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Abstract

We study the combinatorial, algebraic and geometric properties of the free product operation on
matroids. After giving cryptomorphic definitions of free product in terms of independent sets, bases,
circuits, closure, flats and rank function, we show that free product, which is a honcommutative
operation, is associative and respects matroid duality. The free product of maraitt#V is maximal
with respect to the weak order among matroids haviigas a submatroid, with complementary
contraction equal t&v. Any minor of the free product o# and N is a free product of a repeated
truncation of the corresponding minor &f with a repeated Higgs lift of the corresponding minor
of N. We characterize, in terms of their cyclic flats, matroids that are irreducible with respect to free
product, and prove that the factorization of a matroid into a free product of irreducibles is unique up
to isomorphism. We use these results to determineKfarfield of characteristic zero, the structure
of the minor coalgebr& { M} of a family of matroidsM that is closed under formation of minors
and free products: nameli,{ M} is cofree, cogenerated by the set of irreducible matroids belonging
to M.
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1. Introduction

We introduced the free product of matroids in a short arf¢]ein which we used it to
settle the conjecture by Welsh [9] that..., > f, - fm, Wheref, is the number of distinct
isomorphism classes of matroids orvaalement set. Free product s, in a categorical sense,
dual to the direct sum operation, and has properties that are in striking contrast to those of
other, better known, binary operations on matroids; most significantly, itis noncommutative.
In the present article we initiate a systematic study of the combinatorial, algebraic and
geometric properties of this new operation. Our main results include a characterization,
in terms of cyclic flats, of matroids that are irreducible with respect to free product, and
a unique factorization theorem: every matroid factors uniquely, up to isomorphism, as a
free product of irreducible matroids. Hence the set of all isomorphism classes of matroids,
equipped with the binary operation induced by free product, is a free monoid, generated by
the isomorphism classes of irreducible matroids.

Although we first defined the free product as such in [4], we first became aware of it earlier,
while investigating, in [5], theninor coalgebreaof a minor-closed family of matroids. This
coalgebra has as basis the set of all isomorphism classes of matroids in the given family,
with coproduct of a matroidd = M (S) given by},  M|A ® M/A, where M|A is
the submatroid obtained by restriction Acand M /A is the complementary contraction.

If the family is also closed under formation of direct sums then its minor coalgebra is a
Hopf algebra, with product determined on the basis of matroids by direct sum. These Hopf
algebras, and analogous Hopf algebras based on families of graphs, were introduced in
[8], as examples of the more general construction of incidence Hopf algebra. In the dual
of the minor coalgebra, theinor algebra the product of matroidd/ and N (dual basis
elements) is a linear combination of those matroids having some restriction isomorphic to
M, with complementary contraction isomorphicXQ the coefficient ofL = L(U) being

the number of subsets € U suchthat.|]A~M andL/A = N. In the weak map order, the

set of matroids appearing with nonzero coefficient in this product has a minimum element,
given by the direct sunM @ N, and also has a maximum element, which we denote by
M O N, this is the free product aff andN.

After discussing a few preliminaries in the following short section, we begin Section 3 by
recalling from [4] the definition, in terms of independent sets, of the free product. As a next
step, dictated by the culture of matroid theory, we give cryptomorphic definitions of the free
productin terms of bases, circuits, closure, flats and rank function. These various character-
izations allow us to demonstrate, in Sections 4 and 5, a nhumber of fundamental properties
of free product. In particular: free product satisfies the extremal property mentioned above,
that is,M O N is maximal in the weak order among matroids having a submatroid equal to
M, with complementary contraction equalXq free product is associative, and commutes
with matroid duality; and any minor of a free produ¢ta N is itself a free product, namely,
the free product of a repeated truncation of a minoMofvith a repeated Higgs lift of a
minor of N.

We begin Section 6 by giving a characterization of the cyclic flats of a free product,
and making the key definition dfee separatoof a matroidM (S) as a subset of that
is comparable by inclusion to all cyclic flats 1. We then prove the theorem thaf
factors as a free produét(U) 0 Q(V) if and only if the setU is a free separator aff. As
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a consequence, we find that a nonuniform matiids) is irreducible if and only if the
complete sublattic®(M) of the Boolean algebra®2yenerated by the cyclic flats 8 has
nopinchpoint that is, single-element crosscut, other tidamdsS. (Uniform matroids factor
completely, into single-element matroids.) In order to examine free product factorization
of matroids in detail, we turn our attention to the s&tM) of all free separators of a
matroid M (S), which, partially ordered by inclusion, is also a sublattice ®f By the
theorem mentioned above, there is a one-to-one correspondence between chathfrom
S in F(M) and factorizationsgy = My 0---0 My, according to whichV/; is the minor
of M determined by théh interval in the corresponding chain. Factorizationg/bfnto
irreducibles thus correspond to maximal chaingig\/).

We define therimary flag7,, of a matroidM as the chairfy C - -- C Ty of pinchpoints
in the latticeD(M). We show thatT,, is also the chain of pinchpoints & (M) and,
furthermore, that the intersection of the latticEéM) andD(M) is preciselyT,,. These
results, together with a proposition characterizing the intefalg, 7;]in 7(M), allow us
to prove that the free product factorizatidth= M, 0 - - - 0 My, corresponding to the chain
T is the unique factorization @ff having the property that eadl; is either irreducible, or
maximally uniform (in the sense that no free product of conseciyeis uniform). From
this fundamental result, our main theorem quickly follows: every matroid factors uniquely
up to isomorphism as a free product of irreducible matroids.

In Section7, we use the unique factorization theorem, together with the extremal prop-
erty of free product with respect to the weak order, to show that for any glasd ma-
troids closed under the formation of minors and free products, the minor coalgebra of
M is cofree, cogenerated by the isomorphism classes of irreducible matrolds Amy
minor-closed class of matroids defined by the exclusion of a set of irreducible minors will
therefore generate a minor coalgebra that is cofree. This is not the case for certain well-
studied classes such as binary or unimodular matroids, because the four point line factors
(as the free product of four one-element matroids). But for an infinite fieltie class
of F-representable matroids is closed under free product and hence its minor coalgebra
is cofree.

In conclusion, we sketch in Secti® a deelopment whereby the minor coalgebra of a
free product and minor-closed family of matroids forms a (self-dual) Hopf algebra in an
appropriate braided monoidal category.

2. Preliminaries

We denote the disjoint union of se¥&indT by S+ T, the set difference b§\ T, and the
intersectionS N T by eitherS; or T. If T is a singleton sefa}, we write S 4+ a andS\«,
respectively, foS + 7 andS\7. We write M = M (S) to indicate thatV is a matroid with
ground sets; in the case thaf = {a} is a singleton set we writéf (a) instead ofM (S).
We denote the rank and nullity functions &f by p,, andv,,, respectively, and denote by
Ay therank-lackfunction onM, given by, (A) = p(M) — p,,(A), forall A C S, where
p(M) = p,,(S) is the rank ofM.

Given a matroidv/ (S) andA C S, we write M| A for the restriction ofM to A, that is,
the matroid onA obtained by deleting\ A from M, and we writeM /A for the matroid
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on S\ A obtained by contractingt from M. For allA € B C S, we denote the minor
(M|B)/A = (M/A)|(B\A) by M(A, B).

For any setS, the free matroid/ (S) and thezero matroidZ(S) are, respectively, the
unique matroids or¥ having nullity zero and rank zero. In other words|Sf = n, then
1(S) is the uniform matroid/, ,(S) and Z(S) is the uniform matroidJo ,(S). We refer
the reader to Oxlef7] and Welsh [10] for any background on matroid theory that might be
needed.

3. The free product: cryptomorphic definitions

Definition 3.1 (Crapo and Schmif]). Thefree productof matroidsM (S) andN(T) is
the matroidM O N defined on the sef + T whose collection of independent sets is given

by
{AC S+ T: Agisindependent i/ andl, (Ag) > vy (A7)}

The first two propositions d#] show thatM O N is indeed a matroid, which contains
M andN as complementary minors; specifically, if the ground sevaf S, then

(MON)|[S=M and (MON)/S=N. (3.2)
Proposition 3.3. The collection of bases @f (S) O N (T) is given by

{AC S+ T: Agisindependent in MA, spansN and Ay (Ag) = vy (A7)},
Proof. The result follows directly from the definition of the free produckl

Note that it follows immediately from the characterization of the base¥ of N that
p(MON) = p(M) + p(N), for all M andN.

