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Abstract

We prove that, for every family” of nsemi-algebraic sets R’ of constant description complexity,
there exist a positive constanthat depends on the maximum complexity of the element& pand
two subfamilies7 1, # » C & with at leastn elements each, such that either every elemet of
intersects all elements of » or no element of# 1 intersects any element of 5. This implies the
existence of another constahsuch that# has a subse#’ C % with n° elements, so that either
every pair of elements of?’ intersect each other or the elements%tf are pairwise disjoint. The
same results hold when the intersection relation is replaced by any other semi-algebraic relation. We
apply these results to settle several problems in discrete geometry and in Ramsey theory.
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1. Introduction
1.1. Complete bipartite interaction in graph theory and in geometry

Let V(G) and E(G) denote the vertex set and the edge set of a gaplespectively.
Let H be a fixed graph ok vertices. Erds et al[EHP0O] proved that every gragh with
n vertices, which does not contain an induced subgraph isomorpkichas two disjoint
subsets of vertice¥1, V> € V(G), such thatVi|, | V2| > 2nY* =D, and either all edges
betweenV; and V> belong toG, or no edge betweeV andV, belongs tdG.

Note that the weaker result, where the sizesVpfV, are roughly logn, instead of
nY/®=1 holds for anyn-vertex graph, and immediately follows from Ramsey’s theorem
[ES35]. Arelated result of Edts and Hajnal [EH89] guarantees the existence of a complete

or an empty induced subgraph withv''°9" vertices, where = ¢(H) > 0 is a constant.
See [G97, APSO01] for details concerning the well-known conjecture that this bound can be
further improved ta:¢, for some constartt, and for some partial results in this direction.

The result of [EHP0O] has many geometric applications, wikeeacodes some pattern
of interaction between geometric entities, and where one only needs to find an appropriate
forbidden grapt. For example, it is well known [EET76,PS01] that kaends to infinity,
almost all graphs witlk vertices cannot be obtained as the intersection graph of a fémily
of arcwise connected sets in the plane. Therefore, there exists a canstabitsuch that
every family 7 of arcwise connected sets in the plane has two subfaniflies, < F
with at least:® elements each, such that either every elemerfidhtersects all elements
of F> or no element off; intersects any element @b.

In the special case whefi consists of straight-line segments, Pach and Solymosi [PS01]
improved the lower bound in the last statement frotto ¢n. As we will show, this
improvementalso applies to the case of general arcs, provided they have constant description
complexity (see below).

The goal of this paper is to show that in many geometric applications, that involve a
family F of n geometric objects and a relati®on F, one can find subfamilie®;, 7» of
linear size such that eithef1 x F3 is fully contained inR, or 71 x F is disjoint from
R. As a consequence, we show that one can find a single subf@hily F of sizen?, for
some constani that depends on the problem characteristics, such that either every pair of
distinct elements iF’ x F’ belongs toR, or every pair of distinct elements i’ x F’
does not belong t&.

We present a few applications of these general results. They include subsets of line
segments, arcs, disks, or more general regions in the plane (or in higher fixed dimension),
such that either every pair of elements in the two subsets intersect each other, or every pair
of elements are disjoint; subsets of lines in 3-space, such that all lines in one subset pass
above all lines in the second subset; and a few additional applications.

1.2. Complete bipartite interaction in a general semi-algebraic setting

A real semi-algebraic séh R is the locus of all points that satisfy a given finite Boolean
combination of polynomial equations and inequalities indlveordinates. We say that the
description complexitgf such a set is at mostif in some representation the number of
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equations and inequalities is at mastnd each of them has degree at mostve refer to

such a representation agjaantifier-freerepresentation, and note that semi-algebraic sets
can also be defined using quantifiers involving additional variables, but these quantifiers
can always be eliminated and yield a more explicit, quantifier-free representation of the
set. SedBCR98,BPR03] for details concerning semi-algebraic sets, including quantifier
elimination in such sets.

In what follows, we are given a familf of semi-algebraic sets of constant description
complexity, and a relatioR on F x F. We assume thaR is also semi-algebraic, in the
following sense. Since the sets #fhave constant description complexity, there exists a
constany, such that each sgt € F can be represented by a pojfitin R? (say, the point
whose coordinates are the coefficients of the monomials in the polynomials thatfdefine
Then we say thaR is semi-algebraic if its corresponding representation

R*={(f*.¢"eR¥| f,geF, (f.g € R}

is a semi-algebraic set.
The main general result of this paper is the following:

Theorem 1.1. Let F be a family of n semi-algebraic sets Rf of constant description
complexityand letR € F x F be a fixed semi-algebraic relation gf. Then there exist

a constant > 0, which depends only on the maximum description complexity of the sets
in F and of R and two subfamilies, 7> € F with at leasten elements eaglsuch that
eitherF1 x Fo C R,or (F1 x F2) N R = (.

A typical application of Theorert.1 is withR being the intersection relation. It is easy
to verify that this relation is indeed semi-algebraic, as will be detailed in Section 4. Thus we
obtain two subfamiliesty, > € F with at leasten elements each, such that either every
element ofF; intersects all the elements &b, or no element ofF; intersects any element
of F>.

