f(t) € R[t]. Suppose M is a real number that satisfies the inequality
M >2-max{Rez |z € C, f(z) = 0}.
Let w € C be a complex number with |w| = 1. Then, any root z of the equation

f@t) —w- f(M—1)=0

; - M
satisfies Rez = 5.

Proof. Set f(t) = a(t — a1)(t — a2) - (t — an), (a # 0). As f(t) is a real polynomial,
@; is also a root of f(t). Set 8; = M — @;. Then, «; and §; are symmetric with respect
to the line Rez = &£, and we have f(M —t) = (=1)" -a-[[[_,(t — 3;). If Rez < &,
then |z — a;| < |z — B3| for all i (note that Rea; < &), and hence |f(2)| < |f(M — z)|.
Similarly, Rez > &L implies |f(z)| > |f(M — z)|. Therefore, f(z) = wf(M — z) implies
that Rez = % O

The basic strategy of the proof of Theorem 1.2 is to construct F(™)(t) € Qlt] such
that
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X(Lg,t) = FO () + (-1)° - F™ (mh — 1),

where /¢ is the rank of ®, then apply Lemma 1.3.

The remainder of this paper is organized as follows. In §2, we recall the notion of the
characteristic quasi-polynomial xquasi(A,q) for an integral arrangement A. The charac-
teristic quasi-polynomial Xquasi(L3,¢q) of the Linial arrangement £J' can be expressed
in terms of the Ehrhart quasi-polynomial Lg(t) of the fundamental alcove and the Eu-
lerian polynomial Re(t) of ®. The relation between these objects is described as follows
(Theorem 2.9)

Xquasi(ﬁga Q) = be(Serl)L‘i)(q)v

where S is the shift operator. In §3, using the symmetry of the Eulerian polyno-
mial (Proposition 2.5), we introduce the truncated characteristic quasi-polynomial

Xé{ési( 7.q), which satisfies

1/2 0. 1/2
Xauasi (£50) = Xepasi (£30) + (—1) Ngha (£, mb — q),
(Proposition 3.5). Since these functions are quasi-polynomials, it does not make sense to
consider the roots. However, we will see that the limit
1/2 / pm
. pl/2 01 Xquasi (‘C@ 7mq)

Fo(q) = Ry "(S)¢’ = lim ————5——
becomes a polynomial in ¢ (Proposition 3.1). The location of the zeros of F(t) is crucial
for m > 0. Indeed, we will check, case-by-case, that the real parts of the zeros are less
than 2 (Proposition 3.7).

Because the proof for the quasi-polynomials is complicated, we will first give a sim-
plified “polynomial version” of the main result as a “toy-case” in §4.

In §5.1, we summarize those properties of quasi-polynomials and Eulerian polynomials
that are necessary for the proof of the main result. This is mainly to simplify the notation.
In §5.2, we present a weaker version of the main result for the asymptotic behavior of
the real parts of roots. In §5.3, we prove the main result.

2. Preliminaries
2.1. Quasi-polynomials with the GC D-property
A map F : Z — C is called a quasi-polynomial with a period p > 0 if F(q) can be

expressed as a polynomial in ¢ that depends only on the residue class ¢ mod p. In other
words, there exist polynomials fo, f1,..., f,—1 € Cl[t] such that

F(q) = fi(q)
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if ¢ = ¢ mod p. The polynomials fo,..., f,—1 are called the constituents of F. The
period p is said to be the minimal period if ' does not have smaller periods than p. The
quasi-polynomial F' can be expressed as

F(q) = co(q)q” + c1(@)qg™ " + - + calq), (1)

where ¢; : Z — C is a periodic function with a period p (i.e., ¢;(¢ + p) = ¢;(q) for all
q € ).
We say that the quasi-polynomial F' has a constant leading term if ¢o(g) in (1) is a
nonzero constant function. In this case, d is called the degree of the quasi-polynomial F'.
The quasi-polynomial F' is said to have the GC D-property if the constituents satisfy:

ged(i, p) = ged(g, p) = filt) = f5(t).

Remark 2.1. In this paper, we distinguish the roles of the variables ¢ and ¢. The variable
q always runs through Z (or Z~¢), whereas ¢ runs through R or C. Under this convention,
the variable of a quasi-polynomial should be ¢, and its constituents may have a variable t.

