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1. Introduction

In [7], Gowers proved a generalisation of Hindman’s finite sums theorem in order 
to show the oscillation stability of the unit sphere in the Banach space c0. Recently, 
Tyros in [22] and Ojeda-Aristizabal in [18] independently gave constructive combinatorial 
proofs of the finite version of Gowers’ theorem.

This article aims to give a new Ramsey theorem, which generalizes the finite version 
of Gowers’ Ramsey theorem to multiple operations (Theorem 2.8), and most importantly 
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to establish a surprising connection between our Ramsey theorem and the dynamics of 
the homeomorphism group of the Lelek fan – a compact connected metric space with 
many symmetries.

Our work was motivated by a striking correspondence between structural Ramsey 
theory, Fraïssé theory, and topological dynamics of automorphism groups, which was 
established by Kechris, Pestov and Todorčević in [10], and further extended by Nguyen 
van Thé in [17]. In these articles, they characterized a strong fixed point property, called 
extreme amenability, of automorphism groups in terms of the Ramsey property. Here a 
topological group is extremely amenable if every continuous action on a compact Haus-
dorff space admits a fixed point. For instance, using the Ramsey property for linearly 
ordered finite metric spaces by Nešetřil [14], the authors of [10] showed that the isom-
etry group of the separable Urysohn metric space is extremely amenable. This result 
was originally proved by Pestov in [19] using concentration of measure techniques. 
Further, applying the Ramsey property for finite linearly ordered graphs (Nešetřil–
Rödl [15] and [16]), finite linearly ordered hypergraphs (Nešetřil–Rödl [15] and [16]; 
Abramson–Harrington [1]), and finite naturally ordered vector spaces over a finite field 
(Graham–Leeb–Rothschild [8]), Kechris, Pestov and Todorčević showed that the groups 
of automorphisms of the random ordered graph, the random ordered hypergraph, and 
the ordered ℵ0-dimensional vector space over a finite field, respectively, are extremely 
amenable.

In this article, we dualize the Kechris–Pestov–Todorčević correspondence from [10]
to the projective Fraïssé setting (Section 4) and give its first application, namely to the 
dynamics of a certain natural group of homeomorphisms of the Lelek fan (Section 7). 
The projective Fraïssé theory was originally developed by Irwin and Solecki in [9] in 
order to capture a well-known compact and connected metric space – the pseudo-arc.

2. Discussion of results

2.1. Dynamics of the homeomorphism group of the Lelek fan

A continuum is a compact connected metric space. Denoting by C the Cantor set and 
by [0, 1] the unit interval, one defines the Cantor fan to be the quotient of C × [0, 1]
by the equivalence relation ∼ given by (a, b) ∼ (c, d) if and only if either (a, b) = (c, d)
or b = d = 0. For a continuum X, a point x ∈ X is an endpoint in X if for every 
homeomorphic embedding h : [0, 1] → X with x in the image of h either x = h(0) or 
x = h(1). The Lelek fan L, constructed by Lelek in [11], can be characterized as the 
unique non-degenerate subcontinuum of the Cantor fan whose endpoints are dense (see 
[5] and [6]). Denote by v the top (0, 0)/∼ of the Lelek fan. The “endpoint” and the “top” 
belong to the standard terminology in continuum theory. We point out that when we 
think of the Cantor fan, the top point is often really at the bottom.

We will use the description of the Lelek fan via the class of finite fans as in [3], where 
by a fan we mean an undirected connected simple graph with all loops, with no cycles of 
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the length greater than one, and with a distinguished point r, called the root, such that 
all elements other than r have degree at most 2. We will study the class F of finite fans 
and the class F< of finite fans expanded by a linear order on the set of branches. Families 
F and F< form projective Fraïssé classes and therefore have projective Fraïssé limits, 
as defined by Irwin and Solecki [9] dualizing the classical (injective) Fraïssé theory from 
model theory. A natural quotient of a projective Fraïssé limit of F is the Lelek fan, as 
proved in [3] (see also Section 3.1), and a natural quotient of a projective Fraïssé limit of 
F< will turn out to be a “branch-ordered” Lelek fan. We provide necessary basics about 
projective Fraïssé classes and projective Fraïssé limits in Section 3.1.

For a class G of finite structures and A, B ∈ G, we denote by 
(
B
A

)
the set of all 

epimorphisms (that is, surjective maps preserving the structure; see Section 3.1 for the 
definition of a structure and of an epimorphism) from B onto A. We say that G is a 
Ramsey class or that it has the Ramsey property if for every A, B ∈ G and every natural 
number r ≥ 2 there exists C ∈ G such that for every colouring c of 

(
C
A

)
with r colours 

there exists g ∈
(
C
B

)
such that 

(
B
A

)
◦ g = {f ◦ g : f ∈

(
B
A

)
} is c-monochromatic, that is, c

restricted to 
(
B
A

)
◦ g is constant.

Typically a projective Fraïssé class is not a Ramsey class, however, it can become one 
when expanded by more relations such as a linear order. This is the case also for the 
class F , while F is not a Ramsey class, the natural expansion F<, as we show using 
Theorem 2.8 and Corollary 5.5, is a Ramsey class.

Theorem 2.1. The class F< is a Ramsey class.

Let G be a projective Fraïssé family with the projective Fraïssé limit G. Let G =
Aut(G) be the automorphism group of G. We say that G is rigid if for every A ∈ G, 
Aut(A) is trivial. In Section 4, we discuss and dualize the Kechris–Pestov–Todorčević 
correspondence to the projective setting showing the following.

Theorem 2.2. The following are equivalent:

(1) the group G is extremely amenable;
(2) the family G is a Ramsey class and it consists of rigid elements.

For a topological group G, a G-flow (or a flow if there is no ambiguity) is a continuous 
action of G on a compact Hausdorff space X, i.e. a continuous map π : G ×X → X such 
that π(e, x) = x for every x ∈ X and e the identity in G, and π(gh, x) = π(g, π(h, x))
for every x ∈ X and g, h ∈ G. When the action is understood, we write gx instead 
of π(g, x). We call G extremely amenable, if every G-flow has a fixed point. A G-flow 
is called minimal if it has no non-trivial closed G-invariant subsets. A continuous map 
ψ : X → Y between two G-flows is a homomorphism if ψ(gx) = g(ψ(x)) for every g ∈ G

and x ∈ X. The universal minimal flow of G is the unique minimal G-flow that has all 
other minimal G-flows as its homomorphic images. The universal minimal flow exists for 
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every topological group and it is unique up to isomorphism. It is easy to see that G is 
extremely amenable if and only if the universal minimal flow of G is a singleton.

Let L and L< denote, respectively, the projective Fraïssé limits of F and F<, and 
let Aut(L<) be the automorphism group of L<. Then Aut(L<) is a closed subgroup of 
Aut(L), the automorphism group of L; see Section 3 for more details. Since F< is a rigid 
Ramsey class, Theorem 2.2 provides the following.

Theorem 2.3. The group Aut(L<) is extremely amenable.

Let H(L) denote the homeomorphism group of the Lelek fan L with the compact-open 
topology. The group Aut(L) continuously embeds as a dense subgroup into H(L); see 
Section 3. Let H be the closure of Aut(L<) via this embedding. Then Theorem 2.3 will 
imply Theorem 2.4.

Theorem 2.4. The group H is extremely amenable.

In Proposition 7.4, we identify H with the group H(L<) of homeomorphisms that 
preserve the order coming from the one on L<.

2.2. A generalisation of Gowers’ Ramsey theorem to multiple operations

To prove theorems stated in Section 2.1, we will need to generalize the finite version 
of Gowers’ Ramsey theorem (Theorem 2.6). For this we will prove Theorem 2.8 and 
Corollary 5.5. In this section, we will state Theorem 2.8. First we will introduce the 
necessary notation.

