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Abstract

We prove that, for every familyFofnsemi-algebraic sets inRd of constant description complexity,
there exist a positive constantε that depends on the maximum complexity of the elements ofF, and
two subfamiliesF1,F2 ⊆ F with at leastεn elements each, such that either every element ofF1
intersects all elements ofF2 or no element ofF1 intersects any element ofF2. This implies the
existence of another constant� such thatF has a subsetF′ ⊆ F with n� elements, so that either
every pair of elements ofF′ intersect each other or the elements ofF′ are pairwise disjoint. The
same results hold when the intersection relation is replaced by any other semi-algebraic relation. We
apply these results to settle several problems in discrete geometry and in Ramsey theory.
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1. Introduction

1.1. Complete bipartite interaction in graph theory and in geometry

Let V (G) andE(G) denote the vertex set and the edge set of a graphG, respectively.
LetH be a fixed graph onk vertices. Erd̋os et al.[EHP00] proved that every graphGwith
n vertices, which does not contain an induced subgraph isomorphic toH, has two disjoint
subsets of verticesV1, V2 ⊆ V (G), such that|V1|, |V2|� 1

2n
1/(k−1), and either all edges

betweenV1 andV2 belong toG, or no edge betweenV1 andV2 belongs toG.
Note that the weaker result, where the sizes ofV1, V2 are roughly logn, instead of

n1/(k−1), holds for anyn-vertex graph, and immediately follows from Ramsey’s theorem
[ES35]. A related result of Erd̋os and Hajnal [EH89] guarantees the existence of a complete

or an empty induced subgraph withec
√

log n vertices, wherec = c(H) > 0 is a constant.
See [G97, APS01] for details concerning the well-known conjecture that this bound can be
further improved tonc, for some constantc, and for some partial results in this direction.

The result of [EHP00] has many geometric applications, whereG encodes some pattern
of interaction between geometric entities, and where one only needs to find an appropriate
forbidden graphH. For example, it is well known [EET76,PS01] that, ask tends to infinity,
almost all graphs withk vertices cannot be obtained as the intersection graph of a familyF
of arcwise connected sets in the plane. Therefore, there exists a constant� > 0 such that
every familyF of arcwise connected sets in the plane has two subfamiliesF1,F2 ⊆ F
with at leastn� elements each, such that either every element ofF1 intersects all elements
of F2 or no element ofF1 intersects any element ofF2.

In the special case whenF consists of straight-line segments, Pach and Solymosi [PS01]
improved the lower bound in the last statement fromn� to εn. As we will show, this
improvement also applies to the case of general arcs, provided they have constant description
complexity (see below).

The goal of this paper is to show that in many geometric applications, that involve a
family F of n geometric objects and a relationRonF , one can find subfamiliesF1,F2 of
linear size, such that eitherF1 × F2 is fully contained inR, or F1 × F2 is disjoint from
R. As a consequence, we show that one can find a single subfamilyF ′ ⊆ F of sizen�, for
some constant� that depends on the problem characteristics, such that either every pair of
distinct elements inF ′ × F ′ belongs toR, or every pair of distinct elements inF ′ × F ′
does not belong toR.

We present a few applications of these general results. They include subsets of line
segments, arcs, disks, or more general regions in the plane (or in higher fixed dimension),
such that either every pair of elements in the two subsets intersect each other, or every pair
of elements are disjoint; subsets of lines in 3-space, such that all lines in one subset pass
above all lines in the second subset; and a few additional applications.

1.2. Complete bipartite interaction in a general semi-algebraic setting

A real semi-algebraic setin Rd is the locus of all points that satisfy a given finite Boolean
combination of polynomial equations and inequalities in thed coordinates. We say that the
description complexityof such a set is at most� if in some representation the number of
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equations and inequalities is at most�, and each of them has degree at most�. We refer to
such a representation as aquantifier-freerepresentation, and note that semi-algebraic sets
can also be defined using quantifiers involving additional variables, but these quantifiers
can always be eliminated and yield a more explicit, quantifier-free representation of the
set. See[BCR98,BPR03] for details concerning semi-algebraic sets, including quantifier
elimination in such sets.

In what follows, we are given a familyF of semi-algebraic sets of constant description
complexity, and a relationR on F × F . We assume thatR is also semi-algebraic, in the
following sense. Since the sets ofF have constant description complexity, there exists a
constantq, such that each setf ∈ F can be represented by a pointf ∗ in Rq (say, the point
whose coordinates are the coefficients of the monomials in the polynomials that definef ).
Then we say thatR is semi-algebraic if its corresponding representation

R∗ = {(f ∗, g∗) ∈ R2q | f, g ∈ F, (f, g) ∈ R}
is a semi-algebraic set.

The main general result of this paper is the following:

Theorem 1.1. Let F be a family of n semi-algebraic sets inRd of constant description
complexity, and letR ⊆ F × F be a fixed semi-algebraic relation onF . Then there exist
a constantε > 0,which depends only on the maximum description complexity of the sets
in F and of R, and two subfamiliesF1,F2 ⊆ F with at leastεn elements each, such that
eitherF1 × F2 ⊆ R, or (F1 × F2) ∩ R = ∅.

A typical application of Theorem1.1 is withRbeing the intersection relation. It is easy
to verify that this relation is indeed semi-algebraic, as will be detailed in Section 4. Thus we
obtain two subfamiliesF1,F2 ⊆ F with at leastεn elements each, such that either every
element ofF1 intersects all the elements ofF2, or no element ofF1 intersects any element
of F2.

