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For numerical semigroups with a specified list of (not nec-
essarily minimal) generators, we obtain explicit asymptotic 
expressions, and in some cases quasipolynomial/quasirational 
representations, for all major factorization length statistics. 
This involves a variety of tools that are not standard in the 
subject, such as algebraic combinatorics (Schur polynomials), 
probability theory (weak convergence of measures, character-
istic functions), and harmonic analysis (Fourier transforms of 
distributions). We provide instructive examples which demon-
strate the power and generality of our techniques. We also 

✩ First author was partially supported by NSF grant DMS-1800123.
* Corresponding author.

E-mail addresses: stephan.garcia@pomona.edu (S.R. Garcia), omar@g.hmc.edu (M. Omar), 
cdoneill@sdsu.edu (C. O’Neill), samyih@math.ucla.edu (S. Yih).

URLs: http://pages.pomona.edu/~sg064747 (S.R. Garcia), http://www.math.hmc.edu/~omar
(M. Omar), https://cdoneill.sdsu.edu/ (C. O’Neill), https://www.math.ucla.edu/people/grad/samyih
(S. Yih).
https://doi.org/10.1016/j.jcta.2020.105358
0097-3165/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcta.2020.105358
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcta.2020.105358&domain=pdf
mailto:stephan.garcia@pomona.edu
mailto:omar@g.hmc.edu
mailto:cdoneill@sdsu.edu
mailto:samyih@math.ucla.edu
http://pages.pomona.edu/~sg064747
http://www.math.hmc.edu/~omar
https://cdoneill.sdsu.edu/
https://www.math.ucla.edu/people/grad/samyih
https://doi.org/10.1016/j.jcta.2020.105358


2 S.R. Garcia et al. / Journal of Combinatorial Theory, Series A 178 (2021) 105358
Homogeneous symmetric function highlight unexpected consequences in the theory of homoge-
neous symmetric functions.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In what follows, N = {0, 1, 2, . . .} denotes the set of nonnegative integers. A numerical 
semigroup S ⊂ N is an additive subsemigroup containing 0. We write

S = 〈n1, n2, . . . , nk〉 = {a1n1 + a2n2 + · · · + aknk : a1, a2, . . . , ak ∈ N}

for the numerical semigroup generated by distinct positive n1 < · · · < nk in N. Each 
numerical semigroup S admits a finite generating set. Moreover, there is a unique gen-
erating set that is minimal with respect to containment [58]. We always assume S has 
finite complement in N or, equivalently, gcd(n1, n2, . . . , nk) = 1, and that the genera-
tors n1, n2, . . . , nk are listed in increasing order. We do not assume that n1, n2, . . . , nk

minimally generate S.
A factorization of n ∈ S is an expression

n = a1n1 + a2n2 + · · · + aknk

of n as a sum of generators of S, which we represent here using the k-tuple a =
(a1, a2, . . . , ak) ∈ Nk. The length of the factorization a is

‖a‖ = a1 + a2 + · · · + ak.

The length multiset of n, denoted L�n�, is the multiset with a copy of ‖a‖ for each 
factorization a of n. Recall that a multiset is a set in which repetition is taken into 
account; that is, its elements can occur multiple times. In particular, the cardinality 
|L�n�| of L�n� equals the number of factorizations of n.

It is well known that all sufficiently large n ∈ N belong to S when the generators 
are relatively prime. The largest integer that does not belong to S, called its Frobenius 
number, has been studied extensively in the literature [57]. As an extension of this, the 
s-Frobenius numbers (i.e., the largest integer with at most s factorizations) have also
been studied [30], as has an analogous question for rings of integers [32]. More recently, 
J. Bourgain and Ya. G. Sinai [16], among others [2,25], investigated the asymptotic 
behavior of the Frobenius number, as did V.I. Arnold [4] in the context of estimating 
the number of factorizations of elements of S.

Factorizations and their lengths have been studied extensively under the broad um-
brella of factorization theory [22,42,60] (see [41] for a thorough introduction). Investi-
gations usually concern sets of lengths (i.e., without repetition), including asymptotic 
structure theorems [31,37,40,52] as well as specialized results spanning numerous families 
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of rings and semigroups from number theory [7,8,17], algebra [5,6] and elsewhere (see the 
survey [38] and the references therein). Several combinatorially-flavored invariants have 
also been studied (e.g., elasticity [3,45], the delta set [23,44], and the catenary degree 
[36,39]) to obtain more refined comparisons of length sets across different settings [21]. 
Numerical semigroups have received particular attention [14,43,54], in part due to their 
suitability for computation [27,35] and the availability of machinery from combinatorial 
commutative algebra [49,53] (see [51] for background on the latter). Additionally, fac-
torizations of numerical semigroup elements arise naturally in discrete optimization as 
solutions to knapsack problems [26,56] as well as in algebraic geometry and commutative 
algebra [1,10].

One of the crowning achievements in factorization theory is the structure theorem for 
sets of length, which in this setting states that for any numerical semigroup S, there exist 
constants d, M > 0 such that for all sufficiently large elements n ∈ S, the length set L(n)
is an arithmetic sequence from which some subset of the first and last M elements are 
removed [41]. As a consequence, most invariants derived from factorization length focus 
on extremal lengths.

We consider here asymptotic questions surrounding length multisets of numerical 
semigroups. This question was initially studied in [34] for three-generated numerical 
semigroups, where a closed form for the limiting distribution was obtained via careful 
combinatorial arguments for bounding factorization-length multiplicities. This approach 
proved difficult, if not impossible, when four or more generators are allowed and [34]
ended with many questions unanswered.

Theorem 1 below, our main result, answers almost all questions about the asymp-
totic properties of important statistical quantities associated to factorization lengths 
in numerical semigroups. It relates asymptotic questions about factorization lengths to 
properties of an explicit probability distribution, which permits us to obtain numerous 
asymptotic predictions in closed form. Our theorem recovers the key results from [34]
on three-generated semigroups, and generalizes them to semigroups with an arbitrary 
number of generators.

For what follows, we require some algebraic terminology. The complete homogeneous 
symmetric polynomial of degree p in the k variables x1, x2, . . . , xk is

hp(x1, x2, . . . , xk) =
∑

1≤α1≤···≤αp≤k

xα1xα2 · · ·xαp
,

the sum of all degree p monomials in x1, x2, . . . , xk. A quasipolynomial of degree d is a 
function f : Z → C of the form

f(n) = cd(n)nd + cd−1(n)nd−1 + · · · + c1(n)n + c0(n),

in which the coefficients c1(n), c2(n), . . . , cd(n) are periodic functions of n [11]. A quasir-
ational function is a quotient of two quasipolynomials. The cardinality of a set X is 
denoted |X|.
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Theorem 1. Let S = 〈n1, n2, . . . , nk〉, in which k ≥ 3, gcd(n1, n2, . . . , nk) = 1, and 
n1 < n2 < · · · < nk.

(a) For real α < β,

lim
n→∞

|{� ∈ L�n� : � ∈ [αn, βn]}|
|L�n�| =

β∫
α

F (t) dt,

where F : R → R is the probability density function

F (x) := (k − 1)n1n2 · · ·nk

2

k∑
r=1

|1 − nrx|(1 − nrx)k−3∏
j �=r(nj − nr)

.

The support of F is 
[ 1
nk

, 1
n1

]
.

(b) For p ∈ N, the pth moment of F is

1∫
0

tpF (t) dt =
(
p + k − 1

p

)−1

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
.

(c) For any continuous function g : (0, 1) → C,

lim
n→∞

1
|L�n�|

∑
�∈L�n�

g

(
�

n

)
=

1∫
0

g(t)F (t) dt.

In Theorem 1a, observe that F is a piecewise-polynomial function of degree k − 2
that is (k − 3)-times continuously differentiable, but not everywhere differentiable k− 2
times. In particular, its smoothness increases as the number of generators increases. This 
is characteristic of the Curry–Schoenberg B-spline from computer-aided design [24], of 
which the function F is a special case; this connection is discussed in much greater detail 
in [15].

