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1. Introduction

Let n be a positive integer, and let Zn be the residue ring of integers modulo n. A difference system
of sets (DSS) with parameters (n, {τ0, τ1, . . . , τq−1},ρ) is a collection of q disjoint sets Di ⊂ Zn such
that |Di | = τi for all i with 0 � i � q − 1 and the multiset

{
(a − b) mod n: a ∈ Di, b ∈ D j, i �= j, 0 � i, j � q − 1

}
(1)

contains every number i, 1 � i � n − 1, at least ρ times. A DSS is said perfect if every nonzero integer
in Zn is contained exactly ρ times in the multiset of (1). A DSS is called regular if all the subsets Di

are of the same size.
Levenstein [7] (see also [8]) introduced DSSs for the construction of codes that allow for synchro-

nization in the presence of errors, where the number

rq(n,ρ) :=
q−1∑
i=0

|Di | (2)

is required to be as small as possible. Levenstein [7] proved the following lower bound on rq(n,ρ):
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rq(n,ρ) �
√

qρ(n − 1)

q − 1
, (3)

with equality if and only if the DSS is perfect and regular. In the sequel, this bound is referred to as
Levenstein bound.

The Levenstein bound of (3) cannot be achieved in many cases. Below we describe an improved
bound. For any positive integer n, define SQUARE(n) to be the smallest square number that is no less
than n. Then the following bound follows easily from the bound of (3) (see [14]):

rq(n,ρ) �
√

SQUARE

(
ρ(n − 1) +

⌈
ρ(n − 1)

q − 1

⌉)
, (4)

where �x� denotes the ceiling function. It will be demonstrated later that this improved bound is
better than the Levenstein bound in many cases.

Tonchev constructed difference systems of sets using cyclotomic classes, difference sets, and bal-
anced generalized weighing matrices [10,11]. Fuji-Hara, Munemasa and Tonchev obtained difference
systems of sets from hyperplane line spreads and hyperplanes [3]. Tonchev and Wang developed al-
gorithms for constructing optimal difference systems of sets [12,13]. Wang improved the Levenstein
bound of (3). In this paper, we present a number of algebraic constructions of optimal and perfect
difference systems of sets. The key idea of our constructions is to use functions with optimum non-
linearity. The parameters of the DSSs are new in many cases.

2. Cyclotomic classes and group characters

Cyclotomy and group characters are powerful tools for constructing combinatorial designs. In this
section, we introduce cyclotomy and group characters that will be needed in subsequent sections.
Throughout this paper, let p be a prime, m and s be positive integers, q = ps , and let r = qm .

Let Fq be the finite field with q elements, and let q − 1 = ef , where e and f are positive integers.

Given a generator ω of F
∗
q , define C (e,q)

0 = 〈ωe〉, the multiplicative group generated by ωe , and

C (e,q)

i = ωi C (e,q)
0 for i = 1,2, . . . , e − 1.

The C (e,q)

i are called cyclotomic classes of order e [9].
Let Trq/p be the absolute trace function from Fq to Fp . An additive character of Fq is a nonzero

function χ from Fq to the set of nonzero complex numbers such that χ(x + y) = χ(x)χ(y) for any
pair (x, y) ∈ F

2
q . For each b ∈ Fq , the function

χb(c) = e2π
√−1 Trq/p(bc)/p for all c ∈ Fq, (5)

defines an additive character of Fq . When b = 0, χ0(c) = 1 for all c ∈ Fq , and is called the trivial
additive character of Fq . The character χ1 in (5) is called the canonical additive character of Fq .