We remark that Theorem 1.1 also holds if we have two setsF,G of semi-algebraic sets
of constant description complexity, and a semi-algebraic relationR ⊆ F × G. In this case
we obtainε > 0, and subsetsF1 ⊆ F , G1 ⊆ G, with |F1|�ε|F |, |G1|�ε|G|, such that
eitherF1 × G1 ⊆ R, or (F1 × G1) ∩ R = ∅. This remark carries over to essentially all the
applications established in this paper.

A natural extension of Theorem 1.1 is to the case whereR is symmetric, and we seek a
singlesubsetF ′ ⊆ F such that either every pair of distinct elements inF ′ satisfiesR, or no
such pair satisfiesR. It turns out that this extension is a corollary of Theorem 1.1, except
that we can no longer guarantee thatF ′ has linear size. Specifically, we show:

Theorem 1.2. LetF and R be as in Theorem1.1,so that R is symmetric. Then there exist
a constant� > 0,which depends only on the maximum description complexity of the sets
in F and of R, and a subfamilyF ′ ⊆ F with at leastn� elements, such that either every
pair of distinct elements ofF ′ belongs to R, or no such pair belongs to R.

Let us call ann-vertex grapht-Ramseyif it contains no clique and no independent set
of size at leastt. The known quantitative proofs of Ramsey Theorem, like the one given
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in [ES35], show that non-vertex graph is1
2 log2 n-Ramsey. As shown by Erdős [E47] in

one of the first applications of the probabilistic method, this is tight, up to a constant factor,
namely, there aren-vertex graphs which are 2 log2 n-Ramsey. Despite the simplicity of
Erdős’ proof, there is no constructive version of it, in the sense that there is no known
deterministic algorithm that constructs aC log n-Ramsey graph onn vertices, whereC is
any absolute constant, in time which is polynomial inn. The problem of finding such an
explicit construction received a considerable amount of attention, but is still wide open.
Theorem 1.2 above shows that such a construction cannot be given by defining the graph
using a semi-algebraic relation on a family of semi-algebraic sets of constant description
complexity in fixed dimension. In fact, anyn-vertex graph constructed in such a way will
necessarily have a clique or an independent set of size at leastn� for some� > 0. This can be
viewed as a partial explanation of the fact that explicit constructions ofO(log n)-Ramsey
graphs have so far remained elusive.

In particular, the above implies that if the vertices of a graph are given byn vectors in
Rd , and the adjacency relation is determined by the signs of some fixed set of (symmetric)
polynomials evaluated at the corresponding vectors, the resulting graph cannot bet-Ramsey
for any t = no(1). This (nearly) settles a conjecture of Babai [B76], and improves a pre-
vious result of the first author [A90] that showed that such graphs cannot bet-Ramsey for

t = eo(
√

log n).
The problem of finding explicit constructions of graphsGn onn vertices so that neither

Gn nor its complement contain large complete bipartite graphs with vertex classes of equal
size is even more challenging than that of finding explicitt (n)-Ramsey graphs for some
slowly growing functionst (n). In fact, there is no known explicit construction of a graph
G onn vertices such that neitherG nor its complement contain a complete bipartite graph
with color classes of sizen1/2−ε each, for anyε > 0. Constructions of this type may
yield interesting applications in the process of extracting random bits from weak sources of
randomness, and have thus been considered by various researchers, with no real success.
See [PR05] for the best known polynomial time construction. Here, too, Theorem 1.1 can
be viewed as a partial explanation of the fact that such explicit constructions have so far
remained elusive.

All the specific geometric applications that are established in this paper, as well as many
other similar results, follow easily from Theorem 1.1 or from its corollary Theorem 1.2. We
present two proofs of Theorem 1.1. The first proof uses a standard linearization process (see
[AM94]) to transform the elements ofF into vectors in a higher-dimensional space, and
the relationR to the set of all pairs of vectors with a nonnegative scalar product. One then
applies the beautiful partition theorem of Yao and Yao [YY85] (see below for details), to
derive the following “linearized” version of Theorem 1.1 in which〈u, v〉 denotes the scalar
product ofu andv.

Theorem 1.3. Let U and V be finite multisets of vectors inRd . Then there are subsets
U ′ ⊂ U andV ′ ⊂ V such that|U ′|� 1

2d+1 |U |, |V ′|� 1
2d+1 |V |, and either〈u, v〉�0 for all

u ∈ U ′, v ∈ V ′, or 〈u, v〉 < 0 for all u ∈ U ′, v ∈ V ′.

The second proof of Theorem1.1 uses more advanced machinery from geometric range
searching, notably the results of Agarwal and Matoušek [AM94] on range searching with
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semi-algebraic sets. The resulting proof is somewhat simpler, more general, and more
direct (since it uses heavier machinery), but supplies, in some cases, weaker estimates of
the constantsε and�.

Although both proofs use fairly standard machinery from real algebraic geometry, they are
somewhat involved because they aim to establish Theorem1.1 in full generality. However,
in most applications, the linearization process used in the first proof is easy to do “by hand”,
and the relationR is just a conjunction of (what become bilinear) inequalities. In such cases
the proof becomes much simpler, and there is no need to explicitly involve the theory of
semi-algebraic sets. We will present direct derivations of several instances of the theorem,
including the intersection relations for line segments and disks in the plane, and for the
above/below relation for lines in 3-space.

1.3. Applications

1.3.1. Intersecting segments, disks, and regions
We first give an alternative and simpler proof of the result of Pach and Solymosi [PS01].

That is, we show that, ifSis a family of segments in general position in the plane, then there
exist two subfamiliesS1, S2 ⊆ S of linear size, such that either every segment inS1 crosses
all segments inS2, or no segment inS1 crosses any segment inS2. As a consequence, any
setSof n segments in general position in the plane has a subsetS′ of at leastn� segments,
so that either every pair of them intersect or no such pair intersect. The constants appearing
in these bounds substantially improve those given in [PS01].