Example 3.4.Let S = {e, f, g} andT = {a, b, ¢, d}, and suppose that/(S) is a three-
pointline, andV (T') consists of two double poingbandcd. The free producté(e) O N(T)
andM (S)O N(T) are shown below:
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According to Propositior3.3, the matroid O N has as bases all three-element subsets of
{a, b, ¢, d}, together with all sets of the forife, x, y}, wherex € {a, b} andy € {c, d};
while the bases o#f O N are the sets of the form U B, with A € §, B C T, and either

(i) A=vandB =T,
(i) |A] =1and|B| =3, 0r
(i) |A| =2 and|B| = 2, with B not equal td{a, b} or {c, d}.

Proposition 3.5. The rank function of. = M (S) 0O N(T) is given by
pL(A) = py(As) + py(Ar) + min{iy (As), vy (A7)},
foral AC S+T.

Proof. Suppose that C S + T and thatl,(As) >vy(A7). Then for any basi$ of
M|Ag, the setB U A; is a basis forL|A, and thusp, (A) = |BU Ay| = |B| + |A7| =
pPu(As) + py(Ar) + vy (Ar).

If 2y (As) <vn(Ar), chooseC C A; such thalp, (C) = py(Ar) andvy(C) = Ay (Ag)
and note that we then ha¥€| = p, (C) + vy (C) = py(Ar) + Au(Ay). If B is a basis for
M|As, thenB U C is a basis for| A, and thusp, (A) = [BUC| = p,,(As) + py(Ar) +
in(Ag). O

It follows immediately that the nullity function af = M (S) O N(T) is given by
vi(A) = vy (Ag) + vy (Ar) —min{Zy (As), vy (A7)}, (3.6)
forall A € § + T, and similarly for the rank-lack function.
Proposition 3.7. The closure operator oh = M (S) O N(T) is given by

[ etu(A U As i Zu(Ag) = v (Ap),
cbu(d) = { SUCty(Ar)  if Jy(As) vn(Ap),

foral AC S+ T.

Proof. Suppose that, (As) > vy(A;). According to Propositior3.5, the rank ofd in
L is given byp, (A) = p,,(As) + |Az|, and if B = A U x, foranyx € S+ T, then
Au(Bs) = vy(Br), and we havey, (B) = p,,(Bs) + |Br|. Hencex € c£,(A) if and only if
Py (As) + |Ar| = p,,(Bs) + |Br|, thatis, if and only ifx € ¢, (As) U Ar.

Suppose thaty, (As) <vy(A7). If B=AUx, foranyx € S+ T, thenl, (Bs) <vy(Br)
and therefore, by Proposition 3.p,(A) = p(M) + py(Ar) andp,(B) = p(M) +
py(Br). Hencex € c¢£,(A) if and only if p, (A7) = p,(Br), that is, if and only if
xeSUcly(Ap). O

As a corollary, we obtain the following description of the flats of a free product in terms
of the flats of its factors.
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Corollary 3.8. Suppose that. = M(S)ON(T)andA C S+ T.If 1,,(Ag) > vy(Ap),
then Ais aflat of L if and only ifis is a flat of M if 1,,(As) <vy (A7), then Alis aflat of L
ifand only ifA; = S and A is a flat of N

Proposition 3.9. AsetC C S+ T isacircuitinL = M(S)ON(T) ifand only ifC C §
andC = Cyisacircuitin M, or Cy is independent in Mhe restrictionN |C; is isthmusless
and;LM(Cs) + 1 - VN(CT)-

Proof. By the definition of free product, a subseof S + T is dependent i if and only

if C is dependent i or 4,,(Cs) < vy(Cr). A minimal set with this property is either
a circuit in M, or a minimal set withCy independent im/ but with 4,,(Cs) < vy (Cy),
that is, a set such thaf, (Cs) + 1 = vy (Cy). If such a seC were such that the restriction
N|C; were to have an isthmus, thenC would not be minimal, since we would have
w(Cr) = v (Cr\d). O

4. Basic properties of the free product

We begin with alemma showing that the asserted inequality betiygety) andvy (A;)
in the definition of free product is in fact a property of restrictions and complementary
contractions in arbitrary matroids.

Lemma 4.1. Given a matroidL = L(S+ T),letM = L|Sand N = L/S. Then
Iu(Ag) =vy(Ar), for all independent sets A in L

Proof. The rank function on the contractioh = L/S is determined by the formula
py(B) = p (BUS) —p,(S) = p,(BUS) —p(M),forallBC T.If AC S+Tis
independentiik, thenp, (A-US) >|A|, and so by the above formula, (A7) > |A|—p(M).
Thus we havey (A7) = |Ar| — py(Ar) <|Ar| — (|A] = p(M)) = iy (Ag). O

By definition, the independent sets of the free prodd¢s) O N (T') are precisely those
subsets ofS + 7 which, according to Lemmd.1, are necessarily independent in any
matroid containing as a submatroid with complementary contractdnT he following
proposition expresses the consequent extremal, or universal, property of the free product.

Proposition 4.2. For any matroid. = L(U), and S C U, the identity map on U is a
rank-preserving weak map|SOL/S — L.

Proof. Let M = L|SandN = N(T) = L/S. If A is independent irL, then Ag is
independent i/ and, by Lemma.1, we havel, (As) >vy(Ar). HenceA is independent
in MON, and so the identity map ofi+ T is a weak map fromM O N to L, which is
clearly rank-preserving. O

Roughly speaking, in a free product= M (S) O N(T), the submatroid.|T is the freest
matroid, arranged in the most general position possible relativé te- L|S such that
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the contractionL/S is equal toN (T). In the matroidM (S) O N(T) of Example3.4, as
long as{a, b} and{c, d} are each coplanar with = {e, f, g}, and on distinct planes, the
contraction byS will be equal toN, as required. In the indicated free produet, b} and
{c, d} are simply “in general position” on such planes.

We prove next that free product respects matroid duality and is associative. First, recall
that for any matroid/ (S), the rank function of the dual matroid* satisfiesp,,«(B) =
|B| — p(M) + p,,(A), or equivalentlyl,, (A) = vy=(B), wheneveld + B = S.

Proposition 4.3(Crapo and Schmit4]). ForallmatroidsMand N(M O N)*=N*0O M*.

Proof. Suppose tha = M(S), N = N(T),andA+ B = S+ T, so thatA is a basis for
M ON ifand only if B is a basis folM O N)*. ThenA is a basis fot O N if and only if
Agisindependent i, A, spansN andiy (Ag) = vy (Ar), which is true if and only ifBg
spansM*, By is independent iiV*, andv,+(Bs) = /y+(Br), thatis, if and only ifB is a
basis forN* O M*. O

Proposition 4.4. Free product is an associative operation
Proof. Suppose thatd = M(S), N = N(T) andP = P(U). ThenA C S+ T 4+ U

is independent innMON)O P if and only if Ag,; is independent inM ON and
Anon(Asir) =vp(Ay). SinceAg, ; is independent il O N, we have

Awon(Asir) =p(MON) — |Asir|
=p(M) + p(N) — |As| — |A7|
=/u(As) + p(N) — |Ar].

Hence the sef is independent inM ON) O P if and only if A is independent inv,
wiAp) <Ay (Ag) andvp(Ay) <Ay (As) + p(N) — |Az|. Adding vy (Ar) to both sides of
the last inequality, we may express these three conditions as

v (Ag) <0, vw(Ar) <Au(As) and vy(Ar) +vp(Ay) <Au(As) + Av(Ar).

On the other handA is independent inM O (N O P) if and only if vy, (As) <0 and
vwor(Ariy) <Au(Ag). By Eq. 3.6), the latter inequality may be written as

v (A7) + vp(Ay) <Au(As) +min{iy(Ar), ve(Ay)},

which holds if and only ifvy (A7) <Ay (Ag) andvy (A7) + vp(Ay) <Ay (Ag) + Ay(Ap).
Hence A is independent inMO(NOP) if and only if it is independent in
(MON)OP. O

The definitions and properties stated above have natural analogs for iterated free products.
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Proposition 4.5. If L(S) = M1(S1) O --- OMy(S), thenA C S is independent in L if
and only if

j—1 J
D (As)= Y v (As), (4.6)
i=1 i=1

for all j such thatl< j <k.