The explicit nature and broad generality of Theorem 1 permit strikingly accurate 
asymptotic predictions, often in closed form, of virtually every statistical quantity re-
lated to factorization lengths when considered with multiplicity. For example, Theorem 1
immediately predicts the number of factorizations of n, the moments of the factorization-
length multiset L�n�, its mean, standard deviation, median, mode, skewness, and so forth 
(see Section 2). The flexibility afforded by Theorem 1c permits us to address quantities 
such as the harmonic and geometric mean factorization length, which would previously 
have been beyond the scope of standard semigroup-theoretic techniques.

The proof of Theorem 1 is contained in Section 6. It involves a variety of tools that 
are not standard fare in the numerical semigroup literature. For example, weak con-
vergence of probability measures, Fourier transforms of distributions, and the theory of 
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characteristic functions come into play. In addition, Theorem 1 builds upon two other re-
sults, described below, whose origins are in complex variables (Theorem 2) and algebraic 
combinatorics (Theorem 3).

Theorem 2, whose proof is deferred until Section 4, concerns a quasipolynomial rep-
resentation for the pth power sum of the factorization lengths of n (the main ingredient 
for the pth moment of F (x)). Although this result is of independent interest to the nu-
merical semigroup community, its true power emerges when combined with Theorems 1
and 3.

Theorem 2. Let S = 〈n1, n2, . . . , nk〉, in which k ≥ 3, gcd(n1, n2, . . . , nk) = 1, and 
n1 < n2 < · · · < nk. For p ∈ N,

∑
�∈L�n�

�p = p!
(k + p− 1)!(n1n2 · · ·nk)

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
nk+p−1 + wp(n),

in which wp(n) is a quasipolynomial of degree at most k + p − 2 whose coefficients have 
period dividing lcm(n1, n2, . . . , nk).

Our next result, whose proof is in Section 5, is an exponential generating function 
identity. Although its derivation involves a bit of algebraic combinatorics and the result 
itself might seem a bit of a digression, this identity is a crucial ingredient to the proof 
of Theorem 1.

Theorem 3. Let x1, x2, . . . , xk ∈ C\{0} be distinct. For z ∈ C,

∞∑
p=0

hp(x1, x2, . . . , xk)
(p + k − 1)! zp+k−1 =

k∑
r=1

exrz∏
j �=r(xr − xj)

.

There are several unexpected consequences of our work to the realm of symmetric 
functions. For example, Theorem 12 in Section 3 provides a novel probabilistic interpre-
tation of the complete homogeneous symmetric polynomials. This not only recovers a 
well-known positivity result (Corollary 17), it also provides a natural method to extend 
the definition of hp(x1, x2, . . . , xk) to nonintegral p.

We are optimistic that Theorem 1 will prove to be a standard tool in the study of nu-
merical semigroups; statistical results about factorization lengths that before appeared 
intractable are now straightforward consequences of Theorem 1. We devote all of Sec-
tion 2 to applications and examples of our results. Sections 4, 5, and 6 contain the proofs 
of Theorems 2, 3, and 1 respectively. We wrap up in Section 7 with some closing remarks.

2. Applications and examples

This section consists of a host of examples and applications of Theorems 1 and 2. 
We avoid the traditional corollary-proof format, which would soon become overbearing, 
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in favor of a more leisurely and less staccato pace. In particular, we demonstrate how a 
wide variety of factorization-length statistics, some frequently considered and others more 
exotic, can be examined using our methods. The following examples and commentary 
illustrate the effectiveness of our techniques as well as their implementation.

We begin in Subsection 2.1 with a brief rundown of fundamental factorization-length 
statistics, giving closed-form formulas for the asymptotic behavior when convenient. In 
Subsection 2.2, we recover all of the key results of [34] on three-generator numerical 
semigroups. Subsection 2.3 contains explicit formulas, all of them novel, for asymptotic 
statistics in four-generated semigroups. Numerical semigroups with more generators and 
related phenomena are discussed in Subsection 2.4.

2.1. Factorization-length statistics

Fix S = 〈n1, n2, . . . , nk〉, where as always we assume that gcd(n1, n2, . . . , nk) = 1. 
The quasipolynomial or quasirational functions mentioned below all have Q-valued co-
efficients with periods dividing lcm(n1, n2, . . . , nk). For each key factorization-length 
statistic we provide an explicit, asymptotically equivalent expression when available. We 
say that f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1 and f(n) = O(g(n)) if there is a constant 
C such that |f(n)| ≤ C|g(n)| for sufficiently large n ∈ N.

(a) Number of Factorizations. Theorem 2 with p = 0 implies that the cardinality |L�n�|
of the factorization length multiset L�n� is a quasipolynomial and

|L�n�| = nk−1

(k − 1)!(n1n2 · · ·nk)
+ O(nk−2). (4)

(b) Moments. Theorem 2 and (4) imply that the pth factorization length moment

mp(n) := 1
|L�n�|

∑
�∈L�n�

�p ∼
(
p + k − 1

p

)−1

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
np (5)

is quasirational.
(c) Mean. The preceding implies that the mean factorization length

m1(n) := 1
|L�n�|

∑
�∈L�n�

� ∼ n

k

(
1
n1

+ 1
n2

+ · · · + 1
nk

)

is quasirational. It is asymptotically linear as n → ∞ and its slope is the reciprocal 
of the harmonic mean of the generators of S.

(d) Variance and standard deviation. The factorization length variance, given by 
σ2(n) := m2(n) − (m1(n))2, is quasirational by (b). From (5), we have
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σ2(n) ∼ n2

k2(k + 1)

⎛⎝(k − 1)
k∑

i=1

1
n2
i

− 2
∑
i<j

1
ninj

⎞⎠ .

The standard deviation is then σ(n), the square root of the variance.
(e) Median. Theorem 1a ensures that the median factorization length satisfies

Median L�n� ∼ βn,

in which β ∈ [0, 1] is the unique positive real number so that 
∫ β

0 F (t) dt = 1
2 . Note 

that it was already demonstrated in [34] that β can be irrational, even when k = 3, 
in which case the median cannot be quasirational in n.

(f) Mode. Since the function F is known to be unimodal (see [24, Thm. 1] and [15]), the 
mode factorization length satisfies

Mode L�n� ∼ n argmaxF (x),

in which argmaxF (x) is the unique value in [0, 1] at which F assumes its absolute 
maximum.

(g) Skewness. The factorization length skewness is

Skew L�n� := 1
|L�n�|

∑
�∈L�n�

(
�−m1(n)

σ(n)

)3

= m3(n) − 3m1(n)σ2(n) −m1(n)3

σ3(n) ,

the third centered moment. In light of (b), (c), and (d), an explicit asymptotic 
formula for Skew L�n� can be given, although we refrain from doing so.

(h) Min / Max. The minimum and maximum factorization lengths satisfy

Max L�n� ∼ n

n1
and Min L�n� ∼ n

nk
.

This follows from Theorem 1a since the distribution F (t) is supported on [1/nk, 1/n1]
and places mass on any open neighborhood of its endpoints (it is known that Max L�n�

and Min L�n� are linear quasipolynomials with leading coefficients 1/n1 and 1/nk, 
respectively [9, Theorems 4.2 and 4.3]).

(i) Harmonic mean. The harmonic mean factorization length satisfies

H(n) := |L�n�|∑
�∈L�n� �

−1 ∼ n∫ 1
0 t−1F (t) dt

.

The integral is taken over [0, 1] for convenience; since F is supported on [1/nk, 1/n1], 
the integrand vanishes at t = 0.
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Fig. 1. The asymptotic length distribution function F (x) for a three-generated semigroup S = 〈n1, n2, n3〉
is a triangular distribution on [1/n3, 1/n1] with peak of height 2n1n3/(n3 − n1) at 1/n2.

(j) Geometric mean. The geometric mean factorization length satisfies

G(n) :=
( ∏

�∈L�n�

�
) 1

|L�n�| ∼ ne
∫ 1
0 (log t)F (t) dt

since

logG(n) = 1
|L�n�|

∑
�∈L�n�

log � = 1
|L�n�|

∑
�∈L�n�

(
log �

n
+ log n

)

= log n + 1
|L�n�|

∑
�∈L�n�

log �

n
∼ log n +

1∫
0

(log t)F (t) dt.

