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A k-positive matrix is a matrix where all minors of order k
or less are positive. Computing all such minors to test for 
k-positivity is inefficient, as there are 

∑k
�=1

(
n
�

)2 of them in an 
n × n matrix. However, there are minimal k-positivity tests 
which only require testing n2 minors. These minimal tests 
can be related by series of exchanges, and form a family of 
sub-cluster algebras of the cluster algebra of total positivity 
tests. We give a description of the sub-cluster algebras that 
give k-positivity tests, ways to move between them, and an 
alternative combinatorial description of many of the tests.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A totally positive matrix is a matrix in which all minors are positive. Such matrices 
were originally studied by I.J. Schoenberg in connection with a variation diminishing 
property [16] and by Gantmacher-Krein due to their nice eigenvalues [10]. A totally 
nonnegative matrix is a matrix in which all minors are nonnegative. Totally positive 
and totally nonnegative matrices appear in a variety of contexts, including planar net-
works [11], canonical bases for quantum groups [13], and stochastic processes [12].
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An n × n matrix has 
(2n
n

)
− 1 minors, so it is generally inefficient to test whether a 

matrix is totally positive by testing all of its minors. This gives rise to the question of 
how to test matrices for total positivity as efficiently as possible. In particular, what are 
the smallest sets of rational functions in the matrix entries such that positivity of all 
of these functions ensures total positivity of the matrix? In [8], Fomin and Zelevinsky 
showed that double wiring diagrams give rise to a collection of minimal total positivity 
tests. Further, we can obtain a cluster algebra from any double wiring diagram that 
provides us with additional minimal tests [7].

A natural generalization of total positivity is the notion of k-positivity. Here, we only 
require that minors of order up to k be positive. We may similarly define k-nonnegativity, 
the structure of which is explored in [2]. Tests for k-positivity are often discussed in 
conjunction with the total positivity case [4,15]. These papers give specific classes of 
tests, but do not explore their combinatorial structure. In this paper, we generalize both 
the cluster algebra and double wiring diagram formulations of total positivity tests to 
k-positivity.

We start by giving background and relevant definitions on cluster algebras, total posi-
tivity, and double wiring diagrams. Section 3 introduces the k-positivity cluster algebras 
and discusses their embedding into the total positivity cluster algebra. We give a con-
struction for how some of these sub-cluster algebras can be augmented with test variables
to give k-positivity tests. In Section 4 we define k-essentiality of minors, which classifies 
certain minors that are important for testing k-positivity, and identify classes of minors 
which are and are not k-essential. In Section 5, we explain how k-positivity behaves in 
the context of double wiring diagrams and find a family of sub-cluster algebras that 
produce k-positivity tests. We also give an indexing of this family by Young diagrams, 
which lets us generate specific tests from them.

Future work to be pursued includes determining all minors which are k-essential (in-
cluding resolving Conjecture 4.6), and further, whether such minors are included in every 
k-positivity test. Additionally, we would like to determine whether there are sub-cluster 
algebras that give k-positivity tests outside of our known family and find a characteri-
zation of all double wiring diagrams that can be modified to give k-positivity tests.

2. Background

We start by giving a brief overview of relevant background on cluster algebras. For 
more detailed and general discussion, see [9], [14], and [7]. These definitions are repro-
duced in a slightly modified form below. Throughout this paper, we will be using the 
notation [n] for the set {1, 2, . . . , n} and [i, j] for the set {i, i + 1, . . . , j − 1, j}.

Definition. A quiver is a directed multigraph with no loops or 2-cycles. The vertices are 
labeled with elements of [m]. A directed edge (i, j) will be denoted i → j. A quiver 
mutation of a quiver Q at vertex j is a process, defined as follows, that produces another 
quiver μj(Q).
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(1) For all pairs of vertices i, k such that i → j → k, create an arrow i → k.
(2) Reverse all arrows adjacent to j.
(3) Delete a maximal collection of 2-cycles.

Definition. Let F = C(u1, . . . , um) be the field of rational functions over C in m inde-
pendent variables (this is our ambient field). A labeled seed of geometric type in F is a 
pair (x̃, Q) where x̃ = (x1, . . . , xm) is an algebraically independent generating set of F
over C and Q is a quiver on m vertices such that vertices in [n] are called mutable and 
vertices in [n +1, m] are called frozen. We call x̃ the labeled extended cluster of the seed 
and x = (x1, . . . , xn) the cluster. The elements x1, . . . , xn are the cluster variables and 
the remaining elements xn+1, . . . , xm are the frozen variables.

Definition. A seed mutation at index j ∈ [n] satisfies μj((x̃, Q)) = (x̃′, μj(Q)), where 
x′
i = xi if i �= j and x′

j satisfies the exchange relation

xjx
′
j =

∏
i→j

xi +
∏
j→k

xk,

where arrows are counted with multiplicity. The right hand side is also referred to as the 
exchange polynomial. Notice that we allow seed mutations only at mutable vertices, not 
at frozen ones.

From here on, we will refer to seed mutations simply as mutations.

Definition. If two quivers or two seeds are related by a sequence of mutations, we say 
they are mutation equivalent. For some initial seed (x̃, Q), let χ be the union of all cluster 
variables over seeds which are mutation equivalent to (x̃, Q). Let R = C[xn+1, . . . , xm]. 
Then the cluster algebra of rank n over R associated to this initial seed is A = R[χ].

Definition. We consider two clusters equivalent if they share the same variables, up to 
permutation. The exchange graph of a cluster algebra is a graph on vertices indexed by 
equivalence classes of clusters, where there is an edge between two vertices if the clusters 
corresponding to the vertices are connected by a mutation.

In addition to our cluster algebra background, we will need some definitions that come 
from the study of total positivity.

Definition. For an m × n matrix X and sets I ⊆ [m], J ⊆ [n], we will let XI,J be 
the submatrix of X where we take rows indexed by I and columns indexed by J . If 
|I| = |J | = �, the determinant of this submatrix is |XI,J |, and we call this a minor of 
order � or more simply an �-minor.

A few types of minors will be particularly important to us.