Proof. We use induction ork. Whenk = 1, the sum on the left-hand side of the in-
equality is empty and thus zero; so the result holds. Suppose the result holtls for
M1(S1) 0 --- OMy_1(Sk_1). ThenA is independent i. = L' 0 M if and only if A’Sk =
Ag + -+ + Ag_, is independent inL” and vy, (Ask)g),L/(A/sk), that is, if and only if
inequality @.6) holds for & j <k — 1 and, sincea/sk is independent i,

k=1
v (As ) Sp(L) — |AG | =) p(M;) — |Ag .
i=1
Butp(M;) —|As, | = 4w, (As,) —vu, (As,), for alli; hence the above inequality is equivalent
to inequality @.6), forj = k. O

We will need the following generalization of Proposition 4.2 in Section 7.

Proposition 4.7. Suppose thal. = L(U) andy = Top C --- C Ty = U is a chain of
subsets of Ufor somek >0, and letL; denote the minol(7;_1, T;), for 1<i <k. The
identity maponUisaweakmdp O --- OL; — L.

Proof. LetS; = T;\T;_1, for 1<i <k, sothatL; = L;(S;), for all i. By Lemma4.1 and
induction ork, it follows that inequalities (4.6) hold for all independent séfs L. Hence,
by Proposition 4.5, any independent sef.iiis also independent ih1 O --- O Lg, that is,
the identity map o/ isaweakmad.1 0 --- OLy — L. O

One-element matroids (isthmuses and loops) play a special role in the study of free
products.

Example 4.8. Recallthat, ifla} is any singleton, theh(a) andZ (a) denote the matroids on
{a} consisting, respectively, of a single point and a single loop. For arfysefs1, .. ., s,},
andk <n, the free product (s1) O - - - O 1 (sg) O Z(sg41) O - - - O Z(s,) is the uniform ma-
troid Uy » (S).

For any matroidV/, we write LoogM) and IstiM), respectively, for the sets of loops
and isthmuses af/.

Proposition 4.9. For all matroids M and NLoop(M) € Loop(M O N), with Loop(M) =
Loop(M O N), wheneverp(M) > 0. Dually, Isth(N) C Isth(M ON), with equality
wheneven(N) > 0.
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Proof. If x is a loop of M, thenx belongs to no independent set 01 N; hencex is

a loop of MON, and so LoopM) < Loop(M ON). On the other hand, suppose that
p(M) > 0,andthatv = N(T') andx € T. It follows from Propositior8.5 thatp,, , , (x) =
py(x) +min{p(M), vy(x)} = 1, sox is not a loop inM O N, and hence Loo@ ON) =
Loop(M). The dual statements follow directly from Proposition 4.8]

Corollary 4.10. If p(M) =0o0rv(N) =0,thenMON =M & N.

Example 4.11. For any matroidM, the matroidsM 07 and Z O M consist of M with,
respectively, an isthmus and a loop adjoined, wilel Z and/ O M are respectively the
free one-point extension and coextensiodb{see[7]).

Example 4.12. Because adjoining an isthmus and taking a single-point free extension of
a matroid correspond to free multiplication on the rightfbgnd Z, respectively, it follows

that the class of matroids introduced[8], now variously known ageneralized Catalan
matroids[2], shifted matroidg1] and freedom matroid$5], is the class generated by the
single-element matroids under free product.

A representatiorof a matroidM (S) over a fieldF is a matrix P having entries inF
and rows labeled by the elements$fsuch that for allA € S, the submatrixP, of P,
consisting of those rows df whose labels belong t4, has ranlp,,(A). We can, and shall,
always assume that the number of columns in a representatidn®equal to the rank of
M. A matroid M is calledF-representabléf there exists a representation &f over F.

Proposition 4.13. If the matroidsM (S) and N (T') are F-representableand the field F is
large enoughthen the free produa¥ 0O N is F-representable

Proof. Suppose thaP and Q are representations far and N, respectively. Using the
fact that the fieldF’ has enough elements, we can construd|ax p(M) matrix Z, with
rows labelled (arbitrarily) by", having the following property: given ary € S which is
independent i, and anyB C T of sizely (A) = p(M) — | A], the matrix

.
L ZB

is nonsingular. We show that the matrix

[ P|O
L Z1@
is a representation for the free produgtd N. Suppose thatt € S+ T, and letB C A;

be a basis fod; in N. SinceB is independent iV, the matrixQ ; has independent rows,
and hence the matriR, has independent rows if and only if the matrix

7]
ZAr\B
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has independent rows. Sin¢&;\B| = vy(A;), it follows from the construction o
that this latter matrix has independent rows if and onlif is independent inv and
Au(Ag) >vy(Arp), thatis, if and only ifA is independent i/ ON. [

Suppose thatl = {A;:i € I} is an indexed family of subsets of a Sefwith repetitions
allowed). AsetA C Sis apartial transversabf A if there exists an injective maf; A — 1
such thatr € A (), for alla € A. The set of partial transversals 4fis the collection of
independent sets of a matroid, calletlamsversal matroiscbn S, and denoted by (S, A).
The family A is apresentatiorof M (S, A). Any transversal matroid/ has a presentation
with number of sets equal to the rankMf (see[10, p. 244]).

Proposition 4.14. The free product of transversal matroids is a transversal matroid

Proof. Suppose thatl = M (S, A) and N = M(T, B) are transversal matroids with
respective presentationd = {A;:i € I} and{B;:j € J}, where|l| = p(M). For all
kel + J,defineU, C S+ T by

Un — A +T ifkel,
k=1 By if k e J.

We show that the free produstf O N is equal to the transversal matroid S+ 7 having
presentatiori{ = {Uy:k € 1 + J}. GivenA € S+ T, let B € A, be a basis for
Ar in N. The setA is independent il (S + T, U) if and only if there exists injective
fiA\B — I suchthat € Uy, for alla € A\B, which is the case if and only i is
independent i and|A;\B|<|I| — |As]|. Since|A;\B| = vy(A7) andiy, (Ag) = |I| —
|Ag|, for Ay independent i, it follows that suchf exists if and only ifA is independent
inMON. O

5. Minors of free products

The minors of a free product of matroids are perhaps most simply described in terms of
the matroid truncation operator and its dual, the Higgs lift operato{&@ed hetruncation
of a matroidM (S) is the matroidl’ M whose independent sets are those independent sets
A of M satisfying|A| < maxXO0, p(M) — 1}, and theHiggs lift, or simplylift, of M is the
matroid L M whose family of independent sets{is$ < S: v, (A) <1}. Denoting byT' M
andL’ M, respectively, the-fold truncation and lift of (), it follows thatT? M has rank
equal to maf0, p(M) — i}, and

pri y(A) = min{p,, (A), p(T'M)} and Jiqiy(A) = min{0, 1, (A) — i},
forall A € S. The rank ofL! M is min{|S|, p(M) + i}, and
pLi m(A) = min{|A], p,,(A) +i} and vy (A) = max0, vy (A) — i}

fo‘r all A C S. The truncation and lift operators are dual to each other, so THat)* =
L' (M%), for all matroidsM andi>0. Truncation commutes with contraction and lift
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commutes with restriction, so for any matrdigi(S) andi >0,
(T'M))U = T'(M/U) and (L'M)|U = LI(M|U),

forall U € S. We thus shall write expressions such as these without parentheses. The
precise manner in which lift and truncation fail to commute with contraction and restriction,
respectively, is described by the following proposition.

Proposition 5.1. For any matroidM (S) andU C S
THM|U) = (T M)|U and Li(M/U) = (L'Y*m)/ U,
forall i >0,wherej = 4,,(U) andk = v, (U).

Proof. The rank-lack ofA € U in M|U is given by Ay .y (A) = Au(A) — 2u(U) =
Jm(A) = j, and solqiyyy (A) = min{0, Ay (A) — i} = min{0, 4, (A) — j — i}. On the
other hand,

Aqritingyu (A) = Apivpg (A) = dpivjpy (U)
=min{0, Ay (A) —i — j} —min{0, A,,(U) —i — j},

Wh_ich is equal to mif0, A, (A) — i — j}, sincely, (U) = j. The matroidsI' (M |U) and
(T'+/ M)|U thus have identical rank-lack functions, and are therefore equal. The second
equality follows from duality, using the fact thag, (U) = vy« (S\U), forallU € §. O

In keeping with the notational tradition of performing unary operations before binary
operations, in order to avoid a proliferation of parentheses, we adopt the convention that
all truncations, lifts, deletions and contractions that may appear in a given expression for a
matroid are to be performed before any free products and/or direct sums that appear.

Proposition 5.2. If P = M(S)ON(T) andU C S + T, then
P|U = M|UsOL!N|Ut and P/U = TiM/UsON/Ur,
wherei = 7,,(Us) and j = vy (UT).