For the sake of uniformity, we often prefer to use the more explicit notation 
Mean L�n�, Median L�n�, Mode L�n�, Var L�n�, StDev L�n�, HarMean L�n�, Skew L�n�, and 
GeoMean L�n�, instead of distinctive symbols, such as μ(n) or σ(n).

2.2. Three generators: triangular distribution

The asymptotic behavior of factorization lengths in three-generator semigroups was 
studied in [34] with other methods. Theorem 1 recovers all of the main results from that 
paper.

For S = 〈n1, n2, n3〉, the function F (x) of Theorem 1 is a triangular distribution; see 
Fig. 1. Indeed, letting k = 3 and (a, b, c) = ( 1

n3
, 1
n1

, 1
n2

) in Theorem 1 we obtain

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a,
2(x− a)

(b− a)(c− a) for a ≤ x ≤ c,

2(b− x)
(b− a)(b− c) for c < x ≤ b,

0 if x ≥ b.

(6)
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Fig. 2. Normalized histogram of the length multiset L�n� (blue) and graph of the length distribution function 
F (x) (red) for S = 〈6, 9, 20〉. For i ∈ N, a blue dot occurs above i/n at height equal to the multiplicity of 
i in L�n�. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

This is the familiar triangular distribution on [a, b] with peak of height 2/(b − a) at 
c ∈ (a, b) [28, Ch. 40], [50, Ch. 1]. As predicted in the comments after Theorem 1, 
the distribution function is continuous but not everywhere differentiable. The standard 
properties of the triangular distribution provide us with the asymptotic behavior of 
lengths in three-generated semigroups:

Mean L�n� ∼ n

3

(
1
n1

+ 1
n2

+ 1
n3

)
,

Median L�n� ∼ n ·

⎧⎪⎪⎨⎪⎪⎩
1
n3

+

√
1
2

( 1
n1

−
1
n3

)( 1
n2

−
1
n3

)
if

1
n2

≥
1
2

( 1
n1

+
1
n3

)
,

1
n1

−
√

1
2

( 1
n1

−
1
n3

)( 1
n1

−
1
n2

)
if

1
n2

<
1
2

( 1
n1

+
1
n3

)
,

Mode L�n� ∼ n

n2
,

Var L�n� ∼ n2

18

(
1
n2

1
+ 1

n2
2

+ 1
n2

3
− 1

n1n2
− 1

n2n3
− 1

n3n1

)
, and

Skew L�n� ∼

√
2
(

1
n1

+ 1
n3

− 2
n2

)(
2
n1

− 1
n3

− 1
n2

)(
1
n1

− 2
n3

+ 1
n2

)
5
(

1
n2

1
+ 1

n2
2

+ 1
n2

3
− 1

n1n2
− 1

n1n3
− 1

n2n3

)3/2 .

The harmonic and geometric means can also be worked out in closed form; the interested 
reader may wish to pursue the matter further.

Example 7. Consider the McNugget semigroup S = 〈6, 9, 20〉. The normalized histogram 
of the length multiset L�n� rapidly approaches the corresponding triangular distribution 
with parameters (a, b, c) = ( 1 , 1 , 1 ); see Fig. 2. The asymptotic formulae furnished 
20 9 6
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Table 1
Actual versus predicted statistics (rounded to two decimal places) for L�105�, the multiset of factorization 
lengths of 100,000, in S = 〈6, 9, 20〉.

Statistic Actual Predicted Statistic Actual Predicted
Mean L�105� 10925.14 10925.93 HarMean L�105� 10359.00 10359.86
Median L�105� 10970 10970.61 GeoMean L�105� 10650.22 10651.03
Mode L�105� {11109,11110,11111} 11111.11 Skew L�105� −0.046593 −0.046592
StDev L�105� 2382.40 2382.35 Min /Max L�105� 5000/16662 5000.00/16666.67

by our results perform admirably in estimating key factorization-length statistics; see 
Table 1.

2.3. Four generators: piecewise quadratic

For S = 〈n1, n2, n3, n4〉, the function F (x) of Theorem 1 is piecewise quadratic and 
can be worked out in closed form:

F (x) = 3n1n2n3n4 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 1
n4

,

(1 − n4x)2

(n4 − n1)(n4 − n2)(n4 − n3)
if 1

n4
≤ x ≤ 1

n3
,

f(x) if 1
n3

≤ x ≤ 1
n2

,

(1 − n1x)2

(n2 − n1)(n3 − n1)(n4 − n1)
if 1

n2
≤ x ≤ 1

n1
,

0 if x > 1
n1

,

in which

f(x) =
(n1n2n3 + n1n2n4 − n1n3n4 − n2n3n4)x2 − 2(n1n2 − n3n4)x + (n1 + n2 − n3 − n4)

(n3 − n1)(n3 − n2)(n4 − n1)(n4 − n2)
.

We remark that this explicit formula for the length distribution function completely 
answers the open problem suggested at the end of [34]. As predicted by the comments 
after Theorem 1, F is continuously differentiable but not twice differentiable. Moreover, 
one can see that F is unimodal and that its absolute maximum is attained in ( 1

n3
, 1
n2

). 
A few computations reveal that

Mean L�n� ∼ n

4

(
1
n1

+ 1
n2

+ 1
n3

+ 1
n4

)
,

Mode L�n� ∼
(

n1n2 − n3n4

n1n2n3 + n1n2n4 − n1n3n4 − n2n3n4

)
n, and

Var L�n� ∼ n2

80

⎛⎝4
4∑

i−1

1
n2
i

− 2
∑
i<j

1
ninj

⎞⎠ .
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Fig. 3. Normalized histogram of the length multiset L�n� (blue) and graph of the length distribution function 
F (x) (red) for S = 〈11, 34, 35, 36〉. For each i ∈ N a blue dot occurs above i/n at height equal to the 
multiplicity of i in L�n�.

The asymptotic median factorization length is not so amenable to closed-form expression, 
although it is easily computed for specific semigroups as we see below.

Example 8. For S = 〈11, 34, 35, 36〉, we have

F (x) = 1413720

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 1
36 ,

1
50 (36x− 1)2 if 1

36 ≤ x ≤ 1
35 ,

1
600

(
−15073x2 + 886x− 13

)
if 1

35 ≤ x ≤ 1
34 ,

1
13800 (11x− 1)2 if 1

34 ≤ x ≤ 1
11 ,

0 if x > 1
11 ;

see Fig. 3. Elementary computation confirms that the median of the distribution function 
F (x) occurs in [ 1

34 , 
1
11 ]. For x ∈ [ 1

34 , 
1
11 ], we find that

x∫
0

F (t) dt = 11
115(43197x3 − 11781x2 + 1071x− 22)

attains the value 1
2 at precisely one point, namely 1

11 (1 − 3
√

115
714 ) ≈ 0.041. Thus,

Median L�n� ∼ 1
11

(
1 − 3

√
115
714

)
n.

Table 2 provides factorization-length statistics for L�105� and the strikingly accurate 
approximations furnished by our results.

Example 9. The factorization-length skewness, being expressible in terms of the first and 
third moments, and the variance, can be given in closed form:
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Table 2
Actual versus predicted statistics (rounded to two decimal places) for L�105�, the multiset of factorization 
lengths of 100,000, in S = 〈11, 34, 35, 36〉.

Statistic Actual Predicted Statistic Actual Predicted
Mean L�105� 4417.31 4416.76 HarMean L�105� 4130.30 4130.03
Median L�105� 4145 4144.69 GeoMean L�105� 4266.46 4266.06
Mode L�105� 2939 2939.03 Skew L�105� 0.8594802 0.8594804
StDev L�105� 1207.84 1207.14 Min /Max L�105� 2778/9082 2777.78/9090.91

Fig. 4. Highly symmetric distribution functions F (x) for two numerical semigroups S chosen by virtue of an 
Egyptian-fraction identity; see Example 9.