We then demonstrate the generality of our approach by first obtaining similar results
for the intersection relation between disks in the plane, where the linearization can also
be done “by hand”. In fact, as has already been mentioned, the result continues to hold
for the intersection relation of any family of simply shaped regions in the plane or in any
fixed dimension, and we conclude this set of applications by formulating and proving it for
arbitrary semi-algebraic sets (of constant description complexity).

1.3.2. Lines in 3-space
Using the fact that there exists no perfect weaving pattern of five lines inR3 [PPW93],

Erdős, et al. [EHP00] proved that there exists a positive constant� such that every family
L of n straight lines in general position in 3-space has two subfamiliesL1,L2 ⊆ L with
at leastn� elements each, such that every element ofL1 passes above all elements ofL2.
They have raised the question whether one can replace the boundn� by εn. In Section 5,
we answer their question in the affirmative. Specifically, we show in Theorem 5.1 that any
family L of n straight lines in general position in 3-space has two subfamiliesL1,L2 ⊆ L
with at leastn/64 elements each, such that every element ofL1 passes above all elements
of L2.

Erdős et al. [EHP00] also raised the question whether there exists a positive constant
� such that every familyL of n straight lines in general position in 3-space contains a
tournamenton k�n� lines, that is, a sequence�1, �2, . . . , �k of k�n� lines, such that
�i passes above�j for all i < j . We answer this question in the affirmative as well,
with � = 1/6; it is an easy corollary of Theorem 5.1, or rather a specialized version of
Theorem 1.2.
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1.4. Miscellaneous results

Clearly, the technique in this paper can be applied to a wide variety of similar relations.
Here are two representative applications:

(a) LetC be a set ofn circles in 3-space. Then there exist two subsetsC1, C2 of C of
linear size, such that either every pair inC1 ×C2 forms a link, or no such pair forms a link.
Moreover,C contains a subsetC′ of at leastn� circles, for some constant�, such that either
every pair of distinct circles inC′ forms a link, or no such pair forms a link.

(b) Two line segments in the plane are inT-position if the line containing one of the
segments intersects the other segment. Asegment T-graphis a graph whose vertices are a
collection of pairwise disjoint line segments in the plane, where two vertices are adjacent
iff the corresponding segments are inT-position. The study of segmentT-graphs has been
motivated by the investigation of certain problems on common transversals for families of
disjoint segments in the plane. In[AKS90] it is shown that some graphs are not segment
T-graphs. Our results here imply the following stronger statement, showing that typical
graphs are not segmentT-graphs: Any segmentT-graph contains two linear-size subsets of
vertices, so that either every vertex of the first set is adjacent to every vertex of the second,
or no vertex of the first set is adjacent to any vertex of the second.

The paper is organized as follows. In Section 2 we present the proof of Theorem 1.3, and
then describe the first proof of Theorem 1.1 and the derivation of its corollary, Theorem 1.2,
in Section 3. The second proof is given later, in Section 6. We first present the applications
to intersecting segments, disks, and regions (Section 4), and to lines in 3-space (Section 5).
In many of these applications, the first proof can be applied with the linearization done
explicitly “by hand”. The final section, Section 7, contains a brief discussion of the other
problems mentioned above, together with some concluding remarks.

2. Proof of Theorem 1.3

A major tool in our analysis is the following result of Yao and Yao [YY85], that has
been an important stepping stone in the early development of the theory of geometric range
searching, and whose proof uses the Borsuk–Ulam theorem (see, e.g., [M03]).

Theorem 2.1(Yao andYao[YY85]). Given a continuous and everywhere positive density
function onRd , one can partitionRd into2d regions, each with mass equal to1

2d , such that

every hyperplane inRd must avoid at least one of the regions.

Moreover, the partition ofRd yielded by the theorem is such that each region is a convex
polyhedral cone, and all cones have a common apex (thecenterin [YY85]).

It is an immediate corollary of the discrete version of the Yao–Yao theorem that, given
a finite setV of vectors inRd , one can partitionRd into 2d convex polyhedral cones with
a common apexc, such that the closure of each cone contains at least|V |

2d vectors ofV . In
addition, this partition has the property that any closed halfspace fully contains one of the
cones, and any open halfspace contains one of the cones, possibly without its apexc.
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Let us now turn to the proof of Theorem1.3. Observe that we may assume that at most
|U |
2d of the vectors inU are equal to 0, and that at most|V |

2d of the vectors inV are equal to
c. Otherwise, Theorem 1.3 follows readily.

To each vector 0�= u ∈ U we assign the hyperplaneHu = {x ∈ Rd : 〈u, x〉 = 0}. It
induces a partition ofRd into the two halfspaces

H+
u = {x ∈ Rd : 〈u, x〉�0},

H−
u = {x ∈ Rd : 〈u, x〉 < 0}.

There are two possible cases:
Case1: For at least half of the vectorsu, the positive halfspaceH+

u contains a cone of
the partition. In this case at least1

2d of those halfspaces contain the same cone, so they all

contain the endpoints of all the vectors in a subset ofV of size |V |
2d . Thus, we have found

a subsetU ′ ⊆ U of size 1
2d+1 |U | and a subsetV ′ ⊆ V of size |V |

2d , such that〈u, v〉�0 for
everyu ∈ U ′, v ∈ V ′.
Case2: For at least half of the vectorsu, the negative halfspaceH−

u contains a cone
minus the centerc. In this case at least1

2d of those halfspaces contain the same cone (minus
its apex). We denote the vectors whose endpoints lie in this cone (excluding the vectors
equal toc) by V ′. Clearly, |V ′|� 1

2d (1 − 1
2d )|V | > 1

2d+1 |V |. Let U ′ denote the set of
nonzero vectorsu ∈ U such thatH−

u contains all the endpoints of the vectors ofV ′. Then
|U ′|� 1

2d (1 − 1
2d )|U | > 1

2d+1 |U |, and any pair of vectorsu ∈ U ′ andv ∈ V ′ satisfies
〈u, v〉 < 0.