Proof. A setA C U is independent inP|U if and only if Ay is independent i and
;LM(AS)>VN(AT)' US|ng the fact thaﬁ,M(As) = )‘M\US(AS) + )»M(US) and thatVN(AT) =
vy (A7), we thus haved independent inP|U if and only if A is independent id/|Us
andJVM‘US(A5)>VN‘UT (AT) - l BUt ma){o, VN\UT (AT) - l} - VL[N”/T(AT), and SOA |S
independentiP|U if and only if A is independent it/ |Us and/,ys(As) >V ; (Ap),

L N|U
that is, if and only ifA is independent il |UsO L' N |Ut. !

The second equality follows from the first by duality, that is, by Proposiic) the
duality between deletion and contraction, the duality between lift and truncation and the
fact thatly«(T\Ut) = vy(UT). O
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Theorem 5.3.1f P = M(S)ON(T)andU CV C S+ T, then
P(U,V) = (T'M)(Us, Vs) O(L'N)(Ut, V1),

wherej = vy (Ut) andi = 4, (Vy).

Proof. By Proposition5.2, we haveP|V = M|V,0O(L!N|Vt), wherei = 1,(Vs), and
thus, by the same proposition,
P(U,V) = (P|V)/U = (TK(M|Vy))/UsO (L N|V1)/Ut
= (T*(M|Vs))/UsO (L' N)(UT, V1),

wherek =v ;  (Ut) = max0, vy(Ut)—i} = max{0, j—i}.If j >i,then by Proposition

L' Nivp
5.1,

(TH(M|Vs))/Us = (T*+ M)|Vs)/ Us
= (T'M)(Us, Vs)
and we thus obtain the desired expression#gU, V). On the other hand, if < i =
Au(Vy), then(T'M)|Vy = M|Vs, andk = 0, and thus
(T*(M|Vy))/Us= (M|V5)/ Us
=((T/M)|Vy)/Us
= (T/M)(Us, Vs)

and again we obtain the desired expressionX@v, V). O

As a special case of Theorem 5.3, we have that the mino® ef M (S)ON(T)
supported on the sets and T are obtained by successive truncationsMfand Higgs
lifts of N, respectively; thatis, foralh € SandB C T,

P(A,AUT) = LN and P(B,BUS) =T/M,

wherei = 1, (A) andj = vy(B). This is to be compared to the direct sum, where these
minors are simply isomorphic t& andN.

The following proposition describes how the lift and truncation operators interact with
free product.

Proposition 5.4. For all matroids M and N the truncation and lift of the free product
M ON are given by

_ | MOTN if p(N) >0,
T(MDN)_{TMDN if p(N) =0
and

LMON if v(M) > 0,

L(MON) = {MDLN if (M) =0,

for all matroids M and N
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Proof. If p(M) = Othen, by Corollar¢.10,wehavé/ ON = M@ N,andsd (M O N) =
TMON)=TMOTN =M DTN = MOTN. We therefore assume thatM) is
nonzero.

Suppose tha = M(S) andN = N(T). Observe thatifaset C S+ T isindependent
inany ofthe matroid¥ (M O N),M O T N andT M O N, thenA; is necessarily independent
in M. Hence, for the remainder of the proof, we assume thet some subset of + T
such thatd is independent /.

We first consider the case in whigtN) = 0. The setA is independent il O N if
and only if1,,(Ag) > vy (A7), which is the case if and only jfA| < p(M), sincely (Ag) =
p(M) —|Ag| andvy(Ay) = |A|. Itfollows thatA is independent il (M O N) if and only
if [A|<p(M) — 1.

Now A is independent iff M O N if and only if p,,(As) = |As|<p(M) — 1 and
Arm(Ag) =vy(Ar). Furthermore

Aru(Ag) =max{iy(As) — 1, O}
=max{p(M) — |Ag| — 1, O},

which is equal tgp(M) — |Ag| — 1, since|Ag| < p(M) — 1. ThereforeA is independent in
TMONifandonlyifp(M)—|As|—1>vy(Ar) = |Ar|, thatis,ifandonly if A| < p(M) —
1,and henc&  MON)=TMON.

Now suppose thgi(N) > 0. If p,,(Ar) < p(N) then, by Proposition 3.3, the sétdoes
not spanM O N, and soA is independent irf (M O N) if and only if A is independent in
M ON. But sinceA; does not spaiV, and thusy; (A7) = vy(Ay), it follows thatA is
independent il O N if and only if it is also independent i OT N. If p, (A7) = p(N)
then, by Proposition 3.3, we have thils independentiff (M O N) ifand only if 1,,(As) >
vy(A7). But A is independent il O T N if and only if 1,,(Ag) >vrn (A7) = vy (A7) +
1; henceT(MON) = MOTN. The corresponding result fat (M 0O N) follows by
duality. O

It follows from Proposition 5.4 that, for all matroidd andN, andi >0,
T'(MON) = T'MOT-IN and LI(MON) = Li-*M OL*N, (5.5)

wherej = max{i — p(N), 0} andk = max{i — v(M), 0}.

6. Irreducible matroids and unique factorization

A crucial tool for the study of factorization of matroids with respect to free product is the
notion ofcyclic flatof a matroid. Recall that a cyclic flat @f is a flatA which is equal to
a union of circuits of\. Alternatively, a flatA is cyclic if and only if the restriction| A
is isthmusless. Observe that in particular, any closure of a circuit in a matroid is a cyclic
flat. We begin with the following characterization of the cyclic flats in a free product of
matroids.

Proposition 6.1. A subsetd # S of S+ T is a cyclic flat ofL = M (S) O N(T) if and only
if either A € S and A is a cyclic flat of Mor A = S U B, where B is @nonemptycyclic
flat of N. The set S is a cyclic flat of L if and only if M is isthmusless and N is loopless
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Proof. Suppose tha# C S + T satisfies/; (As) > vy(Ar) andA # S. According to
Corollary3.8,A is a flat of L if and only if A is a flat of M, in which case any element of
A; is anisthmus of.|A. HenceA is a cyclic flat of L if and only if A; = #andA = Ay
is a cyclic flat ofM.

Now suppose thatt # S and 1, (Ag) <vy(Ar). Then by Corollary 3.84 is a flat of
L ifand only if Ay = S andA; is a nonempty flat ofV. Given such a flai, we have
pL(A) = py(As) + py(Ar) + minfly(As), vw(Ar)} = p(M) + py(Ar); hence ifA is
cyclic thenA; must be a cyclic flat ofv. On the other hand, ifi; is cyclic in N, then
p,(A\a) = p,(A), foralla € Ar, and sincery (A7) > 0 andiy(As) = Au(S) =0, it
follows thatp, (A\a) = p,(A) foralla € A as well. HenceA is cyclic.

Sincely (S) = 0, it follows from Corollary 3.8 thas is a flat of L if and only if N is
loopless, in which case the flatis cyclic if and only if M = L|S is isthmusless. [

Definition 6.2. AsetA C S is afree separatoof a matroidM (S) if every cyclic flat of M
is comparable tA by inclusion.

Note that the empty set and the entire $are free separators of any matradi S); any
other free separator is said to hentrivial.

Theorem 6.3. For any matroidL(S + T), the following are equivalent

() L(S+T) = L|SOL/S.
(i) Sis afree separator of.L

Proof. The implication(i) = (ii) isimmediate from Propositiof.1. Conversely, suppose
that S is a free separator of, and letM = L|S andN = L/S. We first show that
every circuit of L is also a circuit of the free produdt (S) ON(T). Let C be a circuit
of L. If C C §, thenC is a circuit of M, and therefore a circuit af/ O N. Suppose that
C £ S. SinceC is a circuit, p, (C\a) = p,(C) and thus, by the semimodularity of the
rank function,p, (S U C)\a) = p,(SU C), for alla € C. Hence, for alla € C;, we
havep, (Cr) = p,(SUC) — p,(S) = p,(SUC\a) — p,(S) = p,(Cr\a), and soN|C;

is isthmus free. Since the closure of a circuit is a cyclic fiais a free separator, and
C Z S, we haveS C ¢¢,(C). It follows thatp, (SU C) = p,(C) = |C| — 1, and so
v (SUC) =S| —|Cs| + 1. Therefore

Ww(Cr) =y, (SUC) — v, (S)
=I[8] = 1Cs| +1— (S| — p.(S))
=pM) —|Cs| + 1,

which is equal tol,(Cs) + 1, sinceC; is independent ir. (and thus also in¥). By
Proposition 3.9, it follows thaf is a circuitinM O N.