We remark that Theorem 1.1 also holds if we have two $et§ of semi-algebraic sets
of constant description complexity, and a semi-algebraic relaigh F x G. In this case
we obtaine > 0, and subset$; C F, G1 C G, with |F1| >¢|F|, |G1] =¢€|G|, such that
eitherF; x G1 € R, or (F1 x G1) N R = @. This remark carries over to essentially all the
applications established in this paper.

A natural extension of Theorem 1.1 is to the case wiktiesymmetric, and we seek a
singlesubsetF’ C F such that either every pair of distinct elementgimsatisfiesR, or no
such pair satisfieR. It turns out that this extension is a corollary of Theorem 1.1, except
that we can no longer guarantee ttfthas linear size. Specifically, we show:

Theorem 1.2. Let 7 and R be as in Theorefin1,so that R is symmetric. Then there exist

a constan® > 0, which depends only on the maximum description complexity of the sets
in F and of R and a subfamilyF’ < F with at least:® elementssuch that either every
pair of distinct elements of’ belongs to Ror no such pair belongs to.R

Let us call am-vertex grapht-Ramseyf it contains no cligue and no independent set
of size at least. The known quantitative proofs of Ramsey Theorem, like the one given
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in [ES35], show that na-vertex graph i% log, n-Ramsey. As shown by Eéd [E47] in

one of the first applications of the probabilistic method, this is tight, up to a constant factor,
namely, there ar@-vertex graphs which are 2lgg-Ramsey. Despite the simplicity of
Erdds’ proof, there is no constructive version of it, in the sense that there is no known
deterministic algorithm that constructsdog n-Ramsey graph on vertices, where& is

any absolute constant, in time which is polynomiahinThe problem of finding such an
explicit construction received a considerable amount of attention, but is still wide open.
Theorem 1.2 above shows that such a construction cannot be given by defining the graph
using a semi-algebraic relation on a family of semi-algebraic sets of constant description
complexity in fixed dimension. In fact, amyvertex graph constructed in such a way will
necessarily have a clique or an independent set of size atlefastsomes > 0. This can be
viewed as a partial explanation of the fact that explicit construction@ (g »n)-Ramsey
graphs have so far remained elusive.

In particular, the above implies that if the vertices of a graph are givemugctors in
R?, and the adjacency relation is determined by the signs of some fixed set of (symmetric)
polynomials evaluated at the corresponding vectors, the resulting graph catirdinsey
for anyt = n°®. This (nearly) settles a conjecture of Babai [B76], and improves a pre-
vious result of the first author [A90] that showed that such graphs canrteRbamsey for
t = ea(a/log n).

The problem of finding explicit constructions of grapfis on n vertices so that neither
G, nor its complement contain large complete bipartite graphs with vertex classes of equal
size is even more challenging than that of finding expli¢it)-Ramsey graphs for some
slowly growing functiong (n). In fact, there is no known explicit construction of a graph
G onn vertices such that neith& nor its complement contain a complete bipartite graph
with color classes of sizel/2—¢ each, for anys > 0. Constructions of this type may
yield interesting applications in the process of extracting random bits from weak sources of
randomness, and have thus been considered by various researchers, with no real success.
See [PRO5] for the best known polynomial time construction. Here, too, Theorem 1.1 can
be viewed as a partial explanation of the fact that such explicit constructions have so far
remained elusive.

All the specific geometric applications that are established in this paper, as well as many
other similar results, follow easily from Theorem 1.1 or from its corollary Theorem 1.2. We
present two proofs of Theorem 1.1. The first proof uses a standard linearization process (see
[AM94]) to transform the elements of into vectors in a higher-dimensional space, and
the relationR to the set of all pairs of vectors with a nonnegative scalar product. One then
applies the beautiful partition theorem of Yao and Yao [YY85] (see below for details), to
derive the following “linearized” version of Theorem 1.1 in whigh v) denotes the scalar
product ofu andv.

Theorem 1.3. Let U and V be finite multisets of vectors ®f. Then there are subsets
U’ c UandV’' C V suchthaiU’| > 5£5 |U|, [V'| > 51|V, and either(u, v) >0 for all

uelU',veV',or{uv)<OforallueU' ,veV.

The second proof of Theoreinl uses more advanced machinery from geometric range
searching, notably the results of Agarwal and MatouSek [AM94] on range searching with
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semi-algebraic sets. The resulting proof is somewhat simpler, more general, and more
direct (since it uses heavier machinery), but supplies, in some cases, weaker estimates of
the constants ando.

Although both proofs use fairly standard machinery from real algebraic geometry, they are
somewhat involved because they aim to establish Thedar&nm full generality. However,
in most applications, the linearization process used in the first proof is easy to do “by hand”,
and the relatiomR is just a conjunction of (what become bilinear) inequalities. In such cases
the proof becomes much simpler, and there is no need to explicitly involve the theory of
semi-algebraic sets. We will present direct derivations of several instances of the theorem,
including the intersection relations for line segments and disks in the plane, and for the
above/below relation for lines in 3-space.

1.3. Applications

1.3.1. Intersecting segments, disks, and regions

We first give an alternative and simpler proof of the result of Pach and Solymosi [PS01].
Thatis, we show that, is a family of segments in general position in the plane, then there
exist two subfamiliesy, So C S of linear size, such that either every segmerstiicrosses
all segments irs2, or no segment it§1 crosses any segment$a. As a consequence, any
setSof n segments in general position in the plane has a susetat least:® segments,
so that either every pair of them intersect or no such pair intersect. The constants appearing
in these bounds substantially improve those given in [PS01].

