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We provide a characterization of the classical point-line designs
PG1(n,q), where n � 3, among all non-symmetric 2-(v,k,1)-
designs as those with the maximal number of hyperplanes. As
an application of this result, we characterize the classical quasi-
symmetric designs PGn−2(n,q), where n � 4, among all (not
necessarily quasi-symmetric) designs with the same parameters
as those having line size q + 1 and all intersection numbers at
least qn−4 + · · · + q + 1. Finally, we also give an explicit lower
bound for the number of non-isomorphic designs having the same
parameters as PG1(n,q); in particular, we obtain a new proof for
the known fact that this number grows exponentially for any fixed
value of q.
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1. Introduction

In the predecessor to this paper [15], we considered the problem of finding a good characterization
of the classical geometric designs PGd(n,q) formed by the points and d-dimensional subspaces of the
n-dimensional projective space PG(n,q) over the field G F (q) with q elements, where 2 � d � n − 2,
among all designs with the same parameters. In particular, we proposed the following

Conjecture 1.1. A design with the parameters of PGd(n,q), where 2 � d � n − 1 and where q � 2 is not
necessarily a prime power, is classical (so that q is actually a prime power) if and only if all lines1 have size
q + 1.

E-mail address: jungnickel@math.uni-augsburg.de.
1 Recall that the line determined by two points of a design is defined as the intersection of all blocks containing these

two points. See [12,13] for background on finite projective spaces, [2] for background on designs in general, and [22] for
a monograph on quasi-symmetric designs.
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At present, this conjecture is known to hold for the cases d = n − 1 (the Dembowski–Wagner
theorem [7]), the case d = 2 (by a result of [17]), and also for the cases d = 3 and d = 4 (by the
results obtained in the author’s previous paper [15]).

The present paper started with the attempt to settle Conjecture 1.1 for the case d = n − 2, that
is, for the classical quasi-symmetric designs. Note that, in view of the results just mentioned, this
problem is only open for n � 7. Unfortunately, we managed to reach the desired conclusion only
by adding an additional hypothesis concerning the intersection numbers of the designs in question;
removing this hypothesis seems to be difficult. Still, the resulting characterization is of interest and
certainly appears stronger than previous characterizations.

For the convenience of the reader, we first recall some basic facts about these designs. Let Π

denote PG(n,q), the n-dimensional projective space over the field G F (q) with q elements, and as-
sume n � 4. Then the points and (n − 2)-spaces of Π form a 2-(v,k, λ) design D = PGn−2(n,q) with
parameters

v = qn + · · · + q + 1, k = qn−2 + · · · + q + 1, λ = (qn−1 − 1)(qn−2 − 1)

(q2 − 1)(q − 1)
,

r = (qn − 1)(qn−1 − 1)

(q2 − 1)(q − 1)
and b = (qn+1 − 1)(qn − 1)

(q2 − 1)(q − 1)
.

It is easy to see that these particular classical designs are indeed quasi-symmetric, that is, they have
just two intersection numbers, namely

x = qn−4 + · · · + q + 1 and y = qn−3 + · · · + q + 1. (1)

Furthermore, the lines of the design D are just the lines of Π ; in particular, all lines of D have
cardinality q + 1. All these facts are well-known.

Note that we wish to characterize these classical quasi-symmetric designs among all (not nec-
essarily quasi-symmetric) designs with the same parameters. Usually, there is a multitude of non-
isomorphic designs with the same parameters. Indeed, Theorem 3.1 of [17] and its subsequent dis-
cussion show that the number of non-isomorphic designs with the parameters of PGn−2(n,q) grows
exponentially with linear growth of n (for any fixed q). Moreover, there may even be non-isomorphic
quasi-symmetric designs with the same parameters: by a recent result of Tonchev and the present
author [16], this holds at least for the special case n = 4.

We know of just three previous characterization results for the classical quasi-symmetric designs. A
general theorem due to Lefèvre-Percsy [18] characterizes all designs PGd(n,q) with d � 2 and q � 4; in
particular, her result shows that a smooth2 design with the parameters of PGn−2(n,q), where n,q � 4,
but q not necessarily a prime power, is classical if and only if all lines have size at least q + 1.