2.2. Characteristic quasi-polynomials

Let A = {H;,...,H,} be an arrangement of affine hyperplanes in R™. Throughout
this paper, we assume that the hyperplanes are defined over Z. More precisely, there
exists an integral linear equation

a;(x1,...,x0) = a;x1 + -+ ayxe+ b;

(aij,b; € Z) that satisfies H; = o; '(0) C R’. For an arrangement A, we can associate
the modulo ¢ > 0 complement:

My(A) = Z/QZ U
i=1

where H; = {z € (Z/qZ)" | a;(z) = 0 mod ¢}.
The following theorem was given by Kamiya, Takemura and Terao.

Theorem 2.2 ([1/-16]). #M,(A) is a quasi-polynomial with the GCD-property for suf-
ficiently large g > 0 such that all constituents are monic of degree €.

We denote the quasi-polynomial by Xquasi(A,¢q), which is called the characteristic

quasi-polynomial of A. The characteristic quasi-polynomial has a constant leading term;
hence, it is of the form

Xauasi(A,q) = ¢" +c1(q) - ¢+ + clq),
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Table 1
Table of root systems.
(] e1,...,€p Cl,...,Cp h f |W | n rad(n)
Ay 1,2,...,¢ 1,1,...,1 241 041 (£4+1)! 1 1
By, Cy  1,3,5,...,20—1 1,2,2,...,2 2¢ 2 2t . ¢ 2 2
Dy 1,3,5,...,20—-3,6—1 1,1,1,2,...,2 20-2 4 2¢=1 .1 2 2
Es 1,4,5,7,8,11 1,1,2,2,2,3 12 3 27.3%.5 6 6
E, 1,5,7,9,11,13,17 1,2,2,2,3,3,4 18 2 210.34.5.7 12 6
Es 1,7,11,13,17,19,23,29  2,2,3,3,4,4,5,6 30 1 214.35.52.7 60 30
Fy 1,5,7,11 2,2,3,4 12 1 27 . 32 12 6
Go 1,5 2,3 6 1 22.3 6 6
where ¢; : Z — Z, i = 1,...,{ are periodic functions. It is also known that the prime

constituent of xquasi(A, ¢) is equal to the characteristic polynomial of A [2,4], i.e., the
characteristic polynomial (A, t) has the form

X(A 1) =t e (1) -t - (1),
2.8. Eulerian polynomials for root systems

We first recall the terminology of [8,13].

Let V = R’ be the Euclidean space with inner product (-,-). Let ® C V be an
irreducible root system with exponents eq, . .., e;, Coxeter number A, and Weyl group W.
(See Table 1 for explicit values.) For any integer k € Z and o € %, the affine hyperplane
H, , is defined by

Hyp={z€V|(a,z) =k} (2)
Fix a positive system &+ C ® and the set of simple roots A = {aq,...,a,} C ®T. The
highest root, denoted by & € @, can be expressed as a linear combination & = Y ,_; ¢;a;
(¢; € Zg). We also set ag := —a and ¢g := 1. Then, we have the linear relation
coog +cra+ -+ cpap = 0. (3)
The coweight lattice Z(®) and the coroot lattice Q(®) are defined as
Z(®)={r eV |(ai,z) € Z,a; € A},
« 2a
Qe =) 2

= (wa)

The coroot lattice Q(®) is a finite index subgroup of the coweight lattice Z(®). The
index #% = f is called the index of connection.
Let ) € Z(®) be the dual basis of the simple roots v, . . . , ay, that is, (a;, @) ) = ;.

Then, Z(®) is a free abelian group generated by @y, ..., w, . We also have ¢; = (w;’, @).



M. Yoshinaga / Journal of Combinatorial Theory, Series A 157 (2018) 267-286 273

Each connected component of V . |J Hay is an open simplex, called an alcove.

acdt
keZ

Define the fundamental alcove og by

(i, x) > 0, (1<¢<£)}

The closure 0§ = {m € V | () >0 (1 <@ < ¥), (a,z) < 1} is a sim-

plex with vertices 0, 2L EtRRE

Ha1,07 e HO(({,O) Ha,l
Using the linear relation (3), we define the function asc : W — Z.

ZL € V. The supporting hyperplanes of facets of o5 are

Definition 2.3. Let w € W. Then, asc(w) is defined by
0<i<¢
w(o)>0

Definition 2.4. The generalized Eulerian polynomial Rg () is defined by

E anC w

wGW

The following proposition gives some basic properties of Rg(x).

Proposition 2.5 ([17]).

(1) degRo(x )*hfl-

(2) (Duality) 2" - R (1) = Ro(x).

(3) Ro(x) € Z[x].