A multiplicative character of Fq is a nonzero function ψ from F
∗
q to the set of complex numbers

such that ψ(xy) = ψ(x)ψ(y) for all pairs (x, y) ∈ F
∗
q × F

∗
q . Let ω be a fixed generator of F

∗
q . For each

j = 0,1, . . . ,q − 2, the function ψ j with

ψ j
(
ωk) = e2π

√−1 jk/(q−1) for k = 0,1, . . . ,q − 2, (6)

defines a multiplicative character of Fq . When j = 0, ψ0(c) = 1 for all c ∈ F
∗
q, and is called the trivial

multiplicative character of Fq .
Let q be odd and j = (q −1)/2 in (6), we then get a multiplicative character η such that η(c) = 1 if

c is the square of an element and η(c) = −1 otherwise. This η is called the quadratic character of Fq .
In this paper, we denote the canonical additive characters of Fq and Fqm respectively by

χ1(x) = e2π
√−1 Trq/p(x)/p, x ∈ Fq,

χ2(x) = e2π
√−1 Trqm/p(x)/p, x ∈ Fqm ;

and the quadratic characters of Fq and Fqm respectively by η1 and η2.
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Suppose ω is a generator of F
∗
qm . Then ω′ = ω(qm−1)/(q−1) is a generator of F

∗
qm . We note that when

q is odd, (qm − 1)/(q − 1) = ∑m−1
i=0 qi is even if and only if m is even. Hence we have

η2(x) =
{

1 if m is even,

η1(x) if m is odd,
(7)

for all x ∈ Fq .
Let ψ be a multiplicative and χ an additive character of Fq . Then the Gaussian sum G(ψ,χ) is

defined by

G(ψ,χ) =
∑
c∈F

∗
q

ψ(c)χ(c).

It is well known that [5]

G(ψ,χ) =
⎧⎨
⎩

q − 1 for ψ = ψ0, χ = χ0,

−1 for ψ = ψ0, χ �= χ0,

0 for ψ �= ψ0, χ = χ0.

(8)

If ψ �= ψ0 and χ �= χ0, then |G(ψ,χ)| = q1/2. If p is an odd prime, then

G(η,χ1) =
{

(−1)s−1q1/2 if p ≡ 1 (mod 4),

(−1)s−1(
√−1)sq1/2 if p ≡ 3 (mod 4).

(9)

Let χ be a nontrivial additive character of Fq and let the polynomial f ∈ Fq[x] be of positive
degree. Sums of the form

∑
c∈Fq

χ( f (c)) are called Weil sums.
The following is referred to as Weil’s bound [5].

Lemma 1. Let f ∈ Fq[x] be of degree h � 1 with gcd(h,q) = 1 and let χ be a nontrivial additive character
of Fq. Then∣∣∣∣ ∑

c∈Fq

χ
(

f (c)
)∣∣∣∣ � (h − 1)q1/2.

3. A generic construction of optimal and perfect difference systems of sets

Let (G,+) be a finite abelian group. A function f from (Zn,+) to (G,+) is called an (n, λ) zero
difference balanced, in short ZDB, function if∣∣{x ∈ Zn: f (x + a) − f (x) = 0

}∣∣ = λ

for every nonzero a ∈ Zn , where λ is a positive integer.

Theorem 2. Let f be a function from (Zn,+) to (G,+). For each g ∈ G, put

D g = {
x ∈ Zn: f (x) = g

}
. (10)

Define

S = {D g : g ∈ G}. (11)

If f is an (n, λ) ZDB function, the set S of (10) is an (n, {τg : g ∈ G},n − λ) perfect DSS, where τg = |D g |.

Proof. Note that∣∣{x ∈ Zn: f (x + a) − f (x) = 0
}∣∣ =

∑
g∈G

∣∣D g ∩ (D g − a)
∣∣.
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On the other hand, {D g : g ∈ G} is a partition of Zn , and we have the following multiset equality:

nZn = {x − y: x ∈ Zn, y ∈ Zn} =
[ ⋃

g �=h

(D g − Dh)

]
∪

[ ⋃
g∈G

(D g − D g)

]
,

where D g − Dh denotes the multiset {x − y: x ∈ D g , y ∈ Dh}. It follows that for each nonzero a ∈ Zn ,

∑
g �=h

∣∣D g ∩ (Dh + a)
∣∣ = n −

∑
g∈G

∣∣D g ∩ (D g − a)
∣∣

= n − ∣∣{x ∈ Zn: f (x + a) − f (x) = 0
}∣∣.