Let N = {1, 2, 3, . . .} denote the set of natural numbers (we will follow the convention 
that 0 is not a natural number) and, for the remainder of this section, fix k ∈ N. For 
a function p : N → {0, 1, . . . , k}, we define the support supp(p) of p to be the set 
{l ∈ N : p(l) �= 0}. Let

FINk = {p : N → {0, 1, . . . , k} : |supp(p)| < ∞ and (∃l ∈ N) (p(l) = k)},

and, for each n ∈ N, let

FINk(n) = {p : N → {0, 1, . . . , k} : supp(p) ⊂ {1, 2, . . . , n}}.

We equip FINk and each FINk(n) with a partial semigroup operation + defined for p
and q whenever max(supp(p)) < min(supp(q)) by (p + q)(x) = p(x) + q(x).

Gowers’ Theorem (Theorem 2.5, below) involves a tetris operation T : FINk →
FINk−1 defined by

T (p)(l) = max{0, p(l) − 1}.
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We define, for every 0 < i ≤ k, an operation T (k)
i : FINk → FINk−1 that behaves like 

the identity up to the value i − 1 and like tetris above it as follows.

T
(k)
i (p)(l) =

{
p(l) if p(l) < i

p(l) − 1 if p(l) ≥ i.

We also define T (k)
0 = id �FINk

. It may seem more natural to denote the identity by T (k)
k+1

or T (k)
∞ , only for notational convenience later on we will be using T (k)

0 . Note that in our 
notation, T (k)

1 is the usual Gowers tetris operation. When the context is clear we will 
usually drop superscripts and write Ti rather than T (k)

i .
A sequence B = (bs)s∈N is called a block sequence if for every i ∈ N

max(supp(bi)) < min(supp(bi+1)).

Analogously, we define a finite block sequence B = (bs)ms=1 and we call m the length of 
the sequence. We let FIN[d]

k denote the set of all block sequences in FINk of length d and 

similarly we define FIN[d]
k (n).

Let B be a block sequence in FINk (finite or infinite). Let Pk denote the product ∏k
j=1{0, 1, . . . , j}. For any I such that (0, . . . , 0) ∈ I ⊂ Pk and for �i = (i(1), . . . , i(k)) ∈ I, 

denote

T�i = Ti(1) ◦ . . . ◦ Ti(k).

Let 〈B〉I denote the partial subsemigroup of FINk consisting of elements of the form

l∑
s=1

T�is(bs),

where l is a natural number, �is ∈ I, bs ∈ B, for s = 1, . . . , l, and there is some s such 
that all the entries of �is are 0.

For a set X and r ∈ N, we will often call a function c : X → {1, 2, . . . , r} a colouring. 
We say that A ⊂ X is c-monochromatic, or just monochromatic, if c � A is constant.

Let us state Gowers’ Ramsey theorem in this language.

Theorem 2.5 (Gowers [7]). Let c : FINk → {1, 2, . . . , r} be a colouring. Then there exists 
an infinite block sequence B in FINk such that 〈B〉∏k

i=1{0,1}
is c-monochromatic.

The finite version of Gowers’ theorem (Theorem 2.6) can be deduced by a simple 
compactness argument.

Theorem 2.6. Let k, m, r be natural numbers. Then there exists n such that for every 
colouring c : FINk(n) → {1, 2, . . . , r} there is a block sequence B of length m in FINk(n)
such that 〈B〉∏k {0,1} is c-monochromatic.
i=1
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As a consequence of our main Ramsey result, Theorem 2.8, we will obtain the following 
generalisation of the finite Gowers theorem to all Ti’s.

Corollary 2.7. Let k, m, r be natural numbers. Then there exists a natural number n such 
that for every colouring c : FINk(n) → {1, 2, . . . , r} there is a block sequence B of length 
m in FINk(n) such that 〈B〉Pk

is c-monochromatic.

In order to state Theorem 2.8 in full generality, we need a few more pieces of notation. 
From the proof of Theorem 2.1 it will be clear why this is the theorem we need. For 
l > k, let P l

k+1 =
∏l

j=k+1{1, 2, . . . , j}, and let P k
k+1 contain only the constant sequence 

(0, . . . , 0). Note that if p ∈ FINl and �i ∈ P l
k+1, then T�i(p) ∈ FINk.

Let l ≥ k and let B = (bs)ms=1 be a block sequence in FINl. Let 
〈⋃

�i∈P l
k+1

T�i(B)
〉
Pk

denote the partial subsemigroup of FINk consisting of elements of the form

m∑
s=1

T�ts ◦ T�is(bs),

where �i1, . . . , �im ∈ P l
k+1, �t1, . . . , �tm ∈ Pk, and there is an s such that all entries of �ts

are 0. Let 
〈⋃

�i∈P l
k+1

T�i(B)
〉[d]

Pk

be the set of all block sequences in 
〈⋃

�i∈P l
k+1

T�i(B)
〉
Pk

of 
length d.

Theorem 2.8. Let k ≥ 1. Then for every d, every m ≥ d, every l ≥ k, and every r, there 
exists a natural number n such that for every colouring c : FIN[d]

k (n) → {1, 2, . . . , r}, 
there is a block sequence B in FINl(n) of length m such that the partial semigroup 〈⋃

�i∈P l
k+1

T�i(B)
〉[d]

Pk

is c-monochromatic. Denote the smallest such n by Gd(k, l, m, r).

Notice that setting k = l and d = 1 in Theorem 2.8, and observing that 〈⋃
�i∈Pk

k+1
T�i(B)

〉
Pk

= 〈B〉Pk
, we obtain Corollary 2.7.

We prove Theorem 2.8 in Section 6 and use it to derive Theorem 2.4 in Section 7.
To motivate here the statement of Theorem 2.8, let us see how to an epimorphism 

between structures in F< we can associate an element in FIN[d]
k . To each f ∈

(
C
A

)
, we 

associate f∗ = (pfi )di=1 ∈ FIN[d]
k (n) such that

supp(pfi ) = {j : a1
i ∈ f(cj)}

and for j ∈ supp(pfi )

pfi (j) = z ⇐⇒ f(cNj ) = azi ,

where a1, . . . , ad and c1, . . . , cn are the increasing enumerations of branches in A and C, 
respectively, (azi )kz=0 is the increasing enumeration of ai and (cyj )Ny=0 is the increasing 
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enumeration of cj . As f → f∗ is not injective, to prove Theorem 2.1, we will need not 
only Theorem 2.8, but also another Ramsey theoretic statement – Corollary 5.5.

In the proof of Theorem 2.8, we generalize methods introduced by Tyros [22], who 
recently gave a direct constructive proof of the finite version of Gowers’ Ramsey theorem, 
providing upper bounds on n. Independently of Tyros, a proof of the finite version of 
Gowers’ theorem was presented by Ojeda-Aristizabal [18]. On the other hand, the only 
known proof of the infinite Gowers Ramsey theorem [7] uses the Galvin–Glazer method 
of idempotents in a compact right-topological semigroup of ultrafilters. During the time 
this paper was under revision, Lupini [12] proved the infinite version of Corollary 2.7.

3. Preliminaries

3.1. A construction of the Lelek fan

For completeness, we include the construction of the Lelek fan from [3], and we refer 
the reader to that article for any details we omit here.

Given a first-order language L that consists of relation symbols ri with arity mi, i ∈ I, 
and function symbols fj , with arity nj , j ∈ J , a topological L-structure is a compact 
zero-dimensional second-countable space A equipped with closed relations rAi ⊂ Ami and 
continuous functions fA

j : Anj → A, i ∈ I, j ∈ J . A continuous surjection φ : B → A

between two topological L-structures is an epimorphism if it preserves the structure, 
that is, for a function symbol f in L of arity n and x1, . . . , xn ∈ B we require:

fA(φ(x1), . . . , φ(xn)) = φ(fB(x1, . . . , xn));

and for a relation symbol r in L of arity m and x1, . . . , xm ∈ A we require:

rA(x1, . . . , xm)

⇐⇒ ∃y1, . . . , ym ∈ B
(
φ(y1) = x1, . . . , φ(ym) = xm, and rB(y1, . . . , ym)

)
.

The if and only if condition in preservation of relations by epimorphism allows us to 
obtain connected spaces as natural quotients of inverse limits of (finite) topological struc-
tures.