Definition. A solid minor is a minor with rows indexed by I = [i, i + � − 1] and columns 
indexed by J = [j, j + � − 1]. An initial minor is a solid minor where 1 ∈ I ∪J . A corner
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Fig. 1. A double wiring diagram with wires and chambers labeled. The labels in the chamber correspond to 
the wires passing underneath.

minor is a solid minor where the associated submatrix is located at the bottom-left or 
top-right of the whole matrix. In other words, either I = [n − � + 1, n] and J = [�], or 
I = [�] and J = [n − � + 1, n].

Definition. A total positivity test is a set of expressions in the indeterminants {xi,j}1≤i,j≤n

such that an n ×n matrix M = (mi,j)1≤i,j≤n is totally positive if and only if evaluating 
these expressions for xi,j = mi,j yields all positive numbers.

From [8], we know that the minimal size of a total positivity test is n2, and by Theorem 
9 of [8], the following is a total positivity test.

Definition. The initial minors test is the positivity test consisting of all n2 initial minors.

Double wiring diagrams give us a combinatorial interpretation of total positivity tests 
of minimal size where all the expressions in the test are minors. We start by recalling 
the appropriate definitions from [8].

Definition. A wiring diagram consists of a family of n piecewise straight lines, all of the 
same color, such that each line intersects every other line exactly once. A double wiring 
diagram is two wiring diagrams of different colors which are overlaid. We will color our 
diagrams red and blue, and number the lines such that when reading from bottom to top, 
the left endpoints of the red lines are in decreasing order, and the left endpoints of the 
blue lines are in increasing order. We also draw the red wires as thin and the blue wires as 
thick for ease of reading black and white copies. Each diagram has n2 chambers, see Fig. 1. 
A chamber is bounded if it is enclosed entirely by wires, and is called unbounded otherwise.

We can label a chamber by the tuple (r, b), where r is the subset of [n] indexing all 
red strings passing below the chamber, and b is the subset of [n] indexing all blue strings 
passing below the chamber.

Example 2.1. Fig. 1 gives double wiring diagram with the chambers labeled appropriately.

We can associate each chamber with the minor of the corresponding submatrix |Xr,b|. 
With this correspondence, every double wiring diagram gives a total positivity test (The-
orem 16 of [8]).
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Additionally, each double wiring diagram can be associated to a quiver, using Defini-
tion 2.4.1 of [7]:

Definition. Let D be a double wiring diagram. We construct a quiver Q(D) whose vertices 
are the chambers. Bounded chambers are mutable vertices and unbounded chambers are 
frozen vertices. Let c and c′ be two chambers, at least one of which is bounded. Then 
there is an arrow c → c′ in Q(D) if and only if one of the following conditions is met:

(1) The right (resp., left) boundary of c is blue/thick (resp., red/thin), and coincides 
with the left (resp., right) boundary of c′.

(2) The left boundary of c′ is red/thin, the right boundary of c′ is blue/thick, and the 
entire chamber c′ lies directly above or directly below c.

(3) The left boundary of c is blue/thick, the right boundary of c is red/thin, and the 
entire chamber c lies directly above or directly below c′.

(4) The left (resp., right) boundary of c′ is above c and the right (resp., left) boundary 
of c is below c′ and both boundaries are red/thin (resp., blue/thick).

(5) The left (resp., right) boundary of c is above c′ and the right (resp., left) boundary 
of c′ is below c and both boundaries are blue/thick (resp., red/thin).

From each double wiring diagram, we have now shown how to obtain a quiver and how 
to associate variables to each vertex. That is, each double wiring diagram gives us a seed.
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Fig. 2. An example of Q(D) for a double wiring diagram with n = 4.

Fig. 3. The local moves relating double wiring diagrams. The first two are braid moves.

Fig. 2 shows a generic quiver, illustrating these conditions in context.
There is also a set of local moves that allow us to transition between any two double 

wiring diagrams (see [8]). These moves are depicted in Fig. 3. The chambers are labeled 
by the associated minor, and in all cases the exchange relation is Y Z = AC+BD. Notice 
that each of these moves corresponds to mutation at vertex Y in the seed given by the 
double wiring diagram.

Definition. The cluster algebra generated by the seed associated to any double wiring 
diagram is the total positivity cluster algebra.

This cluster algebra has rank (n −1)2 and every seed gives a positivity test. Notice that 
in general, this cluster algebra contains seeds that do not correspond to a double wiring 
diagram. In fact, there are extended clusters that contain variables that are not matrix 
minors—other rational functions in the matrix entries can appear. For n ≥ 4, there are 
infinitely many such variables, and infinitely many clusters in the total positivity cluster 
algebra.

Example 2.2. We will be using the n = 3 case as a recurring example throughout the 
next two sections. For convenience, we’ll relabel the entries of our 3 × 3 as shown be-
low:
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M :=
[
a b c
d e f
g h j

]

We can now refer to the 2 × 2 minors with uppercase letters. Each uppercase letter 
will denote the 2 × 2 minor formed by the rows and columns that do not contain the 
corresponding lowercase letter. For example, A is the 2 × 2 minor obtained from the 
rows and columns that do not contain a, so A := ej− fh. In this case there are only two 
non-minor extended cluster variables. These are K := aA − detM and L := jJ − detM
(see Exercise 1.4.4 of [7]).

3. Generalization to k-positivity

The fact that the total positivity cluster algebra produces total positivity tests relies 
on two facts:

(1) Every matrix minor appears as a cluster variable.
(2) Because each exchange polynomial is subtraction free, when one extended cluster 

has only positive variables, this means all possible cluster variables must be posi-
tive.

If an n × n matrix is k-positive with k < n, the variables in an extended clus-
ter of the total positivity cluster algebra are not necessarily all positive. In fact, if 
the matrix is not n-positive, no extended cluster can have all positive variables. This 
poses a problem, as mutation at a vertex corresponding to a positive variable is no 
longer guaranteed to give us another positive variable. However, the total positivity 
cluster algebra leads us to a natural set of sub-cluster algebras that give k-positivity 
tests.

Definition. Let (x̃, Q) be a seed in the total positivity cluster algebra such that every 
variable in x is a minor. Designate all vertices in Q corresponding to minors of order 
greater than k as dead vertices, then freeze all vertices in Q which are adjacent to dead 
vertices. Allowing mutation only at vertices that are not dead or frozen, we call any quiver 
that is mutation equivalent to this new quiver a full k-quiver, and the corresponding 
seed a full k-seed. If we delete the dead vertices as well, we obtain a k-quiver and 
k-seed.