A more recent characterization of the geometric designs PG2(4,q) in terms of good blocks3—a no-
tion introduced in [21]—is due to Mavron, McDonough and Shrikhande [20]. Their result characterizes
the geometric design PG2(4,q) among all quasi-symmetric designs with the same parameters and
with intersection numbers 1 and q + 1 by the property that all blocks of the design are good. Sub-
sequently, this result was extended to PGn−2(n,q) in general by Baartmans and Sane [1] who also
gave a characterization under somewhat weaker assumptions for the special case d = 2; in this case,
it suffices to assume that all the blocks passing through a fixed point p are good.

Finally, by the established cases of Conjecture 1.1 discussed before, the classical quasi-symmetric
designs PG2(4,q), PG3(5,q) and PG4(6,q) are characterized among all designs with the same param-
eters as those having line size q + 1. Note that this result considerably improves upon the character-
ization given in [18] and [1]: smoothness and the good block property, respectively, are much more
severe requirements than line size; moreover, in [1] quasi-symmetry is assumed in addition.

2 Recall that the plane determined by three non-collinear points of a design is defined as the intersection of all blocks
containing the three given points. In general, planes may be properly contained in other planes. This undesirable phenomenon
is excluded if one requires the design to be smooth, that is, if one assumes that any three non-collinear points are contained in
a constant number of blocks, which is then usually denoted by �. See [2] for details.

3 In any quasi-symmetric design with intersection numbers x and y, where 0 � x < y, a block B is said to be good if, for any
block C with |B ∩ C | = y and any point p /∈ C , there is a (unique) block containing both p and B ∩ C .
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As mentioned before, our attempts to settle the case d = n − 2 of Conjecture 1.1 in general failed
up to now; we need an additional hypothesis, namely that any two blocks of the designs in ques-
tion intersect in at least x points, where x is the smaller intersection number of the classical design
PGn−2(n,q) given in (1).

The proof of this result will make use of a new characterization of the classical point-line designs
PG1(n,q), where n � 3, among all non-symmetric 2-(v,k,1)-designs. Note that Conjecture 1.1 would
make no sense for the case d = 1, as it would then not ask for anything beyond the design property.
Indeed, already in the smallest case, namely PG1(3,2), there are 80 non-isomorphic designs with the
same parameters; see, for instance, [2, Table A.1.1].

Actually, except for the classical Veblen–Young axioms for projective spaces (see, for instance,
[2, §XII.1]), no general characterization of the designs PG1(n,q) among all 2-(v,k,1)-designs or all
linear spaces4 seems to be known. There are some related results, though: Doyen and Hubaut [9]
gave a common characterization of the designs AG1(n,q) and PG1(n,q) with n � 4 among all 2-
(v,k,1)-designs, and Teirlinck [23] used a notion of “hyperplanes” to characterize the lattice of all
subspaces of some projective space PG(n,q) among the lattices of subspaces of 2-coverings. The re-
sults just mentioned are not truly combinatorial in nature, as they use structural requirements: for
instance, in [9] it is assumed that the given design looks locally like a projective plane or space, and
in [23] one of the conditions used is similar to the good block property discussed before.

In this paper, we shall provide a combinatorial characterization of PG1(n,q) among all non-
symmetric 2-(v,k,1)-designs as those designs with the largest number of hyperplanes, that is, proper
subspaces of the maximum conceivable size. This extends work of Dehon [6] who obtained the result
in question for the special case q = 2 by characterizing PG1(n,2) among all Steiner triple systems; see
Remark 2.7 for a more detailed discussion of that case.

For our characterization, we shall require some background on subspaces. A subspace of a linear
space Σ is a subset S of the point set with the property that each line intersecting S in at least
two points is entirely contained in S; thus the lines of Σ induce a linear space on S . The subspace
spanned by a subset U of the point set of a linear space Σ is, of course, just the smallest subspace S
of Σ containing U .

Our proofs will repeatedly appeal to two simple, but extremely useful results concerning sub-
spaces. The first of these gives a bound on the cardinality of a proper subspace, see [2, I.8.4]. As we
shall only require the case where Σ has constant line size k (so that Σ is actually a 2-design), we
merely state this special case:

Lemma 1.2 (Subspace lemma). Let S be a proper subspace of a 2 − (v,k,1)-design Σ . Then the cardinality
of S satisfies the bound |S| � (v − 1)/(k − 1).

The second result concerns linear spaces with two distinct subspaces; it is due to Doyen [8], see
also [2, I.8.16]. Again, we only give the special case of 2-designs.