We have thus shown that every circuitfiris also a circuit inL|SO L/S, in other words,
the identity map or$ + T is aweak mafd. — L|SOL/S. By Proposition 4.2, the identity
map onS + T is also aweak map|SOL/S — L;henceL = L|SOL/S. O



236 H. Crapo, W. Schmitt / Journal of Combinatorial Theory, Series A 112 (2005) 222—-249

We referto anonempty matroid asirreducibleif any factorization of\f as a free product
of matroids containg/ as a factor. By convention, the empty matroid is not irreducible.
The following restatement of Theore®n3 characterizes irreducible matroids.

Theorem 6.4. For any nonempty matroid (S), the following are equivalent

(i) Misirreducible with respect to free product
(i) M has no nontrivial free separator

Corollary 6.5. If M is looplessisthmusless and disconnectéaien M is irreducible

Proof. Suppose thad (S) is loopless, isthmusless and disconnected, and \Wfit§) as
the direct sumP (U) & Q(V), with U andV nonempty. LetA be a nonempty proper subset
of S. Assume, without loss of generality, th&y andV\ A are nonempty, and lete V\A.
Since Q is loop and isthmus freey is contained in some circu® of Q. Now C is also

a circuit of M anda € c£,(C) = cf,(C) < V; hencect,, (C) neither contains nor is
contained inA, and soA is not a free separator af. [

Corollary 6.6. If L = M(S)ON(T) = P(T)DO Q(S), where S and T are nonemptiien
L is a uniform matroid

Proof. Let C be a circuit ofL. By Theorem6.3, bothS andT are free separators éfand
hencec?, (C) is comparable to botl andT by inclusion. Sinces andT are disjoint and
nonempty, the only possibility is th&tandT are both contained in¢, (C). Every circuit
of L is thus a spanning set fd@r, and thereford. is uniform. O

We remark that it follows from Proposition 4.3 that a matrdids irreducible if and only
if the dual matroidM* is irreducible.

Corollary 6.7. If M is identically self-dualthen M is either uniform or irreducible

Proof. Suppose tha¥ is identically self-dual and factors &U) 0 Q(V), with U andV
nonempty. Using Propositich3, we haveP (U) 0 Q(V) = M = M* = Q*(V) O P*(U),
and hence it follows from Corollary 6.6 thaf is uniform. O

Example 6.8. Suppose that = {a, b, ¢, d} and letM (S) be the matroid in whiclab is
a double point, collinear with andd. ThenM is self-dual, not uniform, and factors with
respect to free product d$a) 0 Z(b) 01 (c) O Z(d).

For any matroidM (S), we denote byD(M) the complete sublattice of the Boolean
algebra 2 generated by all cyclic flats d#f. Note thatD(M) is a distributive lattice, and
contains in particular the empty union and empty intersection of cyclic flatg,afrhich
are equal t¢ and S, respectively.

Proposition 6.9. A nonempty matroidZ(S) is uniform if and only iffD(M)| = 2, that is,
if and only ifD(M) = {@, S}.
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Proof. Uniform matroids are characterized by the fact that all of their circuits are spanning.
HenceM (S) is uniform if and only if it has no cyclic flat that is both nonempty and not
equal toS. For nonempty matroids, this is the case if and onlpiiv) = {¢, S}. O

Definition 6.10. An elementx of a partially ordered seP is a pinchpointif the set{x}
is a crosscut o, that is, if all elements oP are comparable t®. A pinchpoint of P is
nontrivial if it is neither minimal nor maximal irP.

A uniform matroid is irreducible with respect to free product if and only if its underlying
setis a singleton (see Exam@e). Irreducibility of nonuniform matroids is characterized
in the following theorem.

Theorem 6.11. For any nonuniform matroid/ (S), the following are equivalent

(i) Misirreducible with respect to free product
(i) The latticeD(M) contains no nontrivial pinchpoint

Proof. If A € D(M) is a nontrivial pinchpoint themt < S is itself a nontrivial free
separator, and henadé is not irreducible by Theorer®.4. Conversely, suppose thet(S)
is nonuniform and has a nontrivial free separatoc S. SinceM is nonuniform it has a
cyclic flat B which is neither empty nor equal £ If A € B, then the intersection of all
cyclic flats of M containingA is a nontrivial pinchpoint oD(M). If B C A, then the union
of all cyclic flats which are contained i is a nontrivial pinchpoint. O

For any matroidV (S) we denote byF (M) the set of all free separators df, ordered
by inclusion. We shall see presently th&tM) is a lattice (in fact distributive). For all
A C B C S, we denote by A, B] the subintervalU C S: A € U C B} of the Boolean
algebra?. If A andB are free separators 8f (S), then we writ§ A, B] - for the subinterval
[A, BN F(M) of F(M). In the following lemma we show that an interval in the lattice
of free separators of a matroid is isomorphic, under the obvious map, to the lattice of free
separators of the corresponding minor of the matroid.

Lemma 6.12. For all free separatorsA C B of a matroidM (S), the map from the interval
[A, B]r in F(M) to the lattice (M (A, B)) given byU — U\ A is a bijection(and thus
a lattice isomorphisim

Proof. If A € U C B are free separators dff(S), then it follows from Theorems
5.3 and 6.3 thatM (A, B) = M(A,U)0M U, B), and soU\A is a free separator of
M (A, B). On the other hand, i C B are free separators af, thenM factors asM =
M|AOM(A, B)OM/B, and if V C B\A is a free separator a¥/ (A, B), we have the
factorizationM (A, B) = M(A, B)][VOM(A,B)/V = M(A,AUV)OM(AU YV, B).
Hence, by associativity of free produet,U V is a free separator gff. [

If Up ¢ --- C Ui is a chain inF(M), with Ug = ¢ and Uy = S, then by
Lemma 6.12, we have the factorizatidi(S) = MUy, U1 O --- OM(Uy_1, Uy) of
M into a free product of nonempty matroids. On the other hand, given any factorization
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M(S) = M1(S1) O --- O My (Sy), with all M; nonempty, the set§; = SoU --- U S;, for

1<i <k, comprise a chain frord to S in 7(M). Hence the factorizations @f (S) into

free products of nonempty matroids are in one-to-one correspondence with chairié from
to S in the lattice 7 (M).

Lemma 6.13. A matroid M (S) is uniform if and only ifF(M) is equal to the Boolean
algebra2s.

Proof. If M(S) is uniform then the only possible cyclic flats &f aref) andS, and so every
subset ofS is a free separator dif. Conversely, if every subset 6fis a free separator of
M, then the only possible cyclic flats 81 arey and S, and thus\ must be uniform. O

Definition 6.14. Theprimary flag7,, of a matroidM is the chairfp C - - - C T} consisting
of all pinchpoints in the lattic®(M).

Note that the sets belonging to the primary flag of a matroid are, in particular, free
separators, and thus the primary flagfis a chain fron¥ to S in F(M).

Proposition 6.15. If the matroid M (S) has primary flagly C --- C T, then the lattice
F (M) of free separators of M is equal to the union of interv@ézl[T,-_l, T:1~, where
each intervalT;_1, T;] - is a Boolean algebragiven by

[T 1. T, = [Ti-1, T;] if T; coversT;_1in D(M),
L AEE T o, i) otherwise

for 1<i <k.

Proof. By definition, free separators & are comparable to all cyclic flats #f and hence
comparable to all elements @f(M). Every free separator is thus contained in one of the
intervals[7;_1, i1, and saF (M) = ‘', [Ti_1, Ti1.

Suppose thaf; coversT;_1 in D(M). SinceT;_1 andT; are consecutive pinchpoints of
D(M), andD(M) contains all cyclic flats oM, it follows that anyA C S with 7;_1 C
A C T; is a free separator. Hen€€ _1, T;]1» = [T;—1, T;]-

Now suppose thdf; does not cover;_; in D(M). Choose som® € D(M) such that
T;,_1 C D C T;,and letA € [T;_1, T;] . SinceA is a free separatos must be comparable
to D. If A C D, then the se{E € D(M):A C E C T;}is nonempty, and thus the
intersectionF of all elements of this set is a pinchpointB{ M) satisfyingA € F C T;.
SinceT;_1 andT; are consecutive pinchpoints Bi(M), we therefore havd = F = T;_1.
Similarly, if D C A, it follows thatA = T;. Hence[T;_1, T; 1 = {T;-1, T;}. O

Proposition6.15 shows, in particular, tha (M) is a sublattice of the Boolean algebra
25, and therefore is a distributive lattice. Observe that the first statement of Proposition
6.15 means that, in addition to being the chain of pinchpoin® (M), the primary flag
Ty is also the chain of all pinchpoints (M), and the second statement implies that
DM) N F(M) = T,. If a matroid M has primary flagilp, C --- C T, we refer to
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the minorsM (T;_1, T;) as theprimary factorsof M, and refer to the factorizatioW =
M (To, T1) O -+ - OM(Ty—1, Ty) as theprimary factorizationof M.