The conclusions of this theorem then follow from the definition of ZDB functions. �
4. Optimal difference systems of sets from perfect nonlinear functions

Let f be a function from a finite abelian group (A,+) to another finite abelian group (B,+). We
say that f is linear if and only if f (x + y) = f (x) + f (y) for all x, y ∈ A. A function g is affine if and
only if g = f + b, where f is linear and b is a constant.

A robust measure of nonlinearity of f is defined by

P f = max
0�=a∈A

max
b∈B

|{x ∈ A: f (x + a) − f (x) = b}|
|A| ,

where |A| denotes the cardinality of the set A. The smaller the value of P f , the higher the corre-
sponding nonlinearity of f .

It is easily seen that P f � 1
|B| [1]. A function f : A → B has perfect nonlinearity if P f = 1

|B| . The
following lemma is proved in [1].

Lemma 3. A function f from a finite abelian group (A,+) to a finite abelian group (B,+) is perfect nonlinear
if and only if for each nonzero a ∈ A, f (x + a) − f (x) takes on each element of b the same numbers of times
when x ranges over all elements of A.

As a corollary of Theorem 2 and Lemma 3, we have the following.

Corollary 4. Let 
,k be positive integers, and n = 
k. Let G be an abelian group of size 
. Suppose there is a
perfect nonlinear function f from Zn to G. Then the set S of (11) is an (n, {τb: b ∈ G},n − k) perfect DSS.

This construction is generic in the sense that it works for every perfect nonlinear function from Zn

to an abelian group B . As examples, we obtain difference systems of sets based on the following
perfect nonlinear functions from Zp2 to Zp .

Lemma 5. (See [1].) Let p be an odd prime. Define f : Zp2 → Zp by f (h+ jp) = hj mod p for 0 � h, j � p −1.
Then f has perfect nonlinearity with respect to (Zp2 ,+) and (Zp,+).

Corollary 6. Let f be the perfect nonlinear function from Zp2 to Zp defined in Lemma 5. Then the set S of (11)

is a (p2, {2p −1, p −1, p −1, . . . , p −1}, p2 − p) perfect DSS, and is optimal with respect to the lower bound
of (4).

Proof. It follows from Lemma 5 and Corollary 4 that the set S of (11) is a perfect DSS. We need to
determine the parameters τb . It is easy to see that τ0 = 2p − 1 and τb = p − 1 for all nonzero b ∈ Zp .
It is straightforward to check that the bound of (4) is met. �



C. Ding / Journal of Combinatorial Theory, Series A 116 (2009) 109–119 113
Lemma 7. (See [1].) Let f : Zp2 → Zp be a mapping whose restriction to Z∗
p2 is a surjective homomorphism

with respect to (Z∗
p2 , ·) and (Zp,+) and is zero otherwise. Then f has perfect nonlinearity with respect to

(Zp2 ,+) and (Zp,+).

A specific perfect nonlinear function of this type is the following [1]. Let p be an odd prime, and
let α be a primitive root modulo p2. Define f as

f (x) =
{

h mod p if x = αh for some h,

0 otherwise.
(12)

Then f satisfies the conditions of Lemma 7 and is thus a perfect nonlinear function.
Here we have in fact p − 1 perfect nonlinear functions from Zp2 to Zp by selecting the primitive

root α. Thus, we have obtained p − 1 DSSs described in the following corollary.

Corollary 8. Let f be the perfect nonlinear function from Zp2 to Zp defined in (12). Then the set S of (11) is a

(p2, {2p − 1, p − 1, p − 1, . . . , p − 1}, p2 − p) perfect DSS, and is optimal with respect to the lower bound
of (4).