Lemma 1.3 (Double subspace lemma). Let S and T be two proper subspaces of a 2 − (v,k,1)-design Σ . Then
the cardinality of S ∩ T satisfies the bound

(k − 1)|S ∩ T | � |S| + (k − 1)|T | − v.

It is well known that the number of 2-designs with the parameters of a classical point-hyperplane
design PGn−1(n,q) grows exponentially. This result was originally established by the author in [14],
whose bounds were subsequently somewhat improved. Recently, together with Tonchev [17], the
author proved an exponential bound on the number of non-isomorphic designs having the same
parameters as the classical geometric design PGd(n,q) for any 2 � d � n − 1. In the final section, we
will provide an analogous result for the case d = 1, that is, we will show that the number of non-
isomorphic designs having the same parameters as PG1(n,q) grows exponentially with linear growth

4 Recall that a linear space is just a pairwise balanced design with joining number λ = 1; therefore one speaks of lines instead
of blocks in this context.
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of n. Of course, this result is a special case of the following theorem due to Wilson [24] concerning
designs in general:

Result 1.4. Let k � 3 and λ be positive integers. Then there exist constants c(k, λ) > 1 and v0(k, λ)

such that the number of isomorphism classes of 2-(v,k, λ)-designs is at least cv2
for all admissible

v � v0.

As our construction is quite simple and actually gives an explicit bound which provides rather
strong results even for small parameter sets (whereas Wilson’s proof leads to a very large value of v0),
it seems worth including anyway. We also note that Wilson’s result only applies to designs with the
parameters of PGd(n,q) if we fix both q and d, as it requires constant block size; for instance, it says
nothing about the case d = n − 2 discussed before.

2. A characterization of PG1(n,q)

As mentioned before, except for the classical Veblen–Young axioms for projective spaces (see, for
instance, [2, §XII.1]), no general characterization of the classical point-line designs PG1(n,q) among
all 2-(v,k,1)-designs seems to be known. In this section, we shall provide such a characterization in
terms of “hyperplanes”.

Let Σ be a 2-(v,k,1)-design. By Subspace Lemma 1.2, the maximum possible size of a proper
subspace of Σ is just r = (v − 1)/(k − 1). In the classical point-line design PG1(n,q), the largest
proper subspaces are simply the hyperplanes of the associated projective space PG(n,q). Therefore it
is natural to call a subspace H of Σ a hyperplane if and only if it has cardinality r. The proof of the
following simple result is left to the reader:

Lemma 2.1. Let Σ be a 2-(v,k,1)-design, and let H be a proper subspace of Σ . Then H is a hyperplane if and
only if every line meets H.

Lemma 2.1 was first observed by Teirlinck [23], who actually used the equivalent property stated
there as his definition of a projective hyperplane, even in the very general setting of 2-covers instead
of 2-(v,k,1)-designs. We will require the following auxiliary result:

Lemma 2.2. Let Σ be a 2-(v,k,1)-design. Then any two distinct hyperplanes of Σ intersect in a subspace of
cardinality s := (r − 1)/(k − 1).

Proof. Let H and H ′ be two hyperplanes of Σ , and write U = H ∩ H ′ . Since U is a proper subspace
of the (r,k,1)-design induced on H , Subspace Lemma 1.2 gives |U | � s. On the other hand, Double
Subspace Lemma 1.3 gives

(k − 1)|U | � r + (k − 1)r − v,

which reduces to |U | � s, as r(k − 1) = v − 1. �
Theorem 2.3. Any 2-(v,k,1)-design Σ contains at most v hyperplanes. Equality holds if and only if Σ is
symmetric (that is, a projective plane) or a classical point-line design PG1(n,q).

Proof. Let us call any subspace of cardinality s = (r − 1)/(k − 1) a large subspace. Our proof uses
induction on b, the number of lines of Σ . We may assume that Σ is non-trivial, that is, v > k. Then
b � v , by Fisher’s inequality. In the case of equality, Σ is symmetric and hence a projective plane of
order n = k − 1 = r − 1, and the hyperplanes of Σ are simply the lines. Hence both assertions hold in
this case.
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Now let b > v . We claim that any large subspace U lies in at most k hyperplanes of Σ . Indeed,
there are precisely v − s points not in U , and each hyperplane through U has to contain exactly r − s
of these points. Now

v − s

r − s
= v(k − 1) − (r − 1)

r(k − 1) − (r − 1)
= k(v − r) + (kr − v − r + 1)

v − r
= k.