We then demonstrate the generality of our approach by first obtaining similar results
for the intersection relation between disks in the plane, where the linearization can also
be done “by hand”. In fact, as has already been mentioned, the result continues to hold
for the intersection relation of any family of simply shaped regions in the plane or in any
fixed dimension, and we conclude this set of applications by formulating and proving it for
arbitrary semi-algebraic sets (of constant description complexity).

1.3.2. Lines in 3-space

Using the fact that there exists no perfect weaving pattern of five lin&S PPW93],
Erdds, et al. [EHPOO] proved that there exists a positive congtanth that every family
L of n straight lines in general position in 3-space has two subfamilie€, < £ with
at least:® elements each, such that every elemenfppasses above all elementsf.
They have raised the question whether one can replace the b8unydsn. In Section 5,
we answer their question in the affirmative. Specifically, we show in Theorem 5.1 that any
family £ of n straight lines in general position in 3-space has two subfamflie€, € £
with at least: /64 elements each, such that every elemeniiobasses above all elements
of L.

Erdds et al. [EHPOO] also raised the guestion whether there exists a positive constant
o0 such that every familyC of n straight lines in general position in 3-space contains a
tournamenton k >n° lines, that is, a sequenag, £o, ..., ¢; of k>n° lines, such that
¢; passes abové; for all i < j. We answer this quest|0n in the affirmative as well,
with 6 = 1/6; it is an easy corollary of Theorem 5.1, or rather a specialized version of
Theorem 1.2.
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1.4. Miscellaneous results

Clearly, the technique in this paper can be applied to a wide variety of similar relations.
Here are two representative applications:

(a) LetC be a set oh circles in 3-space. Then there exist two subggtsC» of C of
linear size, such that either every paitin x C> forms a link, or no such pair forms a link.
Moreover,C contains a subset’ of at least:? circles, for some constafit such that either
every pair of distinct circles i€’ forms a link, or no such pair forms a link.

(b) Two line segments in the plane areTirpositionif the line containing one of the
segments intersects the other segmergedment T-grapis a graph whose vertices are a
collection of pairwise disjoint line segments in the plane, where two vertices are adjacent
iff the corresponding segments areliposition. The study of segmetgraphs has been
motivated by the investigation of certain problems on common transversals for families of
disjoint segments in the plane. JAKS90] it is shown that some graphs are not segment
T-graphs. Our results here imply the following stronger statement, showing that typical
graphs are not segmemgraphs: Any segmertgraph contains two linear-size subsets of
vertices, so that either every vertex of the first set is adjacent to every vertex of the second,
or no vertex of the first set is adjacent to any vertex of the second.

The paper is organized as follows. In Section 2 we present the proof of Theorem 1.3, and
then describe the first proof of Theorem 1.1 and the derivation of its corollary, Theorem 1.2,
in Section 3. The second proof is given later, in Section 6. We first present the applications
to intersecting segments, disks, and regions (Section 4), and to lines in 3-space (Section 5).
In many of these applications, the first proof can be applied with the linearization done
explicitly “by hand”. The final section, Section 7, contains a brief discussion of the other
problems mentioned above, together with some concluding remarks.

2. Proof of Theorem 1.3

A major tool in our analysis is the following result of Yao and Yao [YY85], that has
been an important stepping stone in the early development of the theory of geometric range
searching, and whose proof uses the Borsuk—Ulam theorem (see, e.g., [M03]).

Theorem 2.1(Yao and YagYY85]). Given a continuous and everywhere positive density
function onR¢, one can partitioriR into 2 regions each with mass equal tg, such that

every hyperplane i’ must avoid at least one of the regions

Moreover, the partition oRR¢ yielded by the theorem is such that each region is a convex
polyhedral cone, and all cones have a common apexcéhterin [YY85]).

It is an immediate corollary of the discrete version of the Yao—Yao theorem that, given
a finite setV of vectors inR?, one can partitioriR? into 2! convex polyhedral cones with
a common apeg, such that the closure of each cone contains at ﬂgnéstectors ofV.In
addition, this partition has the property that any closed halfspace fully contains one of the
cones, and any open halfspace contains one of the cones, possibly without its apex
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Let us now turn to the proof of Theorein3. Observe that we may assume that at most
'2% of the vectors irJ are equal to 0, and that at md%ﬁ of the vectors iV are equal to
c. Otherwise, Theorem 1.3 follows readily.

To each vector G4 u € U we assign the hyperplané, = {x € R? : (u, x) = 0. It
induces a partition oRR“ into the two halfspaces

Hu+ ={x eR?: (u,x)>0},
H; ={x¢€ R (u, x) <0}

There are two possible cases:
Casel: For at least half of the vectots the positive halfspacé/," contains a cone of

the partition. In this case at Ieaé{ of those halfspaces contain the same cone, so they all

contain the endpoints of all the vectors in a subsey aff size%. Thus, we have found

a subset/’ C U of sizezd—ﬂl|U| and a subset’ C V of size%, such thatu, v) >0 for
everyu e U',ve V'

Case2: For at least half of the vectors the negative halfspacH,” contains a cone
minus the centet. In this case at leasg; of those halfspaces contain the same cone (minus
its apex). We denote the vectors whose endpoints lie in this cone (excluding the vectors
equal toc) by V. Clearly, |[V'|> 2 (1 — 2)|V| > 5t|V|. Let U’ denote the set of
nonzero vectors € U such thatH, contains all the endpoints of the vectorsi6f Then
U'|= 21— 2)|U| > 5£|U], and any pair of vectors € U’ andv € V' satisfies
(u, v) < 0.