Proof. It follows from Lemma 5 and Corollary 4 that the set S of (11) is a perfect DSS. We need to
determine the parameters τb . It is easy to see that τ0 = 2p − 1 and τb = p − 1 for all nonzero b ∈ Zp .
It is straightforward to check that the bound of (4) is met. �
5. Optimal difference systems of sets from special power functions

Let N be a positive integer such that q ≡ 1 (mod N). Let (G,+) = (Fq,+). Let ω be a generator
of F

∗
qm . Define α = ωN , n = (qm − 1)/N , and a function f from (Zn,+) to (G,+) by

f (x) = Trqm/q
(
αx), x ∈ Zn, (13)

where Trqm/q is the trace function from Fqm to Fq .

Theorem 9. If gcd(m, N) = 1, the set S of (11) is an (n, {τb: b ∈ Fq}, qm−1(q−1)
N ) perfect DSS, where τb = |Db|

for each b ∈ Fq. Furthermore, the DSS S is optimal with respect to the lower bound of (4).

Proof. Because q ≡ 1 (mod N), we have

qm − 1

q − 1
≡ m (mod N).

It then follows from gcd(m, N) = 1 that

gcd

(
qm − 1

q − 1
mod N, N

)
= 1. (14)

Let r = qm , and let Z(a,0) denote the number of solutions x ∈ Fr of the equation Trr/q(axN ) = 0.

Let εp = e2π
√−1/p and χ(x) = ε

Trr/p(x)
p , where Trr/p is the trace function from Fr to Fp . Then χ is an

additive character of Fr . We have then

Z(a,0) = 1

q

∑
y∈Fq

∑
x∈Fr

ε
Trq/p(y Trr/q(axN ))
p

= 1

q

∑
y∈Fq

∑
x∈Fr

χ
(

yaxN)

= 1

q

[
q + r − 1 +

∑
y∈F

∗
q

∑
x∈F

∗
r

χ
(

yaxN)]
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= 1

q

[
q + r − 1 + N

∑
y∈F

∗
q

∑
x∈C (N,r)

0

χ(yax)

]
. (15)

Let ω be the generator of F
∗
r . Note that γ = ω(r−1)/(q−1) is a generator of F

∗
q . Since gcd((r − 1)/

(q − 1) mod N, N) = 1, each cyclotomic class C (N,r)
i contains exactly (q − 1)/N elements of F

∗
q . It then

follows from (15) that

Z(a,0) = 1

q

[
q + r − 1 + (q − 1)

∑
x3∈F

∗
r

χ(x3)

]

= 1

q

[
r + (q − 1)

∑
x3∈Fr

χ(x3)

]

= qm−1.

For any nonzero t ∈ Zn , we have αt − 1 �= 0 and

f (x + t) − f (x) = Trr/q
[(

αt − 1
)
αx].

It then follows that

∣∣{x ∈ Zn: f (x + t) − f (x) = 0
}∣∣ = qm−1 − 1

N

for every nonzero t ∈ Zn . It then follows from Theorem 2 that the set S of (11) is a perfect DSS with

parameters (n, {τb: b ∈ Fq}, qm−1(q−1)
N ).

Finally, we prove the optimality of the DSS with respect to the bound of (4). It suffices to prove
that

ρ(n − 1) +
⌈

ρ(n − 1)

q − 1

⌉
> (n − 1)2. (16)

Note that

(n − 1)2 − ρ(n − 1) = qm−1 − 1 − N

N
(n − 1) <

qm−1

N
(n − 1) �

⌈
ρ(n − 1)

q − 1

⌉
.

This completes the proof. �
Example 1. Let q = 3, m = 3 and N = 2. Then the set S of (11) is a (13, {4,3,6},9) optimal and perfect
DSS consisting of the following blocks:

D0 = {0,7,8,11}, D1 = {4,10,12}, D2 = {1,2,3,5,6,9}.

For the difference systems of sets described in Theorem 9, the determination of the parameters τb
is a hard problem in general. However, it can be done in certain special cases. In what follows in
section, we will give a lower and upper bound on these τb and compute them in the special case
N = 2.

The following theorem presents a lower and upper bound on τb .