Using the induction hypothesis, any given hyperplane H of Σ contains at most r large subspaces U ;
as we have just seen, each such subspace can be on at most k − 1 further hyperplanes. By Lemma 2.2,
any hyperplane H ′ �= H meets H in such a subspace U ; thus the total number of hyperplanes is
indeed bounded by r(k − 1) + 1 = v .

Now assume that we are in the case of equality, so that Σ has as many points as hyperplanes. We
shall investigate the incidence structure D formed by the points and hyperplanes of Σ . We first show
that D is a 1-design with both block size and replication number r. By definition, hyperplanes indeed
have r points, and by our assumption, there are as many points as hyperplanes. Counting flags, we
see that the average replication number of D is r. Hence it suffices to show that each point is on at
most r hyperplanes. We will establish this using induction again, the case b = v being trivial.

Now let b > v , and consider an arbitrary point p. We may assume that p is contained in some
hyperplane H of Σ . By the induction hypothesis, p lies in at most s = (r − 1)/(k − 1) large subspaces
U p contained in H , each of which extends to at most k − 1 hyperplanes H ′ �= H . By Lemma 2.2,
any hyperplane H ′ �= H has to meet H in some large subspace U ; hence p lies indeed in at most
s(k − 1) + 1 = r hyperplanes.

Again referring to Lemma 2.2, any two hyperplanes of Σ intersect in exactly s points. Hence D
is a symmetric 2-(v, r, s)-design. We now claim that the lines of D are just the lines of Σ . To see
this, note that the intersection of all hyperplanes through two given points is a subspace of Σ and
therefore at least a line of Σ . We need to show that no line of D can be a larger subspace of Σ . But
the maximal possible line size in a symmetric 2-(v, r, s)-design is (v − s)/(r − s) (see, for instance,
[2, Lemma XII.2.16]), and we have already seen that this fraction equals k. Therefore all lines of D
have size exactly k = (v − s)/(r − s), and the well-known Dembowski–Wagner theorem [7] gives
D ∼= PGn−1(n,q) for some n � 3; see also [2, Theorem XII.2.10]. As the lines of Σ and D coincide, we
conclude Σ ∼= PG1(n,q). �

We shall now show that the bound in Theorem 2.3 is quite good. To do so, we consider designs
with the parameters of PG1(n,q) so that v = qn + · · · + q + 1. In this case, at least the leading term in
the bound given by Theorem 2.3 is correct:

Proposition 2.4. Let q be a prime power, and n � 3 an integer. Then there exists a 2-design with the same
parameters as the classical design Π = PG1(n,q) which contains exactly qn − qn−1 + qn−2 + · · · + q + 1
hyperplanes.

Proof. As a general principle, we may replace the lines in a fixed plane P of Π by the line set of any
other projective plane of order q on the same point set P to obtain another design Π ′ with the same
parameters. One way of doing this is to simply apply a permutation α of the point set P to the lines
of P ; thus we replace every line � of P with the line

�α := {
pα: p ∈ �

}
, (2)

while keeping the point set P itself unchanged. Depending on the choice of α, this construction will
destroy certain hyperplanes of Π , while keeping others unchanged.

In order to prove the desired result, we choose α as a transposition, interchanging the two points
x and y, say. This choice of α changes just the 2q lines of P in the bundles determined by x and y,
respectively, with the exception of their common line xy, and keeps all other lines of P . It is now
rather obvious that all hyperplanes of Π containing exactly one of these 2q lines are no longer sub-
spaces of Π ′: Any former hyperplane H through such a line � generates a subspace S containing all
of H , as we interfered with only one of the points of H , say by replacing the point x ∈ � with y ∈ �α .



628 D. Jungnickel / Journal of Combinatorial Theory, Series A 118 (2011) 623–633
Since all lines of H except for � remain unchanged, x is still forced to be in S , which follows by con-
sidering any line �′ �= � of H through x. On the other hand, S also has to contain the point y ∈ �α , as
�α \ {y} ⊆ H , and hence S is the entire point set of Π ′ , by Lemma 1.2. Finally, all other hyperplanes
of Π (including those intersecting P in xy) remain unchanged, as none of their lines is changed by
the transposition α.