Skew L�n� ∼ 2
√

5(a + b− c− d)(a− b + c− d)(a− b− c + d)
(3(a2 + b2 + c2 + d2) − 2(ab + ac + bc + ad + bd + cd))3/2

,

in which (a, b, c, d) = ( 1
n1

, 1
n2

, 1
n3

, 1
n4

). In particular, Skew L�n� tends to zero (that is, F
tends to be highly symmetric) if and only if one of the following occurs:

1
n1

+ 1
n3

= 1
n2

+ 1
n4

or 1
n1

+ 1
n4

= 1
n2

+ 1
n3

.

For example, the equalities

1
5 + 1

45 = 1
6 + 1

18 and 1
3 + 1

24 = 1
4 + 1

8

yield two numerical semigroups with highly symmetric length distribution functions; see 
Fig. 4. This highlights another connection between Egyptian fractions and the statistical 
properties of length distributions in numerical semigroups [34].

Similar computations can be carried out for semigroups with more generators, al-
though it becomes rapidly less rewarding to search for answers in closed form as the 
number of generators increases. We leave the details and particulars of such computa-
tions to the reader.
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Fig. 5. Normalized histogram of the length multiset L�n� (blue) and graph of the length distribution function 
F (x) (red) for S = 〈9, 11, 13, 15, 17〉. For each i ∈ N a blue dot occurs above i/n at height equal to the 
multiplicity of i in L�n�. Since 2,000 and 50,000 are even, there are no factorizations of odd length. Thus, 
the red curve is half the height of the upper curve suggested by the blue points.

2.4. Additional examples

In this section, we give two final examples. The first points out a curious, but easily 
explained, phenomenon related to the constant

δ = gcd(nk − nk−1, nk−1 − nk−2, . . . , n2 − n1),

which arises in the semigroup literature as the minimum element of the delta set (see [20]
for more on this invariant). Since ni ≡ nj (mod δ) for every i, j, it follows that δ is the 
smallest distance that can occur between distinct factorization lengths of n, meaning all 
factorization lengths of a given n are equivalent modulo δ. If δ > 1, then this causes 
“gaps” between positive values in the length multiset. The question of decomposing L�n�

along arithmetic sequences is treated in [33].

Example 10. Let S = 〈9, 11, 13, 15, 17〉, for which δ = 2. If n is even, then every element 
of L�n� is even, and if n is odd, then every element of L�n� is odd. The corresponding 
length distribution function is

F (x) = 109395
32

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 1
17 ,

(17x− 1)3 if 1
17 ≤ x < 1

15 ,

3 − 129x + 1833x2 − 8587x3 if 1
15 ≤ x < 1

13 ,

−3 + 105x− 1209x2 + 4595x3 if 1
13 ≤ x < 1

11 ,

(1 − 9x)3 if 1
11 ≤ x < 1

9 ,

0 if 1
9 ≤ x,

which appears to be half the height of the upper curve suggested by the blue dots in 
Fig. 5 since the factorization lengths of n all have identical parity. In other words, the 
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Table 3
Actual versus predicted statistics (rounded to two decimal places) for L�105�, the multiset of factorization 
lengths of 100,000, in S = 〈9, 11, 13, 15, 17〉.

Statistic Actual Predicted Statistic Actual Predicted
Mean L�105� 8088.80 8088.67 HarMean L�105� 8019.043 8018.96
Median L�105� 8038 8037.53 GeoMean L�105� 8053.75 8053.64
Mode L�105� 7904 7904.25 Skew L�105� 0.32812710 0.32812712
StDev L�105� 757.14 756.89 Min /Max L�105� 11110/5884 11111.11/5882.35

Fig. 6. Normalized histogram of the length multiset L�n� (blue) and graph of the length distribution function 
F (x) (red) for the numerical semigroup 〈118, 150, 162, 175, 182, 258, 373, 387, 456〉. For each i ∈ N a blue 
dot occurs above i/n at height equal to the multiplicity of i in L�n�.

Table 4
Actual versus predicted statistics (rounded to two decimal places) for L�105� in S = 〈118, 150, 162, 175, 182,
258, 373, 387, 456〉.

Statistic Actual Predicted Statistic Actual Predicted
Mean L�105� 488.30 487.30 HarMean L�105� 479.46 478.64
Median L�105� 488 486.74 GeoMean L�105� 483.92 483.00
Mode L�105� 488 487.08 Skew L�105� 0.09692 0.09699
StDev L�105� 65.01 64.29 Min /Max L�105� 221/846 219.30/847.46

upper curve suggested by the blue dots in Fig. 5 must be “averaged out” by δ to produce 
the red curve, which depicts F (x). The predictions afforded by our methods in this case, 
as outlined in Table 3, are still surprisingly accurate.

We conclude with one final example that demonstrates the impressive estimates our 
techniques afford for a numerical semigroup with nine generators.

Example 11. Consider S = 〈118, 150, 162, 175, 182, 258, 373, 387, 456〉, which has nine 
generators. Describing the length-distribution statistics of such a semigroup is far beyond 
the realm of previously-established techniques. We spare the reader the display of the 
explicit length-generating function; suffice it to say, F is a piecewise polynomial function 
of degree 7 (see Fig. 6). A few computations with a computer algebra system provide 
accurate approximations to the relevant statistics; see Table 4.
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3. Complete homogeneous symmetric polynomials

There are several unexpected consequences of our work to the realm of symmetric 
functions. The next theorem provides a probabilistic interpretation of the complete ho-
mogeneous symmetric polynomials and a means to extend their definition to nonintegral 
degrees. From this result we recover a well-known positivity result (Corollary 17).

The proof of Theorem 12 was recently refined [15] using the theory of splines.

Theorem 12. Let x1 < x2 < . . . < xk be real numbers. Then

H(x;x1, x2, . . . , xk) = k − 1
2

k∑
r=1

|xr − x|(xr − x)k−3∏
j �=r(xr − xj)

(13)

is a probability distribution on R with support [x1, xk]. Moreover, for p ∈ N,

hp(x1, x2, . . . , xk) =
(
p + k − 1

p

) xk∫
x1

tpH(t;x1, x2, . . . , xk) dt. (14)

Proof. By continuity, we may assume x1, x2, . . . , xk ∈ Q. In fact, it is not hard to see 
that we can further assume

x1 = τ + m

nk
, x2 = τ + m

nk−1
, . . . , xk = τ + m

n1
,

in which τ ∈ Z, m ∈ N, and n1, n2, . . . , nk ∈ N satisfy gcd(n1, n2, . . . , nk) = 1 and 
n1 < n2 < . . . < nk. Observe that

H(x;x1, x2, . . . , xk) = H(x− τ ;x1 − τ, x2 − τ, . . . , xk − τ)

= 1
m
H

(
x− τ

m
; x1 − τ

m
,
x2 − τ

m
, . . . ,

xk − τ

m

)
= 1

m
H

(
x− τ

m
; 1
n1

,
1
n2

, . . . ,
1
nk

)
= 1

m
F

(
x− τ

m

)
,

in which F denotes the function from Theorem 1a; to see this compare (45) with (13). 
Since F is a probability distribution on R supported on [ 1

nk
, 1
n1

], we conclude that 
H(x; x1, x2, . . . , xk) is a probability distribution on R supported on [x1, xk]. Let ν denote 
the corresponding probability measure, which satisfies ν(A) =

∫
A
H(t; x1, x2, . . . , xk) dt

for all Borel sets A ⊆ R, and let

ϕν(z) =
xk∫
eitz dν(t) =

∞∑
p=0

mp(ν) (iz)p

p! (15)

x1
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denote the corresponding characteristic function. Then,

ϕν(z) =
(
H(x;x1, x2, . . . , xk)

)̂
(z)

= (k − 1)!
k∑

r=1

eixrz

(iz)k−1 ∏
j �=r(xr − xj)

(by (44))

= (k − 1)!
∞∑
p=0

hp(x1, x2, . . . , xk)
(p + k − 1)! (iz)p (by Theorem 3)

=
∞∑
p=0

(
p + k − 1

p

)−1

hp(x1, x2, . . . , xk)
(iz)p

p! . (16)

For p ∈ N, compare (15) and (16) and obtain (14). �
As an immediate corollary, we obtain a short proof of the positive-definiteness of com-

plete homogeneous symmetric functions of even degree. This dates back to D.B. Hunter 
[47] (a somewhat stronger version was recently obtained by T. Tao [63]).