Remark. If all the elements ofU are distinct and all the elements ofV are distinct, as
will be the case in most of our applications, then the sizes of the setsU ′, V ′ yielded by the
theorem are at least1

2d |U | − 1 and 1
2d |V | − 1, respectively. In addition, if the elements of

U andV are in general position, again, a situation that holds in most of our applications,
then the sizes ofU ′, V ′ slightly further improve to1

2d |U | and 1
2d |V |, respectively.

3. First proof of Theorem 1.1

We recap the discussion in the introduction: Since each of the semi-algebraic sets in
F has description complexity��, there exists a constantq = q(�), such that eachf ∈
F can be parametrized as a pointf ∗ ∈ Rq . Let F∗ denote the set of these points. In
addition, the relationRcan be mapped into a semi-algebraic setR∗ in R2q . More precisely,
for any pair of setsf, g ∈ F , we can express the condition(f, g) ∈ R as a Boolean
combination of polynomial equations and inequalities in the coordinates of the pointsf ∗, g∗,
and this defines the representationR∗. For eachg ∈ F , let �g denote the set{f ∗ ∈ Rq |
(f ∗, g∗) ∈ R∗}.

The next step is to transform the problem further so that the polynomials appearing
in the definition of any of the sets�g become linear. This linearization process is fairly
standard, and is described in detail by Agarwal and Matoušek[AM94]. It results in an
embedding� of Rq as an algebraic variety within some spaceRQ of larger dimensionQ,
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and a transformation, which we also denote by�, of each set�g into a polyhedral region
in RQ. More specifically, the Boolean combination that defines�g remains the same, and
each of the equations and inequalities that appear there is mapped into a bilinear equation
or inequality.

We first replace each equation of the formP = 0 in the definition ofR∗ by the two
inequalitiesP �0 andP �0. Suppose that there are nowk bilinear inequalities in the defi-
nition ofR∗. We run ak-step process, where thejth step starts with two subsetsF ′

j−1,F ′′
j−1

of F , and extracts from them subsetsF ′
j ⊆ F ′

j−1,F ′′
j ⊆ F ′′

j−1, such that|F ′
j |� 1

2Q+1 |F ′
j−1|,

|F ′′
j |� 1

2Q+1 |F ′′
j−1|, and either every pair(f, g) ∈ F ′

j ×F ′′
j is such that(f ∗, g∗) satisfy the

jth inequality in the definition ofR∗, or no such pair satisfies this inequality. Starting the
process withF ′

0,F ′′
0 := F , it is then clear that the final pair of subsetsF ′

k,F ′′
k are such that

|F ′
k|, |F ′′

k |� 1
2k(Q+1) |F |, and either every pair(f, g) ∈ F ′

k ×F ′′
k satisfiesR, or none of these

pairs satisfiesR. This is because each of the inequalities that appear in the representation
of R∗ has a fixed sign for every pairf ∗, g∗, with (f, g) ∈ F ′

k × F ′′
k . SinceRonly depends

on these signs, the claim follows. This completes the proof of the theorem.

Remark. By the remark at the end of the preceding section, if we assume that the sets in
F are in general position, we can improve the constant1

2k(Q+1) yielded by the proof to 1
2kQ .

3.1. Proof of Theorem 1.2.

Define a family of perfect graphsG as follows: the trivial graph with one vertex belongs
to the family, and if two graphsH1, H2 belong to the family, then so does their disjoint
union, and their join (that is, the graph obtained from their disjoint union by adding all
edges between vertices ofH1 and vertices ofH2). The familyG is the family of allcomple-
ment reducible graphs, orcographsfor short; see, e.g.,[CPS85]. Obviously, every induced
subgraph of a cograph is also a cograph, and it is easy to prove by induction that every
cograph is perfect, that is, the chromatic number of every induced subgraph of it is equal
to the size of the largest clique in this subgraph. It follows that any cograph onm vertices
contains either a clique or an independent set of size at least

√
m, since if it contains no

clique of size
√
m its chromatic number is at most

√
m and hence it contains an independent

set of size at least
√
m.

Suppose, now, thatF andR are as in Theorem 1.1, so thatR is symmetric. LetG be a
graph whosen vertices are the members ofF , where two such verticesf, g are adjacent if
and only if(f, g) ∈ R. Leth(t) denote the largest numberhsuch that any induced subgraph
of G on t vertices contains an induced subgraph onh vertices which is a member ofG.
Clearlyh(1) = 1. In addition, we claim that there exists anε > 0 that depends only on
the maximum description complexity of the elements ofF and ofR, so that for everyt,
h(t)�2h(εt). Indeed, in any induced subgraph ofGwith t vertices we can find, by Theorem
1.1, two disjoint sets of verticesF1,F2, each of size at leastεt , such that eitherG contains
all edges connecting a member ofF1 and a member ofF2, or it contains none of these
edges. (Note that the theorem does not ensure that the two setsF1,F2 are disjoint, but this
can clearly be ensured by replacing, if needed, each setFi by a subset of half its size, so that
the two subsets are disjoint.) By definition, the induced subgraph ofG onFi , for i = 1,2,
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contains an induced subgraphHi on at leasth(εt) vertices, and the desired claim follows
from the definition of the classG of cographs. Solving the recurrence, we conclude that
h(n)�n�, where� = log(1/ε) 2 > 0 depends only on the maximum description complexity
of the members ofF and ofR, implying that our graphG contains an induced subgraph on
at leastn� vertices that belongs toG. By the discussion in the beginning of the proof, this
implies thatG contains either a clique or an independent set of size at leastn�/2, implying
the assertion of the theorem.