This construction resolves the above problem, since now any variable in a seed that 
is mutation equivalent to such a k-seed can be written as a subtraction-free expres-
sion in the original k-seed’s extended cluster variables, which are minors of order at 
most k. These k-seeds generate sub-cluster algebras of the total positivity cluster alge-
bra. We have restricted this construction to seeds in the total positivity cluster algebra
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Fig. 4. The quiver, full k-quiver, and k-quiver for a particular double wiring diagram with n = 4, k = 2. 
Mutable vertices are depicted by •, frozen vertices by ∗, and dead vertices by �.

that have only minors as variables because we don’t know whether or not other ex-
pressions that show up as cluster variables are required to be positive in k-positive 
matrices.

Example 3.1. Consider the set of quivers in Fig. 4. Fig. 4(a) depicts a double wiring 
diagram and its associated quiver for n = 4. Here, mutable vertices are represented with 
• and frozen vertices with ∗. Fig. 4(b) shows the full k-quiver for k = 2. Dead vertices 
are now represented with 	. Fig. 4(c) shows the k-quiver for k = 2.

Definition. Freezing a vertex in a seed in the total positivity cluster algebra corresponds 
to deleting all edges corresponding to mutation at that vertex from the exchange graph, 
and likewise for marking a vertex as dead. The exchange graph for each sub-cluster 
algebra generated by a k-seed is thus a connected component of this new graph, and we 
will refer to these exchange graphs as components.

Example 3.2. We return to the n = 3 case, now with k = 2. For a matrix which is totally 
positive, K and L (our non-minor variables occurring in tests) must also be positive 
since they occur in clusters, and hence can be written as subtraction-free rational ex-
pressions in the initial minors. For a matrix which is maximally 2-positive, K and L are 
also positive as they are both a nonpositive term subtracted from a positive one. We can 
now in this case expand our construction of the sub-cluster algebras to seeds which also 
contain K or L. In these quivers, we only freeze vertices adjacent to the determinant 
and the determinant is the only dead vertex. The exchange graphs for the 8 sub-cluster 
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Fig. 5. The components of a 2-positivity test graph derived from the 3 × 3 exchange graph.

algebras are depicted in Fig. 5. The vertices in this figure are labeled by the cluster 
variables which are mutable in the total positivity cluster algebra, so that the extended 
cluster contains the listed variables plus c, g, C, and G.

As stated in Section 2, we know that the minimal size of a total positivity test is n2. 
Also, we can see that the minimal size of a 1-positivity test is n2, as the entries of the 
matrix are independent variables that must all be positive.

Conjecture 3.3. For any k, the minimal size of a k-positivity test is n2.
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We will be looking for k-positivity tests of size n2.

Definition. A potential test cluster is an extended cluster from a k-seed with additional 
rational functions in the matrix entries appended to the cluster to give a set of size 
n2. The variables that are in the test cluster and not the extended cluster are called 
potential test variables. If the potential test cluster gives a k-positivity test, it is called 
a test cluster and the additional variables are called test variables. These test cluster 
variables along with the k-seed give a test seed.

Example 3.4. All test clusters for k = n are extended clusters in the total positivity 
cluster algebra.

Example 3.5. From Theorem 2.3 of [6], we know that the set of all solid k-minors and all 
initial minors of order less than k gives a k-positivity test of size n2. This is the k-initial 
minors test. The k-seed from Fig. 4(c) includes exactly the initial minors of order ≤ k. 
So, this cluster can be augmented to a test cluster by including all the missing solid 
k-minors as test variables.

Not all choices of potential test variables will give a valid test cluster. Further, not all 
clusters can be extended to a test cluster, as we shall discuss in Examples 4.5 and 4.7. 
Although we do know which test variables to add to a cluster to obtain a test cluster 
in specific cases (see Example 3.2 and Theorem 5.7), as of now we lack a proof for the 
general method.

Remark 3.6. Suppose we have a set of potential test variables and we append these 
variables to every cluster in a cluster algebra generated by a certain k-seed. Proving 
that a single potential test cluster from this cluster algebra is a k-positivity test proves 
that all the potential test clusters are k-positivity tests: we can go between the variables 
in the extended clusters using subtraction-free rational expressions, and the rest of the 
variables in the test cluster stay the same.

Definition. Two test seeds from different sub-cluster algebras have a bridge between them 
if they have the same test cluster and there is a quiver mutation connecting them which 
occurs at a vertex which is frozen in the k-quiver.

We can think of a bridge as swapping a cluster variable for a test variable. This allows 
us to relate different components using test clusters.

Example 3.7. The two largest components in the n = 3, k = 2 case (see Fig. 5) both 
generate 2-positivity tests. The left associahedron contains (J, a, b, d, c, g, C, G), and so 
appending the test variable A gives the k-initial minors test. The right associahedron 
contains the extended cluster (A, f, h, j, c, g, C, G), and so appending the test variable J
gives the antidiagonal flip of the k-initial minors test. This is also a k-positivity test by 
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Fig. 6. The bridges between the two largest components in the n = 3, k = 2 case. The left has test variable 
A and the right has test variable J. There are 4 bridges between these components, which we obtain by 
matching (J, d, e, f)-(A, d, e, f), (J, e, f, h)-(A, e, f, h), (J, b, e, h)-(A, b, e, h), and (J, b, d, e)-(A, b, d, e), i.e. 
those with the same test cluster (which also includes variables c, g, C, G in all cases).

Theorem 1.4.1 of [5]. There are four bridges between these components, which we get 
by swapping the roles of A (a cluster variable on the left and test variable on the right) 
and J (a test variable on the left and cluster variable on the right) (see Fig. 6).

Remark 3.8. If one sub-cluster algebra provides k-positivity tests, then so do any sub-
cluster algebras connected by a bridge. This is easy to see because the test cluster that 
both sub-cluster algebras share is a k-positivity test, which tells us that all test clusters 
in the second sub-cluster algebra are k-positivity tests.

4. k-essential minors

To help determine which of the components provide tests, we define the following:

Definition. A minor |XI,J | is k-essential if |I| = |J | ≤ k and there exists a matrix M 
such that |MI,J | ≤ 0, but ∀(I ′, J ′) �= (I, J), |I ′| = |J ′| ≤ k, we have |MI′,J ′ | > 0.