Theorem 6.16. The sequence of primary factors of a matroid M is the unique sequence
My, ..., M of nonempty matroids such thAd = M10 --- O My, each M; is either
irreducible or uniform and no free product of consecutiy&’s uniform

Proof. Suppose that/ (S) factorsas = M1 0 --- OM,. Letd = {Ug C --- C Uy} be
the corresponding chain i(M), determined bw; = M (U;_1, U;), for 1<i <¢, and let
Tu = {To C --- C Ty} be the primary flag oM. We show that the sequengfy, ..., M,
has the properties described in the theorem if and orily=f 7,,.

Supposethdt = 7,,.ByLemmab.12we haveF (M;) = F(M(T;—1, T;)) =[T; -1, T; ) 7,
for 1<i<k. If T; covers T,_1 in D(M), it follows from Proposition 6.15 and
Lemma 6.13 thad/; is uniform; and if7; does not covef;_1 in D(M), then Proposition
6.15 and Theorem 6.4 imply thad; is irreducible. For Xi <k — 1, we haveM; O M; ;1
=M(Ti—1, T)) OM(T;, Tix1) = M(Ti—1, Tiy1), and saF (M; O M; 1) =[T; 1, Ti11]#, by
Lemma 6.12. This interval has a nontrivial pinchpoint (namgly,and so is not a Boolean
algebra; hence by Lemma 6.18; 0 M; ;1 is not uniform.

For the converse, first note that, since any free separatdf of comparable with all
the 7;’s, it follows that the uniorl/ U 7, is a chain inF(M). Hence if T € U, we can
find i andj such thatT; e [U;_1, U;]#, with T; not equal toU;_; or U;. ThenT; is a
nontrivial pinchpoint offU; _1, U; 1 = F (M (U; -1, U;)), and hencé!; = M(U;_1, U;) is
neither uniform nor irreducible.

Now suppose thaf is a proper subset dff. We can then find some and j such
thatU; e [T;_1, T;1#, with U; not equal toT;_; or 7;. By Proposition 6.15, we know
that 7; coversT;_1 in D(M), from which it follows thatM (T;_4, T;) is uniform. Since
T C U,we haveT;_1 € Uj_1 andU;;1 € T;; hence the free produd?; OM; ;1 =
MU;j-1,U)OMU;,Ujt1) = M(Uj_1,Uj41) is a minor of M (T;_1, T;) and is thus
uniform. O

Theorem 6.16 shows that matroids factor uniquely as free products of minors that are ei-
ther irreducible or “maximally” uniform. We now wish to consider factorization of matroids
into irreducibles. Clearly, given a factorizatiofn(S) = M (Up, Uy) O - - - O M (Uy_1, Uy),
the factorsM (U;_1, U;) are all irreducible if and only it/g C --- C Uy is a maximal
chain in the lattice of free separatgf§M). If M (S) = U, , is uniform of rankr, then any
maximal chain inF(M) = 25, or equivalently, any ordering, . . ., s, of the elements of
S, gives a factorization

M=1I1(s1)0---0I(s)OZ(sp41) 0 --- O Z(sy)

of M into irreducibles (see Examp#e8). The factorization of a uniform matroid into irre-
ducibles is thus in general far from unique. Up to isomorphism, or course, we do have the
unique factorizatiort/,, = I" 0 Z"~". In the next theorem we show that, up to isomor-
phism, arbitrary matroids factor uniquely into irreducibles.
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Theorem 6.17.f M=~M10 --- OM;=N10 - -- ON,, where all theM; andN; are irre-
ducible thenk = r and M; = N;, for 1<i <k.

Proof. Since the setd; belonging to the primary flag,, of M are all pinchpoints of
F(M), it follows that any maximal chain itF (M) is a refinement of,,. Hence any fac-
torization of M into irreducibles can be obtained by starting with the primary factorization
M = M(Tp, T1)O --- OM(T,-1, Ty), then factoring eacM (7;_1, T;) into irreducibles.
Since eachM (T;_1, T;) is either irreducible or uniform, and uniform matroids factor into
irreducibles uniquely up to isomorphism, it follows that the factorizatiolointo irre-
ducibles is unique up to isomorphism(]

The unique factorization theorem (Theorér7) provides a quick proof of the following
theorem, which was the main result in [4]:

Theorem 6.18. Supposetha (S) ON(T)=~P(U) 1 Q(V),where|S| = |U|.ThenM = P
andN =~ Q.

Proof. SinceM O N and PO Q have, up to isomorphism, the same factorization into
irreducibles, it follows from the fact thdtS| = |U| and|T| = |V]|, that M = P and
N~Q. O

For all n >0, denote bym, andi,, respectively, the number of isomorphism classes
of matroids and irreducible matroids enelements, and leM (1) = }_, - om,t" and
1(t) = )_, > ¢int" be the ordinary generating functions for these numbers. Fariall> 0,
denote bym, ; andi, x, respectively, the number of isomorphism classes of matroids and
irreducible matroids having rankand nullityx, and letM (x, y) = an?Omr,eryk and

[(-x7 )’) = Zr,k;Oir,eryk'
Corollary 6.19. The generating function® () and(¢), and M (x, y) and I (x, y) satisfy

M(t) =

1—1(1‘) and M(x,y) = m

Proof. Unique factorization implies that, for all>0,

my = E E lny * =" lnj,

j=0ni+-+nj=n

which is the coefficient of” in Zj >0 I(t)) =1/(1—1(z)). The second equation is proved
similarly. O

Using Corollary6.19, we compute the numbegsandi, x in terms of the values ofi,
andm;,x, for n, r + k<8. The results are shown in Tables 1 and 2.

The two matroids of size one, namely, the pairdnd loopZ, are irreducible, and no
matroid of size two or three is irreducible. The unique irreducible matroid on four elements
is the pair of double point#/; 2> & Ui 2. The two irreducible matroids on five elements
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Table 1
The numbers of nonisomorphic matroids, irreducible matroid, ofisifer 0<n <8

n 0 1 2 3 4 5 6 7 8
Matroids 1 2 4 8 17 38 98 306 1724
Irreducible matroids 0 2 0 0 1 2 14 66 891
Table 2

The numbers of nonisomorphic matroids (left), irreducible matroids (right), ofrrankl nullityk, for0O<r +k <8
r k

o 1 2 3 4 5 6 7 8 0o 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1 0 1 O 0 0 0O O O O
1 1 2 3 4 5 6 7 8 1 0 O 0 0 0O 0 O
2 1 3 7 13 23 37 58 0 0 1 1 3 3 6
3 1 4 13 38 108 325 0O 0 1 8 30 125
4 1 5 23 108 940 0 0 3 30 629
5 1 6 37 325 0 0 3 125
6 1 7 58 0 0 6
7 1 8 0 O
8 1 0

areUy 3 @ Uy 2 and its duallUz 3 @ Uz 2. On six elements, the irreducibles of rank two
areUy 4 @ U1, U3 @ U1 3 and the truncatiol (U1,2 @ U1 2 @ Ui 2), which consists
of three collinear double points. The duals of these matrdids, ® U1z, U23 @ Uz 3
and L (U1,2 & U12 ® Ui 2), are the six-element irreducibles of rank four. Finally, on six
elements in rank three, the irreducible matroids consisbof® U1 2, U1,2 ® U1,2® U1, 2,
U130 U2 3, andUéB@ Uiz, WhereUé’3 is the three-point lin&> 3, with one point doubled,
together with the four matroids shown below:

1] | /\
A A &\x VAN

Since the dual of an irreducible matroid is irreducible, the set of rank-three irreducible
matroids on six elements must be closed under duality; in fact, each matroid in this set is
self-dual.