Note that the number of hyperplanes of Π not containing the plane P and intersecting P in a
specified line is simply qn−2. Hence our construction destroys exactly 2qn−1 hyperplanes of Π and
leaves the remaining qn − qn−1 + qn−2 + · · · + q + 1 hyperplanes unchanged. �

Of course, Proposition 2.4 immediately poses the question whether or not the non-classical ex-
amples constructed there have the maximum possible number of hyperplanes. We will leave this
question as a (probably not all that easy) open problem. For the special case q = 2, we have a positive
answer in view of the results of [10] discussed in Remark 2.7 below.

It is also interesting to investigate the possible configurations of hyperplanes in non-classical
designs with the parameters of PG1(n,q) in more detail, using the general construction method pre-
sented above (and perhaps, more generally, changing the lines in several planes). Regarding this
problem, we will just mention the following general result; its proof proceeds exactly as that of
Proposition 2.4 and will be left to the reader.

Proposition 2.5. Let q be a prime power, and n � 3 an integer. Let P be a plane of the classical design Π =
PG1(n,q), and let α be a permutation of the point set of P . Distort Π by replacing every line � of P by the line
�α defined in (2), and assume that exactly c lines of P satisfy �α �= �. Then the resulting design α(Π) contains
exactly qn + qn−1 + · · · + q + 1 − cqn−2 hyperplanes.

Let us apply Proposition 2.5 to provide one further class of examples, generalizing those obtained
in Proposition 2.4:

Example 2.6. Using the notation in Proposition 2.5, we choose an arbitrary line �∞ of P and let α fix
all points of P , with the exception of d points on �∞ which we permute in a fixed-point-free manner,
say in a cycle, where 2 � d � q + 1. Note that the lines remaining unchanged by α are precisely the
lines in the q + 1 − d bundles through one of the fixed points on �∞ . Thus α changes exactly qd lines
of P , and hence destroys dqn−1 hyperplanes of Π . Therefore the number of hyperplanes of α(P ) is
exactly qn − (d − 1)qn−1 + qn−2 + · · · + q + 1.

Note that the special case d = q + 1 in the preceding example leaves just qn−2 + qn−3 + · · · + q + 1
hyperplanes. Of course, using permutations with fewer fixed points, we can get examples with much
fewer hyperplanes, too. We leave it to the reader to amuse himself with considering various other
types of permutations.

Remark 2.7. As already mentioned, hyperplanes in various types of incidence structures have been
considered before. For our purposes, the two most relevant previous references concerning this topic
are the papers by Dehon [6] and by Doyen, Hubaut and Vandensavel [10] which appeared in 1977 and
1978, respectively. These authors studied hyperplanes in Steiner triple systems, that is, in 2-(v,3,1)-
designs. (Dehon actually considered also more general Steiner systems, namely S(t, t + 1, v)’s; see [2]
for a definition.) As noted before, the corresponding special case of Theorem 2.3 is already contained
in Dehon’s paper.

In addition, Doyen, Hubaut and Vandensavel proved that the collection of all hyperplanes of an
arbitrary Steiner triple system Σ always carries the structure of a projective space Π over G F (2), and
that the 2-rank of Σ (that is, the rank of its incidence matrix over G F (2)) is precisely v − (dim Π +1).
Consequently, the 2-rank of a design Σ with the parameters of PG1(n,2) always is at least 2n −n − 1,
with equality if and only if Σ is actually the classical design; note that this establishes Hamada’s
conjecture [11] in a very special case. (Infinite families of counter-examples to the general conjecture
were recently obtained by the author in collaboration with Tonchev and Clark, see [16,3].)
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It is natural to wonder if one might extend not only Dehon’s result (as we have done in Theo-
rem 2.3), but also the results of [10] to arbitrary 2-(v,k,1)-designs and therefore establish Hamada’s
conjecture in a case which is still open. Unfortunately, the examples constructed in Proposition 2.4
show that this approach cannot possibly work: For q � 3, the number of hyperplanes obtained there
does not agree with the number of points of a projective space over G F (q). Note that for q = 2, Propo-
sition 2.4 and Example 2.6 yield designs with the parameters of PG1(n,2) where the hyperplanes form
a projective space of dimension n − 1 and n − 2, respectively, over G F (2).

3. A characterization of PGn−2(n,q)

In this section, we provide the following characterization of the classical quasi-symmetric designs
PGn−2(n,q):

Theorem 3.1. Let D′ be a 2-design with the same parameters as the classical design D = PGn−2(n,q), where
n � 4 and where q � 2 is not necessarily a prime power. Then D′ is isomorphic to the classical design (and
therefore, in particular, quasi-symmetric) if and only if any two blocks of D′ intersect in at least qn−4 + · · · +
q + 1 points and all lines of D′ have size q + 1.