Corollary 17. If x1, x2, . . . , xk ∈ R\{0}, then h2d(x1, x2, . . . , xk) ≥ 0.

Proof. By symmetry and continuity, we may assume x1 < x2 < · · · < xk. Then

h2d(x1, x2, . . . , xk) =
(

2d + k − 1
2d

) xk∫
x1

t2dH(t;x1, x2, . . . , xk) dt > 0. �

In light of Theorem 12, we can define

hz(x1, x2, . . . , xk) := (z + k − 1) · · · (z + 1)
(k − 1)!

∫
R

tzH(t;x1, x2, . . . , xk) dt (18)

for nonintegral z. Since H(t; x1, x2, . . . , xk) is a symmetric function of the variables 
x1, x2, . . . , xk, it follows that hz(x1, x2, . . . , xk) is a symmetric function. Moreover, 
H(t; x1, x2, . . . , xk) is piecewise polynomial and hence the right-hand side of (18) is 
explicitly computable. Thus, (18) provides a natural notion of complete homogeneous 
symmetric polynomials of arbitrary degree. This complements recent work of T. Tao, 
who developed a notion of symmetric functions in a fractional number of variables [64]. 
Tao’s approach, inspired by work of Bennett–Carbery–Tao on the multilinear restriction 
and Kakeya conjectures from harmonic analysis [12], is also based upon a probabilistic 
framework.

Example 19. For k = 3 and distinct a, b, c ∈ R, we have

H(x; a, b, c) = |a− x| + |b− x| + |c− x|

(b− a)(c− a) (a− b)(c− b) (a− c)(b− c)
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and

hz(a, b, c) = az+2(b− c) + bz+2(c− a) + cz+2(a− b)
(a− b)(a− c)(b− c) .

As expected, if we apply (18) for z ∈ N we obtain the complete homogeneous symmetric 
polynomials

h0(a, b, c) = 1, h1(a, b, c) = a + b + c, h2(a, b, c) = a2 + b2 + c2 + ab + bc + ca,

and so forth. For a, b, c > 0, we obtain curious symmetric functions such as

h 1
2
(a, b, c) = a

5
2 (b− c) + b

5
2 (c− a) + c

5
2 (a− b)

(a− b)(a− c)(b− c) ,

h− 1
2
(a, b, c) =

√
a
√
b +

√
a
√
c +

√
b
√
c

(
√
a +

√
b)(

√
a +

√
c)(

√
b +

√
c)
,

h− 3
2
(a, b, c) = − 1

(
√
a +

√
b)(

√
a +

√
c)(

√
b +

√
c)
,

h− 5
2
(a, b, c) =

a−b√
c

+ b−c√
a

+ c−a√
b

(a− b)(a− c)(b− c) ,

h−3(a, b, c) = 1
abc

,

h−4(a, b, c) = ab + ac + bc

a2b2c2
.

We also note that h−1(a, b, c) = h−2(a, b, c) = 0.

For negative and positive rational values of z, one can explicitly describe hz(x1, x2, . . . ,
xk) in terms of Schur functions, though we do not wish to be drawn too far afield here. 
We intend to take this subject up in a subsequent publication.

4. Proof of Theorem 2

The first part of the proof concerns a certain two-variable generating function (Sub-
section 4.1). Next comes a lengthy residue computation (Subsection 4.2). A few power 
series computations complete the proof (Subsection 4.3).

4.1. Generating function

Fix S = 〈n1, n2, . . . , nk〉 with gcd(n1, n2, . . . , nk) = 1 and consider the generating 
function
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g(z, w) :=
k∏

i=1

1
1 − wzni

(20)

=
k∏

i=1
(1 + wzni + w2z2ni + · · · )

=
∑

a1,a2,...,ak≥0
wa1+a2+···+ak za1n1+a2n2+···+aknk

=
∞∑

n=0
zn

∞∑
�=0

(# of factorizations of n of length �)w�

=
∞∑

n=0
zn

∑
�∈L�n�

w�.

Then (
w

∂

∂w

)p
g(z, w) =

∞∑
n=0

zn
∑

�∈L[n]

w��p

and hence

Λp(n) :=
∑

�∈L�n�

�p

is the coefficient of zn in the series expansion of

G(z) :=
(
w

∂

∂w

)p

g(z, w)

∣∣∣∣∣
w=1

. (21)

To make use of this we require the following lemma.

Lemma 22. For p ∈ N,

∂p

∂wp
g(z, w) = p!

(
k∏

b=1

1
1 − wznb

)
hp

(
zn1

1 − wzn1
, · · · , znk

1 − wznk

)
. (23)

Proof. We proceed by induction. The base case p = 0 is (20). For the inductive step, 
suppose that (23) holds for some p ∈ N. Then

1
p!

∂p+1

∂wp+1 g(z, w) = ∂

∂w

(
1
p!

∂p

∂wp
g(z, w)

)

= ∂

∂w

(
k∏ 1

1 − wznb

)
hp

(
zn1

1 − wzn1
, · · · , znk

1 − wznk

)

b=1
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=
(

k∏
b=1

1
1 − wznb

)(
k∑

i=1

zni

1 − wzni

)
hp

(
zn1

1 − wzn1
, · · · , znk

1 − wznk

)

+
(

k∏
b=1

1
1 − wznb

)
∂

∂w
hp

(
zn1

1 − wzn1
, · · · , znk

1 − wznk

)

= (p + 1)
(

k∏
b=1

1
1 − wznb

)
hp+1

(
zn1

1 − wzn1
, · · · , znk

1 − wznk

)
.

The final equality follows from counting how many times each term appears when the 
line before it is expanded. �

The Stirling number of the second kind, denoted 
{
n
i

}
, counts the number of partitions 

of [n] := {1, 2, . . . , n} into i nonempty subsets. These numbers satisfy{
n + 1
i

}
= i

{
n

i

}
+
{

n

i− 1

}
and (

x
d

dx

)p

=
p∑

i=0

{
p

i

}
xi di

dxi
, (24)

which holds for p ∈ N [18,19,65].
From (21), and then (24) and (23), we obtain

G(z) =
(
w

∂

∂w

)p

g(z, w)

∣∣∣∣∣
w=1

=
p∑

i=0

{
p

i

}
wi ∂

ig

∂wi

∣∣∣∣∣
w=1

=
p∑

i=0

{
p

i

}
i!wi

( k∏
j=1

1
1 − wznj

)
hi

(
zn1

1 − wzn1
, · · · , znk

1 − wznk

)∣∣∣∣∣
w=1

=
p∑

i=0

{
p

i

}
i!

⎛⎝ k∏
j=1

1
1 − znj

⎞⎠hi

(
zn1

1 − zn1
, · · · , znk

1 − znk

)
. (25)

Thus, G(z) is a rational function in z, all of whose poles are certain Lth roots of unity, 
in which

L := lcm(n1, n2, . . . , nk).

Each 1 − zni factors as a product of ni distinct linear factors, one of which is 1 − z. Con-
sequently, 1 is a pole of G(z) of order k+p; this arises from the summand corresponding 
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to i = p. Moreover, k + p is the maximum possible order for a pole of G(z), and 1 is the 
unique pole of this order. Indeed, gcd(n1, n2, . . . , nk) = 1 ensures that the only common 
root of 1 − zn1 , 1 − zn2 , . . . , 1 − znk is 1.

Thus, Λp(n) is a complex linear combination of terms of the form

nr−1ωn, nr−2ωn, . . . , ωn,

in which ω is a pole of G(z) of order at most r (see [11, Ch. 1] for an overview of this 
method). The unique pole of G(z) of highest order is 1, which has order k + p. Thus, 
there exist periodic functions a0, a1, . . . , ak+p−1 : N → C with periods dividing L such 
that

Λp(n) = ak+p−1(n)nk+p−1 + ak+p−2(n)nk+p−2 + · · · + a1(n)n + a0(n).