Remark. If all the elements olJ are distinct and all the elements ©f are distinct, as

will be the case in most of our applications, then the sizes of thdgetg’ yielded by the
theorem are at Iea%|U| -1 andzid|V| — 1, respectively. In addition, if the elements of

U andV are in general position, again, a situation that holds in most of our applications,
then the sizes of/’, V' slightly further improve tozid|U| andzld|V|, respectively.

3. First proof of Theorem 1.1

We recap the discussion in the introduction: Since each of the semi-algebraic sets in
F has description complexity , there exists a constagt= ¢(x), such that eaclf €
F can be parametrized as a poifit € R?. Let 7* denote the set of these points. In
addition, the relatiof® can be mapped into a semi-algebraicBetn R?7. More precisely,
for any pair of setsf, g € F, we can express the conditidrf, g) € R as a Boolean
combination of polynomial equations and inequalities in the coordinates of the péirds,
and this defines the representati®n For eachg € F, letX, denote the setf* € R? |
(f*.8%) € R*}.

The next step is to transform the problem further so that the polynomials appearing
in the definition of any of the sets, become linear. This linearization process is fairly
standard, and is described in detail by Agarwal and Mato(8&94]. It results in an
embeddingp of R? as an algebraic variety within some sp&# of larger dimensiorQ,
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and a transformation, which we also denoteghyof each sek, into a polyhedral region
in RC. More specifically, the Boolean combination that defillggemains the same, and
each of the equations and inequalities that appear there is mapped into a bilinear equation
or inequality.

We first replace each equation of the foPn= 0 in the definition ofR* by the two
inequalitiesP >0 andP < 0. Suppose that there are n&wilinear inequalities in the defi-
nition of R*. We run &k-step process, where tfté step starts with two subse’/t% 1 Fi "

of F, and extracts from them subsé?fﬁc ]-‘/ l,]—‘” - ]-‘”_l,such thatj-‘/| 2Q+1| |

71> 2QHl]—'” 11, and either every paitf, g) € F} x Fissuch thatf* g )satlsfy the

jth inequality in the definition of*, or no such palr satlsfles this inequality. Starting the
process Wltfﬂ-", ¢ = F,itis then clear that the final pair of subségis F;’ are such that

\Fel N\ FL 2 s Zk(Q'H') |}'|, and either every pairf, g) € F; x F;/ satisfieRR, or none of these
pairs satisfieR. This is because each of the inequalities that appear in the representation
of R* has a fixed sign for every paji*, g*, with (£, g) € F; x F/. SinceRonly depends

on these signs, the claim follows. This completes the proof of the theorem.

Remark. By the remark at the end of the preceding section, if we assume that the sets in
F are in general position, we can improve the consﬁ@@{m yielded by the proof t%.

3.1. Proof of Theorem 1.2.

Define a family of perfect graphs as follows: the trivial graph with one vertex belongs
to the family, and if two graphgf;, H, belong to the family, then so does their disjoint
union, and their join (that is, the graph obtained from their disjoint union by adding all
edges between vertices Hi and vertices of). The familyg is the family of allcomple-
ment reducible graph®r cographgor short; see, e.g[CPS85]. Obviously, every induced
subgraph of a cograph is also a cograph, and it is easy to prove by induction that every
cograph is perfect, that is, the chromatic number of every induced subgraph of it is equal
to the size of the largest clique in this subgraph. It follows that any cograph\arttices
contains either a clique or an independent set of size at |gastsince if it contains no
clique of size,/m its chromatic number is at mogtm and hence it contains an independent
set of size at leasy/m.

Suppose, now, thaf andR are as in Theorem 1.1, so thHais symmetric. LeiG be a
graph whose vertices are the members &Y, where two such verticef g are adjacent if
and only if(f, g) € R. Leth(r) denote the largest numblesuch that any induced subgraph
of G ont vertices contains an induced subgraphhovertices which is a member ¢f.
Clearly (1) = 1. In addition, we claim that there exists an> 0 that depends only on
the maximum description complexity of the elementsfoind of R, so that for every,

h(t) >2h(et). Indeed, in any induced subgraph®ivith t vertices we can find, by Theorem
1.1, two disjoint sets of verticeBy, F», each of size at least, such that eithe& contains
all edges connecting a member 8f and a member of, or it contains none of these
edges. (Note that the theorem does not ensure that the twsets are disjoint, but this
can clearly be ensured by replacing, if needed, each;d&f a subset of half its size, so that
the two subsets are disjoint.) By definition, the induced subgra@haf 7;, fori = 1, 2,
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contains an induced subgraph on at least:(¢t) vertices, and the desired claim follows
from the definition of the clas§ of cographs. Solving the recurrence, we conclude that
h(n) =zn’, wherey = logy,, 2 > 0 depends only on the maximum description complexity
of the members of and ofR, implying that our grapl@ contains an induced subgraph on
at leastn” vertices that belongs t@. By the discussion in the beginning of the proof, this
implies thatG contains either a clique or an independent set of size atlé&stimplying

the assertion of the theorem.