Theorem 10. Let r = qm. Then

qm−1 − Nqm/2 − 1

N
� τb � qm−1 + Nqm/2 − 1

N
.

Proof. Note that q ≡ 1 (mod N). We have that gcd(q, N) = 1. Let Z(a,b) denote the number of solu-

tions x ∈ Fr of the equation Trr/q(axN ) = b. Let εp = e2π
√−1/p and χ(x) = ε

Trr/p(x)
p , where Trr/p is the

trace function from Fr to Fp . Then χ is an additive character of Fr . We have then
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Z(a,b) = 1

q

∑
y∈Fq

∑
x∈Fr

ε
Trq/p(y[Trr/q(axN )−b])
p

= 1

q

∑
y∈Fq

χ1(−by)
∑
x∈Fr

χ2
(

yaxN)

= 1

q

[
r +

∑
y∈F

∗
q

χ1(−by)
∑
x∈Fr

χ2
(

yaxN)]
.

It then follows from Lemma 1 that

∣∣Z(a,b) − qm−1
∣∣ � 1

q

∑
y∈F

∗
q

∣∣∣∣ ∑
x∈Fr

χ2
(

yaxN)∣∣∣∣ � Nqm/2.

The conclusion of the theorem then follows.
The proof of the first part of the following lemma can be found in [2]. The second part of the

following lemma is similarly proved. �
Lemma 11. If r ≡ 1 (mod 4), we have

∑
x∈C (2,r)

0

χ2(x) = −1 ± √
r

2
,

∑
x∈C (2,r)

1

χ2(x) = −1 ∓ √
r

2
.

If r ≡ 3 (mod 4), we have

∑
x∈C (2,r)

0

χ2(x) = −1 ± √−r

2
,

∑
x∈C (2,r)

1

χ2(x) = −1 ∓ √−r

2
.

The values τb in the case N = 2 are given in the following theorem.

Theorem 12. Let N = 2. For the DSS of Theorem 9 we have

τb ∈ {
r ± √

r, r ± (q − 1)
√

r
}
, b ∈ Fq,

if m is even; and

τb ∈ {r, r ± √
qr }, b ∈ Fq,

if m is odd.

Proof. We have

Z(a,b) = 1

q

∑
y∈Fq

∑
x∈Fr

ε
Trq/p(y[Trr/q(ax2)−b])
p

= 1

q

∑
y∈Fq

χ1(−by)
∑
x∈Fr

χ2
(

yax2)

= 1

q

[
r +

∑
y∈F

∗
q

χ1(−by)
∑
x∈Fr

χ2
(

yax2)]

= 1

q

[
r +

∑
y∈F

∗
q

χ1(−by) +
∑
y∈F

∗
q

χ1(−by)
∑
x∈F

∗
r

χ2
(

yax2)]. (17)

We continue with the proof by considering the following cases.
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Case I. r ≡ 1 (mod 4).

It follows from Lemma 11 and (17) that

q · Z(a,b) = r ± √
r

∑
y∈F

∗
q

χ1(−by)η2(ay).

If b = 0, it then follows from (7) that

q · Z(a,b) = r ± √
r

∑
y∈F

∗
q

χ1(−by)η2(ay)

= r ± √
r

∑
y∈F

∗
q

η2(ay)

=
{

r ± (q − 1)
√

r, when m is even,

r, when m is odd.

If b �= 0, it then follows from (7) and (9) that

q · Z(a,b) = r ± √
r

∑
y∈F

∗
q

χ1(−by)η2(ay)

= r ± √
rη2

(−ab−1) ∑
y∈F

∗
q

χ1(−by)η2(−by)

=
{

r ∓ √
rη2(−ab−1), when m is even,

r ± √
rη2(−ab−1)G(η1,χ1), when m is odd,

=
{

r ± √
r, when m is even,

r ± √
rq when m is odd.

Case II. r ≡ 3 (mod 4).