By an isomorphism we mean a bijective epimorphism.
Let G be a countable family of finite topological L-structures. We say that G is a 

projective Fraïssé family if the following two conditions hold:
(JPP) (the joint projection property) for any A, B ∈ G there are C ∈ G and epimor-

phisms from C onto A and from C onto B;
(AP) (the amalgamation property) for A, B1, B2 ∈ G and any epimorphisms φ1 :

B1 → A and φ2 : B2 → A, there exists C ∈ G with epimorphisms φ3 : C → B1 and 
φ4 : C → B2 such that φ1 ◦ φ3 = φ2 ◦ φ4.
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A topological L-structure G is a projective Fraïssé limit of a projective Fraïssé family 
G if the following three conditions hold:

(L1) (the projective universality) for any A ∈ G there is an epimorphism from G
onto A;

(L2) for any finite discrete topological space X and any continuous function f : G → X

there are A ∈ G, an epimorphism φ : G → A, and a function f0 : A → X such that 
f = f0 ◦ φ;

(L3) (the projective ultrahomogeneity) for any A ∈ G and any epimorphisms φ1 :
G → A and φ2 : G → A there exists an isomorphism ψ : G → G such that φ2 = φ1 ◦ ψ.

Remark 3.1. It follows from (L2) above that if G is the projective Fraïssé limit of G, then 
every finite open cover can be refined by an epimorphism, i.e. for every open cover U
of G there is an epimorphism φ : G → A, for some A ∈ G, such that for every a ∈ A, 
φ−1(a) is contained in an open set in U .

Theorem 3.2 (Irwin–Solecki [9]). Let G be a projective Fraïssé family of finite topological 
L-structures. Then:

(1) there exists a projective Fraïssé limit of G;
(2) any two projective Fraïssé limits of G are isomorphic.

Let G be a projective Fraïssé family of topological L-structures and let G be a topo-
logical L-structure. We say that G has the extension property (with respect to G) if for 
every A, B ∈ G and epimorphisms φ1 : B → A and φ2 : G → A, there is an epimorphism 
ψ : G → B such that φ2 = φ1 ◦ ψ.

Similarly as for the (injective) Fraïssé theory, one can show the following.

Proposition 3.3. Let G be a projective Fraïssé family. If a topological L-structure G sat-
isfies properties (L1) and (L2), and it has the extension property with respect to G, then 
G is the projective Fraïssé limit of G.

Below we describe the projective Fraïssé family F that we used to construct the Lelek 
fan in [3].

Recall that by a fan we mean an undirected connected simple graph with all loops, 
with no cycles of the length greater than one, with a distinguished point r, called the 
root, such that all elements other than r have degree at most 2. On a fan T , there is a 
natural partial tree order �T : for t, s ∈ T we let s �T t if and only if s belongs to the 
path connecting t and the root. We say that t is a successor of s if s �T t and s �= t. It 
is an immediate successor if additionally there is no p ∈ T , p �= s, t with s �T p �T t.

A chain in a fan T is a subset of T on which the order �T is linear. A branch of 
a fan T is a maximal chain in (T, �T ). If b is a branch in T , we will sometimes write 
b = (b0, . . . , bn), where b0 is the root of T , and bi is an immediate successor of bi−1, for 
every i = 1, 2, . . . , n. In that case, n will be called the height of the branch b.
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Let L = {R} be the language with R a binary relation symbol. For s, t ∈ T we let 
RT (s, t) if and only if s = t or t is an immediate successor of s. Let F be the family of 
all finite fans with all branches of the same height, viewed as topological L-structures, 
equipped with the discrete topology. Every fan in F is specified by the height of its 
branches and its width, that is, the number of its branches.

Remark 3.4. For two fans (S, RS) and (T, RT ) in F , a function φ : (S, RS) → (T, RT ) is 
an epimorphism if and only if it is a surjective homomorphism, i.e. for every s1, s2 ∈ S, 
RS(s1, s2) implies RT (φ(s1), φ(s2)).

We list a few relevant results obtained in [3].

Proposition 3.5. The family F is a projective Fraïssé family.

By Theorem 3.2, there exists a unique Fraïssé limit of F , which we denote by L =
(L, RL). Let RL

S be the symmetrization of RL, that is, RL

S(s, t) if and only if RL(s, t) or 
RL(t, s), for s, t ∈ L.

Theorem 3.6. The relation RL

S is an equivalence relation which has only one and two 
element equivalence classes.

Theorem 3.7. The quotient space L/RL

S is homeomorphic to the Lelek fan L.

We denote by Aut(L) the group of all automorphisms of L, that is, the group of 
all homeomorphisms of L that preserve the relation RL. This is a topological group 
when equipped with the compact-open topology inherited from H(L), the group of all 
homeomorphisms of the Cantor set underlying the structure L. Since RL is closed in 
L × L, the group Aut(L) is closed in H(L).

Note that every h ∈ Aut(L) induces a homeomorphism h∗ ∈ H(L) satisfying h∗ ◦
π(x) = π ◦ h(x) for x ∈ L. We will frequently identify Aut(L) with the corresponding 
subgroup {h∗ : h ∈ Aut(L)} of H(L). Observe that the compact-open topology on 
Aut(L) is finer than the topology on Aut(L) that is inherited from the compact-open 
topology on H(L).

3.2. Ultrafilters

In this section, we introduce the notion of an ultrafilter, which we will use in Section 4.

Definition 3.8. Let X be a set and let E be a family of subsets of X. We say that E is a 
filter on X if

(1) whenever A ∈ E and B ⊃ A, then also B ∈ E and
(2) for every A, B ∈ E also A ∩B ∈ E .
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The family E is an ultrafilter if in addition

(3) for every A ⊂ X either A ∈ E or X \A ∈ E (but not both).

An ultrafilter is free if it does not contain a singleton.

Remark 3.9. Note that for every ultrafilter E on X, A ∈ E and a partition of A into 
A1, . . . , An, there is exactly one i = 1, . . . , n such that Ai ∈ E .

Remark 3.10. Any family satisfying the condition (2) in Definition 3.8 can be extended 
to a filter by simply adding all supersets, and every filter can be extended to an ultrafilter 
by Zorn’s lemma.

4. Dualization of the Kechris–Pestov–Todorčević correspondence

In this section, we prove Theorem 2.2 that dualizes the Kechris–Pestov–Todorčević 
correspondence between extreme amenability of automorphism groups of countable ul-
trahomogeneous linearly ordered structures and the structural Ramsey theory (Theorem 
4.5 in [10]), which was further extended by Nguyen van Thé (Theorem 1 in [17]) to struc-
tures that need not be linearly ordered.

Let G be a projective Fraïssé family with the projective Fraïssé limit G. Let G =
Aut(G) be the automorphism group of G equipped with the compact-open topology.

We first prove an analogue of Proposition 3 in [17].

Proposition 4.1. Suppose that G is rigid. Then the following are equivalent.

(1) The class G is a Ramsey class.
(2) For every A, B ∈ G and every colouring c :

(
G

A

)
→ {1, 2, . . . , r} there exists ψ ∈

(
G

B

)
such that 

(
B
A

)
◦ ψ is monochromatic.

Proof. Since G is projectively universal, (1) easily implies (2).
For the reverse implication, suppose that (2) holds, but there are A, B ∈ G for which 

the Ramsey property fails, i.e. for every C ∈ G there exists a colouring χC :
(
C
A

)
→

{1, 2, . . . , r} such that for no γ ∈
(
C
B

)
the set 

(
B
A

)
◦ γ is monochromatic.

We first show that there is a free ultrafilter U on 
⋃

D∈G
(
G

D

)
such that for every D ∈ G

and every φ ∈
(
G

D

)
we have

Kφ =
⋃
C∈G

{ψ : ψ ∈
(
G

C

)
∃ψ′ ∈

(
C

D

)
such that φ = ψ′ ◦ ψ} ∈ U .