(4) Ra,(z) is equal to the classical Eulerian polynomial. (See [9,12,24] for classical Fu-
lerian polynomials.)

The polynomial Rg(z) was introduced by Lam and Postnikov in [17]. They proved
that Re(z) can be expressed in terms of cyclotomic polynomials and classical Eulerian
polynomials.

Theorem 2.6 (/17, Theorem 10.1]). Let ® be an irreducible root system of rank £. Then,

Ro(z) = [cols - [c1]z - [coz -+ [ee]e - Ra, (), (4)

where [c], =

We will give an alternative proof of Theorem 2.6 in §2.5 using Ehrhart series.
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2.4. Ehrhart quasi-polynomials for root systems

It is known that the number of lattice points Lo (q) = # (¢- 03 N Z(®)) in the dilate
q-0§ is a quasi-polynomial in g, called the Ehrhart quasi-polynomial of c5. (See [6,24] for
details on Ehrhart theory.) Suter [25] explicitly computed the Ehrhart quasi-polynomial
Lg(gq). Several useful conclusions may be summarized as follows.

Theorem 2.7 (Suter [25]).

The Ehrhart quasi-polynomial Ly (q) has the GC D-property.

()

(ii) Lo (q) has a leading coefficient which is the constant #

(iii) The minimal period is n = lem(cy, ca, ..., cr). (See Table 1 for explicit values.)
)

(iv) If q € Z is relatively prime to the period n, then

La(q) (g+e1)(g+ea) - (q+ee).

1w

(v) rad(n)|h, where rad(n) = H p is the radical of n.
p:pv‘"Zme
p|n

(vi) The Ehrhart series Ehrg(2) of Lo (q) is

00 . 1
Ehhp(Z) = ;L‘P(q)z - (1 _ ZCO)(l _ ZCI) - (1 — ZCZ)' (5)

The following proposition follows from Ehrhart—Macdonald reciprocity.
Proposition 2.8.
Lo(—q) = (1) - La(g — h). (6)
(See [30, Corollary 3.4] for a more general formula.)
2.5. Characteristic quasi-polynomials of Linial arrangements

Let S be the shift operator that replaces the variable ¢ by ¢ — 1 (or ¢ by ¢t — 1). More
generally, the polynomial o(S) = ag + a1.S + - - - + agS? acts on a function f(q) as

a(8)f(q) =aof(q) +arf(g—1)+ - +aaf(q—d).

The characteristic quasi-polynomial Xquasi(£%,q) can be expressed in terms of the Eu-
lerian polynomial Rg(z), and the Ehrhart quasi-polynomial Lg(g) of the fundamental
alcove.
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Theorem 2.9 (/50]).

Xauasi (L5, @) = Ra(S™ ") La(q). (7)

Remark 2.10. The formula (7) holds for m = 0 if we consider £3 to be the empty
arrangement. In that case, we have

¢" = Ro(S)Lo(q). (8)

This can be considered as a root system generalization of the Worpitzky identity [28].
Note that Theorem 2.6 by Lam and Postnikov follows from the Worpitzky identity
(8) and Theorem 2.7 (vi). Indeed, equation (8) is equivalent to

oo

Ra(2) Bhrg () = > K2F. )

k=0

Note that the right-hand side depends only on the rank ¢. A comparison of (9) with
® = A, shows that

Ra(2)  Ra()
(1 —zc0)(1 —ze1)--o(1—zc) (1—z)tFL

This yields Theorem 2.6.
Example 2.11. Let ® = G5. Since Ra,(z) = z + 22, we have
Rg,(z) = (1+z)(1+ 2 +2%) (v +2°) = o + 32 + 42° + 32* + 2°.

The closed fundamental alcove g is the convex hull of 0, %Y, %Y The period is n = 6.
The Ehrhart quasi-polynomial is

Lg+1)(g+5), ifg=1,5 mod 6,
Leu(q) = %m+&xq+@, #qf2A mod 6,
E<Q+3) if g=3 mod 6,
L(?+6¢+12), ifg=0 mod6.

It is known that the characteristic quasi-polynomial of the Weyl arrangement Ag =
+ . — (1AW T () 1516
(e} uasi bl - I’ . k)
{Hao | @ € 7} can be expressed as Xquasi(Ae, ¢) = (=1)"%~Le(—q) [5,16]. Thus, we
have
(g—5), ift=1,5 mod6,
(q—4), ift=2,4 mod 6,
(¢—3)% ift=3 mod 6,
¢*—6g+12, ift=0 mod 6.