That is to say, a k-essential minor must appear in all k-positivity tests consisting only 
of minors.

Remark 4.1. By the combinatorial proof of Theorem 3.1.10 of [5] and the discussion 
following it, all corner minors are n-essential. Note that if an �-minor is k-essential, then 
that minor is k′-essential for all � ≤ k′ ≤ k. Thus, all corner minors of order � are 
k-essential for � ≤ k.

The following two propositions detail additional minors that are k-essential in certain 
cases.
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Proposition 4.2. Solid 2-minors are 2-essential.

Proof. Let I = {i, i + 1}, J = {j, j + 1}, and consider the matrix

M :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

... . .
.

· · · ε−5 ε−3 1 ε3 ε7 ε10 · · ·
· · · ε−3 ε−2 1 ε2 ε5 ε7 · · ·
· · · 1 1 ε 1 ε2 ε3 · · ·
· · · ε3 ε2 1 ε 1 1 · · ·
· · · ε7 ε5 ε2 1 ε−2 ε−3 · · ·
· · · ε10 ε7 ε3 1 ε−3 ε−5 · · ·
. .
. ...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ε is a sufficiently small positive constant.
We will show that the following construction makes all 2-minors except MI,J positive. 

M is defined so that

MI,J =
[
ε 1
1 ε

]

and the powers of ε throughout the rest of the matrix are inductively chosen as follows. 
Fill the rest of rows i, i + 1 and columns j, j + 1 with consecutive increasing powers as 
shown. We now inductively fill in the rest of the matrix:

• For i′ > i + 1, j′ > j + 1, let mi′,j′ = εki′,j′ , where

ki′,j′ = min{ki′,t + ks,j′ − ks,t − 1 | i ≤ s < i′, j ≤ t < j′}.

• For i′ < i, j′ > j + 1, let mi′,j′ = εki′,j′ , where

ki′,j′ = max{ki′,t + ks,j′ − ks,t + 1 | i′ < s ≤ i + 1, j ≤ t < j′}.

• For i′ > i + 1, j′ < j, let mi′,j′ = εki′,j′ , where

ki′,j′ = max{ki′,t + ks,j′ − ks,t + 1 | i ≤ s < i′, j′ < t ≤ j + 1}.

• For i′ < i, j′ < j, let mi′,j′ = εki′,j′ , where

ki′,j′ = min{ki′,t + ks,j′ − ks,t − 1 | i′ < s ≤ i + 1, j < t ≤ j + 1}.

Now consider M ′, identical to M but with MI,J replaced by

M ′
I,J =

[
1 ε
ε 1

]
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In this matrix, all solid 2-minors are positive, because a solid 2-minor must be entirely 
in a single quadrant plus the center cross and thus by construction is positive. Applying 
the k-initial minors test, this matrix is then 2-positive.

All 2-minors of M that do not have any entries in MI,J are the same as those in M ′, 
and therefore are positive. All other 2-minors in M , except for |MI,J |, are positive by 
construction. Therefore, |MI,J | is the only non-positive minor of size 2 or less in M . �
Proposition 4.3. Solid 3-minors are 3-essential.

Proof. This time there are more cases, but the argument is roughly analogous. Let 
I = {i, i + 1, i + 2}, J = {j, j + 1, j + 2} and consider the matrix

M :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
... . .

.

· · · ε−2 1 ε2 ε8 ε14 · · ·
· · · 1 1 + ε 1 + ε ε4 ε8 · · ·
· · · ε2 1 + ε 1 + 2ε 1 + ε ε2 · · ·
· · · ε8 ε4 1 + ε 1 + ε 1 · · ·
· · · ε14 ε8 ε2 1 ε−2 · · ·
. .
. ...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is defined so that

MI,J =

⎡
⎣1 + ε 1 + ε ε4

1 + ε 1 + 2ε 1 + ε
ε4 1 + ε 1 + ε

⎤
⎦

where ε is a sufficiently small positive constant, and the powers of ε throughout the rest 
of the matrix are inductively chosen as follows. For j′ > j + 2, let

mi,j′ = ε4(j′−j)−4 mi+1,j′ = ε2(j′−j)−4 mi+2,j′ = 1.

Proceed symmetrically, as seen above in M , for the rows in I where j′ < j, and for 
columns in J in the regions i′ > i + 2 and i′ < i. For i′ ∈ I or j′ ∈ J , define ki′,j′ to 
be the lowest power of ε found in mi′,j′ . For the four corner regions, as in the case of 
2-essentiality, let mi′,j′ = εki′,j′ , where

ki′,j′ = min{ki′,t + ks,j′ − ks,t − 2 | i ≤ s < i′, j ≤ t < j′}

for i′ > i + 2, j′ > j + 2,

ki′,j′ = max{ki′,t + ks,j′ − ks,t + 2 | i ≤ s < i′, j′ < t ≤ j + 2}

for i′ > i + 2, j′ < j, and symmetrically for the other two regions.
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Now, consider M ′, where MI,J has been replaced with

M ′
I,J :=

⎡
⎣ 1 ε ε4

ε 1 ε
ε4 ε 1

⎤
⎦

We apply

Lemma 4.4. Any 2-positive matrix M whose entries are all powers of ε is totally positive 
when ε is made sufficiently small.

Proof. Since any submatrix is also a 2-positive matrix whose entries are all power of ε, it 
suffices to show that the determinant of the whole matrix is positive. This determinant is 
the sum of entries of the form ±Πmi,σ(i). It suffices to show that compared to the diagonal 
term, all other terms are smaller by a factor of at least ε. This fact follows from the 
positivity of all 2-minors: since σ can be decomposed into transpositions, any term can be 
created from the diagonal term by repeatedly replacing mi,jmi′,j′ with mi,j′mi′,j for some 
i < i′, j < j′. Positivity of the minor |M{i,i′},{j,j′}| gives that εmi,jmi′,j′ ≥ mi′,jmi,j′ . �

As in the case of 2-essentiality, all solid 2-minors in M ′ are positive, because a solid 
2-minor must lie entirely in a single quadrant plus the center cross and thus by construc-
tion is positive. Applying the k-initial minors test, this matrix is then 2-positive. Then, 
by Lemma 4.4, M ′ is totally positive, and any minors it shares with M (namely those 
with no entries in MI,J) are therefore positive. By construction, all 2-minors in M with 
an entry in MI,J are also positive.