Suppose that we have φ0 : G → D0 and φ1 : G → D1. By (L2), we can find an 
E ∈ G and an epimorphism ψ : G → E such that {ψ−1(e) : e ∈ E} refines both 
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{φ−1
i (d) : d ∈ Di} for i = 1, 2. Then clearly Kψ ⊂ Kφ0 ∩Kφ1 , so by Remark 3.10 such a 

U exists.
Now, for φ ∈

(
G

A

)
, we will write Kφ as a disjoint union K1

φ ∪K2
φ ∪ . . . ∪Kr

φ where

Kε
φ =

⋃
C∈G

{ψ ∈
(
G

C

)
: ∃ψ′ ∈

(
C

A

)
such that (ψ′ ◦ ψ = φ) & (χC(ψ′) = ε)},

for ε = 1, 2, . . . , r. Note that since ψ is surjective, then ψ′ if it exists, it is unique. We 
define a colouring c :

(
G

A

)
→ {1, 2, . . . , r} by c(φ) = ε if and only if Kε

φ ∈ U . Note that 
c is well defined by Remark 3.9. We claim that for no δ ∈

(
G

B

)
, the collection 

(
B
A

)
◦ δ

is c-monochromatic. Suppose on the contrary that there is a δ such that 
(
B
A

)
◦ δ is 

c-monochromatic in a colour ε0. Then the set

⋂
α∈

(B
A

)K
ε0
α◦δ ∩Kδ

belongs to U ; in particular it is nonempty containing an element ξ ∈
(
G

C

)
for some C ∈ G. 

Since ξ ∈ Kδ, that there is ξ′ ∈
(
C
B

)
such that δ = ξ′ ◦ ξ. Therefore for every α ∈

(
B
A

)
, 

we have α ◦ δ = (α ◦ ξ′) ◦ ξ. Since ξ ∈ Kε0
α◦δ, we obtain that χC(α ◦ ξ′) = ε0 for every 

α ∈
(
B
A

)
. This implies that the set 

(
B
A

)
◦ ξ′ is χC-monochromatic in the colour ε0 – a 

contradiction. �
To prove Theorem 2.2, we follow the approach to extreme amenability via syndetic 

sets from the dissertation [2] of the first author.
For A ∈ G and an epimorphism φ : G → A, let

Gφ = {g ∈ G : ∀a ∈ A g(φ−1(a)) = φ−1(a)}

be the pointwise stabilizer of φ. Equivalently, Gφ = {h ∈ G : φ ◦ h = φ}. It is easy to see 
that Gφ is an open, and therefore clopen subgroup of G. The collection

{Gφ : φ ∈
(
G

A

)
, A ∈ G}

forms a basis at the identity of G.
Note that for every g ∈ G, Gφg = {h : ∀a ∈ A h−1(φ−1(a)) = g−1(φ−1(a))}, that is, 

h ∈ Gφg if and only if φ ◦h = φ ◦ g. Projective ultrahomogeneity of G provides a natural 
bijective identification of G/Gφ with 

(
G

A

)
via Gφg �→ φ ◦ g. Similarly, gGφ = {h ∈ G :

∀a ∈ A h(φ−1(a)) = g(φ−1(a))}, that is, h ∈ gGφ if and only if φ ◦ h−1 = φ ◦ g−1.
We also introduce the setwise stabilizer G(φ) of φ, that is, the clopen subgroup

G(φ) = {h : h({φ−1(a) : a ∈ A}) = {φ−1(a) : a ∈ A}}.
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By the projective ultrahomogeneity of G, h ∈ G(φ) if and only if for some automorphism 
ψ of A we have φ ◦ h = φ ◦ ψ.

Definition 4.2. A subset A of a group G is called syndetic if there exist finitely many 
g1, . . . , gn ∈ G such that 

⋃n
i=1 giA = G.

The following lemma characterizes extreme amenability in terms of syndetic sets.

Lemma 4.3 (Bartošová [2], Lemma 11). A topological group G is extremely amenable if 
and only if for every pair A, B of syndetic subsets of G and every open neighbourhood V
of the identity in G we have V A ∩ V B �= ∅.

In the lemma above, it is sufficient to only consider open sets V taken from a neigh-
bourhood basis of the identity in G. Since for an epimorphism φ : G → A we have 
Gφ(GφA) = GφA, we immediately obtain the following equivalence.

Lemma 4.4. Let G be a topological group that admits a neighbourhood basis at the identity 
consisting of open subgroups. Then the following are equivalent.

(1) G is extremely amenable.
(2) For every clopen subgroup H of G and every K ⊂ G, at most one of HK and G \HK

is syndetic.

Proof of Theorem 2.2. (1) ⇒ (2) We first prove that G is rigid. Let A ∈ G and pick an 
epimorphism φ : G → A by projective universality. Then G(φ)/Gφ is a finite discrete 
space of cardinality Aut(A) with a natural transitive continuous action of G(φ) given by 
g(Gφh) = Gφhg

−1. Being an open subgroup of G, G(φ) is extremely amenable by Lemma 
13 in [4], and therefore |Aut(A)| = |G(φ)/Gφ| = 1.

Secondly, we show that G is a Ramsey class. Let A ∈ G and let c :
(
G

A

)
→ {1, 2, . . . , r}

be a colouring. We view c as a point in the compact space X = {1, 2, . . . , r}
(
G

A

)
of 

all colourings of 
(
G

A

)
by r colours. We consider X with the natural action of G given by 

g ·d(φ) = d(φ ◦g−1). Let Y be the closure of the orbit of c. Since G is extremely amenable, 
the induced action of G on Y has a fixed point e. By the projective ultrahomogeneity 
of G, G acts transitively on 

(
G

A

)
, and consequently e must be constant, say with the 

range {i} ⊂ {1, 2 . . . , r}. Let B ∈ G and pick a γ ∈
(
G

B

)
, which exists by the projective 

universality of G. Since e ∈ Gc, there is g ∈ G such that c �
(
B
A

)
◦ γ ◦ g = e �

(
B
A

)
◦ γ, 

and therefore c on 
(
B
A

)
◦ (γ ◦ g) is constant. Since G is rigid, Proposition 4.1 concludes 

the proof.
(2) ⇒ (1) Striving for a contradiction, suppose that G is not extremely amenable. In 

the light of Lemma 4.4, it means that there are A ∈ G, an epimorphism φ : G → A and 
K0, K1 ⊂ G such that both GφK0 and G \GφK0 = GφK1 are syndetic. Let g1, . . . , gn ∈ G

witness syndeticity of both, i.e.
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n⋃
i=1

giGφK0 = G =
n⋃

i=1
giGφK1.

Let φi : G → A be given by φi = φ ◦ g−1
i . Since G is rigid, we can apply the property 

(L2) to a disjoint clopen refinement of the cover {φ−1
i (a) : a ∈ A, i = 1, . . . , n} of G and 

find B ∈ G, an epimorphism γ : G → B and surjections γi : B → A such that φi = γi ◦γ. 
Since γ and φi’s are epimorphisms, so are γi’s.

Define a colouring c :
(
G

A

)
→ {0, 1} by c(ψ) = ε if and only if whenever k satisfies 

φ ◦ k = ψ we have k ∈ GφKε. Let us remark that c is well-defined as φ ◦ k = φ ◦ l if and 
only if Gφk = Gφl. By the Ramsey property, there is an epimorphism γ′ : G → B such 
that 

(
B
A

)
◦ γ′ is monochromatic in a colour ε0 ∈ {0, 1}, in particular, c(γi ◦ γ′) = ε0 for 

every i. Since G is projectively ultrahomogeneous, there is g ∈ G such that γ′ = γ ◦ g. 
We have that

γi ◦ γ′ = γi ◦ γ ◦ g = φi ◦ g = φ ◦ g−1
i g,

which implies g−1
i g ∈ GφKε0 and consequently g ∈ giGφKε0 for every i. It means that 

g /∈
⋃n

i=1 giGφK1−ε0 , which is a contradiction. �
5. F< is a Ramsey class

The goal of this section is to prove Theorem 2.1. We will use Theorem 2.8, which will 
be proved in the next section.