4. Crossing patterns of segments, disks, and regions

In deriving the first two results, we construct the corresponding linearization explicitly,
and rely directly on Theorem1.3, thereby bypassing the general Theorem 1.1.

4.1. Crossing segments

We first provide an alternative proof of the result of Pach and Solymosi [PS01], with
considerably improved constants.

Theorem 4.1(Pach and Solymosi[PS01]). Let S be a family of segments in general posi-
tion in the plane. Then there exist two subfamiliesS1, S2 ⊆ S, such that|S1|, |S2|� 1

213 |S|,
and either every segment inS1 crosses all segments inS2, or no segment inS1 crosses any
segment inS2.

Proof. We may assume that no segment inS is vertical. We splitS into two subsetsS′, S′′
of equal size, such that the slope of every segment inS′ is smaller than the slopes of all
segments inS′′.

Represent each segments ∈ S by the pair(sL, sR) of its left and right endpoints. Let
s ∈ S′, t ∈ S′′. Thens ∩ t �= ∅ if and only if (see[dBvKOS00] and Fig. 1)

Left-Turn(sL , sR, tL) < 0,
Left-Turn(sL , sR, tR) > 0,
Left-Turn(tL , tR, sL) > 0,
Left-Turn(tL , tR, sR) < 0,

(1)

where

Left-Turn(a, b, c) =
∣∣∣∣∣∣
1 xa ya
1 xb yb
1 xc yc

∣∣∣∣∣∣
.

We next rewrite each of the conditions in (1) as an inequality involving the scalar product
of a vector that depends onsand a vector that depends ont. For example, the first inequality
can be rewritten as〈u1(s), v1(t)〉 > 0, where

u1(s) = (xsLysR − ysLxsR, ysR − ysL , xsR − xsL ),

v1(t) = (−1, xtL , −ytL )
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sL

sRtL

tR

s

t

Fig. 1. Intersection of the segmentssandt.

and similarly for the other inequalities, where we rewrite thejth inequality, forj = 2,3,4,
as〈uj (s), vj (t)〉 > 0, withuj (s) andvj (t) appropriately defined.

To enforce all inequalities in (1), we apply Theorem 1.3 four times, where in each step we
enforce one of the inequalities. In the first step we mapS′ to the setU1 = {u1(s) | s ∈ S′},
and mapS′′ to the setV1 = {v1(t) | t ∈ S′′}. Applying Theorem 1.3 to these sets, and using
the general position assumption, we conclude that there exist subsetsS′

1 ⊆ S′, S′′
1 ⊆ S′′,

such that|S′
1|� 1

8|S′|, |S′′
1 |� 1

8|S′′|, and either every pair of segments(s, t) ∈ S′
1 × S′′

1
satisfies the first inequality in (1), or no such pair of segments satisfies it. In the latter case,
no segment ofS′

1 intersects any segment ofS′′
1 and we are done. In the former case, we

proceed to the next pruning step withS′
1 andS′′

1, and extract from them subsetsS′
2, S

′′
2

such that either all pairs inS′
2 × S′′

2 satisfies the second inequality in (1), or no such pair
satisfies it. Continuing this process for at most two more steps, we end up with subsets

S1 ⊆ S′, S2 ⊆ S′′, such that|S1|�
(

1
8

)4 |S|
2 = 1

213 |S|, |S2|� 1
213 |S|, and either every pair

of segments(s, t) ∈ S1 × S2 intersect each other, or all such pairs are disjoint.�

We remark that our constantc = 1
213 is much larger than the one provided by the analysis

of [PS01], and the new proof is conceptually simpler.

4.2. Crossing disks

Our approach can be easily applied to prove Ramsey-type results of this kind for families
of other geometric objects. For example, we have:

Theorem 4.2. Let S be a family of disks in the plane. Then there exist two subfamilies
S1, S2 ⊆ S, such that|S1|, |S2|� 1

210 |S|, and either every disk inS1 intersects all the disks
in S2, or every disk inS1 is disjoint from all the disks inS2.

Proof. Represent a diskd by the coordinates(xd, yd) of its center and by its radiusrd .
Then a pair of diskss, t ∈ S intersect each other if and only if〈u(s), v(t)〉�0, where

u(s) = (−x2
s , 2xs, −1, −y2

s , 2ys, −1, r2
s , 2rs, 1),

v(t) = (1, xt , x2
t , 1, yt , y2

t , 1, rt , r2
t ).

The assertion now follows from Theorem1.3, applied in 9-space.�
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4.3. Crossing regions

Finally, we consider the crossing pattern of general semi-algebraic sets, and show:

Theorem 4.3. LetF be a family of semi-algebraic sets of constant description complexity
in Rd .Then there existsε > 0 that depends only on the maximum description complexity of
the sets inF , and there exist two subfamiliesF ′,F ′′ ⊆ F such that|F ′|, |F ′′|�ε|F |, and
either every element ofF ′ intersects all the elements ofF ′′, or no element ofF ′ intersects
any element ofF ′′.