Xquasi (-AG'27 Q) =
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The characteristic quasi-polynomial of the Linial arrangement is

> —6g+11 ¢g=1 mod 2,
¢ —6g+14 ¢g=0 mod 2.

Xquasi(ﬁé‘za Q) = {
3. Limit polynomials

3.1. Normalized limit polynomials

Let f(S) € C[S] be a polynomial of the shift operator S, and g(t) € C[t]. Assume
deg g(t) = £. Let us consider the polynomial

gm(t) = f(S™)g(t) (10)
for m > 0.

Proposition 3.1.

fim 9  pigy (11)

m—oo mt

Proof. Write f(S) = Zivzo apS* and g(t) = Zf:o cit*™" (co # 0). Then, we have,

N ¢
gm(t) = F(S™)g(t) = Z Zakci (t—k(m+ 1)

Hence,
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3.2. Truncated Eulerian polynomials

Suppose Ry (z) = Z? 11 a;x'. Define the truncated Eulerian polynomial R %(t) by

S aixt, if b is odd,
—h
R1/2 _ 1<i<g ) " 12
2 (@) S aat 4+ 2aM2 ) if his even. (12)
1<i<h

Example 3.2. Let ® = G2. Then, Rl/z( ) =z + 322 + 223.
The following is straightforward from Proposition 2.5 (2).
Proposition 3.3. Re(z) = RI/Q( )+ ah RI/Q( -1).

Using the truncated Eulerian polynomial R}b/ 2 (), we define the half characteristic

quasi-polynomial Xéﬁim(cg, q) as follows.

1/2 m 1/2  am
Xaesi (€8, @) = Ry* (5™ ) La (q). (13)
Note that xé{lisi(ﬁfg, q) is a quasi-polynomial of the period 7, however, it does not have

the GC D-property.
Example 3.4. For & = G5, we have

—6‘121'210‘1 ¢=0 mod 3,
Rl/Q(S)LGz( ) = 76(12?20‘174 ¢g=1 mod 3,

6¢°+10q+4 _
and

3q2*2q+_12 ¢=0 mod 6,
2

W g=1 mod 6,

3¢>—8¢+10 =

Lo P12 2T ¢g=2 mod6

qucam(ﬁéb’ q) = / (52)LG2( )= M mod 67
6 )

w qg=4 mod 6,

3¢°—8q+1 _68q+1 g=5 mod 6.

Il
w

Proposition 3.5. The half characteristic quasi-polynomial Xél/lisi(ﬁgl, q) satisfies the fol-
lowing.

Xauasi (L34 0) = Xehos (L2, q) + (= 1) xal2 (L8, mh — q). (14)
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Proof. Write Rclb/ *(z) = thi/lﬂ alz®. From Theorem 2.9 and Proposition 3.3, it follows
that

Xauasi (L8, 0) = (R > (S™ ) La) (q) + (S"" D RY* (S~ Y Le)(g).  (15)

The first term on the right hand side is equal to Xqu%l(/:gl q) in (13). We shall prove

that the second term is equal to (— 1)ZX;£SI( . mh — q). Indeed, using Proposition 2.8,
we have
Lh/2]
(Sh(m+1)R.¥2(S—m_l)L¢)(q) _ Z a;sh(m+1)—(m+1)iLq) (q)
i=1
Lh/2]
=Y ajLe(g—h(m+1) + (m+1)i)
i=1
Lh/2] (16)
= (-1)° Z a;Lo(—q + hm — (m +1)i)
i=1
Lh/2] 4
= (=1)" > ajS Vi Lg(—q + hm)
i=1
1/2  am
= (_l)zxq(lasi( 3] 7mh - Q) 0

The next corollary follows immediately by replacing ¢ by mh — ¢ in Proposition 3.5.
Corollary 3.6. Yquasi(£7, q) = (—1) Xquasi (L, mh — q).

Consider Fg(t) := Rl/z( St Zth/% '(t—1)" as a polynomial in t. The distribution
of the roots of Fg(t) = 0 will play a crucial role.

Proposition 3.7. Let ® € {Es, E7, Es, Fy,Go} be an exceptional root system. Suppose
Fy(a) = 0,00 € C. Then, Rea < 4.

Proof. This proposition can be verified computationally. We describe the method for
the case ® = FEg. The other cases are similar. First, using Table 1, Theorem 2.6, and
Rag(z) = 2+ 5722 + 30223 + 3022 + 572° + 25, we have

Rp,(z) = (14 2)*(1 + 2 + 2?)(z + 5722 + 30223 + 3022* + 572° + )
=z + 6122 + 5372 + 19162 + 37822° + 46862° + 378227
+ 191628 + 5372° + 61210 + 21!