In fact, the method used to prove Lemma 4.4 works for all 3-minors except those 
which contain a 2-minor not satisfying εmi,jmi′,j′ ≥ mi,j′mi′,j . M has exactly two such 
minors, namely |M{i,i+1},{j,j+1}| and |M{i+1,i+2},{j+1,j+2}|.

Now consider M{i1,i2,i3},{j1,j2,j3} containing exactly one of M{i,i+1},{j,j+1} and 
M{i+1,i+2},{j+1,j+2}. Consider any submatrix M{s,s′},{t,t′} of M . For M{i,i+1},{j,j+1}
and M{i+1,i+2},{j+1,j+2}, we can check the following inequality holds:

ms,tms′,t′ −ms′,tms,t′ ≥
1
2εms,tms′,t′ . (4.1)

This inequality also holds for all other choices of M{s,s′},{t,t′}, because it follows from 
the inequality in the previous paragraph.

Suppose i1 = i, i2 = i + 1, j1 = j, j2 = j + 1. We then also have the following 
inequalities:

ε2mi1,j1mi2,j2mi3,j3 ≥ mi1,j1mi2,j3mi3,j2 (4.2)

ε2mi1,j1mi2,j2mi3,j3 ≥ mi1,j3mi2,j2mi3,j1 (4.3)
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These conditions are guaranteed by the inductive construction, since ε2mi,jmi′,j′ ≥
mi,j′mi′,j unless {i, i′} ⊂ I, {j, j′} ⊂ J . This gives us the following:

|M{i1,i2,i3},{j1,j2,j3}| ≥ mi1,j1mi2,j2mi3,j3 −mi1,j2mi2,j1mi3,j3 −mi1,j1mi2,j3mi3,j2−

mi1,j3mi2,j2mi3,j1

≥ 1
2εmi1,j1mi2,j2mi3,j3 −mi1,j1mi2,j3mi3,j2 −mi1,j3mi2,j2mi3,j1

by Inequality (4.1)

≥
(

1
2ε− 2ε2

)
mi1,j1mi2,j2mi3,j3 by Inequalities (4.2) and (4.3)

> 0.

We have analogous inequalities for any other 3-minor containing exactly one of the 
2-minors in question. Thus the only 3-minor of M not necessarily positive is one con-
taining both such 2-minors, |MI,J | itself. It can be checked that this minor is in fact 
negative, thus showing that it is 3-essential. �
Example 4.5. Returning to the n = 3, k = 2 case, the previous proposition tells us that 
A and J are 2-essential. From Fig. 5, we can see that the pentagonal components and 
single-edge components in the n = 3, k = 2 case are all missing both A and J from their 
extended clusters. The extended clusters are of size 8, and in this case n2 = 9. All of the 
extended cluster variables in these components are minors, and A and J are 2-essential, 
so these components cannot give 2-positivity tests of size n2 which are composed entirely 
of minors.

Based on the above results and the prevalence of solid k-minors in our other 
k-positivity tests, we propose the following:

Conjecture 4.6. Solid k-minors are k-essential.

The k = 1 case is trivial, as there is exactly one 1-positivity test containing only 
matrix minors: the test consisting of all n2 elements of the matrix. Explicitly, we can 
let xi,j = −1, xi′,j′ = 1 for (i, j) �= (i′, j′). The cases of k = 2, k = 3 are proven in 
Propositions 4.2 and 4.3, respectively.

Unfortunately, the technique used in Propositions 4.2 and 4.3 fails in the general case. 
This is because the central minors called MI,J in the above propositions were generated 
from a maximally 1-nonnegative 2 ×2 matrix and a maximally 2-nonnegative 3 ×3 matrix, 
each consisting only of 1’s and 0’s. Theorem 2.2 of [1] shows that no such maximally 
(k − 1)-nonnegative k × k matrices exist for k > 3. This has made extrapolating to the 
general case rather difficult.
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While our definition of k-essentiality tells us about which minors must be present in 
k-positivity tests composed entirely of minors, it would also be beneficial to know more 
about which minors must be present in every test composed of cluster variables.

Example 4.7. Consider the matrix
⎡
⎣ ε 1 ε2

1 ε 1
ε2 1 ε−2

⎤
⎦

for some small positive constant ε. All the minors of orders 1 and 2 are positive, except 
for J . In addition, the non-minors K and L are also positive. Thus, the positivity of J is 
not implied by the positivity of any other cluster variables in the n = 3, k = 2 case. This 
means J must appear in every 2-positivity test which only uses cluster variables from the 
n = 3, k = 2 cluster algebra, regardless of whether the test contains non-minors. Using 
the antidiagonal flip of this matrix, we can see that the same holds for A. From Fig. 5, 
we can see that all of the extended clusters in the pentagonal, square, and single-edge 
components are missing both A and J . As in Example 4.5, the extended clusters are all 
of size 8 and n2 = 9. So these components cannot give 2-positivity tests of size n2 using 
cluster variables.

It is also useful to know which minors aren’t k-essential.

Proposition 4.8. If |I| = |J | < k and |XI,J | is not a corner minor, then |XI,J | is not 
k-essential.

Proof. Suppose for a matrix M that |MI,J | ≤ 0. We show that there exists some other 
minor of order at most k which is also nonpositive. Pick indices i ∈ I, j ∈ J , i′ /∈ I, 
j′ /∈ J such that either i < i′ and j < j′ or i > i′ and j > j′. This is possible since 
|I| = |J | < n and the minor isn’t a corner minor.

For ease of reading, we will omit brackets around sets containing one or two elements 
in the following.

Recall Lewis Carroll’s identity: if M is an n × n square matrix and MB
A is M with 

the rows indexed by A and columns indexed by B removed, then

det(M b
a) det(M b′

a′ ) − det(M b′

a ) det(M b
a′) = det(M) det(M b,b′

a,a′)

if 1 ≤ a < a′ ≤ n and 1 ≤ b < b′ ≤ n. Using this identity on the matrix MI∪i′,J∪j′ gives

|MI,J | · |M(I∪i′)\i,(J∪j′)\j | = |MI,(J∪j′)\j | · |M(I∪i′)\i,J | + |MI∪i′,J∪j′ | · |MI\i,J\j |.