Since r ≡ 3 (mod 4), both s and m must be odd. Similar to that in Case I, we can prove that
q · Z(a,0) = r and q · Z(a,b) = r ± √

rq if b �= 0.
Combining the results in Cases I and II completes the proof of this theorem. �

6. Optimal difference systems of sets from ternary sequences

Let (u(i))∞i=0 be a sequence of period n over Fr . The autocorrelation function of the sequence is
defined by

Au(t) =
n−1∑
i=0

χ2
(
u(i + t) − u(i)

)
, (18)

where χ2 is the group character on Fr . The sequence is said to have ideal autocorrelation if Au(t) = −1
for all 1 � t � n − 1. In this section, we propose an approach to the construction of perfect difference
systems of sets using special ternary sequences.

In this section, let s = 1 and p = 3. So we have q = p = 3 and r = qm . Let h(x) be polynomial
over Fr . Define a ternary sequence (u(i))∞i=0 of period r − 1 by

u(i) = Trqm/q
(
h
(
ωi)) (19)

for all i � 0.
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Theorem 13. Let n = r − 1. Define a function f from Zn to F3 by f (i) = u(i) for all i. If the polynomial h
satisfies h(−x) = −h(x) for all x ∈ Fr and the sequence (u(i))∞i=0 in (19) has ideal autocorrelation, the S
of (11) is a (3m − 1, {τb: b ∈ Fq},2 · 3m−1) perfect DSS, where τb = |Db| for each b ∈ Fq. Furthermore, the
DSS S is optimal with respect to the bound of (4).

Proof. Note that h(0) = 0. For any 1 � t � n − 1, it follows from the definitions of the autocorrelation
function and the sequence in (19) that

Au(t) = −1 +
∑
x∈Fr

χ2
(
h
(
ωt x

) − h(x)
)
.

Because (u(i))∞i=0 has ideal autocorrelation, we have

∑
x∈Fr

χ2
(
h
(
ωt x

) − h(x)
) = 0 (20)

for all 1 � t � n − 1.
It then follows from h(−x) = −h(x) for all x that∑

x∈Fr

χ2
(−[

h
(
ωt x

) − h(x)
]) = 0 (21)

for all 1 � t � n − 1.
We now prove that the function f = u defined in the statement of this theorem is a ZDB function.

For any 1 � t � n − 1, define

Z f (t) = ∣∣{x ∈ Zn: f (x + t) − f (x) = 0
}∣∣.

We have then

q · Z f (t) = −q +
∑
x∈Fr

∑
y∈Fq

χ2
(

y
[
h
(
ωt x

) − h(x)
])

= −q + r +
∑
x∈Fr

χ2
(
h
(
ωt x

) − h(x)
) +

∑
x∈Fr

χ2
(−[

h
(
ωt x

) − h(x)
])

= −q + r

for any 1 � t � n − 1. Hence Z f (t) = 3m−1 − 1 for any 1 � t � n − 1. This proves that the function f
is a ZDB function. The conclusion of the first part of this theorem then follows from Theorem 2.

It is straightforward to check that

(n − 1)2 − ρ(n − 1) <

⌈
ρ(n − 1)

q − 1

⌉
.

So the lower bound of (4) is met. �
For the construction of difference systems of sets described above, we have the following com-

ments.

• It works only for ternary and binary sequences with ideal autocorrelation. So there may not be
any simple connection between perfect difference systems of sets and periodic sequences with
ideal autocorrelation.

• The parameters τb cannot be determined in general, and have to be computed case by case.

In what follows in this section, we describe a few classes of optimal and perfect difference systems
of sets using the generic construction above.
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6.1. Difference systems of sets from the function x32t−3t+1 + x over F33t

In this section, let p = 3, s = 1, m = 3t for a positive integer t , d = 32t − 3t + 1, and let n = r − 1 =
3m − 1. Let (G,+) = (Fq,+), where q = 3. Let ω be a generator of Fqm

∗ . Define a function f from
(Zn,+) to (G,+) by

f (x) = Trqm/q
(
ωx + ωdx), x ∈ Zn, (22)

where Trqm/q is the trace function from Fqm to Fq .