This establishes the desired quasipolynomial representation. It remains to show

ak+p−1(n) = p!
(k + p− 1)!(n1n2 · · ·nk)

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
and that the periodic functions ai(n) assume only rational values.

4.2. A residue computation

Since G(z) has a pole of order k + p at 1, we have

G(z) = C

(1 − z)k+p
+ u(z) (26)

for some constant C and some rational function u, all of whose poles are Lth roots of 
unity with order at most k + p − 1. In particular,

u(z) =
∞∑

n=0
w(n)zn

for some quasipolynomial w(n) of degree at most k + p − 2 and period dividing L.
The only summand in (25) that has a pole at 1 of order k + p is the term that 

corresponds to i = p. The summands in (25) with 0 ≤ i ≤ p − 1 satisfy

lim
z→1

(1 − z)k+p

⎛⎝ k∏
j=1

1
1 − znj

⎞⎠hi

(
zn1

1 − zn1
, · · · , znk

1 − znk

)
︸ ︷︷ ︸

has a pole at z = 1 of order k + i ≤ k + p − 1

= 0.

Consequently,
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C = lim
z→1

(1 − z)k+pG(z)

= lim
z→1

p∑
i=0

{
p

i

}
i! (1 − z)k+p

⎛⎝ k∏
j=1

1
1 − znj

⎞⎠hi

(
zn1

1 − zn1
, · · · , znk

1 − znk

)

= p! lim
z→1

(1 − z)k+p

⎛⎝ k∏
j=1

1
1 − znj

⎞⎠hp

(
zn1

1 − zn1
, · · · , znk

1 − znk

)

= p! lim
z→1

⎛⎝ k∏
j=1

1
1 + · · · + znj−1

⎞⎠hp

(
zn1

1 + · · · + zn1−1 , · · · ,
znk

1 + · · · + znk−1

)

= p!
n1n2 · · ·nk

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
. (27)

4.3. Completing the proof

Observe that

1
(1 − z)k+p

=
∞∑

n=0

(
n + k + p− 1
k + p− 1

)
zn

=
∞∑

n=0

(n + k + p− 1) · · · (n + 1)
(k + p− 1)! zn

= 1
(k + p− 1)!

∞∑
n=0

(
nk+p−1 + v(n)

)
zn,

in which v(n) is a quasipolynomial of degree k+ p − 2 with integer coefficients. Together 
with (26) and (27), we obtain

G(z) = p!
n1 · · ·nk

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
· 1
(1 − z)k+p

+ u(z)

= p!
(k + p− 1)!n1 · · ·nk

hp

(
1
n1

, . . . ,
1
nk

) ∞∑
n=0

(nk+p−1 + v(n))zn +
∞∑

n=0
w(n)zn.

Thus,

Λp(n) = p!
(k + p− 1)!n1n2 · · ·nk

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
nk+p−1 + q(n),

in which q(n) is a quasipolynomial of degree at most k + p − 2 whose coefficients have 
periods dividing L. Additionally, since v(n) and w(n) both have rational coefficients, so 
must q(n). This completes the proof. �
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5. Proof of Theorem 3

We wish to prove the exponential generating function identity

∞∑
p=0

hp(x1, x2, . . . , xk)
(p + k − 1)! zp+k−1 =

k∑
r=1

exrz∏
j �=r(xr − xj)

, (28)

valid for z ∈ C. We first show that the power series on the left-hand side of (28) has 
an infinite radius of convergence (Subsection 5.1). Then we reduce (28) to an identity 
that links complete homogeneous symmetric polynomials to the determinants of certain 
Vandermonde-like matrices (Subsection 5.2). A brief excursion into algebraic combina-
torics (Subsection 5.3) finishes off the proof.

5.1. Radius of convergence

Fix distinct x1, x2, . . . , xk ∈ C\{0}. We claim that the radius of convergence of the 
power series

∞∑
p=0

hp(x1, x2, . . . , xk)
(p + k − 1)! zp+k−1 (29)

is infinite. This ensures that (28) is an equality of entire functions. The ordinary gener-
ating function for the complete homogeneous symmetric polynomials is

∞∑
p=0

hp(x1, x2, . . . , xk)zp =
k∏

i=1

1
1 − xiz

; (30)

see [62]. The radius of convergence of the preceding power series is the distance from 0
to the closest pole 1/x1, 1/x2, . . . , 1/xk. Consequently, the Cauchy–Hadamard formula 
[59, p. 55] yields

lim sup
p→∞

|hp(x1, x2, . . . , xk)|
1
p = max{|x1|, |x2|, . . . , |xk|}.

Since

lim
p→∞

(
(p + k − 1)!

) 1
p ≥ lim

p→∞
(p!)

1
p ≥ lim

p→∞

((
p
3
) p

3
) 1

p = lim
p→∞

(p
3

) 1
3 = ∞,

a second appeal to the Cauchy–Hadamard formula tells us that the radius of convergence 
R of (29) satisfies

1
R

= lim sup
p→∞

(
hp(x1, x2, . . . , xk)

(p + k − 1)!

) 1
p

= max{|x1|, |x2|, . . . , |xk|}
lim ((p + k − 1)!)

1
p

= 0.

p→∞
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Thus, the radius of convergence of (29) is infinite.

5.2. A Vandermonde-like determinant

The determinant of the k × k Vandermonde matrix

V (x1, x2, . . . , xk) :=

⎡⎢⎢⎢⎢⎣
1 x1 x2

1 · · · xk−1
1

1 x2 x2
2 · · · xk−1

2
...

...
...

. . .
...

1 xk x2
k · · · xk−1

k

⎤⎥⎥⎥⎥⎦
is

detV (x1, x2, . . . , xk) =
∏

1≤i<j≤n

(xj − xi);

see [46, p. 37]. In what follows, V (x1, . . . , ̂xr, . . . , xk) denotes the (k−1) ×(k−1) Vander-
monde matrix obtained from V (x1, x2, . . . , xk) by removing xr (do not confuse the carat 
with the Fourier transform). Cofactor expansion and the linearity of the determinant in 
the final column of a matrix reveals that

detV (x1, x2, . . . , xk)
k∑

r=1

exrz∏
j �=r(xr − xj)

=
k∑

r=1
(−1)k−r detV (x1, x2, . . . , xk)(∏

j<r(xr − xj)
)(∏

j>r(xj − xr)
)exrz

=
k∑

r=1
(−1)k−r detV (x1, . . . , x̂r, . . . , xk)exrz

= det

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xk−2
1 ex1z

1 x2 x2
2 · · · xk−2

2 ex2z

...
...

...
. . .

...
...

1 xk x2
k · · · xk−2

k exkz

⎤⎥⎥⎥⎦

=
∞∑
i=0

zi

i! det

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xk−2
1 xi

1

1 x2 x2
2 · · · xk−2

2 xi
2

...
...

...
. . .

...
...

1 xk x2
k · · · xk−2

k xi
k

⎤⎥⎥⎥⎦

=
∞∑
p=0

zp+k−1

(p + k − 1)! det

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xk−2
1 xp+k−1

1

1 x2 x2
2 · · · xk−2

2 xp+k−1
2

...
...

...
. . .

...
...

1 xk x2
k · · · xk−2

k xp+k−1
k

⎤⎥⎥⎥⎦ .
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We reindexed the final sum to reflect the fact that the matrices in the second-to-last line 
have repeated columns for i = 0, 1, . . . , k − 2 and hence have vanishing determinant. To 
establish (28), and hence Theorem 3, it suffices to show that

det

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xk−2
1 xp+k−1

1

1 x2 x2
2 · · · xk−2

2 xp+k−1
2

...
...

...
. . .

...
...

1 xk x2
k · · · xk−2

k xp+k−1
k

⎤⎥⎥⎥⎦ = hp(x1, . . . , xk) detV (x1, . . . , xk). (31)

5.3. Some algebraic combinatorics

To establish (31) requires a small amount of algebraic combinatorics. We briefly review 
the notation and results necessary for this purpose; the interested reader may consult 
[61] for complete details.