Proof. The conditions in the statement of the theorem are obviously necessary. Thus assume that
these conditions are satisfied, and denote the linear space induced by the lines of D′ on the point
set V of D′ by Σ . Thus Σ is a design with the same parameters as PG1(n,q); not surprisingly,
we want to show that Σ actually is this classical point-line design. This will be achieved using the
characterization in Section 2, but this reduction will require some work.

Consider an arbitrary block B of D′ . As any two points of B define a unique line of D′ , the lines
contained in B induce a linear space ΣB with constant line size q + 1 on B . In particular, the blocks
of D′ are subspaces of Σ . Of course, we hope that all these subspaces extend to hyperplanes of Σ .
Note, however, that it is a priori not even clear if there are any hyperplanes in Σ . These questions
will have to be settled before we can hope to apply Theorem 2.3. We shall now split our argument
into a series of smaller steps.

Step 1. Any two blocks of Σ intersect in a subspace U whose cardinality satisfies

x := qn−4 + · · · + q + 1 � |U | � qn−3 + · · · + q + 1 =: y.

Here the upper bound follows by an application of the subspace lemma to the linear space ΣB asso-
ciated to one of the given blocks, say B , and the lower bound is just one of our two conditions. Thus
the two intersection numbers x and y of the classical quasi-symmetric design D indeed bound the
possible intersection sizes for D′ .

Step 2. D′ is quasi-symmetric with intersection numbers x and y as in (1).

To see this, let us fix a block B0 and write xB = |B0 ∩ B| for each of the b − 1 blocks B �= B0.
The assertion will be established using the standard method of square counting. To this end, we will
evaluate the sum∑

B

(y − xB)(xB − x), where B runs over all blocks B �= B0.

Note that this sum is non-negative, since each of the terms involved is non-negative by Step 1. There-
fore our assertion amounts to proving that the sum equals 0. Standard counting arguments give the
equations

∑
xB = k(r − 1) and

∑
xB(xB − 1) = k(k − 1)(λ − 1).
B B
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Of course, the sum in question could now be computed by brute force, but we prefer to use a little
trick which allows us to avoid the rather unpleasant computations. From what we have seen, we
clearly have∑

B

(y − xB)(xB − x) = f (v,k, λ, x, y)

for some function f of the parameters of D′ and the integers x and y given in (1). Thus the sum
has to take the same value for both D′ and D. But we know that the classical example D is quasi-
symmetric with intersection numbers (1), so that the sum has to be equal to 0 in this special case.
Therefore it also equals 0 for our given design D′ , and we are done.

Step 3. Let B0 be a fixed block of D′ , and let η be the number of blocks intersecting B0 in a subspace U of
cardinality y. Then

η = (
q2 + q

)(
qn−2 + · · · + q + 1

)
.

To see this, denote the number of blocks intersecting B0 in a subspace of cardinality x by ξ . In
view of Step 2, ξ = b − 1 − η. Then the first count in the proof of Step 2 simplifies to

(b − 1 − η)x + ηy = k(r − 1),

from which we could compute the value of η. Again, this computation only involves the parame-
ters of the design, so that we may instead consider the classical example D. There we have exactly
qn−2 + · · · + q + 1 choices for the subspace U (namely the number of (n − 3)-dimensional subspaces
of Σ ∼= PG1(n,q) contained in the (n − 2)-dimensional subspace B0), each of which extends to an
(n − 2)-subspace in exactly q2 + q + 1 ways (one of which is the fixed block B0).

Step 4. Let B0 be a fixed block of D′ . Then B0 contains exactly k = qn−2 + · · · + q + 1 subspaces U of
cardinality y = qn−3 + · · · + q + 1. Moreover, for a fixed such subspace U0 , there are precisely q2 + q blocks
intersecting B0 in U0 , and these blocks partition the points in V \ B0 .

First note that B0 contains at most k subspaces U of cardinality y = qn−3 + · · · + q + 1, by Theo-
rem 2.3, as these subspaces are just the hyperplanes of ΣB0 . Given any particular U0, it extends to at
most q2 + q + 1 blocks: there are precisely qn + qn−1 + qn−2 points not in U0, and each block through
U0 has to contain exactly qn−2 of these points. Hence we obtain at most (q2 + q)(qn−2 + · · · + q + 1)

blocks B intersecting B0 in a subspace U of cardinality y; but by Step 3, there are precisely that many
blocks with this property. Hence we have to have equality in both of our preceding estimates, which
proves the assertion.