By our initial assumption, |MI,J | ≤ 0. If |M(I∪i′)\i,(J∪j′)\j | ≤ 0 then we’re done; oth-
erwise the left-hand side is ≤ 0. Thus at least one summand on the right-hand side 



A. Brosowsky et al. / Journal of Combinatorial Theory, Series A 174 (2020) 105217 17
must also be ≤ 0, which means at least one of |MI,(J∪j′)\j |, |M(I∪i′)\i,J |, |MI∪i′,J∪j′ |, 
|MI\i,J\j |, all of which are minors of order at most k, is ≤ 0. Since this holds for all M , 
|XI,J | is not k-essential. �
5. Double wiring diagrams

We now return to double wiring diagrams. These will give us a more combinatorial 
way to think about k-positivity tests, and can be used to find different components giving 
k-positivity tests.

To describe a double wiring diagram, it is sufficient to describe the relative positions 
of all of the crossings. We can think of a diagram as having n tracks numbered from 
bottom to top, where the chambers in track i have |r| = |b| = i and each crossing occurs 
in one of the first n − 1 tracks. We label a red crossing in the ith track as ei, and a blue 
crossing in the ith track as fi. With this notation, a sequence of crossings describing a 
double wiring diagram is a reduced word for the element (w0, w0) of the Coxeter group 
Sn × Sn, where w0 is the order-reversing permutation (the longest word), see [8]. We 
now define some useful groupings of crossings. Let ri = en−i · · · e2e1 for 1 ≤ i ≤ n − 1, 
and let bi = f1f2 · · · fn−i for 1 ≤ i ≤ n − 1. For convenience, when i /∈ [n − 1] we define 
ri and bi to be empty, containing no crossings. Generally, ri looks like a diagonal chain 
of red crossings going down and to the right, starting in the (n − i)th track and ending 
in the first track. Similarly, bi looks like a diagonal chain of blue crossings going up and 
to the right, starting in the first track and ending in the (n − i)th track.

Example 5.1. Suppose n = 4. Then the set of red/thin crossings on the left is r1 and the 
set of blue/thick crossings on the right is b2.

Definition. The lexicographically minimal diagram is the word rn−1 · · · r1b1 · · · bn−1. The 
lexicographically maximal diagram is the word b1 · · · bn−1rn−1 · · · r1.

Example 5.2. The lexicographically minimal diagram for n = 3 appears in Fig. 1 and for 
n = 4 appears in Fig. 4(a).

In a diagram given by an interleaving of b1 · · · bn−1 and rn−1 · · · r1, track t always 
has 2(n − t) + 1 chambers. We will label the chambers from left to right as (n, t), (n −
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Fig. 7. The chamber labeling for diagram r3r2b1b2r1b3 with n = 4.

1, t), . . . , (t, t), . . . , (t, n − 1), (t, n), as in Fig. 7. We use this labeling in the following 
proposition.

Proposition 5.3. The minor associated to chamber (i, j) in the lexicographically minimal 
diagram is

{|X[i−m,i],[j−m,j]|}1≤i,j≤n

where m = min{i − 1, j − 1}. The arrows in the quiver are (i, j) → (i + 1, j), (i, j) →
(i, j +1), and (i +1, j +1) → (i, j) for all i, j ∈ [n − 1]. The vertices (n, j) and (i, n) are 
frozen for all i, j ∈ [n].

The minor associated to chamber (i, j) in the lexicographically maximal diagram has 
variables

{|X[n−j+1,n−j+m+1],[n−i+1,n−i+m+1]|}1≤i,j≤n

where m = min{i − 1, j− 1}. The arrows in the quiver are (i +1, j) → (i, j), (i, j +1) →
(i, j), and (i, j) → (i + 1, j + 1) for all i, j ∈ [1, n − 1]. The vertices (n, j) and (i, n) are 
frozen for all i, j ∈ [n].

Proof. First consider the lexicographically minimal case. At the left of our diagram we 
have the minors |X[n−t+1,n],[t]| in the tth track for t < n. We inductively proceed by 
moving left to right, crossing the red groupings. Crossing from the left to right of rs, 
only minors in the first through n − sth tracks change. The crossings in rs bring the 
red wire labeled s to the bottom, and so between rs and rs−1, the red wires are, from 
bottom to top, s, s +1, . . . , n, s −1, s −2, . . . , 1 (see Fig. 8). The chamber minor between 
rs and rs−1 in the tth track is |X[s,s+t−1],[t]| for 1 < s < n and t ≤ n − s.

The chamber minors between r1 and b1 are |X[t],[t]| for t ≤ n − 1. Now crossing the 
blue groupings, we see that between bs−1 and bs, the blue wires are, from bottom to 
top, s, s + 1, . . . , n, s − 1, s − 2, . . . , 1. The chamber minor between bs−1 and bs in the 
tth track is |X[t],[s,s+t−1]| for 1 < s < n and t ≤ n − s. On the right of the diagram 
we have the minors |X[t],[n−t+1,n]| in the tth track for t < n. Finally, at the top of our 
diagram, we have the determinant of the whole matrix. These are exactly the variables 
{|X[i−m,i],[j−m,j]|}1≤i,j≤n where m = min{i − 1, j − 1}. In fact, labeling the vertex 
corresponding to the variable |X[i−m,i],[j−m,j]| as (i, j), we can read across the tth track 
the vertices (n, t), (n − 1, t), . . . , (t + 1, t), (t, t), (t, t + 1), . . . , (t, n).
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Fig. 8. Part of the lexicographically minimal wiring diagram showing r3, r2, and r1. Note that r3 brings the 
red/thin wire labeled 3 to the bottom of the diagram and the red/thin wires between r3 and r2 are labeled
3, 4, 2, 1. We can see that r2 and r1 act similarly.

Fig. 9. The lexicographically minimal diagram for n = 4 with chambers labeled and quiver arrows shown.

The description of the arrows can be verified using the definition of Q(D). The arrows 
(i, j) → (i + 1, j) come from condition 1 (red) and condition 4 (blue). The arrows 
(i, j) → (i, j + 1) come from condition 1 (blue) and condition 4 (red). The arrows 
(i + 1, j + 1) → (i, j) come from conditions 2 and 5. Fig. 9 depicts the n = 4 case.