Let λ := (λ1, λ2, . . . , λk) denote the integer partition

p = λ1 + λ2 + · · · + λk,

in which λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. To such a partition we associate the polynomial

a(λ1+k−1,λ2+k−2,...,λk)(x1, x2, . . . , xk) := det

⎡⎢⎢⎢⎣
xλ1+k−1

1 xλ1+k−1
2 . . . xλ1+k−1

k

xλ2+k−2
1 xλ2+k−2

2 . . . xλ2+k−2
k

...
...

. . .
...

xλk
1 xλk

2 . . . xλk

k

⎤⎥⎥⎥⎦ ,

which is an alternating function of the variables x1, x2, . . . , xk (interchanging any two 
of the variables changes the sign of the determinant). As an alternating polynomial, the 
preceding is divisible by

a(k−1,k−2,...,0)(x1, x2, . . . , xk) = det

⎡⎢⎢⎢⎣
xk−1

1 xk−1
2 . . . xk−1

n

xk−2
1 xk−2

2 . . . xk−2
n

...
...

. . .
...

1 1 . . . 1

⎤⎥⎥⎥⎦
= (−1)(

n
2) detV (x1, x2, . . . , xk).

The Schur polynomial in the variables x1, x2, . . . , xk corresponding to the partition λ
is

sλ(x1, x2, . . . , xk) :=
a(λ1+k−1,λ2+k−2,...,λk+0)(x1, x2, . . . , xk)

a(k−1,k−2,...,0)(x1, x2, . . . , xk)
;

this is Jacobi’s bialternant identity (which is itself a special case of the famed Weyl 
character formula). We now prove (31). If we consider the partition
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λ = (p, 0, 0, . . . , 0︸ ︷︷ ︸
k − 1 zeros

),

then it is well known that sλ(x1, x2, . . . , xk) = hp(x1, x2, . . . , xk), and hence

det

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xk−2
1 xp+k−1

1

1 x2 x2
2 · · · xk−2

2 xp+k−1
2

...
...

...
. . .

...
...

1 xk x2
k · · · xk−2

k xp+k−1
k

⎤⎥⎥⎥⎦

= (−1)(
n
2) det

⎡⎢⎢⎢⎣
xp+k−1

1 xp+k−1
2 . . . xp+k−1

k

xk−2
1 xk−2

2 . . . xk−2
k

...
...

. . .
...

1 1 . . . 1

⎤⎥⎥⎥⎦
= (−1)(

n
2)a(p+k−1,k−2,...,0)(x1, x2, . . . , xk)

= (−1)(
n
2)sλ(x1, x2, . . . , xk)a(k−1,k−2,...,0)(x1, x2, . . . , xk)

= hp(x1, x2, . . . , xk) detV (x1, x2, . . . , xk).

This establishes (31) and concludes the proof of Theorem 3. �
6. Proof of Theorem 1

The proof of Theorem 1 uses a few tools, such as weak convergence and Fourier 
transforms of measures, that are not standard in the study of numerical semigroups. 
Since these ideas are not required to apply Theorem 1 and are not used elsewhere in 
the paper, we introduce the required concepts as needed and make no attempt to state 
definitions and lemmas in the greatest possible generality.

We begin with the necessary background on moments of probability measures (Subsec-
tion 6.1), Fourier transforms of measures (Subsection 6.2), and characteristic functions 
(Subsection 6.3). We then prove a power series convergence lemma (Subsection 6.4) to 
set up our use of characteristic functions. We introduce a family of singular measures 
(Subsection 6.5) that converge weakly to the desired probability measure. This is es-
tablished using the method of characteristic functions and Lévy’s continuity theorem 
(Subsection 6.6). We wrap things up with a dose of Fourier inversion and some detailed 
computations (Subsection 6.7).

6.1. Measures and moments

A Borel measure is a measure defined on the Borel σ-algebra, the σ-algebra of subsets 
of R generated by the open sets. Every subset of R we consider in this paper is a Borel 
set. Let ν be a probability measure on [0, 1]; that is, ν is a Borel measure on [0, 1] such 
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that ν([0, 1]) = 1 and ν(A) ≥ 0 for every Borel set A ⊆ [0, 1]. For p ∈ N, the pth moment
of ν is

mp(ν) =
1∫

0

tp dν(t).

The moments of ν are uniformly bounded since

0 ≤ mp(ν) ≤
1∫

0

dν(t) = ν
(
[0, 1]

)
= 1. (32)

A probability measure on [0, 1] is completely determined by its moments [13, Thm. 30.1].
Let νn be a sequence of probability measures on [0, 1]. Then νn converges weakly to 

a measure ν on [0, 1], denoted by νn → ν, if any of the following equivalent conditions 
hold [13, Thm. 25.8, Thm. 30.2]:

(a) lim
n→∞

1∫
0

f(t) dνn(t) =
1∫

0

f(t) dν(t) for every continuous function on [0, 1].

(b) mp(νn) → mp(ν) for all p ∈ N.
(c) νn(A) → ν(A) for every Borel set A ⊆ [0, 1] for which ν(∂A) = 0; that is, ν places 

no mass on the boundary of A.

The equivalence of (a) and (b) follows from the Weierstrass approximation theorem: 
every continuous function on [0, 1] is uniformly approximable by polynomials. The weak 
limit of a sequence of probability measures is a probability measure and the limit measure 
is unique [13, pp. 336-7].

6.2. The Fourier transform

The Fourier transform of a probability measure ν on [0, 1] is

ν̂(z) :=
1∫

0

eitz dν(t). (33)

This may differ in appearance from what the reader is accustomed to. Normally one 
integrates over R in (33), but that is unnecessary here because ν is supported on [0, 1]. 
We adhere to the positive sign in the exponent of the integrand in (33), which is standard 
in probability theory [13, Sect. 26]. Consequently, the reader should be aware of potential 
sign discrepancies between what follows and formulas from their favored sources.
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The inverse Fourier transform of a suitable f : R → C is

f̂(x) := 1
2π

∫
R

f(t)e−ixt dt.

With much additional work, the inverse Fourier transform can be defined on distributions 
(“generalized functions”). A friendly introduction to Fourier transforms of distributions 
is [55, Ch. 4]. Using the method of finite parts, one can show

̂(
eiat

tn

)
(x) = |x− a|(x− a)n−2

2in(n− 1)! , for n ≥ 2. (34)

This follows from [29, Ex. 9, p. 340] or [48, Table A-6] and the standard translation 
identity [29, eq. (9.29)]. The method of finite parts for treating highly singular functions 
as distributions is discussed in [29, pp. 324-5].

6.3. Characteristic functions

The characteristic function ϕν of a probability measure ν on [0, 1] is the Fourier 
transform of ν:

ϕν(z) := ν̂(z) =
1∫

0

eitz dν(t) =
1∫

0

∞∑
p=0

(itz)p

p! dν(t)

=
∞∑
p=0

(iz)p

p!

1∫
0

tp dν(t) =
∞∑
p=0

mp(ν) (iz)p

p! .

The interchange of sum and integral is permissible because for each fixed z ∈ C the 
series involved converges uniformly for t ∈ [0, 1]. Since |mp(ν)| ≤ 1 for all p ∈ N, 
comparison with the exponential series ensures that the series above has an infinite 
radius of convergence and hence ϕν is an entire function. Moreover,

|ϕν(x)| =
∣∣∣∣

1∫
0

eitx dν(t)
∣∣∣∣ ≤

1∫
0

dν(t) = 1 (35)

for all x ∈ R since ν is a probability measure on [0, 1]. If ν1 and ν2 are probability 
measures and ϕν1 = ϕν2 , then ν1 = ν2 [13, Thm. 26.2].

Under certain circumstances, we can recover a probability measure from its charac-
teristic function [13, pp. 347-8].

Lemma 36 (Inversion theorem). If 
∫
R |ϕν(t)| dt is finite, then Fν := ϕ̂ν is a bounded 

continuous function and ν(A) =
∫

Fν(t) dt for every Borel set A.

A
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The following theorem of Lévy relates weak limits of probability measures to pointwise 
convergence of the corresponding characteristic functions [13, Thm. 26.3].