4. Crossing patterns of segments, disks, and regions

In deriving the first two results, we construct the corresponding linearization explicitly,
and rely directly on Theorerh.3, thereby bypassing the general Theorem 1.1.

4.1. Crossing segments

We first provide an alternative proof of the result of Pach and Solymosi [PS01], with
considerably improved constants.

Theorem 4.1(Pach and Solymo$PS01]). Let S be a family of segments in general posi-
tion in the plane. Then there exist two subfamiligsS, C S, such that S1|, |S2| > 2—}3|S|,
and either every segment i3 crosses all segments §2, or no segment i crosses any
segment irf,.

Proof. We may assume that no segmenSiis vertical. We splitSinto two subsets’, §”
of equal size, such that the slope of every segmeist iis smaller than the slopes of all
segments irs”.

Represent each segment S by the pair(sz, sg) of its left and right endpoints. Let
s€ 8, teS”. Thens Nt # ¢ if and only if (seg(dBvKOSO00] and Fig. 1)

Left-Turn(s_, sr, 1) < 0O,
Left-Turn(s., sr, t1r) > 0O,
Left-Turn(s_, tr, sL) > O,
Left-Turn(z_, tr, sr) < O,

)

where
1 x, Ya
Left-Turn(a, b,c) = |1 xp yp |-
1 xc ye

We next rewrite each of the conditions ih) (@s an inequality involving the scalar product
of a vector that depends emnd a vector that depends biror example, the firstinequality
can be rewritten a8¢1(s), v1(r)) > 0, where

u1(s) = (X5 Ysgp — Ysu Xsrs Ysr — Ysi» Xsg — X5 )

Ul(t) = (_11 X1y s _yIL)
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s
tr

t|_ Sr

Fig. 1. Intersection of the segmerstandt.

and similarly for the other inequalities, where we rewritejthénequality, forj = 2, 3, 4,
as(u;(s), vj(t)) > 0, withu ;(s) andv; () appropriately defined.

To enforce all inequalities irl], we apply Theorem 1.3 four times, where in each step we
enforce one of the inequalities. In the first step we rfiaip the set/; = {u1(s) | s € §'},
and maps” to the setV; = {v1(¢) | r € S”}. Applying Theorem 1.3 to these sets, and using
the general position assumption, we conclude that there exist suljsetss’, Sy < §”,
such that|S}| > 8|S’| N> 8|S”| and either every pair of segments¢) € S; x 7
satisfies the first mequallty in (1), or no such pair of segments satisfies it. In the latter case,
no segment of; intersects any segment 6f and we are done. In the former case, we
proceed to the next pruning step wish and Sy, and extract from them subses$, S
such that either all pairs ifi, x S5 satisfies the second inequality in (1), or no such pair
satisfies it. Continuing this process for at most two more steps, we end up with subsets

S1C S, S, C S, such thatSy| > ( ) 8L — 118, IS2]> 5551, and either every pair
of segmentss, 1) € S1 x So intersect each other, or all such pairs are disjoiril

We remark that our constant= 2—}3 is much larger than the one provided by the analysis
of [PS01], and the new proof is conceptually simpler.

4.2. Crossing disks

Our approach can be easily applied to prove Ramsey-type results of this kind for families
of other geometric objects. For example, we have:

Theorem 4.2. Let S be a family of disks in the plane. Then there exist two subfamilies
S1, S2 € S, such that Sy, |S2| > 2—%0|S|, and either every disk iff1 intersects all the disks
in S, or every disk inSy is disjoint from all the disks it$2.

Proof. Represent a disk by the coordinategx,, y;) of its center and by its radius;.
Then a pair of disks, 7 € S intersect each other if and only(i(s), v(¢)) >0, where

u(s) = (—x2, 2x,, =1, —yZ, 2y, =1, 12, 2, D),
U(t)=(17 Xt, x[25 la Yts yl‘za 17 I't, rfz)'

The assertion now follows from Theoreh®, applied in 9-space.[d



320 N. Alon et al. / Journal of Combinatorial Theory, Series A 111 (2005) 310-326
4.3. Crossing regions
Finally, we consider the crossing pattern of general semi-algebraic sets, and show:

Theorem 4.3. Let F be a family of semi-algebraic sets of constant description complexity
in R?. Then there exists > 0that depends only on the maximum description complexity of
the sets inF, and there exist two subfamiligs, 7’ < F such thaiF’|, | F"| > ¢|F|, and
either every element ¢f’ intersects all the elements &f’, or no element ofF” intersects

any element of”.

Proof. This is an immediate application of Theorelrl, with the relatiorR defined as
{(f,g) e Fx F | fNg # ). We need to show thaR is indeed semi-algebraic, in
the sense defined in the introduction. Following the notation in that definition,deta
constant dimension such that the element$ afan be represented as pointdifi. Then
we can represeiR as

R*={(f* ¢ eR¥| fgeFandix e R? | x € f andx € g}.