Step 5. Let B be any block of D′ . Then ΣB ∼= PG1(n − 2,q).

This is an immediate consequence of Step 4 together with Theorem 2.3.

Step 6. Consider the subspace S of Σ generated by any three non-collinear points of D′ . Then S is a projec-
tive plane of order q.

We first check that any three non-collinear points are contained in a common block. To see this,
denote the line determined by two of the given points by �, and call the third point p. Also, choose
any block B through �. If p is in B , we are done. Otherwise choose any subspace U of cardinality
qn−3 + · · · + q + 1 of B containing �, which is possible by Step 5. By Step 4, the q2 + q blocks inter-
secting B in U partition the points in V \ B , so that precisely one of these blocks, say B ′ , contains
both p and �. By Step 5, ΣB ′ is a projective geometry PG1(n,q − 2), and hence p and � generate a
projective plane of order q.

Step 7. D′ is isomorphic to PGn−2(n,q).

Using Step 6, one easily checks that the points and lines of D′ satisfy the Veblen–Young axioms
and therefore define a projective space Π ; see, for instance, [2, §XII.1]. In view of the parameters
of D′ , we have Σ ∼= PG1(n,q). As the blocks are (n − 2)-dimensional subspaces of Σ , the assertion
follows. �
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4. Bounds

In this final section, we use a variation of the construction described in Proposition 2.5 to provide
an explicit lower bound for the number of non-isomorphic designs having the same parameters as
PG1(n,q). In particular, we obtain a new proof for the known fact that this number grows exponen-
tially with linear growth of n.

Let us first introduce a notion which will turn out to be useful. Let A be a set of qn points in a
2-design Σ with the same parameters as the classical design Π = PG1(n,q), where n � 3. We will call
A an affine subspace of Σ if the lines of Σ induce an isomorphic copy of the classical affine geometry
AG1(n,q) on A.5 Let us note the following simple facts:

Proposition 4.1. Let Σ be a 2-design with the same parameters as the classical design Π = PG1(n,q), where
n � 3 and where q � 2 is not necessarily a prime power. Then the complement of an affine subspace is neces-
sarily a hyperplane of Σ . Moreover, Σ contains at most qn + · · · + q + 1 affine subspaces, and equality holds
if and only if Σ ∼= Π .

Proof. Let H be the set of qn−1 + · · · + q + 1 points not contained in A. By definition, any line of Σ

joining two points of A meets A in q points and hence intersects H uniquely. Also, as PG1(n,q) and
AG1(n,q) have the same replication number, namely r = qn−1 + · · · + q + 1, a line joining two points
of H cannot meet A. Thus H is a subspace and therefore a hyperplane. Now the remainder of the
assertion is clear from Theorem 2.3. �

We shall use the following construction:

Construction 4.2. Let q be a prime power, and n � 3 an integer. Let P be a hyperplane of the classical
design Π = PG1(n,q), and let α be a permutation of the point set of P . Distort Π by replacing every
line � contained in P by the line �α defined as in (2). Then the resulting incidence structure α(Π) is
a design with the same parameters as Π .

We shall now show that Construction 4.2 leads to a multitude of non-isomorphic designs. Note
first that the complementary point set A of P is, of course, an affine subspace of Π . Now let α and
β be permutations of the hyperplane P and consider the corresponding designs α(Π) and β(Π).
Suppose that there is an isomorphism between these two designs. As both designs are defined on the
same point set V , this isomorphism is simply a suitable permutation γ ∈ S V .

By construction, both designs contain the specified affine subspace A, and the lines of each of the
designs induce identical copies of AG1(n,q) on A. (Note that the complementary point set H is a
hyperplane in both designs, but the associated copies of PG1(n − 1,q) are, in general, not identical.)
We now fix α and ask for a bound on the number of those γ ∈ S V which yield a design (α(Π))γ

which is actually of the form β(Π) for a suitable permutation β of P . Clearly, any such γ must
have the property that (α(Π))γ contains the specified affine subspace A; in other words, the lines
of (α(Π))γ induce the given affine geometry on A and a projective geometry on the hyperplane
H of α(Π) associated with A according to Proposition 4.1. Therefore Aγ −1

has to be some affine
subspace A′ of α(Π), and Hγ −1

has to be the associated hyperplane H ′ . Again by Proposition 4.1, we
have at most qn + · · · + q + 1 possibilities for A′ and H ′ .