Therefore, we have

Ry’ (x) = x + 61a? + 5372° + 19162 + 37822 + 234325
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Table 2

The maximal real parts of roots.
P max{Re a} h/2
Es 5.3703 6
Er 8.4367 9
Eg 14.6604 15
Fy 4.8967 [§
G2 2.166 3

and
R}E/j(S)tG = (t—1)°+61(t—2)°+537(t—3)5 +1916(t — 4)° +3782(t — 5)° +2343(t — 6)°.

The roots of R}E/:(S)tﬁ = 0 (approximation by Mathematica) are ¢ = 4.55334 +
0.465487+/—1,4.78675 £ 1.557351/—1, and 5.37033 £ 3.11072y/—1. All roots have real
parts that are less than % = 6.

The maximum real parts of the roots are presented in Table 2. O

4. A toy case

Let ® € {Fs, Er, Eg, F4,G2}. Denote its exponents by eq,...,e, and the Coxeter
number by h. Let g(t) € R[t] be a real polynomial of deg g = ¢ that satisfies g(t — h) =
(—1)¢g(—t). (Note that such a polynomial exists, e.g., g(t) = Hle(t +e;).)

Theorem 4.1. With the above notation, for sufficiently large m > 0, every root a € C of
the equation (Re(S™T1)g)(t) = 0 satisfies Rea = mTh

Proof. Sct g, (t) := (RY*(S™*+1)g)(t). Then, we have

(Ra(S™)g)(t) = gim(t) + (=1) gm(mh — t).

(The proof is similar to that of Proposition 3.5.) By Proposition 3.1,

lim gm{mt) (mt)

7 = R (S)t" = Fa(t).

m— 00 m

From Proposition 3.7, it follows that the real parts of the roots of the equation Fg(t) =0

are less than % By the continuity of the roots of polynomials, for sufficiently large m > 0,

the real parts of the roots of g,,(mt) = 0 are also less than b which is equivalent to

29
m

saying that the real parts of the roots of g,,(t) = 0 are less than Th Then Lemma 1.3
completes the proof. O
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5. Main results

In this section, by generalizing the argument in §4, we will prove the main result. The
main difficulty is related to the fact that Lg(g) is a quasi-polynomial. We will use the
idea of averaging constituents to resolve this problem. We will work in the generalized
setting described in §5.1 for the sake of notational simplicity.

5.1. Settings
Let n, h > 0 be positive integers and L(q) be a quasi-polynomial with period n.

Assumption 5.1. L(g) has a constant leading term of degree £ > 0. In other words, L(q)
has an expression of the form

L(q) = coq" +er(@)g " + -+ eula),
where ¢; : Z — Q (i =1,...,¢) is a periodic function and ¢ is a nonzero constant.
Assumption 5.2. L(q) satisfies the following.
L(~q) = (-1)"L(g — h). (17)
Let R(z) € Q[z] be a polynomial of deg R(z) = h — 1.
Assumption 5.3. R(x) satisfies the following.
#"R(z7) = R(x). (18)

Write R(z) = ajx + agz? + - - + ap_12" 1. Define the truncation R'(x) of R(x) by

S a2t if h is odd,
1<i<h
R'(z) = — - a . .
(z) > ait + 222 if his even.
1<i<k

We also write R'(z) = ZZLZ/IQJ alx®. Tt is easy to see that R(z) satisfies
R(z) = R'(z) + "R/ (z™1).
Next, we make an assumption on the location of the roots of the polynomial

Lh/2]
R(S)t' =Y aj(t—i). (19)

i=1
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Assumption 5.4. Every root a € C of R/(9)t! = 0 satisfies

Rea < g (20)

The following is our main example.
Example 5.5. Let ® € {Eg, E7, Eg, Fy, Go}. Then, the Ehrhart quasi-polynomial Lg(q),

period 7, Coxeter number h, and Eulerian polynomial Rg(x) satisfy Assumptions 5.1
5.2, 5.3, and 5.4.

)

Remark 5.6. Although Example 5.5 is the main example, we can construct many other
examples that satisfy the above assumptions. For instance, for n = 1, some arbitrary
h>3and ¢ >0, L(q) = (¢ + %)e and R(x) = x + 2"~ ! satisfy the above assumptions.