Proof. This is an immediate application of Theorem1.1, with the relationR defined as
{(f, g) ∈ F × F | f ∩ g �= ∅}. We need to show thatR is indeed semi-algebraic, in
the sense defined in the introduction. Following the notation in that definition, letq be a
constant dimension such that the elements ofF can be represented as points inRq . Then
we can representRas

R∗ = {(f ∗, g∗) ∈ R2q | f, g ∈ F and∃x ∈ Rd | x ∈ f andx ∈ g}.
This is clearly a semi-algebraic set inR2q . We can apply quantifier elimination (see, e.g.,
[BPR03, Theorem 2.74]) to rewriteR∗ as a quantifier-free semi-algebraic set. Then, for
eachg ∈ F , the corresponding region

�g = {f ∗ | (f ∗, g∗) ∈ R∗}
is also given as a quantifier-free semi-algebraic set, and all these sets have constant descrip-
tion complexity. The theorem is now an immediate corollary of Theorem1.1. �

By a similar reasoning, Theorem 1.2 implies the following:

Theorem 4.4. LetF be a family of semi-algebraic sets of constant description complexity
in Rd . Then there exist� > 0 that depends on the maximum description complexity of the
sets inF , and a subfamilyF ′ ⊆ F of size at leastn�, such that either every element ofF ′
intersects all other elements ofF ′, or no element ofF ′ intersects any other element ofF ′.

Remarks.
(a) Clearly, Theorem4.4 also applies to the two special cases studied above. For the

case of segments, we obtain a subsetS′ of at leastn1/26 segments, so that either all of
them are pairwise crossing, or all of them are pairwise disjoint. For the case of disks, the
corresponding subset has at leastn1/20 disks. A related result by Aronov et al. [AEG+94]
considers the set of all

(
n
2

)
segments that connectn points in the plane in general position,

and shows the existence of a subset of�(n1/2) segments, every pair of which intersect.
(b) LetF andG be two families of semi-algebraic sets of constant description complexity

� with |F | = m, |G| = n. Define theirintersection graphas a bipartite graph with vertex
classesF andG, wheref ∈ F andg ∈ G are connected by an edge if and only if they
have a point in common. As pointed out in the Introduction, Theorem 4.3 also holds in the
following bipartite form: There is a constantε = ε(�) > 0 and subfamiliesF ′ ⊆ F,G′ ⊆ G
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with |F ′|�ε|F |, |G′|�ε|G|, such that either all edges betweenF ′ andG′ belong to the
intersection graph or none of them do.

Clearly, the total number of labeled bipartite graphs withmandnelements in their vertex
classes is 2mn. However, it follows from the last statement that only a negligible proportion
of them can be obtained as intersection graphs of families of semi-algebraic sets of constant
description complexity. Denoting byf (m, n) the (base two) logarithm of the number of all
such graphs, we easily obtain the recurrence:

f (m, n) � 1 + H(ε)(m + n) + f (εm, (1 − ε)n) + f ((1 − ε)m, εn)

+ f ((1 − ε)m, (1 − ε)n),

whereH(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy function. This implies
f (m, n) = O((mn)1−�), for a suitable� = �(�) > 0. This bound can be further improved to
O((m+n) log(m+n)), by applying the Thom–Milnor–Warren theorem from real algebraic
geometry to the polynomials that define the intersection relation[A90,BPR03]. We omit
the details.

5. Lines in space

In this section we show the following result:

Theorem 5.1. Any familyL of n straight lines in general position in 3-space has two
subfamiliesL1,L2 ⊆ L with at leastn/64 elements each, such that every element ofL1
passes above all elements ofL2.

We exploit a standard representation of lines, using Plücker coordinates (see[CEG+96]),
which we briefly review here for the convenience of the reader. Let� be an oriented line in
R3, and leta, b be two points on� such that� is oriented froma to b. Let [a0, a1, a2, a3],
[b0, b1, b2, b3] be the homogeneous coordinates ofa andb, with a0, b0 being the homoge-
nizing weights.1 The Plücker coordinates of� are the six real numbers

�(�) = [�01,�02,�12,�03,�13,�23],
where�ij = aibj − ajbi , for 0� i < j �3. The most important property of this represen-
tation is that incidence between lines is a bilinear predicate. Specifically, define a second
set of Plücker coordinates by

�(�) = [�23,−�13,�03,�12,−�02,�01].
Then�(1) is incident to�(2) if and only if their Plücker coordinates satisfy the relationship

�(1) � �(2) := 〈�(�(1)), �(�(2))〉 = �(1)
01 �(2)

23 − �(1)
02 �(2)

13 + �(1)
12 �(2)

03 + �(1)
03 �(2)

12

−�(1)
13 �(2)

02 + �(1)
23 �(2)

01 = 0, (2)

where�(1) = �(�(1)) and�(2) = �(�(2)).

1 This means that whena0 �= 0, the Cartesian coordinates ofa are(a1/a0, a2/a0, a3/a0), and similarly forb.
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The Plücker coordinates are homogeneous, and yield a mapping of lines in 3-space to
points in the real projective 5-space. If we assume that the given lines are in general position,
we can normalize the Plücker coordinates by setting the homogenizing weightsa0, b0 to 1,
thus obtaining points inR5. With some care, we can then use the�-relation to express the
relation that one line passes above another. Specifically, under this normalization, the sign
of �(1) � �(2) is positive if and only if the orientation of�(1) relative to�(2), namely, the
orientation of the simplexabcdwherea, b ∈ �(1), c, d ∈ �(2), �(1) is oriented froma to b
and�(2) is oriented fromc to d, is positive. Denote bȳ� the projection of a nonvertical line
� onto thexy-plane. If we assume that neither�(1) nor�(2) is vertical, and if we orient them
so that�̄(2) lies clockwise to�̄(1), then�(1) � �(2) > 0 if and only if�(2) passes above�(1).