This is clearly a semi-algebraic set®f?. We can apply quantifier elimination (see, e.g.,
[BPRO3, Theorem 2.74]) to rewritB* as a quantifier-free semi-algebraic set. Then, for
eachg € F, the corresponding region

Lo={f"1(f"¢)eRrR

is also given as a quantifier-free semi-algebraic set, and all these sets have constant descrip-
tion complexity. The theorem is now an immediate corollary of Theatein [

By a similar reasoning, Theorem 1.2 implies the following:

Theorem 4.4. Let F be a family of semi-algebraic sets of constant description complexity
in R?. Then there exisi > 0 that depends on the maximum description complexity of the
sets inF, and a subfamilyF’ C F of size at least?, such that either every element5f
intersects all other elements &f, or no element ofF” intersects any other element .

Remarks.

(a) Clearly, Theorend.4 also applies to the two special cases studied above. For the
case of segments, we obtain a subSeof at leastn'/?® segments, so that either all of
them are pairwise crossing, or all of them are pairwise disjoint. For the case of disks, the
corresponding subset has at lea¥t0 disks. A related result by Aronov et al. [AEG+94]
considers the set of aff) segments that conneetoints in the plane in general position,
and shows the existence of a subse®6il/2) segments, every pair of which intersect.

(b) LetF andg be two families of semi-algebraic sets of constant description complexity
A with |F| = m, |G| = n. Define theirintersection graptas a bipartite graph with vertex
classesF andgG, wheref € F andg € G are connected by an edge if and only if they
have a point in common. As pointed out in the Introduction, Theorem 4.3 also holds in the
following bipartite form: There is a constant= ¢(A) > 0and subfamilies” € F,§' € G
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with |F'| >¢|F|, |G'| >¢|G|, such that either all edges betwe&hand g’ belong to the
intersection graph or none of them do.

Clearly, the total number of labeled bipartite graphs withndn elements in their vertex
classes is’2". However, it follows from the last statement that only a negligible proportion
of them can be obtained as intersection graphs of families of semi-algebraic sets of constant
description complexity. Denoting by(m, n) the (base two) logarithm of the number of all
such graphs, we easily obtain the recurrence:

fim,n) <1+ H@E)m+n)+ f(em, L—e)n)+ f(1—e)m, en)
+ f((L=e)m, (L—e)n),

whereH (x) = —x log, x — (1—x) log,(1—x) is the binary entropy function. This implies
f(m,n) = O((mn)*~7"), forasuitabler = y(A) > 0. This bound can be furtherimproved to
O ((m—+n) log(m+n)), by applying the Thom—Milnor—Warren theorem from real algebraic
geometry to the polynomials that define the intersection reld#d®®,BPR03]. We omit
the details.

5. Lines in space
In this section we show the following result:

Theorem 5.1. Any family £ of n straight lines in general position in 3-space has two
subfamiliesCy, L2 € £ with at leastn/64 elements eaglsuch that every element g
passes above all elementsf.

We exploit a standard representation of lines, using Plicker coordinat¢€E8e96]),
which we briefly review here for the convenience of the reader lbet an oriented line in
R3, and leta, b be two points orf such that is oriented froma to b. Let [ao, a1, a2, a3],
[bo, b1, b2, b3] be the homogeneous coordinatesaindb, with ag, bg being the homoge-
nizing weights! The Pliicker coordinates éfare the six real numbers

n(€) = [mo1, T2, 12, T3, 713, 23],

wherern;; = a;b; — a;b;, for 0<i < j<3. The most important property of this represen-
tation is that incidence between lines is a bilinear predicate. Specifically, define a second
set of Pliicker coordinates by

w(l) = [m23, —M13, 703, M12, — 702, To1].

Thent® is incident to¢® if and only if their Pliicker coordinates satisfy the relationship

D_(2 1, _(2 1, _(2 1, _(2
eV 6 0@ = (¢ D), (@) = 1§} 7F — 237G + 1Y nG + 1§yl

@ (2 @ (2 0, 2

—Ty3Tgy t Mp3 Ty =
wheren® = 7(¢D) andn@ = 7(£?).

1 This means that whemy # 0, the Cartesian coordinatesaére (a1 /ag, az/ag, as/agp), and similarly forb.
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The Plucker coordinates are homogeneous, and yield a mapping of lines in 3-space to
points in the real projective 5-space. If we assume that the given lines are in general position,
we can normalize the Pliicker coordinates by setting the homogenizing weightsto 1,
thus obtaining points ifit>. With some care, we can then use theelation to express the
relation that one line passes above another. Specifically, under this normalization, the sign
of t® ¢ ¢ s positive if and only if the orientation ofV relative to¢@, namely, the
orientation of the simpleabcdwherea, b € D, ¢, d € £@, ¢ is oriented fromato b
and¢@ is oriented fronc to d, is positive. Denote by the projection of a nonvertical line
¢ onto thexy-plane. If we assume that neith&P nor ¢@ is vertical, and if we orient them
so thatt@ lies clockwise to?™V, thent® o ¢ > 0 if and only if ¢® passes abov&?.