The proof for the lexicographically maximal diagram proceeds in an analogous 
way. �

Note that the lexicographically minimal diagram gives the initial minors test as defined 
in Section 2. The lexicographically maximal diagram gives an antidiagonal flip of this 
test. Because of this, we will name the seeds produced by these two diagrams.

Definition. The seed given by the lexicographically minimal diagram is the initial minors 
seed. The seed given by the lexicographically maximal diagram is the antidiagonal initial 
minors seed.

Definition. The k-seed we obtain from the lexicographically minimal diagram has exactly 
the initial minors of size at most k as its cluster variables. Thus, we call this k-seed the 
k-initial minors seed. Similarly, the k-seed obtained from the lexicographically maximal 
diagram is the antidiagonal k-initial minors seed.

Remark 5.4. The sub-quiver induced by mutable vertices of the 2-initial minors quiver 
is an orientation of the Dynkin diagram A2n−3. This is also the case for the antidiagonal 
2-initial minors quiver. From Theorem 5.1.3 of [14] and the discussion in Chapter 6, 



20 A. Brosowsky et al. / Journal of Combinatorial Theory, Series A 174 (2020) 105217
the component arising from these 2-quivers is the corresponding associahedron of Car-
tan type A2n−3. In the n = 3, k = 2 example, these components are the two largest 
components (see Fig. 5).

By definition, a chamber in track i corresponds to a minor of order i. Therefore the 
dead vertices correspond to chambers above track k, and no chamber below track k is 
ever dead or frozen. We note that we can now refer to the braid moves from Fig. 3 as 
e�e�+1e� ↔ e�+1e�e�+1 and f�f�+1f� ↔ f�+1f�f�+1. These braid moves have exchange 
relations which use minors of orders � and � + 1. The other local move from Fig. 3, 
e�f� ↔ f�e�, uses minors of orders � −1, �, and � +1. This means the disallowed local moves 
are of the form ekfk ↔ fkek, ekek+1ek ↔ ek+1ekek+1, and fkfk+1fk ↔ fk+1fkfk+1. 
Thus if a chamber in track k can have a local move applied, the corresponding vertex is 
frozen. Because of this, we will more generally refer to chambers in track k as frozen.

Definition. A path between a pair of test seeds is a sequence of mutations that takes us 
from first seed in the pair to second seed such that every mutation yields a seed which 
can be augmented with test variables to form a test cluster.

To help us describe such paths, we give a construction for getting a double wiring 
diagram from a Young diagram. Specifically, let Y be a Young diagram which fits in an 
(n − 1) × (n − 1) square. Now construct the double wiring diagram D(Y ) as follows:

(1) Start with the word b1b2 · · · bn−1.
(2) Let �k be the number of boxes in the kth row of Y .
(3) For k ∈ [n − 1], insert rk between b�k and b�k+1. If there are multiple rs’s between 

some bt and bt+1, arrange the rs’s in decreasing order from left to right.

The result is an interleaving of the words b1 · · · bn−1 and rn−1 · · · r1.

Example 5.5. From the Young diagram Y depicted below, we get the word r3b1r2b2b3r1. 
This is the double wiring diagram depicted in Fig. 2.

Y =

We would like to describe the tests given by these Young diagrams.
Recall that in such interleavings of b1 · · · bn−1 and rn−1 · · · r1, we can label the cham-

bers in track t from left to right as (n, t), (n − 1, t), . . . , (t, t), . . . , (t, n − 1), (t, n). In the 
following proposition, we associate a minor to these vertices.

Proposition 5.6. Let Y be a Young diagram and yd be the number of boxes on the dth

diagonal, where the diagonals are labeled as follows:
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Fig. 10. Swapping r1 and b2 in the n = 4 case. Note that the minors corresponding to the middle chambers 
of tracks 1 and 2 change as specified above.

0 1 2 3 . . .

−1 0 1 2
−2 −1 0 1
...

Let αi,j := min{yj−i, n − i, n − j}. Then the minor associated to vertex (i, j) of D(Y )
is

mij =
{
|X[1+αi,j ,i+αi,j ],[1+j−i+αi,j ,j+αi,j ]| i ≤ j,

|X[1+i−j+αi,j ,i+αi,j ],[1+αi,j ,j+αi,j ]| i > j.

Proof. We proceed by induction on the number of boxes in the diagram. The base case is 
Proposition 5.3, where Y = ∅ is the lex minimal diagram, and Y the full (n −1) × (n −1)
square is the lex maximal diagram. Assume the statement holds for diagrams with m
boxes. Recall also from the proof of Proposition 5.3 that between ri and ri−1 the red 
wires are, from bottom to top, i, i + 1, . . . , n, i − 1, i − 2, . . . , 1 and that between bi−1
and bi the blue wires are, from bottom to top, i, i + 1, . . . , n, i − 1, i − 2, . . . , 1. This 
still applies even in the interleaved case. Now add an �th box to the kth row, where 
k is a row such that this is a valid addition. The new box is added to the (� − k)th
diagonal, which now has min(k, �) boxes. In particular, row k − 1 must have had at 
least � boxes, and so this addition changes the word from · · · rkb� · · · to · · · b�rk · · · . The 
chambers which change are in tracks min(n − k, n − �) and lower, since these are the 
tracks in which red and blue crossings are being swapped. Originally, the chamber in 
track t ≤ min(n − k, n − �) between rk and b� was ([k, k + t − 1], [�, � + t − 1]). After the 
swap it becomes ([k + 1, k + t], [� + 1, � + t]). This is illustrated in Fig. 10.

Now we must determine the vertices of D(Y ) corresponding to the chambers above 
that changed. For t ≤ min(n − k, n − �), there are n − t − k red crossings to the left of 
rk on track t, and k − 1 to the right. Similarly, there are n − t − � blue crossings to the 
right of b� on track t, and � −1 to the left. So in total, since we also must count rk and b�
themselves, there are n − t − k + � crossings on track t to the left of the chamber under 
consideration, and n − t − � +k to the right. This means there are n − t −k+ � chambers 
on track t to the left of the one under consideration, and n − t − � + k to the right. The 
chamber in track t that changed is thus in position
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(i, j) : = (max(n− # chambers to left, t), max(n− # chambers to right, t))

=
(
max(t + k − �, t), max(t + �− k, t)

)
.