5.2. Asymptotic behavior of roots
For m > 0, define the quasi-polynomials L™ (q) and L’ ("™)(q) of period 7 by
L™ (q) = (R(S™*1)L)(q)
and
L' (g) = (R'(S™)L)(q).
By Assumption 5.2 (and Assumption 5.3),
L™ (q) = L' ™(q) + (=1)°L" "™ (mh — q). (21)

Let us denote the constituents by L&m)(t) € Q[t] for each residue class d mod 1 (or
0 < d < n), namely,

L™ (q) = Lfim)(q), when ¢ =d  mod 7.

Note that the constituents have the following expression:

h—1

14
LM () = chJ (m+ 1)3) - (t — (m + 1))t

Jj=

HM

The relation (21) can also be written as
L@y =™ @) + (-1)t- L™ h—t 22
a () a @)+ (=1) mh—a(m ) (22)

at the level of the constituents.
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Proposition 5.7.

lim
m—ro0 m

=Cp - RI(S)#.
In particular, the limit does not depend on the residue d.

Proof. Recall L;(m)(t) = ZZLZQJ a; Zﬁ:o cj(d — (m+1)i)(t — (m + 1)i)*~7. Hence,

Lty W2 Eed—(ma1)) [, m1 )\
_— = aiz t— m 1 .

When j > 0, since ¢; is a periodic function, we have lim,, w = 0. By the
assumption, co(d — (m + 1)i) = ¢ is a nonzero constant. We have

. Lh/2]
lim digm) =cp- Z ai(t —i)*

m—00 m i=1
=c¢o-R(9". O
Definition 5.8.
7™ .= max{Rea | a € C,L{™ (a) = 0},

ri™ .= min{Rea | @ € C, L{™ (@) = 0}.

If L(q) and R(x) satisfy Assumptions 5.1-5.4, then F((im) and zglm) approach mTh as
m — 00. More precisely, we have the following.

Theorem 5.9. For any 0 < d < n,

_(m) O
lim “4 = Jim T =" (23)
m—oo M m—oo M 2
Proof. Let F(t) := co - R'(S)t’. Then, by (22) and Proposition 5.7, we have
lim M =F(t)+ (-1)* - F(h—1) (24)

Choose a root a,, € C of L&m) (t) = 0. Then, obviously, <= satisfies the equation
L&m)(mt) = 0. Hence, 2= approaches the (set of) roots of F(t) + (—1)‘F(h —t) = 0.

' m

Equation (23) follows from Assumption 5.4 and Lemma 1.3. O
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Table 3

Admissible divisors.
P n rad(n) h Admissible divisor of n mo
Es 6 6 12 1,2,3,6 1
Er 12 6 18 1,3 2
Es 60 30 30 1,3,5,15 2
F, 12 6 12 1,2,3,4,6,12 1
Gs 6 6 6 1,2,3,6 1

Corollary 5.10. Let ® € {Eg, E7, Es, Fy}. Fix 0 < d < n. Let o, € C be a root of the
constituent Xquasi,d(LH,t). Then,

. Rea,, h
lim = —.
m—oo m 2

5.8. Ezact arrangement of roots

In the previous subsection, we proved that the real part of a root a of a constituent

LY™ () = 0 is asymptotically close to . Here, we prove a stronger result for some

special constituents.

Definition 5.11 (Using the notation in §5.1). The residue d mod 7 (0 < d < n) is called
an admissible residue if the constituents of L™ (q) satisfy

Ly () = L () = LU0 (1) (25)
for all k € Z and m > 0.

Example 5.12. Consider the situation in Example 5.5. Then, L(™)(q) = (R(S™')L)(q)
is equal t0 Xquasi (L%, q), which has the GC D-property. Hence, d is an admissible residue
if and only if

ged(d,n) = ged(d + kh,n)

for all k € Z. As rad(n)|h (Theorem 2.7 (v)), d = 1 is an admissible residue. Other
admissible residues (divisors of n) for ® € {Eg, E7, Es, Fy, G2} are listed in Table 3.

The following is the main result.

Theorem 5.13 (Using the same notation as in §5.1). Suppose d (0 < d < n) is an
admissible residue. Let oy, be a root of L&m) (t) = 0. Then, for sufficiently large m > 0,
Rea,, = mTh holds.