7. The minor coalgebra

In this section, and the next, we work over some commutative kingith unit. All
modules, algebras and coalgebras are &veall maps between such objects are assumed
to beK -linear, and all tensor products are taken akeGiven a family of matroids\t, we
denote byK { M} the freeK-module having as basis all isomorphism classes of matroids
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belonging toM. In what follows, we shall not distinguish notationally between a matvbid
and its isomorphism class, or between a family of matrdidsnd the set of isomorphism
classes of matroids belonging fef; it should always be clear from the context which is
meant.

If M is a minor-closed family, then thminor coalgebrd5,8] of M is the free module
K{My}, equipped withrestriction—contraction coproduet determined by

S(M) =Y M|A® M/A
ACS

and counit determined by M) = ., forall M = M(S) in M. If M is also closed under
formation of direct sums, thek { M} is a Hopf algebra, with product determined on the
basisM by direct sum. For any minor-closed familt, the coalgebr& { M} is bigraded,
with homogeneous componekit, M}, ; spanned by all isomorphism classes of matroids
in M having rank- and nullityk. WhenM is also closed under direct sum, this is a Hopf
algebra bigrading.

For all matroidsvV1, N> andM = M (S), thesection coefficier(Nsz) is the number of

subsetsA of S such thatM|A =~ Ny andM /A = N»; hence if M is a minor-closed family,
the restriction—contraction coproduct satisfies

M
M) = (Nl’ NZ) N1® N, (7.1)

for all M € M, where the sum is taken over all (isomorphism classes of) mathidsd
N». More generally, for matroidd/, ..., Ny andM = M (S), themultisection coefficient

(le‘f Nk) is the number of sequencéSy, ..., S;) such thatd = So € --- C S =

S and the minorM (S;_1, S;) is isomorphic toN;, for 1<i <k. The iterated coproduct
L KM} > KM} ® - -- ® K{M]} is thus determined by

M

) = Ni®---® N,
(M) leNk<Nl"”’Nk> 10 ® Ny

forall M € M.

For any family of matroidsM, we define a pairing-, -): K{M} x K{M} — K by
setting (M, N) = 6., for all M, N € M, and thus identify the graded dual module
K{M}* with the free module&k {M}. In the case that is minor-closed, we refer to the
(graded) dual algebr& { M}* as theminor algebraof M; the product in the minor algebra
is thus determined by

MN =2 (M,LN> -

LeM

forall M, N € M.
We partially order the set of all isomorphism classes of matroids by settirgV if and
only if there exists a bijective weak map fromf to N. The following result provides us
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with critical necessary conditions for a matroid to appear in a given product of matroids in
K{M}*.

Proposition 7.2. For all matroids L, M and N

L
0 M&N<SL<LMON.
(y)20 = mo

Proof. Suppose that/ = M(S) andN = N(T). Given a matroid. such that(MLN> #0

we may assume thdt = L(S + T), whereL|S = M andL/S = N. The semimodu-
larity of p, implies thatp, (As) + p, (S U A)<p,(S) + p,(A), forall A € S+ T, and
SO Pyen(A) = py(As) + py(Ar) = p(As) + p (SU A) — p,(S)<p,(A), and hence
the identity onS + T is a weak mapL. — M & N. On the other hand, according to
Proposition4.2, the identity onS + 7 is a weak mapM ON — L; henceM & N<L
<MON. O

Similarly, using Proposition 4.7 instead of Proposition 4.2, we obtain

L
< >7é0 == M1 P --- M <L M O---OMy, (7.3)
My, ..., My
forall LandMjy, ..., My € M.
The following example shows that the converse of Propositi@rdoes not hold.

Example 7.4. Supposd. is the rank 4 matroid on the sEt= {a, b, ¢, d, e, f, g} pictured
below.

A
|

If M is a three point line on the sét, b, ¢}, and N is a four point line on{d, e, f, g},
then the free produd O N consists of a three point line da, b, ¢}, together with points
d, e, f, g in general position in 3-space, and the identity maplois thus a weak map
MON — L. Now if M’ is a three point line ofe, f, g} and N’ is a four point line on
{a, b, c, d}, thenthe identity o/ is aweak ma@d. — M’'® N'. SinceM ~M’ andN = N’,

we thus have! & N <L <M 0O N.But L has no three point line as a restriction with a four

point line as complementary contraction, anc(;éﬁl\) =0.

n
c d

If a family M is closed under formation of free products th&f@AM}, with product
determined by the free product on the basisis an associative algebra. We denkteM},
equipped with this algebra structure, KM} .
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Proposition 7.5. If M isafree product-closed family of matrojdisen the algebra& { M}
is freg generated by the set of irreducible matroids belongingto

Proof. Because the seW! is a basis folk { M}, the result follows directly from unique
factorization, Theorer6.17. O

.....

whereMy, ..., My is the sequence of irreducible factorsit

Theorem 7.6. Suppose that\1 is a family of matroids that is closed under formation of
minors and free products. IK is a field of characteristic zeyghen the minor algebra
K{M}* is free generated by the set of irreducible matroids belongingto

Proof. For each matroid belonging toM, let P,, denote the producM; - -- M in
K{M}*, whereM1, ..., My is the sequence of irreducible factorsit We can write

Py = ) c(N,M)N,
N

where, by 7.3), the sum is taken over &yl € M such thatv < M in the weak order. Since
c(M, M) # 0, for all matroidsM, andK is a field of characteristic zero, it thus follows from
the factthatM is a basis fok { M}* that{P,, : M € M} is also a basis fak { M}*. The map
K{M}5 — K{M}* determined b — P,,, which is clearly an algebra homomorphism,
is thus bijective and hence an algebra isomorphism. Sihyce- M, whenevetM € M is
irreducible, the result follows from Proposition 7.5]

Example 7.7. The family M of all matroids is minor-closed and closed under free product.
Hence K {M}* is the free algebra generated by the set of all (isomorphism classes of)
irreducible matroids.

Example 7.8. The family F of freedom matroids (see Examplel2) is minor-closed and
closed under free product. Since all freedom matroids can be expressed as free products of
points and loops, it follows that { F}* is the free algebra generated bpndZ.

Example 7.9. For any fieldF, the classM of all F-representable matroids is minor-
closed. It follows from Propositiod.13 that if F is infinite thenM . is also closed under
formation of free products.

Example 7.10. It follows from Propositiord.14 that the family/” of all transversal ma-
troids is closed under formation of free products. However, since contractions of transversal
matroids are not in general transver$alis not minor-closed.

Proposition 7.11. If a family M of matroids is minor-closed and closed under formation
of free productsthen M is also closed under the lift and truncation operations
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Proof. Suppose thatV is minor-closed and closed under formation of free products. If
M is the class of all free matroids or the class of all zero matroids, or consists only of the
empty matroid, theoM is closed under lift and truncation..¥1 is none of the above, then

it must contain the matroidsandZ. By Propositiors.2, we have

LM = (O0OM(S))S and TN = (MOZ(a))/a,

for any matroidM = M (S). Hence, ifM belongs toM thensodd. M andT M. O

Suppose thatt and K satisfy the hypotheses of Theoréh®, and thaiM is partially
ordered by the weak order. The fact théd¥, N) # 0 impliesM <N, forall M, N € M,
means that we may regasdhs an element of the incidence algeb(a1) of the posetM.
Sincec(M, M) isinvertible ink, for all M, it follows thatc is invertible inI (M), the inverse
given recursively by —1(M, M) = ¢(M, M)~1, for M € M, and

MM N) = —c(N.N)™H Y7 MM P)e(P N,
M < P<N

forall M < N in M. The inverse of the change of basis midp— P, is thus given by

M= %" ¢ NMPy,
N<M

forall M € M. Let{Q,: M € M} bethe basis ok { M} determined by Q,,, Pv) = dy.n,
forall M, N € M. Observe thaQ,, satisfies

Qu = Y ¢ MM N)N, (7.12)

N>M

forall M € M. Before stating the next theorem, which is dual to Theoreénwe note that,

for any minor-closed familyM, the minor coalgebr& { M} is connected, with the empty
matroid as unique group-like element. In particular, it follows that the notion of primitive
element ofK { M} is unambiguous.

Theorem 7.13. Suppose thai is a family of matroids that is closed under formation of
minors and free products. K is a field of characteristic zerdhen the minor coalgebra
K{M}iscofree. The s¢D,,: M € M isirreduciblg is a basis for the subspace of primitive
elements ok { M}.