Let G be a projective Fraïssé family. Recall that 
(
B
A

)
is the set of all epimorphisms 

from B onto A, and denote by G[2] the set of all ordered pairs (A, B) of elements in G
such that 

(
B
A

)
�= ∅. An ordered pair (A, B) ∈ G[2] is a Ramsey pair if there exists C ∈ G

such that for every colouring c :
(
C
A

)
→ {1, 2, . . . , r} there is g ∈

(
C
B

)
such that

(
B

A

)
◦ g =

{
h ◦ g : h ∈

(
B

A

)}

is c-monochromatic. Note that the class G is a Ramsey class if every pair (A, B) ∈ G[2]

is a Ramsey pair.
As in Section 3.1, let L be the language consisting of one binary relation symbol R

and let F denote the family of finite fans considered as L-structures. Given A ∈ F , we 
always keep in mind the underlying natural partial order �A.

Take the language L< = {R, S} expanding L with one binary relation symbol S and 
let F< be the family of all A< = (A, RA, SA) such that (A, RA) ∈ F and for some 
ordering a1 < a2 < . . . < an of branches in A we have SA(x, y) if and only if there are 
i ≤ j such that x ∈ ai and y ∈ aj . Note that the root r of A belongs to every branch so 
SA(r, x) for every x ∈ A and whenever x, y belong the same branch we have SA(x, y). 
Observe that SA extends the natural partial order on A.

We will frequently use the following lemma. Its proof is straightforward.
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Lemma 5.1. Let A<, B< ∈ F< and let a1 < . . . < am and b1 < . . . < bn be the increasing 
enumerations of the branches in A and B, respectively. A function f : B< → A< is an 
epimorphism if and only if f : B → A is an epimorphism and there exist 1 = k1 < . . . <

km+1 = n + 1 such that for every i = 1, . . . , n and s = 1, . . . , m, if ks ≤ i < ks+1 then 
f(bi) ⊂ as.

Let us start with the following special case of Theorem 2.1.

Lemma 5.2. Let A, B ∈ F< both consist of a single branch. If (A, B) ∈ F [2], then (A, B)
is a Ramsey pair.

We will see in a moment that Lemma 5.2 is essentially a reformulation of the classical 
Ramsey theorem. We let N [j] denote the collection of all j-element subsets of {1, . . . , N}. 
We will often write N instead of N [1].

Theorem 5.3 (Ramsey). Let k, l, r be natural numbers. Then there exists a natural number 
N such that for every colouring c : N [k] → {1, 2, . . . , r} there exists a subset X of N of 
size l such that X [k] is c-monochromatic. Denote by R(k, l, r) the minimal such N .

Proof of Lemma 5.2. Suppose that A has k+1 vertices rA = a0 ≺A . . . ≺A ak, B has l+1
vertices rB = b0 ≺B . . . ≺B bl, and r is given. Let N = R(k, l, r) and let C ∈ F< consist 
of a single branch with N+1 vertices rC = c0 ≺C . . . ≺C cN . Every epimorphism f ∈

(
C
A

)
can be identified with a k-element subset of C via {min{f−1(ai)} : i = 1, . . . , k}, where 
the min is taken with respect to ≺C . Therefore any colouring c :

(
C
A

)
→ {1, 2, . . . , r}

induces a colouring d : N [k] → {1, 2, . . . , r}. Let X = {x1 ≺ . . . ≺ xl} ∈ N [l] be such 
that d restricted to X [k] is constant. Define an epimorphism φ : C → B by φ(ci) = bj

if xj � i ≺ xj+1 and φ(ci) = b0 if i ≺ x1. Identifying 
(
B
A

)
with k-element subsets of B

in the same manner as above, we can deduce that 
(
B
A

)
◦ φ corresponds to all l-element 

subsets of X and therefore is monochromatic. �
For a natural number N let N [≤j] denote the collection of all at most j-element subsets 

of {1, . . . , N}. Note that N [≤j] =
⋃j

i=0 N
[j]. Let m, r be natural numbers and k1, . . . , km

be non-negative integers and let

c :
m∏
i=1

N [≤ki] → {1, 2, . . . , r}

be a colouring. Given Bi ⊂ N , i = 1, 2, . . . , m, we say that c is size-determined on (Bi)mi=1
if whenever Ai, A′

i ⊂ Bi with 0 ≤ |Ai| = |A′
i| ≤ ki for i = 1, 2, . . . , m, then

c(A1, . . . , Am) = c(A′
1, . . . , A

′
m).
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For f ∈
∏m

i=1 N
[≤ki], define supp(f) = {i : f(i) �= ∅}. Given a natural number 

d ≤ m, let 
(∏m

i=1 N
[≤ki]

)[d] be the set of all sequences (fs)ds=1 with fs ∈
∏m

i=1 N
[≤ki]

and max(supp(fs)) < min(supp(fs+1)), for s < d. Then, more generally, if

χ :
(

m∏
i=1

N [≤ki]

)[d]

→ {1, 2, . . . , r}

is a colouring and Bi ⊂ N for i = 1, 2, . . . , m, we say that χ is size-determined on (Bi)mi=1
if whenever (fs)ds=1 and (gs)ds=1 are such that supp(fs) = supp(gs), |fs(i)| = |gs(i)| and 
fs(i), gs(i) ⊂ Bi for every s ≤ d and i ≤ m, then

χ
(
(fs)ds=1

)
= χ

(
(gs)ds=1

)
.

At the end of this section, we will prove the following theorem, whose corollary essen-
tially reduces Theorem 2.1 to Theorem 2.8.

Theorem 5.4. Let m, r be natural numbers and let k1, . . . , km, l1, . . . , lm be non-negative 
integers such that ki ≤ li for every i = 1, 2, . . . , m. Then there exists N such that for 
every colouring

c :
m∏
i=1

N [≤ki] → {1, 2, . . . , r}

there are B1, . . . , Bm ⊂ N with |Bi| = li such that c is size-determined on (Bi)mi=1. 
Denote by S(m, k1, . . . , km, l1, . . . , lm, r) the minimal such N .

We are almost ready to prove Theorem 2.1 that the class F< is a Ramsey class. We 
will use Corollary 5.5 to reduce the proof to an application of Theorem 2.8. Corollary 5.5
is a multidimensional version of Theorem 5.4.

Corollary 5.5. Let d, m, r be natural numbers and let k1, . . . , km, l1, . . . , lm be non-negative 
integers such that ki ≤ li for every i = 1, 2, . . . , m. Then there exists N such that for 
every colouring

χ :
(

m∏
i=1

N [≤ki]

)[d]

→ {1, 2, . . . , r}

there are B1, . . . , Bm ⊂ N with |Bi| = li such that χ is size-determined on (Bi)mi=1. 
Denote by Sd(k1, . . . , km, l1, . . . , lm, m, r) the minimal such N .

Proof. Let Γ = {γ = (γ(1), . . . , γ(d + 1)) ∈ N
d+1 : γ(1) = 1 < . . . < γ(d + 1) = m}. To 

γ ∈ Γ and (A1, . . . , Am) ∈
∏m

i=1 N
[≤ki], we associate
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γ(A1,...,Am) = ((A1, . . . , Aγ(2)−1), . . . , (Aγ(d), . . . , Am)) ∈
m∏
i=1

(
N [≤ki]

)[d]
,

where for 1 ≤ i < j ≤ m by (Ai, . . . , Aj) we mean the function supported on [i, j] with 
the respective values Ai, . . . , Aj .

Given χ : (
∏m

i=1 N
[≤ki])[d] → {1, 2, . . . , r}, we define c :

∏m
i=1 N

[≤ki] → {1, 2, . . . , r}Γ

by

c(A1, . . . , Am) = (χ(γ(A1,...,Am)))γ∈Γ.

Applying Theorem 5.4, we get B1, . . . , Bm ⊂ N with |Bi| = li such that c

is size-determined on (Bi)mi=1. Since whenever γ(A1,...,Am) = γ′
(A1,...,Am) we have 

c(A1, . . . , Am)(γ) = c(A1, . . . , Am)(γ′), it follows that also χ is size-determined on 
(Bi)mi=1. �
Proof of Theorem 2.1. Let S ∈ F< be of height k and width d, and let T ∈ F< be 
of height l ≥ k and width m ≥ d (so that 

(
T
S

)
�= ∅). Let n = Gd(k, l, m, r) be as in 

Theorem 2.8 and let N = Sd(n, k, . . . , k, l, . . . , l, r) be as in Corollary 5.5. Let U ∈ F<

consists of n branches of height N . We will show that U works for S, T and r colours.
Let a1, . . . , ad and c1, . . . , cn be the increasing enumerations of branches in S and U

respectively. Let (aij)ki=0 be the increasing enumeration of the branch aj, j = 1, . . . , d, 
and let (cij)Ni=0 be the increasing enumeration of the branch cj for j = 1, . . . , n.