Proof. Let mg i= —fr—. Then, Ly (t) = Ly[},(t) = LU, () for k = 0,1,...

mo — 1. Hence, using (22),

)
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1 mo— 1
Lyt = — Ly
d ( ) mo Z d+kh
1 mo— 1 1)[ mo— 1 /( )
= — L : L h—t 26
mo Z d+kh o kZ_O —at(m—kyn (M ) (26)
1 mo—1 , (m) e mo—1 ) (m)
= Z Ly iin(t) Z L gipn(mh —1).
0
As L((im) (t) = L(_”;) (t), we also have
( mo—1 g mo—1
Lq - Z L—d+kh Z Ld+kh —t). (27)
Define the polynomial F ém) (t) by
1 mo—1
m /I (m m
ch )(t) = Y Z {Ldsrk)h( )+ L (d—i-)kh( )}
k=0

Then, combining (26) and (27), Lém) (t) can be expressed as
L) = By (0) + (1) By (mh — 1),
From Proposition 5.7, it follows that

Fy™ (mt)

— =co - R'(9)t". (28)

lim
m—oo m

Hence, for sufficiently large m > 0, every root a € C of Fém)(t) = 0 satisfies

mh
R —_—.
ea < 9

Applying Lemma 1.3, every root of Lgm) (t) = 0 has the real part mTh O

Corollary 5.14. Let ® € {Eg, Er, Eg, Fy, Go}. For sufficiently large m > 0, every root
a € C of the characteristic polynomial x(LF,t) of the Linial arrangement LY satisfies
Rea = mTh

Proof. Recall that the characteristic polynomial is the constituent of the characteristic
quasi-polynomial corresponding to d = 1. Since d = 1 is an admissible residue, we can

apply Theorem 5.13. O



M. Yoshinaga / Journal of Combinatorial Theory, Series A 157 (2018) 267-286 285

Acknowledgments

The author was partially supported by JSPS KAKENHI Grant Number 25400060,
15KKO0144, and 16K13741. He would also like to thank referees for the helpful sugges-
tions.

References

[1] P. Aluffi, Grothendieck classes and Chern classes of hyperplane arrangements, Int. Math. Res. Not.
IMRN (8) (2013) 1873-1900.

[2] C.A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields, Adv.
Math. 122 (2) (1996) 193-233.

[3] C.A. Athanasiadis, Deformations of Coxeter hyperplane arrangements and their characteristic poly-
nomials, in: Arrangements—Tokyo 1998, in: Adv. Stud. Pure Math., vol. 27, Kinokuniya, Tokyo,
2000, pp. 1-26.

[4] C.A. Athanasiadis, Extended Linial hyperplane arrangements for root systems and a conjecture of
Postnikov and Stanley, J. Algebraic Combin. 10 (3) (1999) 207-225.

[6] C.A. Athanasiadis, Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes,
Bull. Lond. Math. Soc. 36 (3) (2004) 294-302.

[6] M. Beck, S. Robins, Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra,
Undergraduate Texts in Mathematics, Springer, New York, 2007, xviii+226 pp.

[7] A. Blass, B. Sagan, Characteristic and Ehrhart polynomials, J. Algebraic Combin. 7 (2) (1998)
115-126.

[8] N. Bourbaki, Groupes et algebres de Lie, Chaps. 4-6, Hermann, Paris, 1968.

[9] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, revised and enlarged
edition, D. Reidel Publishing Co., Dordrecht, 1974, xi+343 pp.

[10] H. Crapo, G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries,
MIT Press, Cambridge, 1970.

[11] P.H. Edelman, V. Reiner, Free arrangements and rhombic tilings, Discrete Comput. Geom. 15 (3)
(1996) 307-340.

[12] D. Foata, Eulerian polynomials: from Euler’s time to the present, in: The Legacy of Alladi Ramakr-
ishnan in the Mathematical Sciences, 253-273, Springer, New York, 2010.

[13] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathe-
matics, vol. 29, Cambridge University Press, Cambridge, 1990, xii4+-204 pp.

[14] H. Kamiya, A. Takemura, H. Terao, Periodicity of hyperplane arrangements with integral coefficients
modulo positive integers, J. Algebraic Combin. 27 (3) (2008) 317-330.

[15] H. Kamiya, A. Takemura, H. Terao, Periodicity of non-central integral arrangements modulo positive
integers, Ann. Comb. 15 (3) (2011) 449-464.

[16] H. Kamiya, A. Takemura, H. Terao, The characteristic quasi-polynomials of the arrangements of
root systems and mid-hyperplane arrangements, in: Arrangements, Local Systems and Singularities,
in: Progr. Math., vol. 283, Birkhduser Verlag, Basel, 2010, pp. 177-190.

[17] T. Lam, A. Postnikov, Alcoved polytopes II, arXiv preprint, arXiv:1202.4015, 2012.