Proof of Theorem 5.1. Orient the lines ofL so that theirxy-projections are oriented from
left to right. LetL+ (resp.,L−) denote the subset of then/2 lines ofL whosexy-projections
have the largest (resp., smallest) slopes. SetU := {�(�) | � ∈ L+} andV := {�(�) | � ∈
L−}. By Theorem 1.3, and the fact that our lines are all distinct and in general position,
there exist subsetsL1 ⊆ L+, L2 ⊆ L−, each of size at least1

25 · n
2 = n

64, such that either

�(1) ��(2) > 0 for every pair�(1) ∈ L1, �(2) ∈ L2, or�(1) ��(2) < 0 for every pair�(1) ∈ L1,
�(2) ∈ L2. (We do not have equality since we have assumed that the lines are in general
position). In other words, either every line ofL2 passes above all the lines ofL1, or every
line of L2 passes below all the lines ofL1. This completes the Proof of Theorem 5.1.�

Let f (n) denote the largest integer so that any collection ofn lines in general position
in 3-space contains atournamentof f (n) lines, as defined in the introduction. Then, by
Theorem 5.1, we havef (n)�2f (n/64). Solving the recurrence, we getf (n)�n1/6. This
yields an affirmative answer to the question of Erdős et al. [EHP00]:

Corollary 5.2. Every familyL of n straight lines in general position in3-space contains
k�n1/6 elements�1, �2, . . . , �k, such that�i passes above�j for all i < j .

It is very likely that the exponent 1/6 in the last statement can be replaced by a better
constantc. Cooper and Wagner (personal communication) showed by an easy modification
of a construction in[PT00] thatc cannot exceed log7 3 ≈ 0.565.

6. Second proof of Theorem 1.1

As in the introduction, we represent the elements ofF as points inRq , represent the
relationRas a semi-algebraic set inR2q , and construct the regions�f , for f ∈ F . For the
convenience of the proof, we slightly modify this notation, and consider the problem in the
following setup. We have a setF of points inRq , and a familyG of semi-algebraic sets
of constant description complexity inRq . The goal is to show the existence of linear-size
subsetsF ′ ⊆ F , G′ ⊆ G, such that eitherf ∈ g for every pair(f, g) ∈ F ′ × G′, or f /∈ g

for every pair(f, g) ∈ F ′ × G′. Putm := |F | andn := |G|.
The arrangementA(G) of G is the decomposition ofRq into relatively open maximal

connected sets (cells), such that each cell is contained in a fixed subset of elements ofG and
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avoids all the other elements (see[SA95]). Since the elements ofG have constant description
complexity, the standard theory of real algebraic geometry (see [BPR03]) implies that the
complexity ofA(G), namely, the number of cells in this decomposition, isO(nq), with
a constant of proportionality that depends onq and on the maximum complexity of the
elements ofG.

We fix a constant parameterr, choose a random sampleG0 of r elements ofG, and
construct the arrangementA(G0). Next, we construct thevertical decompositionA‖(G0)

of A(G0) [CEGS89]. This is a recursively defined decomposition of the cells ofA(G0)

into subcells of constant description complexity (which, in general, is much larger than the
complexity of the elements ofG, but still a constant); see [SA95,AS00] for more details
concerning vertical decompositions. As shown in [CEGS89], and enhanced by the recent
improvement of [K01], the number of cells inA‖(G0) is at mostcr2 for q = 2, at most
cr3�(r) for q = 3, where�(r) is an extremely slowly growing function ofr related to the
inverse Ackermann function, and at mostcr2q−4+ε, for anyε > 0, for q�4, where in all
casesc is a constant that depends onq and on the description complexity of the elements
of G (and onε for q�4). We continue the proof assuming thatq�4. The other cases can
be handled in a similar (and simpler) manner.

Let 	 be a cell ofA‖(G0), and letg ∈ G. We say thatg crosses	 if g ∩ 	 �= ∅ butg does
not fully contain	. The standard theory of random sampling (see, e.g., [AE98,CS89,S03])
implies that, with high probability, each cell ofA‖(G0) is crossedby (i.e., intersects but not
contained in) at mostc1n

r
log r elements ofG, wherec1 is a constant that depends onq and

on the description complexity of the elements ofG (but is independent ofr). Let us then
assume thatG0 does indeed satisfy this property.

For each cell	 of A‖(G0), let G	 be the subset of the elements ofG that cross	, and
setF	 := F ∩ 	. There must exist a cell	 satisfying|F	|� m

cr2q−4+ε . Then every element
g ∈ G \ G	 either fully contains	 or is disjoint from	. Setting


 = 1

cr2q−4+ε
,

� = 1

2

(
1 − c1

r
logr

)
≈ 1

2
,

we conclude that there exist a subsetF ′ = F	 of at least
m elements ofF , and a subset
G′ of at least�n elements ofG, such that either each element ofF ′ is contained in every
element ofG′, or no element ofF ′ is contained in any element ofG′. �

Discussion. (a) The second proof of Theorem1.1 does not depend on the linearization of the
elements ofG, and is therefore more general than the preceding one. Such a linearization
is easy to obtain when each element ofG is defined by a single polynomial equality or
inequality, but when each element ofG is defined by a Boolean combination of constraints,
such a linearization may be difficult to obtain, without resorting to additional levels of
decomposition. See, e.g., the case of crossing segments in the plane (Theorem 4.1), where
the linearization-based technique had to be applied four levels in succession.

(b) It is also interesting to note that the size ofG′ can be guaranteed to be almost half
the size ofG. It is not clear which of the two proofs yields a better lower bound on the
size ofF ′. The advantage of the first proof of Theorem 1.1 is that there are no additional
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hidden constants in the fractions1
2d+1 (or 1

2d ), whereas the constantc in the second proof is
typically quite large. On the other hand, the dimensiond in the first approach depends on
the linearization of the elements ofG and can be much larger than the dimensionq of the
ambient space in whichF is naturally defined.