Proof of Theorem 5.1. Orient the lines of so that theixy-projections are oriented from

left to right. LetL™ (resp.,£ ™) denote the subset of the¢2 lines of £ whosexy-projections

have the largest (resp., smallest) slopes.iBet {n(f) | £ € LT} andV = {w(®) | £ €

L~}. By Theorem 1.3, and the fact that our lines are all distinct and in general position,
there exist subset8; € L1, £> € £, each of size at Iea% -5 = ga» Such that either
(Do ¢@ > oforevery pait € £1,0@ e L5, 0rt® o¢@ < 0forevery pair® e L1,

@ e £5. (We do not have equality since we have assumed that the lines are in general
position). In other words, either every line 65 passes above all the lines 61, or every

line of £, passes below all the lines gf. This completes the Proof of Theorem 5.1.1

Let f(n) denote the largest integer so that any collection bifies in general position
in 3-space contains @urnamentof f(n) lines, as defined in the introduction. Then, by
Theorem 5.1, we havg(n) >2f (n/64). Solving the recurrence, we ggtn) >n'/6. This
yields an affirmative answer to the question of &8t al. [EHPO0O]:

Corollary 5.2. Every familyL of n straight lines in general position iB-space contains
k>n'/® elementdy, €5, ..., £, such that; passes above; for all i < ;.

It is very likely that the exponent/B in the last statement can be replaced by a better
constant. Cooper and Wagner (personal communication) showed by an easy modification
of a construction ifPT0O0] thatc cannot exceed lgd ~ 0.565.

6. Second proof of Theorem 1.1

As in the introduction, we represent the elementsFoas points inR?, represent the
relationR as a semi-algebraic set&, and construct the regiods, for f € F. For the
convenience of the proof, we slightly modify this notation, and consider the problem in the
following setup. We have a séf of points inR?, and a familyG of semi-algebraic sets
of constant description complexity iR?. The goal is to show the existence of linear-size
subsetsF’ C F, G’ C G, such that eithef € g for every pair(f,g) € F' x G, or f ¢ g
for every pair(f, g) € F' x G'. Putm := |F| andn := |g|.

The arrangement(G) of G is the decomposition dR? into relatively open maximal
connected seteélls), such that each cell is contained in a fixed subset of elemegtsiofl
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avoids all the other elements (§8495]). Since the elements Gfhave constant description
complexity, the standard theory of real algebraic geometry (see [BPRO03]) implies that the
complexity of A(G), namely, the number of cells in this decompositionQig:?), with
a constant of proportionality that dependsgand on the maximum complexity of the
elements of;.

We fix a constant parameter choose a random sampliy of r elements ofg, and
construct the arrangement(Go). Next, we construct theertical decompositiod! (Go)
of A(Go) [CEGS89]. This is a recursively defined decomposition of the cellgl@p)
into subcells of constant description complexity (which, in general, is much larger than the
complexity of the elements @, but still a constant); see [SA95,AS00] for more details
concerning vertical decompositions. As shown in [CEGS89], and enhanced by the recent
improvement of [K01], the number of cells id!(Go) is at mostcr? for ¢ = 2, at most
cr3p(r) for ¢ = 3, wheref(r) is an extremely slowly growing function ofrelated to the
inverse Ackermann function, and at mest?—4+¢, for anys > 0, for g >4, where in all
case< is a constant that depends gand on the description complexity of the elements
of G (and one for g >4). We continue the proof assuming tlaat 4. The other cases can
be handled in a similar (and simpler) manner.

Let 7 be a cell ofAll(Gp), and letg € G. We say that crosses if g Nt # @ butg does
not fully containz. The standard theory of random sampling (see, e.g., [AE98,CS89,S03])
implies that, with high probability, each cell gfl (Go) is crossedy (i.e., intersects but not
contained in) at mos‘"ti—” log r elements ofj, wherec is a constant that depends gand
on the description complexity of the elementstotbut is independent af). Let us then
assume thafip does indeed satisfy this property.

For each celk of Al(Gp), let G; be the subset of the elements®fhat crosse, and
setF; := F N 1. There must exist a cetl satisfying|F| > ”zq’“—iw Then every element
g € G\ g; either fully containg or is disjoint fromz. Setting

1
T or2q—4te’

e

we conclude that there exist a subgét= F; of at leastun elements ofF, and a subset
G’ of at leastfn elements ofj, such that either each element®f is contained in every
element ofG’, or no element ofF’ is contained in any element ¢f. [

o

Discussion. (a) The second proof of Theorelrll does not depend on the linearization of the
elements ofj, and is therefore more general than the preceding one. Such a linearization
is easy to obtain when each elementdofs defined by a single polynomial equality or
inequality, but when each element®fs defined by a Boolean combination of constraints,
such a linearization may be difficult to obtain, without resorting to additional levels of
decomposition. See, e.g., the case of crossing segments in the plane (Theorem 4.1), where
the linearization-based technique had to be applied four levels in succession.

(b) It is also interesting to note that the size@fcan be guaranteed to be almost half
the size ofG. It is not clear which of the two proofs yields a better lower bound on the
size of 7. The advantage of the first proof of Theorem 1.1 is that there are no additional
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hidden constants in the frac:tiog#;1 (or 2—1(,), whereas the constaatn the second proof is
typically quite large. On the other hand, the dimensiadn the first approach depends on
the linearization of the elements gfand can be much larger than the dimensiasf the
ambient space in whiclt is naturally defined.