Lemma 37 (Lévy’s continuity theorem). Let νn be probability measures on [0, 1] such that 
ϕνn

converges pointwise on R to a continuous function ϕ. Then

(a) ϕ = ϕν for some probability measure ν on [0, 1];
(b) νn → ν (weak convergence of measures);
(c) mp(ν) = limp→∞ mp(νn) for all p ∈ N.

6.4. A power series lemma

We ultimately plan to consider a sequence of probability measures νn to which we 
will apply Lemma 37. To show that the associated sequence of characteristic functions 
converges we need the following lemma.

Lemma 38. Suppose that |ap(n)| ≤ 1 for all n, p ∈ N. If limn→∞ ap(n) = ap for each p, 
then 

∑∞
p=0 ap(n) z

p

p! converges locally uniformly on C to 
∑∞

p=0 ap
zp

p!

Proof. Fix R > 0. Let N ∈ N be so large that

∞∑
p=N

Rp

p! <
ε

4 .

Let M ∈ N be such that

n ≥ M =⇒ |ap(n) − ap|
Rp

p! <
ε

2N for 0 ≤ p ≤ N − 1.

If |z| ≤ R, then∣∣∣∣∣
∞∑
p=0

ap(n)z
p

p! −
∞∑
p=0

ap
zp

p!

∣∣∣∣∣ ≤
N−1∑
p=0

|ap(n) − ap|
|z|p
p! +

∞∑
p=N

|ap(n) − ap|
|z|p
p!

≤
N−1∑
p=0

|ap(n) − ap|
Rp

p! + 2
∞∑

p=N

Rp

p!

<
ε

2 + ε

2
= ε.

Thus, the convergence is uniform on |z| ≤ R. Since R > 0 was arbitrary, the convergence 
is locally uniform on C. �



S.R. Garcia et al. / Journal of Combinatorial Theory, Series A 178 (2021) 105358 29
6.5. The measures νn

Fix S = 〈n1, n2, . . . , nk〉. Consider the probability measures

νn = 1
|L�n�|

∑
�∈L�n�

δ�/n (39)

for n ∈ N, wherein δx denotes the point mass at x. Since

1
nk

≤ min
�∈L�n�

�

n
and max

�∈L�n�

�

n
≤ 1

n1
, (40)

the support of each νn is contained in [ 1
nk

, 1
n1

] ⊂ [0, 1]. The pth moment of νn is

mp(νn) =
1∫

0

tp dνn(t) = 1
L�n�

∑
�∈L�n�

(
�

n

)p

.

Theorem 2, (4), and the preceding imply that

lim
n→∞

mp(νn) =
(
p + k − 1

p

)−1

hp

(
1
n1

,
1
n2

, . . . ,
1
nk

)
.

6.6. The function ϕ

For notational simplicity we let xi = 1/ni for i ∈ {1, . . . , k}. The bound (32) and 
Lemma 38 ensure that the characteristic functions ϕνn

converge locally uniformly (and 
hence pointwise) on C to

ϕ(z) =
∞∑
p=0

(
p + k − 1

p

)−1

hp(x1, x2, . . . , xk)
(iz)p

p! (41)

= (k − 1)!
∞∑
p=0

hp(x1, x2, . . . , xk)
(p + k − 1)! (iz)p

= (k − 1)!
k∑

r=1

eixrz

(iz)k−1 ∏
j �=i(xr − xj)

, (42)

in which the final equality is Theorem 3. A glance at (41), or Theorem 3 itself, tells us 
that the apparent singularity in (42) at z = 0 is removable. In particular, ϕ is an entire 
function and ϕ(0) = 1.

Lemma 37 (Lévy’s Continuity theorem) provides a probability measure ν such that 
νn → ν and ϕ = ϕν . From (35) we see that ϕ is bounded on R. Moreover,
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∞∫
1

∣∣∣∣eixrt

tk−1

∣∣∣∣ dt +
−1∫

−∞

∣∣∣∣eixrt

tk−1

∣∣∣∣ dt ≤ 2
∞∫
1

dt

t2
= 2

and hence (42) implies that 
∫
R |ϕ(t)| dt is finite. Lemma 36 implies that Fν = ϕ̂ν is a 

bounded continuous function such that

ν(A) =
∫
A

Fν(t) dt (43)

for all Borel sets A ⊆ [0, 1]. In what follows, we let F := Fν .

6.7. Completion of the proof

We maintain the convention that xi = 1/ni for i ∈ {1, . . . , k}. From the preceding 
discussion we have

F (x) = ϕ̂ν(x)

=
(

(k − 1)!
k∑

r=1

eixrz

(iz)k−1 ∏
j �=r(xr − xj)

)̂
(x) (by (42)) (44)

= (k − 1)!
ik−1

k∑
r=1

1∏
j �=r(xr − xj)

̂(
eixrz

zk−1

)
(x)

= (k − 1)!
2(ik−1)2(k − 2)!

k∑
r=1

|x− xr|(x− xr)k−3∏
j �=r(xr − xj)

(by (34))

= k − 1
2

k∑
r=1

|xr − x|(xr − x)k−3∏
j �=r(xr − xj)

(45)

= k − 1
2

k∑
r=1

| 1
nr

− x|( 1
nr

− x)k−3∏
j �=r(

1
nr

− 1
nj

)

= (k − 1)n1n2 · · ·nk

2

k∑
r=1

|1 − nrx|(1 − nrx)k−3∏
j �=r(nj − nr)

. (46)

For k ≥ 3, induction and the definition of the derivative confirm that |x|xk−3 is k− 3
times continuously differentiable on R, but is not differentiable k − 2 times at x = 0. 
Since the n1, n2, . . . , nk are distinct and because the zeros of 1 −nrx belong to [0, 1], we 
conclude that F is k− 3 times continuously differentiable on [0, 1], but not differentiable 
k − 2 times there.
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Let [α, β] ⊆ [0, 1]. Observe that ∂[α, β] = {α, β}, so (43) implies

ν({α, β}) = ν({α}) + ν({β}) =
α∫

α

F (t) dt +
β∫

β

F (t) dt = 0.

Characterization (c) of the weak convergence νn → ν (Subsection 6.1) implies

lim
n→∞

|{� : L�n� : � ∈ [αn, βn]}|
|L�n�| = lim

n→∞

|{� : L�n� : �
n ∈ [α, β]}|

|L�n�|
= lim

n→∞
νn
(
[α, β]

)
by (39)

= ν
(
[α, β]

)
=

β∫
α

F (t) dt.

Now observe that F is supported on [1/nk, 1/n1] since (40) ensures that

ν([a, b]) = lim
n→∞

νn([a, b]) = 0

for any interval [a, b] that does not intersect [1/nk, 1/n1]. Consequently, characterization 
(a) of the weak convergence νn → ν and Lemma 36 yield

lim
n→∞

1
|L�n�|

∑
�∈L�n�

g(�/n) = lim
n→∞

1∫
0

g(t) dνn(t)

=
1∫

0

g(t) dν(t)

=
1∫

0

g(t)F (t) dt

for any continuous function g : (0, 1) → C (since F is supported on [1/nk, 1/n1] ⊂
(0, 1), the values of g outside of this interval are irrelevant). This concludes the proof of 
Theorem 1. �
7. Concluding remarks

Theorem 1 (which depends upon Theorems 2 and 3) appears to answer all questions 
about the asymptotic behavior of factorization length multisets in numerical semigroups. 
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However, there are a few issues it does not immediately address which suggest several 
avenues for further exploration.

Although the length distribution function F provided by Theorem 1 is explicit, it 
is no longer amenable to symbolic computation when a semigroup has a large number 
of generators. That is, one typically does not expect closed-form answers in terms of 
n1, n2, . . . , nk.

We have shown analytically that F is unimodal for k = 3, 4, and as previously men-
tioned, a general proof was subsequently obtained in [15]. Finally, the numerical examples 
in Section 2 suggest relatively rapid convergence in parts (a) and (c) of Theorem 1. It 
would be of some interest to prove this analytically. However, the techniques involved in 
the proof of these theorems do not appear to readily admit quantitative estimates.
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