Theorem 14. The S of (11) is a (3m − 1, {τb: b ∈ Fq},2 · 3m−1) perfect DSS, where τ0 = 3m−1 − 1 and
τb = 3m−1 for each nonzero b ∈ Fq. Furthermore, the DSS S is optimal with respect to the bound of (4).

Proof. Define the sequence (u(i))∞i=0 by u(i) = f (i mod n) for all i � 0, where f is defined in (22).
Helleseth, Kumar and Martinsen proved that the sequence has ideal autocorrelation [4]. Define h(x) =
ωx +ωdx over Fr . Clearly, h(−x) = −h(x) for all x ∈ Fr . It then follows from Theorem 13 that the set S
of (11) is a (3m − 1, {τb: b ∈ Fq},2 · 3m−1) perfect DSS.

We now determine the parameters τb . For any 1 � t � n − 1, define u = ωt − 1 and v = ωdt − 1. It
is proved in [4] that

∑
x∈Fr

ε
Trqm/q(ux+vxd)

3 = 0 (23)

for all 1 � t � n − 1, where ε3 = e2π
√−1/3. There must exist an integer 1 � t � n − 1 such that

ωt = −1. We have then u = 1 and u = 1 for this t as d is odd. It then follows from (23) that

∑
x∈Fr

ε
Trqm/q(x+xd)

3 = 0. (24)

Hence

∑
x∈Fr

ε
Trqm/q(−(x+xd))

3 = 0. (25)

If b �= 0, then

τb = 1

q

[ ∑
x∈Fr

∑
y∈Fq

ε
y[Trqm/q(x+xd)−b]
3

]

= 1

q

[
r +

∑
y∈F

∗
q

ε
−by
3

∑
x∈Fr

ε
y[Trqm/q(x+xd)]
3

]

= 1

q

[
r + ε−b

3

∑
x∈Fr

ε
Trqm/q(x+xd)

3 + εb
3

∑
x∈Fr

ε
−[Trqm/q(x+xd)]
3

]

= qm−1.

Similarly, we have

τ0 = −1 + 1

q

[ ∑
x∈Fr

∑
y∈Fq

ε
y[Trqm/q(x+xd)]
3

]
= qm−1 − 1.

The optimality of the DSS follows from Theorem 13. �
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Example 2. Let q = 3 and m = 3. Then the set S of (11) is a (26, {8,9,9},18) optimal and perfect DSS
consisting of the following blocks:

D0 = {0,7,8,11,13,20,21,24},
D1 = {4,5,10,12,14,15,16,19,22},
D2 = {1,2,3,6,9,17,18,23,25}.

6.2. Two classes of conjectured perfect difference systems of sets

In this subsection, we describe two classes of conjectured perfect difference systems of sets. Both
are related to ternary sequences with ideal autocorrelation.

Conjecture 1. Let p = 3, s = 1, m = 2t + 1 for a positive integer t, d = 2 · 3t + 1, and let n = r − 1 = 3m − 1.
Let (G,+) = (Fq,+), where q = 3. Let ω be a generator of F

∗
qm . Define a function f from (Zn,+) to (G,+) by

f (x) = Trqm/q
(
ωx + ωdx), x ∈ Zn, (26)

where Trqm/q is the trace function from Fqm to Fq.
With the function f of (26), the S of (11) is a (3m − 1, {τb: b ∈ Fq},2 · 3m−1) perfect DSS, where τ0 =

3m−1 − 1 and τb = 3m−1 for each nonzero b ∈ Fq. Furthermore, the DSS S is optimal with respect to the lower
bound of (4).

Define the sequence (u(i))∞i=0 by u(i) = f (i mod n) for all i � 0, where f is given in (26). Lin
[6] conjectured that this ternary sequence has ideal autocorrelation. If the Lin conjecture is true, this
conjecture about perfect difference systems of sets above will be true. However, it is open whether
the two conjectures are equivalent.
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