To each f ∈
(
U
S

)
, we associate f∗ = (pfi )di=1 ∈ FIN[d]

k (n) such that

supp(pfi ) = {j : a1
i ∈ f(cj)}

and for j ∈ supp(pfi )

pfi (j) = z ⇐⇒ f(cNj ) = azi .

We moreover associate to f a block sequence of functions (F f
i )di=1 ∈ (

∏n
j=1(cj \

{c0j})[≤k])[d] to fully code f as follows. For j ∈ supp(pfi ), we let

F f
i (j) = {min{cyj ∈ cj : f(cyj ) = axi } : 0 ≺ x � pfi (j)},

where the min is taken with respect to the partial order on the fan U . Note that 
supp(pfi ) = supp(F f

i ). By definition pfi (j) = |F f
i (j)| and since f is onto, for each i

there is a j such that pfi (j) = k. Therefore if f∗
1 = f∗

2 , then |F f1
i (j)| = |F f2

i (j)| for all 
i, j.

Similarly, to any g ∈
(
U
T

)
, we associate g∗ ∈ FIN[m]

l (n) and (F g
i )mi=1 ∈ (

∏n
j=1(cj \

{c0j})[≤l])[m].
Let c :

(
U
S

)
→ {1, . . . , r} be given. Let c0 be a colouring of (

∏n
j=0(cj \ {c0j})[≤k])[d]

induced by c via the injection f �→ (F f
i )di=1, colouring elements not of the form (F f

i )di=1
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in an arbitrary way. We first apply Corollary 5.5 to find Cj ⊂ cj \ {c0j} of size l for 
j = 1, . . . , n such that c0 is size-determined on (Cj)nj=1. It follows that the colouring 

c∗ : FIN[d]
k (n) → {1, 2, . . . , r} given by c∗(f∗) = c(f) for f ∈

(
U
S

)
which satisfy (F f

i )di=1 ∈
(
∏n

j=1 C
[≤k]
j )[d] is well-defined. Second, we apply Theorem 2.8 to obtain a block sequence 

D = (dj)mj=1 in FIN[m]
l (n) such that 

〈⋃
�i∈P l

k+1
T�i(D)

〉[d]

Pk

is c∗-monochromatic.

Let g ∈
(
U
T

)
be any epimorphism such that g∗ = D and (F g

i )mi=1 ∈ (
∏n

j=1 C
[≤l]
j )[m]. 

Then for every h ∈
(
T
S

)
, we have (h ◦ g)∗ ∈

〈⋃
�i∈P l

k+1
T�i(D)

〉[d]

Pk

and (Fh◦g
i )di=1 ∈

(
∏n

j=1 C
[≤k]
j )[d]. Since 

〈⋃
�i∈P l

k+1
T�i(D)

〉[d]

Pk

is c∗-monochromatic, we can conclude that (
T
S

)
◦ g is c-monochromatic. �

Proof of Theorem 5.4. Let m, r be natural numbers and k1, . . . , km, l1, . . . , lm be fixed 
non-negative integers such that ki ≤ li for every i = 1, 2, . . . , m. We proceed by a double 
induction on m′ < m and on k′ ≤ km′ , where at each step we apply Theorem 5.3. We 
prove the following statement: Given 1 ≤ m′ ≤ m and 0 ≤ k′ ≤ km′ , there exists N such 
that for every colouring

c :
m′−1∏
i=1

N [≤ki] ×N [≤k′] → {1, . . . , r}

there are B1, . . . , Bm′ ⊂ N with |Bi| = li such that c is size-determined on (Bi)m
′

i=1.
When m′ = 1 and k′ = 0, there is nothing to prove. Let m′ = 1 and assume that 

the statement of the theorem holds for 0 ≤ k′ < k1, we will prove it for k′ + 1. Let 
N ′ = S(1, k′, l1, r) and N = R(k′ + 1, N ′, r). Let

c : N [≤(k′+1)] → {1, 2, . . . , r}

be a given colouring. Consider the restricted colouring d = c �N [k′+1] and apply Theo-
rem 5.3 to find B ⊂ N of size N ′ such that B[k′+1] is d-monochromatic. By the inductive 
hypothesis applied to c � B[≤k′], we obtain the desired B1.

Suppose that the statement of the theorem is true for m′ − 1 and we shall prove it 
for m′. When k′ = 0, simply take N = S(m′ − 1, k1, . . . , km′−1, l1, . . . , lm′−1, r). Assume 
that the result is true for k′ < km′ , and we will prove it for k′ + 1. Set

N ′ = S(m′, k1, . . . , km′−1, k
′, l1, . . . , lm′−1, lm′ , r)

and

N ′′ = S(m′ − 1, k1, . . . , km′−1, N
′, . . . , N ′, r).

Denote by α the set of all colourings of 
∏m′−1

i=1 N ′′ [≤ki] with colours 1, . . . , r. Let



D. Bartošová, A. Kwiatkowska / J. Combin. Theory Ser. A 150 (2017) 108–136 125
N = max{N ′′, R(k′ + 1, N ′, |α|)}.

We will show that N works.
Let

c :

⎛
⎝m′−1∏

i=1
N [≤ki]

⎞
⎠×

(
N [≤(k′+1)]

)
→ {1, 2, . . . , r}

be an arbitrary colouring. For every A ⊂ N of size k′ + 1, let cA be the colouring of ∏m′−1
i=1 N ′′ [≤ki] induced by c and A in the last coordinate, i.e.

cA(A1, . . . , Am′−1) = c(A1, . . . , Am′−1, A).

Define a colouring

d : N [k′+1]
m′ → α

by d(A) = cA.
By Theorem 5.3, there is a subset B′

m′ ⊂ N of size N ′ such that B′ [k′+1]
m′ is 

d-monochromatic in a colour c0 :
(∏m′−1

i=1 N ′′ [≤ki]
)

→ {1, 2, . . . , r}. Applying the in-
duction hypothesis for m′−1, k1, . . . , km′−1, N ′, . . . , N ′, r, we obtain B′

i ⊂ N ′′
i of size N ′

for i = 1, 2, . . . , m′ − 1 such that c0 is size-determined on (B′
i)m

′−1
i=1 .

Finally, we define

b = c �(∏m′−1
i=1 B

′ [≤ki]
i

)
×
(
B

′ [≤k′]
m′

) .

Using the induction hypothesis for m′−1, k1, . . . , km′−1, k′, l1, . . . , lm′ , r, we obtain Bi ⊂
B′

i for i = 1, 2, . . . , m′ such that |Bi| = li and b and therefore c are size-determined on 
(Bi)m

′

i=1. �
6. Gowers’ Ramsey theorem for multiple operations

In this section, we provide a proof by induction of our main Ramsey result, Theo-
rem 2.8. In order to perform the induction, we generalize Tyros’ notions of a type and 
of a pyramid in FINk(n) to sequences in FIN[d]

k (n).
Let A = (ai)mi=1 be a block sequence in FIN1. We can identify each ai with the 

characteristic function χ(ai) of its support. We define

FINk(A) =
{

m∑
i=1

ji · χ(ai) : ji ∈ {0, 1, . . . , k} & ∃i (ji = k)
}
.

Let FIN[d]
k (A) denote the set of all block sequences in FINk(A) of length d.
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A function φ : {1, . . . , m} → {1, . . . , k} is a type of length m over k if φ(i) �= φ(i + 1)
for i = 1, 2, . . . , m − 1, and for some i, φ(i) = k. Note that φ ∈ FINk(m). Let n be 
a natural number. For every type φ of length m ≤ n over k and every block sequence 
B = (bi)mi=1 in FIN1(n),

map(φ,B) =
m∑
i=1

φ(i) · χ(bi)

belongs to FINk(n).
On the other hand, for every p ∈ FINk(n), there exist a unique natural number m ≤ n, 

a type φ of length m over k, and a block sequence B = (bi)mi=1 in FIN1(n) of length m
such that

p = map(φ,B).