Since j − i = � − k, we get that the new yj−i = y�−k = min(k, �), and so the new αi,j is

min(k, �, n− (t + max(k − �, 0)), n− (t + max(�− k, 0))) = min(k, �)

under our assumption that t ≤ min(n − k, n − �). We can check that these new αi,j’s 
give the correct formulas. For all other vertices (i, j) the chamber is unchanged and 
j − i �= � − k, so αi,j is also unchanged. �

This Young diagram construction gives us a convenient way to describe certain paths, 
as the following theorem shows.

Theorem 5.7. Suppose we have a sequence of Young diagrams Y0, . . . , Y(n−1)2 such that 
Y0 is the empty diagram, Y(n−1)2 is the (n −1) × (n −1) square, and Yi differs from Yi−1
by the addition of a single box. This sequence gives a valid path between the lex minimal 
and lex maximal test seeds by for each added box, mutating the chambers in between the 
corresponding swapped groupings, working from track 1 upwards. The k-positivity test 
is formed by disregarding all chambers above the kth track and adding in the remaining 
solid k-minors, giving a test of size n2.

Proof. The proof that this is an allowed sequence of local moves between the starting and 
ending double wiring diagrams comes from the first part of the proof of Proposition 5.6. 
If we have a Young diagram and add an �th box to the ith row, there must have been 
at least � boxes in row i − 1 and so the double wiring diagram goes from · · · rib� · · · to 
· · · b�ri · · · , i.e. from · · · en−ien−i−1 · · · e1f1 · · · fn−� · · · to · · · f1 · · · fn−�en−ien−i−1 · · · e1. 
This swap can be formed by applying the local move to swap e1 and f1, then e2 and f2, 
and so on until we have swapped emin(n−i,n−�) and fmin(n−i,n−�). The remaining crossings 
don’t interact with each other and can be slid freely. See Fig. 11 for an illustration.

Now we confirm that k-positivity holds. D(Y0) gives the k-initial minors test. Working 
inductively, suppose we have diagram Ym and add an �th box to the ith row. When 
swapping ri and b�, we only apply local moves of the form ejfj ↔ fjej . Now suppose 
j = k, which only happens when k ≤ min(n − i, n − �). In this case, by Proposition 5.6
the minor goes from ([i, i + k− 1], [�, � + k− 1]) to ([i + 1, i + k], [� + 1, � + k]). However, 
the latter is a solid k-minor not present in the chamber minors of Ym’s double wiring 
diagram, since it lies on the same diagonal as the former and has the same order. Thus it 
is in the test seed given by Ym. By swapping this minor into the extended cluster in place 
of the original one, we get a new test seed. So, this mutation is a bridge. For j > k, the 
move ejfj ↔ fjej corresponds to a mutation at a dead vertex. This mutation does not 
change the k-seed or k-positivity test at all, it only changes the way it is embedded in 
the total positivity cluster algebra. Note that the size of n2 is preserved since we never 
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Fig. 11. The stages of swapping r1 and b2 in the n = 4 case.

change the number of chambers in any track of the diagram, and the number of test 
variables is constant (since we only ever get new ones by swapping). �
Definition. We will call the paths described in Theorem 5.7 fundamental paths.

From the proof of this theorem, we can also easily prove the following fact:

Corollary 5.8. Each sub-cluster algebra found along a fundamental path has rank (n −
1)2 − (n − k)2.

Proof. The rank of the subcluster algebra is the number of mutable vertices in its quivers. 
The initial full k-quiver for the lexicographically minimal diagram has (n − k)2 dead 
vertices and 2n − 1 frozen vertices (the 2(n − k) + 1 in track k as well as the 2k − 2
unbounded chambers below track k), leaving (n − 1)2 − (n − k)2 mutable vertices. As 
discussed, no mutation at a dead vertex affects any of the mutable vertices. A mutation 
at a chamber in track k, which occurs when jumping between sub-algebras, never adds 
edges between mutable and dead vertices since arrows only occur between chambers in 
adjacent tracks. Such mutations also always keep the frozen vertex adjacent to a dead 
one, which can be confirmed using conditions 2 and 3 from the definition of the quiver 
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corresponding to a double wiring diagram. Therefore the number of mutable vertices is 
the same for every other quiver on the path. �

A path may travel through a number of components. Any initial subsequence of a 
sequence as described in Theorem 5.7 gives a k-positivity test preserving way to travel 
to some component that lies along the path corresponding to that sequence. Notice from 
the proof of the theorem that we perform a bridge exactly when the groupings we are 
swapping both have a crossing in track k. This means that every time the added box 
between Ym and Ym+1 is placed inside the upper left (n −k) ×(n −k) square of the Young 
diagram, a bridge occurs, and any time the added box is elsewhere, no bridge occurs, as 
all mutations specified by this box are at mutable vertices below track k. Also note that 
different Young diagrams within the (n − k) × (n − k) square give different components, 
since by Proposition 5.6 the k-minors present in the diagram are distinct. Thus there is 
a 1-1 correspondence between Young diagrams contained in an (n − k) × (n − k) square 
and the components found along fundamental paths.

Remark 5.9. When k = 2, the cluster algebras found along the fundamental paths are 
among those researched by Chmutov, Jiradilok, and Stevens called double rim hook 
cluster algebras [3]. Double rim hook cluster algebras are indexed by a sequence of north 
and east steps. If a double rim hook cluster algebra is indexed by a sequence that contains 
n − 2 north steps and n − 2 east steps, then the double rim hook can be embedded in an 
n × n grid. Removing the first row and column, the double rim hook cuts out a Young 
diagram in the upper right of the grid that fits in an (n −2) × (n −2) square. The cluster 
algebra obtained from this double rim hook is the same as the cluster algebra along the 
fundamental path indexed by this Young diagram. In their paper, Chmutov, Jiradilok, 
and Stevens describe all cluster variables for these cluster algebras.
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Appendix A. Code

All code used can be found at https://github .com /ewin -t /k -nonnegativity. In partic-
ular, we have code for generating the exchange graphs of the sub-cluster algebras for 
k ≤ 2 or n ≤ 3.

https://github.com/ewin-t/k-nonnegativity
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