Proof. The fact thatK { M} is cofree is equivalent to the fact th&t{ M }* is free, which
was shown in Theoreni.6. Let ¢: K{M}, — K{M}* be the algebra isomorphism
used in the proof of Theorem 7.6, given by — P,,, for all M € M. The transpose
" K{M} — K{M}? is thus a coalgebra isomorphism. For 8l N € M, we have
(@*(Qu), N) = (Qu, ¢(N)) = (Qu, Py) = du.n, and hencep*(Q,) = M. Since
the set of all irreducibleM € M is a basis for the subspace of primitive elements of
K{M}t  itfollowsthat{Q,: M € M is irreduciblég is a basis for the subspace of primitive
elements oK {M}. O
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Example 7.14. Suppose that is closed under formation of minors and free products, and
that M contains the irreducible matroid = U1 2 & U1, 2, consisting of two double points.
Since M is minor-closed, it contains the (irreducible) single-element matrpidad Z.
SinceM is also closed under free product, it follows from Tablend unique factorization
that M contains all matroids of size less than or equal to four (all such matroids, eR¢cept
being free products af's andZ’s).

It is clear from Eq. (7.12) that the primitive elemer@s and Q, in K{M} are equal
to I andZ, respectively. In order to compute,, we first observe thagtN: N > D in M}
consists of the two matroids, 4 = I0/0Z0Z andP = I0ZO10OZ. SinceP is a
three pointline, with one pointdoubled, we hdvel P < Uz 4. The multisection coefficients
c(M, N), forall M, N > D, are given by the matrix

D P U
D 1 8 16
P 0 4 20
Uo.a 0 0 24

and the numbers—1(M, N), for M, N > D, are thus given by the inverse matrix

L (2448 24
sl 0 65
4\o o0 1

HenceQ, = D — 2P 4+ Uz a.

8. A new twist

If a family of matroidsM is both minor and free product-closed, then the modua1}
has both the structure of a (free) associative algebra, under free product, and a coassociative
coalgebra, with restriction—contraction coproduct. Moreover, according to Theba&m
when the ring of scalars is a field of characteristic zero, these structures are dual to one
another. In this section we show that free product and restriction—contraction coproduct are
compatible in the sense that{M} is a Hopf algebra in an appropriate braided monoidal
category.

By a matroid module we shall mean a free modulé{ M}, where M is a family of
matroids that is closed under formation of lifts and truncations. Given matroid modules
V = K{M} andW = K{N}, we define thewistmapt =7, ,: V@ W — W ® V by

t(M@N) = LPMN TNy, (8.1)

forall M € M andN € N. If the familiesM and A are also closed under formation of
free products, we use the twist map to extend the definition of the free product to a binary
operation onv ® W:

MN)O(P® Q) = (MOLMNMP)g(T"PNDQ), (8.2)
forall M, P ¢ MandN, Q €¢ N.
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Proposition 8.3. For all families M and\, closed under free produgdtft and truncation
the productO given by Eq(8.2)is an associative operation aki{ M} ® K {N}.

Proof. Suppose thaM; € M andN; € N, and letv; = v(M;) andp; = p(N;), for
1<i<3.Then
[(M1® N1) O (M2 ® N2)] 0 (M3 ® N3)
= [(M1OL1M2) ® (T2N10N2)] 0 (M3 ® N3)
= (M,OLM>OL'M3) @ (T'3(T*2N10 N>») O N3)
=M OLTM>0LM3) @ (TFN1OT"3N2 0 N3),
wherei = p(T"2N10N2) = po + max{p; — v2, 0} and, by Eq. (5.5), we have =
v2 + max{vz — p,, 0}. On the other hand,
(M1 ® N1)O[(M2 ® N2) 0 (M3 ® N3)]
= (M1 ® N1)O[(M20Lr2M3) ® (T'3N20 N3)]
= (M1OLr1(M>0L72M3)) ® (T'N1OT"3N> 0 N3)
= (M,OLM>0OLSM3) ® (T/N,OT"3N2) O N3),
wherej = v(M2OL2M3) = v2 + max{vz — pp, 0} and, by Eq. (5.5), we have =

po + max{p; — v2, 0}. Sinces = i andj = k, the two parenthesizations ¢M1 ®
N1) O (M2 ® N»2) O (M3 ® N3) are thus equal. O

Proposition 8.4. If the family M is minor and free product-closg@nd thus also closed
under lift and truncatiol, then the restriction—contraction coprodutis compatible with
the free product oK { M}, in the sense thal: K{M} — K{M} ® K{M} is an algebra
map

Proof. Suppose thaZ(S) andN (T) belong toM. Using Propositiord.2, we compute the
coproduct ofM O N:
SMON)= »_ (MON)|A® (MON)/A
ACS+T
= Z (M|AsOL'MAS)N|A7) @ (T'WAT M /As TN/ Ar)
ACS+T

= Y (M|AsOLMAIN|ar) @ (T"NIAD M /as N /Ar)
ACS+T

= Y (M|A;®M/A5)D(Nlar @ N/Ar),
ACS+T

which is equal tod(M) O s(N). O

We conclude by outlining a categorical framewaork for these resultdviLlst the category
whose objects are bigradéttmodulesV = P, ; - ¢ V:.x, equipped with linear operators
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L =L, and T= T, satisfying

() L:Vik = Viy1x-1,ifk>0 and UV,o= idVr,o’
(i) T: Vix = Victx41,ifr >0 and TVoi = idVo,k’
(i) TL = LT, when restricted t€p, ; ~ 1 Vr«-

We assume that each homogenous compovignis a freek -module of finite rank and that
V,.0 andVy; have rank one, for all, k >0. For homogeneous € V, we writep(x) = r
andv(x) = k to indicate thak belongs toV; . The morphisms of1 are theK -linear maps
which commute with L and T. For all objecié andW in M, we suppose that the tensor
productV ® W is bigraded in the usual manner, with

(V & W)r,k = @ (Vrl,kl ® Wrz,kz)»

rq+ro=r
kq+ko=k

forall r, k>0, and the operators £ L4y and T= T4y Satisfy

) Lx)®y ifvx) >0,
Laey = x®Ly ifv(x)=0
and
_Jx®Ty ifp(y)>0,
feeyn= (Tx)®y if p(y) =0,

for all homogeneous € V andy € W; henceM is a monoidal category. For all objedts
andW in M we define the twistmap=1,4: V® W — W ® V as in Eq. 8.1), that is,
byt(x ® y) = LP®Wy® T'Wx, for homogeneous € V andy € W. Itis readily verified
that the twist maps,  commute with the operatoisandT, and so are morphisms M;
furthermore, the maps, ,, are the components of a natural transformatio® = ®°P,
thatis,(g ® f)oty.w = 1y .w o (f ® g), for all morphismsf: V — V' andg: W — W’
in M. Itis then a simple matter to verify that the natural transformatisatisfies the braid
relations:

Tyevw = (Tuw ® 1y) o (Iy ® Ty.w) and Tyvew = (v @ Tyw) o (tyy ® 1),

for all objectsU, V, W. Note that the maps, , are not necessarily isomorphismsvin(be-
cause different matroids may have the same lifts or truncations). Hence, as long as we allow
a notion of braiding that does not require the component morphisms to be isomorphisms, it
follows thatM is a braided monoidal category.

We regard each matroid modut&{M} as an object oM, bigraded by rank and nullity,
with operators L and T determined by lift and truncation on the h&gidf V = K{M},
and the family of matroids\ is closed under free product, as well as lift and truncation,
then it follows immediately from Propositidh4 and the definition of Land T ovi® V that
the mapu,:V®V — V givenbyM @ N — MON, forall M, N € M, is a morphism
in M, and hencé’ is a monoid object itM.

Suppose thaV = K{M} andW = K{N} are matroid modules witiM and.\ free
product-closed. The operatiah onV @ W defined by Eq. (8.2) is the compositigp,,,, =
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(1y ® uy) o (Ly ® ty.w ® 1y), which is the standard monoid structure on the product of
monoid objects in a braided monoidal category. Associativity,Qf, (our Propositior8.3)
follows immediately from the braid relations and the associativity,oéandy,, .

Finally, we note that i = K { M} is a matroid module, whet#1 is minor-closed, then
the restriction—contraction coproducty — V ® V. commutes with Land T, and 96is a
comonoid objectiM. If M is also closed under free product, then Proposition 8.4 says that
V is a bialgebra in the braided monoidal categbtySinceV is a connected bialgebra, it
is in fact a Hopf algebra, with antipode given by the usual formula. Furthermore, it follows
from the proof of Theorem 7.6 that this Hopf algebra is self-dual.
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