We call this φ the type of p and denote it by tp(p). We say that p, q ∈ FINk are of the 
same type if tp(p) = tp(q).

Tyros [22] used the following lemma about types to obtain his constructive proof of 
the finite version of Gowers’ theorem.

Lemma 6.1 (Tyros [22]). For every triple k, m, r of natural numbers, there exists n such 
that for every colouring c : FINk(n) → {1, 2, . . . , r}, there is a block sequence A of length 
m in FIN1(n) such that any two elements in FINk(A) of the same type have the same 
colour.

We extend the notion of a type to sequences in FIN[d]
k . We say that φ = (φ1, . . . , φd) is 

a type of length m over k if each φi is a type of length mi over k such that 
∑d

i=1 mi = m. 
For p̄ = (p1, . . . , pd) ∈ FIN[d]

k , we let the type of p̄ be (tp(p1), . . . , tp(pd)).
Note that given d ≤ n and A ∈ FIN[n]

1 , there is a natural bijection between FIN[d]
k (A)

and the set of pairs (B, φ), where B ∈ FIN[m]
1 (A) and φ ∈

∏d
i=1 FINk(mi), for some 

m1, . . . , md such that 
∑d

i=1 mi = m, is a type of length m over k for some m ≤ n. As 
in the case of dimension 1, the p ∈ FIN[d]

k (A) that corresponds to (B, φ) will be denoted 
by map(φ, B).

We will prove a multidimensional version of Lemma 6.1 using a finite version of the 
Milliken–Taylor theorem [13,20].

Theorem 6.2 (Milliken–Taylor). Given natural numbers m ≥ d and r, there exists n with 
the following property: For every finite block sequence A ∈ FIN1 of length at least n and 
every colouring of FIN[d]

1 (A) by r colours there exists B ∈ FIN[m]
1 (A) such that FIN[d]

1 (B)
is monochromatic. We denote the smallest such n by MTd(m, r).

Lemma 6.3. Let k and d ≤ m, and r be natural numbers. Then there exists n such that 
for every colouring c : FIN[d]

k (n) → {1, 2, . . . , r}, there is a block sequence A in FIN1(n)
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of length m such that any two elements in FIN[d]
k (A) of the same type have the same 

colour. We denote the smallest such n by Td(k, m, r).

Proof. Let T be the set of all types of sequences in FIN[d]
k of length at most m and let α be 

the cardinality of the set X of all colourings of T by r colours. Let n = MTm(2m −d, α)
be as in Theorem 6.2 and let c : FIN[d]

k (n) → {1, 2, . . . , r} be a colouring. Let q :
FIN[m]

1 (n) → {1, . . . , r}T be the colouring given by

q(B)(φ) = c(map(φ, (bi)
lφ
i=1)),

where lφ denotes length of the type φ, B = (bi)mi=1 ∈ FIN[m]
1 (n), and {1, . . . , r}T denotes 

the set of functions from T to {1, . . . , r}. By Theorem 6.2, we can find a block sequence A′

of length 2m −d such that FIN[m]
1 (A′) is q-monochromatic and let A be the initial segment 

of A′ of length m. We will show that A is as desired. Indeed, let p̄1, p̄2 ∈ FIN[d]
k (A)

be of the same type φ, and let A1, A2 be the block sequences in FIN1(A) for which 
p̄1 = map(φ, A1) and p̄2 = map(φ, A2). Since φ has length between d and m and since 
A is an initial segment of A′ ∈ FIN[2m−d]

k (n), we can choose A′
1, A

′
2 ∈ FIN[m]

1 (A′) such 
that A1 is an initial segment of A′

1 and A2 is an initial segment of A′
2. It follows that

c(p̄1) = q(A′
1)(φ) = q(A′

2)(φ) = c(p̄2). �
Another piece needed for the induction in the proof of Theorem 2.8 is a pair of 

two lemmas capturing how T1 commutes with Ti’s. The proof of the first lemma is an 
immediate calculation.

Lemma 6.4.

(1) If 1 ≤ j < l and p ∈ FINl, we have Tj ◦ T1(p) = T1 ◦ Tj+1(p) and T0 ◦ T1 = T1 ◦ T0.
(2) For �t ∈ Pk, p ∈ FINl, T�t ◦ T1(p) = T1 ◦ T�t+1(p), where �t + 1 ∈ Pk+1 is such that

(�t + 1)(1) = 0

(�t + 1)(x + 1) = �t(x) + 1 when 1 ≤ x ≤ k.

(3) If �t = �j	�i with �j ∈ Pk−1 and �i ∈ P l−1
k , then �t + 1 = �j′

	�i′ where �j′ ∈ Pk and 
�i′ ∈ P l

k+1.
(4) If �j ∈ Pk and �i ∈ P l

k+1, then

T1 ◦ T�j ◦ T�i(p) = T�j′ ◦ T�i′ ◦ T1(p)

for some �j′ ∈ Pk−1, �i′ ∈ P l−1
k .

The second lemma will easily follow from Lemma 6.4 Let us recall the definitions of 
Pk and P l

k+1 from Introduction and observe that for any 1 ≤ k
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⋃
�i∈Pk

k+1

T�i(B) = B.

Lemma 6.5. Let B = (bs)ms=1 be a block sequence in FINl(n). Then for 2 ≤ k ≤ l, we 
have

T1

〈 ⋃
�i∈P l

k+1

T�i(B)
〉

Pk

=
〈 ⋃
�i∈P l−1

k

T�i ◦ T1(B)
〉

Pk−1

.

In particular, if 2 ≤ k and k = l

T1 〈B〉Pk
= 〈T1(B)〉Pk−1

.

An element c ∈ FINl is called a pyramid of height l if for some block sequence A =
(aj)j=l−1

j=−(l−1) in FIN[2l−1]
1 , we have

c =
l−1∑

j=−(l−1)

(l − |j|) · χ(aj).

Observe that if c is a pyramid of height l, �i ∈ Pl and j is the number of zero entries 
in �i, then T�i(c) is a pyramid of height j. Note that some of the “steps” in the pyramid 
T�i(c) may have disappeared and others may have become longer. If k < l and �i ∈ P l

k+1, 
then T�i(c) is a pyramid of height k. In particular, for every �i in Pk or in P l

k+1, we have 
that

(*) T�i(c)(min supp(T�i(c))) = 1 = T�i(c)(max supp(T�i(c))).

Let C = (ci)ni=1 be a block sequence of n pyramids of height k. For p ∈ 〈C〉Pk
, let

suppC(p) = {i : supp(p) ∩ supp(ci) �= ∅}.

For i ∈ suppC(p), we define hti(p) = max{p(x) : x ∈ supp(p) ∩ supp(ci)}, while for 
i /∈ suppC(p), we let hti(p) = 0. Then for 1 ≤ i ≤ n, ht(p)(i) = hti(p) defines a function 
in FINk(n). For p̄ = (p1, . . . , pd) ∈ FIN[d]

k (C), we let ht(p̄) = (ht(p1), . . . , ht(pd)) ∈
FIN[d]

k (n).

Lemma 6.6. Let C1, C2 be two block sequences of n pyramids of height k, let p ∈ 〈C1〉Pk

and q ∈ 〈C2〉Pk
. Then ht(T1(p)) = ht(T1(q)) iff tp(p) = tp(q).

Proof. Observe that i ∈ suppC1
(T1(p)) iff hti(T1(p)) > 0 iff hti(p) = hti(T1(p)) + 1, 

while i /∈ suppC1
(T1(p)) iff hti(p) = 0 or hti(p) = 1. Analogously for q. The statement 

therefore follows by equation (*). �
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The following lemma shows that if the statement of Theorem 2.8 holds then it remains 
true after replacing FINk(n) by the partial semigroup generated by a block sequence of 
n pyramids of height k. It will be essential for the induction in the proof of Theorem 2.8.