(c) From a historical perspective, the theorem of Yao and Yao is a precursor to the more
general and advanced decomposition methods that have been later developed for range
searching and related applications, and that we have used in the second proof. Problems
that can be reduced to the setup where the Yao—Yao result can be applied benefit from this
simpler and more elegant decomposition, but the new techniques allow us to extend the
analysis to considerably more general situations.

7. Miscellaneous applications and conclusion

Theorem1.1 easily implies the statement about segniegraphs mentioned in the
introduction: there exists an> 0 such that every collectioBof n segments in the plane
contains two subset$;, S2, each of size at least:, such that either everyy € S1 and
s2 € S2 are inT-position, or nos1 € S1, s2 € S» are inT-position. Indeed, the condition
of being inT-position can be expressed as the conjunction of just the first two inequalities
in (1), and the proof is then just a simplified variant of the proof of Theorem 4.1, yielding
the constant = 2—17 By a similar reasoning, one can deduce from Theorem 1.1 that every
collection ofn circles in 3-space contains two subs€is C» of linear size such that either
every pair inC1 x Cz forms a link, or no such pair forms a link. Many other variants of our
general results can be similarly established.

Let P be a family of semi-algebraic setsRf . Define itscrossing densityd(P), as the
number of crossing pait, p) in P x P, divided by|P|2. Clearly, we have & 5(P)< 1.
Similarly, define th@on-crossing density(P). Then we can use the combinatorial machin-
ery of Pach and Solymosi which is based on the regularity lemma of Szemerédi (see [PS01,
Theorem 3.3]), combined with Theorem 1.1, and obtain the following density Ramsey-type
results for semi-algebraic sets.

Corollary 7.1. LetP be afamily of n semi-algebraic sets of constant description complexity
in R?, such tha’(P) > ¢ > 0.Then there exist a constant- 0, depending on ¢ and on the
maximum description complexity of the set®irand two disjoint subfamilieg’, P” C P,

such thatP’|, |[P”| >en, and every set ifP’ crosses all the sets iR”.

Corollary 7.2. LetP be afamily of n semi-algebraic sets of constant description complexity
in RY, such thatdy(P) >¢ > 0. Then there exist a constant> 0, depending on ¢ and on
the maximum description complexity of set®jrand two disjoint subfamilie®’, P” < P,

such thatP’|, |P”| >en, and no set irP’ crosses any set iR”.

As above, these density Ramsey-type results can be extended to cases where the inter-
section relation is replaced by any other semi-algebraic relation.

The lower estimate for the cardinalities@f, V' in Theoreml.3 contains %-factor.
This exponentially small factor is indeed needed, though we do not know if the base of the
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exponent is tight. That is, there are examples of two&efg ¢ R? of n points each, such
that the conclusion of the theorem does not hold for any two subsetsU, V' C V of
sizes bigger tharji7 for somec > 1. One simple example is obtained by takiig= V =

{+1, —1}9. If there areU’, V' such that(u, v) >0 for allu € U’, v € V' we can replace

V’ by —V’ and conclude thai:, v) <O forallu € U’, v € V’. As this holds in the second
possible conclusion of the theorem as well, we can assume that this is always the case. This
means that the Hamming distance between each memkg&rarfd each member o’ is

at leastd/2, implying, by the known isoperimetric inequality for the Hamming cube (see

[H66]), that min{|U|, |V']} < Zfﬁ, (4) <21/ This gives the required exponential
dependence od (and if we wish to have a fixed and largen we can simply duplicate
every point:/2¢ times). A somewnhat better, similar, example can be obtained by using the
usual isoperimetric inequality on the continuous unit sphef@‘inlt is known (see, e.g.,
[Sch03]) that if we have two sets on the unit spher&frand the distance between them is
at leastf, we can replace each set by a cap of the same measures, where the centers of the
caps are antipodal points, keeping the distance at feldollows that if U’, V’ are two
measurable sets on the unit sphere, and) <0 for allu € U’, v € V’, then the relative
measure of at least one of these sets is at Hﬁ;‘;—) By repeating the reasoning above and
by lettingU andV be two random sets on the unit sphere of sizach, whera tends to
infinity, this implies that the assertion of Theorem 1.3 does not hold if we repla%e
estimate by more thaﬂw. We omit the details.

The Ramsey-type conjecture of Bisland Hajnal, mentioned in the introduction, that any
graph omvertices which does not contain an induced copy of some fixed gtapbntains
either a clique or an independent set of sifdfor somec = ¢(H) > 0, remains open.
Theorem 1.2 shows that the assertion of this conjecture holds for a wide class of graphs
defined by semi-algebraic relations of constant description complexity, and it may well
be the case that the assertion holds for additional classes of graphs defined by geometric
conditions. In particular, as mentioned in the introduction, it is known that intersection
graphs of any familyF of n arcwise connected sets in the plane contains two subfamilies
F1, F of size at leask® each, so that either every element/&fintersects every element
of F>», or no element off7 intersects any element g%. It will be interesting to decide if
a stronger conclusion holds: there is always one subfaffily F of size at least® such
that either every two distinct elements #f intersect, or no two distinct elements &t
intersect. This remains open.
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