We now require an estimate on the number of permutations γ leading to the same affine subspace
A′ and the same hyperplane H ′ of α(Π) in the manner just described. To this end, let δ ∈ S V be a
further permutation and assume Aγ −1 = Aδ−1

. Then Aγ −1δ = A, and hence the permutation γ −1δ

has to induce collineations of the affine space AG1(n,q) defined on A and of the projective space
PG1(n − 1,q) defined on H . This shows that at most |PΓ L(n,q)||AΓ L(n,q)| permutations in S V can
lead to a fixed affine subspace A of α(Π). Thus we have established the following bound:

5 Note that an affine subspace is not a subspace as defined before: A line of Σ joining two points of A is not entirely
contained in A, but meets A in only q points.
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Theorem 4.3. The number of non-isomorphic designs with the parameters of PG1(n,q), namely

v = qn + · · · + q + 1, k = q + 1 and λ = 1,

where n � 3, obtained via Construction 4.2 is greater than or equal to

(q − 1)(qn−1 + · · · + q + 1)!
(qn+1 − 1)|PΓ L(n,q)||AΓ L(n,q)| = (qn−1 + · · · + q + 1)!

(qn+1 − 1)s2qn2 ∏n
i=2(q

i − 1)2
. (3)

Let us look at one specific example:

Example 4.4. Applied to the parameters n = 3, q = 4, the lower bound (3) implies that the number of
non-isomorphic 2-(85,5,1) designs is at least

21!
255 · 220 · 152 · 632

= 19 · 13 · 11 · 7 · 5 · 32

22
> 213963.

We note that our construction actually gives more examples than guaranteed by (3), as all properly
distorted designs α(Σ) have fewer than qn + · · · + q + 1 hyperplanes, so that our estimate is indeed
too pessimistic. This also explains that the quotient can turn out to be non-integral.

The previously published lower bound on the number of non-isomorphic 2-(85,5,1) designs
was 10, see [4]; in the second edition of this handbook [5], a much larger bound is stated, refer-
ring to unpublished work of Mathon and Rosa who plan to write up a general construction giving
a considerably stronger bound than the one in Theorem 4.3 [19].

As mentioned before, the asymptotic exponential rate of growth of the number of non-isomorphic
designs with the parameters of PG1(n,q) (for any fixed prime power q) is known: it is a special
case of Wilson’s result 1.4. As we shall show now, this exponential growth also follows easily from
Theorem 4.3; actually, a very crude estimate suffices to establish the desired result.

Let q = ps , where p is a prime. Then we have

∣∣PΓ L(n,q)
∣∣ = sq

n(n−1)
2

n∏
i=2

(
qi − 1

)
� sqn2−1,

and

∣∣AΓ L(n,q)
∣∣ = sq

n(n+1)
2

n∏
i=1

(
qi − 1

)
� sqn2+n,

and thus the denominator in (3) is smaller than s2q2n2+2n .
The numerator in (3) is bounded from below by

(
qn−1)! �

(
qn−1

e

)qn−1

� q(n−3)qn−1
,

and hence the expression (3) is bounded from below by

1

s2
q(n−3)qn−1−2n2−2n. (4)

Thus, we have the following

Corollary 4.5. For any prime power q, the number of non-isomorphic designs having the same parameters as
PG1(n,q) grows exponentially with linear growth of n.
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Of course, one may obtain stronger estimates than the one given in formula (3) in specific cases.
For instance, we may also first replace the lines of the hyperplane P by the lines of some design
with the same parameters as but not isomorphic to PG1(n − 1,q) in our construction, before applying
permutations. Already in the 3-dimensional case, this allows at least to multiply our bound by the
number of isomorphism classes of projective planes of order q. More precisely, using a given plane Π0,
we obtain the term corresponding to (3), but with |PΓ L(n,q)| replaced by |AutΠ0|.

Similarly, any given bound in the case of dimension n can be used to get stronger results for
dimension n + 1. In the interest of conserving journal space and in view of the forthcoming paper by
Mathon and Rosa [19], we shall not discuss such improvements in detail.
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