[18] M. Mustata, H. Schenck, The module of logarithmic p-forms of a locally free arrangement, J. Algebra
241 (2001) 699-719.

[19] P. Orlik, L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math.
56 (1980) 167-189.

[20] P. Orlik, H. Terao, Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften,
vol. 300, Springer-Verlag, Berlin, 1992, xviii+325 pp.

[21] A. Postnikov, R. Stanley, Deformations of Coxeter hyperplane arrangements, J. Combin. Theory
Ser. A 91 (1-2) (2000) 544-597.

[22] J.-Y. Shi, The Kazhdan—Lusztig Cells in Certain Affine Weyl Groups, Lecture Notes in Mathematics,
vol. 1179, Springer-Verlag, Berlin, 1986, x+307 pp.

[23] R. Stanley, An introduction to hyperplane arrangements, in: Geometric Combinatorics, in: IAS /Park
City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 389-496.

[24] R. Stanley, Enumerative Combinatorics, vol. 1, second edition, Cambridge Studies in Advanced
Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012, xiv+626 pp.


http://refhub.elsevier.com/S0097-3165(18)30026-8/bib616C75s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib616C75s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D616476s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D616476s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D737572766579s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D737572766579s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D737572766579s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D6C696Es1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D6C696Es1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D67656Es1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6174682D67656Es1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib62652D726Fs1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib62652D726Fs1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib626C2D7361s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib626C2D7361s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib626F7572s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib636F6D746574s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib636F6D746574s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6372612D726F74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6372612D726F74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6564652D726569s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6564652D726569s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib666F612D68697374s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib666F612D68697374s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib68756Ds1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib68756Ds1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6B74742D63656E74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6B74742D63656E74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6B74742D6E6F6E63656E74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6B74742D6E6F6E63656E74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6B74742D7175617369s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6B74742D7175617369s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6B74742D7175617369s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6C702D616C6332s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6D75732D736368s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6D75732D736368s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6F73s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6F73s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6F74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib6F74s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib70732D646566s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib70732D646566s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib7368692D6B6Cs1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib7368692D6B6Cs1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib73742D6C656374s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib73742D6C656374s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib73742D656331s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib73742D656331s1

286 M. Yoshinaga / Journal of Combinatorial Theory, Series A 157 (2018) 267-286

[25] R. Suter, The number of lattice points in alcoves and the exponents of the finite Weyl groups, Math.
Comp. 67 (222) (1998) 751-758.

[26] H. Terao, The Jacobians and the discriminants of finite reflection groups, Tohoku Math. J. (2) 41 (2)
(1989) 237-247.

[27] H. Terao, Multiderivations of Coxeter arrangements, Invent. Math. 148 (3) (2002) 659-674.

[28] J. Worpitzky, Studien iiber die Bernoullischen und Eulerischen Zahlen, J. Reine Angew. Math. 94
(1883) 203-232.

[29] M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent.
Math. 157 (2) (2004) 449-454.

[30] M. Yoshinaga, Worpitzky partitions for root systems and characteristic quasi-polynomials, Tohoku
Math. J. 70 (2018) 39-63.

[31] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes,
Mem. Amer. Math. Soc. 1 (154) (1975), vii+102 pp.


http://refhub.elsevier.com/S0097-3165(18)30026-8/bib737574s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib737574s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib7465722D6A6163s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib7465722D6A6163s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib7465722D6D756C7469s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib776F72s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib776F72s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib796F732D63686172s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib796F732D63686172s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib796F732D776F7270s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib796F732D776F7270s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib7A61732D66616365s1
http://refhub.elsevier.com/S0097-3165(18)30026-8/bib7A61732D66616365s1

	Characteristic polynomials of Linial arrangements for exceptional root systems
	1 Introduction
	1.1 Background
	1.2 Main results
	1.3 What makes roots lie on a line?

	2 Preliminaries
	2.1 Quasi-polynomials with the GCD-property
	2.2 Characteristic quasi-polynomials
	2.3 Eulerian polynomials for root systems
	2.4 Ehrhart quasi-polynomials for root systems
	2.5 Characteristic quasi-polynomials of Linial arrangements

	3 Limit polynomials
	3.1 Normalized limit polynomials
	3.2 Truncated Eulerian polynomials

	4 A toy case
	5 Main results
	5.1 Settings
	5.2 Asymptotic behavior of roots
	5.3 Exact arrangement of roots

	Acknowledgments
	References