(c) From a historical perspective, the theorem of Yao and Yao is a precursor to the more
general and advanced decomposition methods that have been later developed for range
searching and related applications, and that we have used in the second proof. Problems
that can be reduced to the setup where the Yao–Yao result can be applied benefit from this
simpler and more elegant decomposition, but the new techniques allow us to extend the
analysis to considerably more general situations.

7. Miscellaneous applications and conclusion

Theorem1.1 easily implies the statement about segmentT-graphs mentioned in the
introduction: there exists anε > 0 such that every collectionSof n segments in the plane
contains two subsetsS1, S2, each of size at leastεn, such that either everys1 ∈ S1 and
s2 ∈ S2 are inT-position, or nos1 ∈ S1, s2 ∈ S2 are inT-position. Indeed, the condition
of being inT-position can be expressed as the conjunction of just the first two inequalities
in (1), and the proof is then just a simplified variant of the proof of Theorem 4.1, yielding
the constantε = 1

27 . By a similar reasoning, one can deduce from Theorem 1.1 that every
collection ofn circles in 3-space contains two subsetsC1, C2 of linear size such that either
every pair inC1 ×C2 forms a link, or no such pair forms a link. Many other variants of our
general results can be similarly established.

Let P be a family of semi-algebraic sets inRd . Define itscrossing density, �(P), as the
number of crossing pairs(p, p′) in P ×P, divided by|P|2. Clearly, we have 0��(P)�1.
Similarly, define thenon-crossingdensity, �̄(P). Then we can use the combinatorial machin-
ery of Pach and Solymosi which is based on the regularity lemma of Szemerédi (see [PS01,
Theorem 3.3]), combined with Theorem 1.1, and obtain the following density Ramsey-type
results for semi-algebraic sets.

Corollary 7.1. LetP bea family of n semi-algebraic sets of constant description complexity
inRd , such that�(P)�c > 0.Then there exist a constantε > 0,depending on c and on the
maximum description complexity of the sets inP, and two disjoint subfamiliesP ′,P ′′ ⊆ P,
such that|P ′|, |P ′′|�εn, and every set inP ′ crosses all the sets inP ′′.

Corollary 7.2. LetP bea family of n semi-algebraic sets of constant description complexity
in Rd , such that�̄(P)�c > 0.Then there exist a constantε > 0, depending on c and on
themaximum description complexity of sets inP, and two disjoint subfamiliesP ′,P ′′ ⊆ P,
such that|P ′|, |P ′′|�εn, and no set inP ′ crosses any set inP ′′.

As above, these density Ramsey-type results can be extended to cases where the inter-
section relation is replaced by any other semi-algebraic relation.

The lower estimate for the cardinalities ofU ′, V ′ in Theorem1.3 contains a 1
2d+1 -factor.

This exponentially small factor is indeed needed, though we do not know if the base of the
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exponent is tight. That is, there are examples of two setsU,V ⊂ Rd of n points each, such
that the conclusion of the theorem does not hold for any two subsetsU ′ ⊂ U, V ′ ⊂ V of
sizes bigger thann

cd
for somec > 1. One simple example is obtained by takingU = V =

{+1,−1}d . If there areU ′, V ′ such that〈u, v〉�0 for all u ∈ U ′, v ∈ V ′ we can replace
V ′ by −V ′ and conclude that〈u, v〉�0 for all u ∈ U ′, v ∈ V ′. As this holds in the second
possible conclusion of the theorem as well, we can assume that this is always the case. This
means that the Hamming distance between each member ofU ′ and each member ofV ′ is
at leastd/2, implying, by the known isoperimetric inequality for the Hamming cube (see
[H66]), that min{|U ′|, |V ′|}� ∑d/4

i=0

(
d
i

)
�2H(1/4)d . This gives the required exponential

dependence ond (and if we wish to have a fixedd and largen we can simply duplicate
every pointn/2d times). A somewhat better, similar, example can be obtained by using the
usual isoperimetric inequality on the continuous unit sphere inRd . It is known (see, e.g.,
[Sch03]) that if we have two sets on the unit sphere inRd and the distance between them is
at leastf, we can replace each set by a cap of the same measures, where the centers of the
caps are antipodal points, keeping the distance at leastf. It follows that if U ′, V ′ are two
measurable sets on the unit sphere, and〈u, v〉�0 for all u ∈ U ′, v ∈ V ′, then the relative
measure of at least one of these sets is at most1+o(1)

2d/2 . By repeating the reasoning above and
by lettingU andV be two random sets on the unit sphere of sizen each, wheren tends to
infinity, this implies that the assertion of Theorem 1.3 does not hold if we replace then

2d+1

estimate by more than n

(1−o(1))2d/2 . We omit the details.
The Ramsey-type conjecture of Erdős and Hajnal, mentioned in the introduction, that any

graph onnvertices which does not contain an induced copy of some fixed graphH, contains
either a clique or an independent set of sizenc for somec = c(H) > 0, remains open.
Theorem 1.2 shows that the assertion of this conjecture holds for a wide class of graphs
defined by semi-algebraic relations of constant description complexity, and it may well
be the case that the assertion holds for additional classes of graphs defined by geometric
conditions. In particular, as mentioned in the introduction, it is known that intersection
graphs of any familyF of n arcwise connected sets in the plane contains two subfamilies
F1,F2 of size at leastn� each, so that either every element ofF1 intersects every element
of F2, or no element ofF1 intersects any element ofF2. It will be interesting to decide if
a stronger conclusion holds: there is always one subfamilyF ′ ⊂ F of size at leastn� such
that either every two distinct elements ofF ′ intersect, or no two distinct elements ofF ′
intersect. This remains open.
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