Lemma 6.7. Suppose that

(**) for every 1 ≤ k, every d, every m ≥ d, every l ≥ k, and every r, there exists n such 
that for every colouring c : FIN[d]

k (n) → {1, 2, . . . , r} there is a block sequence B in 

FINl(n) of length m such that 
〈⋃

�i∈P l
k+1

T�i(B)
〉[d]

Pk

is c-monochromatic.

Let C = (ci)ni=1 be a block sequence of n pyramids of height l. Then for every colouring 

e :
〈⋃

�i∈P l
k+1

T�i(C)
〉[d]

Pk

→ {1, 2, . . . , r} satisfying that ht(p̄) = ht(q̄) implies e(p̄) = e(q̄), 

there is a block sequence D ∈ 〈C〉[m]
Pl

such that 
〈⋃

�i∈P l
k+1

T�i(D)
〉[d]

Pk

is e-monochromatic.

Proof. Let C and e be as in the statement of the theorem. For 1 ≤ j ≤ l, we define a 
one-to-one semigroup homomorphism

ιj : FINj(n) →
〈 ⋃
�i∈P l

j+1

T�i(C)
〉

Pj

by

q �→
∑

i∈supp(q)

T
l−q(i)
1 (ci),

where T l−q(i)
1 denotes the (l − q(i))-th iterate of T1. We naturally extend ιj to ι[d]j on 

FIN[d]
j (n) by ι[d]j (qi)di=1 = (ιj(qi))di=1.

Let c : FIN[d]
k (n) → {1, 2, . . . , r} be the colouring e ◦ι[d]k . By the hypothesis (**), we can 

find a block sequence B in FIN[m]
l (n) such that 

〈⋃
�i∈P l

k+1
T�i(B)

〉[d]

Pk

is c-monochromatic 

in a colour α. Define D = ι
[m]
l (B) ∈ 〈C〉[m]

Pl
.

It is easy to see that ht(ιj(q)) = q and that ιj−1Tr(q) = Trιj(q) for 1 ≤ r ≤ j and q ∈
FINj(n). It implies that whenever p̄ ∈

〈⋃
�i∈P l

k+1
T�i(D)

〉[d]

Pk

, ht(p̄) ∈
〈⋃

�i∈P l
k+1

T�i(B)
〉[d]

Pk

, 

and therefore e(ι[d]k (ht(p̄))) = α, but ht(ι[d]k (ht(p̄))) = ht(p̄), so also e(p̄) = α. �
For p̄ = (p1, . . . , pd) ∈ FIN[d]

k , we define T1(p̄) to be (T1(p1), . . . , T1(pd)). We are now 
ready to prove Theorem 2.8. Some of the ideas used in the proof also appeared in the 
proof of Theorem 1 in [22]. For a block sequence B = (bs)ms=1, by T1(B) we will mean 
the block sequence (T1(bs))ms=1.
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Proof of Theorem 2.8. We proceed by induction on k. For k = 1 and d, m ≥ d, l ≥ k, r
arbitrary, let n = MTd(m, r). Suppose that c : FIN[d]

1 (n) → {1, 2, . . . , r} is an arbitrary 
colouring. By Theorem 6.2, we can find a block sequence A = (as)ms=1 ∈ FIN[m]

1 (n) such 
that FIN[d]

1 (A) is c-monochromatic. We define B = (bs)ms=1 by bs = l · χ(as), so that 
T�i(bs) = as for every s and �i ∈ P l

2. Then

〈 ⋃
�i∈P l

2

T�i(B)
〉[d]

P1

= 〈A〉[d]P1
= FIN[d]

1 (A)

is c-monochromatic.
Now, we assume that the theorem holds for k−1 and we shall prove it for k. Let n′ =

Gd(k−1, l−1, m, r) be given by the induction hypothesis and let n = Td(k, n′(2l−1), r)
be as in Lemma 6.3.

Let c : FIN[d]
k (n) → {1, 2, . . . , r} be a given colouring. By Lemma 6.3, we can find a 

sequence A in FIN1(n) of length n′(2l−1) such that any two elements in FIN[d]
k (A) of the 

same type have the same colour. Let C = (ci)n
′

i=1 be the block sequence of n′ pyramids 
in FINl(A), i.e.

ci =
l−1∑

j=−(l−1)

(l − |j|) · χ(aqi+j),

where qi = (i − 1)(2l − 1) + l.

Suppose that p̄, q̄ ∈
〈⋃

�i∈P l
k+1

T�i(C)
〉[d]

Pk

are such that ht(T1(p̄)) = ht(T1(q̄)). Then 

tp(p̄) = tp(q̄) by Lemma 6.6 and consequently c(p̄) = c(q̄) by the choice of C. Therefore 
the colouring

c′ : T1

〈 ⋃
�i∈P l

k+1

T�i(C)
〉[d]

Pk

→ {1, 2, . . . , r},

given by c′(T1(p̄)) = c(p̄), is well-defined.
By Lemma 6.5,

T1

〈 ⋃
�i∈P l

k+1

T�i(C)
〉

Pk

=
〈 ⋃
�i∈P l−1

k

T�i ◦ T1(C)
〉

Pk−1

.

Therefore c′ and the sequence of pyramids T1(C) satisfy the hypothesis of Lemma 6.7.
Applying the induction hypothesis together with Lemma 6.7 we can find a block se-

quence B′ = (b′s)ms=1 in 〈T1(C)〉Pl−1
such that 

〈⋃
�i∈P l−1

k
T�i(B′)

〉[d]

Pk−1
is c′-monochromatic, 

say in a colour α. By Lemma 6.5, there is a block sequence B in 〈C〉[m]
P such that 
l
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T1(B) = B′. If b̄ ∈
〈⋃

�i∈P l
k+1

T�i(B)
〉[d]

Pk

, then T1(b̄) ∈
〈⋃

�i∈P l−1
k

T�i(B′)
〉[d]

Pk−1
, so 

c(b̄) = c′(T1(b̄)) = α. We can conclude that B is as required. �
As stated in Section 2.2, setting k = l and d = 1 in Theorem 2.8, we obtain 

Corollary 2.7, a generalisation of the finite version of Gowers’ Theorem from the tetris 
operation T1 to all the operations Ti. Setting k = l and letting d be arbitrary in Theo-
rem 2.8, we obtain the following generalisation of the finite version of the Milliken–Taylor 
theorem for FINk (see [21], Corollary 5.26).

Corollary 6.8. Let k, m, r and d be natural numbers. Then there exists a natural number 
n such that for every colouring c : FIN[d]

k (n) → {1, 2, . . . , r} there is a block sequence B

of length m in FINk(n) such that 〈B〉[d]Pk
is c-monochromatic.

In an earlier version of the article we posed the following question.

Question 6.9. Does Corollary 2.7 admit an infinitary version?

This question was recently solved in positive by Lupini [12].

7. Applications to dynamics of H(L)

In this section, we describe a natural closed subgroup H of H(L) and show that it is 
extremely amenable.

It is not difficult to see that F< consists of rigid elements and that it has the JPP. 
The proposition below thus asserts that F< is a projective Fraïssé class.

Proposition 7.1. The family F< has the AP.

One can deduce this theorem from the JPP and from the Ramsey property, cf. [10], 
page 20. We will include a direct proof of Proposition 7.1 in Appendix A.

Having shown that F< is a projective Fraïssé class, we may now consider its projective 
Fraïssé limit L<. Let G = Aut(L<) denote the automorphism group of L<. Combining 
the Kechris–Pestov–Todorčević correspondence from Section 4 with F< being a rigid 
Ramsey class, we obtain the that the group Aut(L) is extremely amenable.

Proof of Theorem 2.3. Follows from Theorems 2.1 and 2.2. �
Observe that the family F< is reasonable with respect to F , that is, for every A, B ∈ F , 

an epimorphism φ : B → A, and A< ∈ F< such that A< � L = A, there is B< ∈ F<

such that B< � L = B and φ : B< → A< is an epimorphism. The proof of the following 
lemma uses that F< is reasonable with respect to F and implies that Aut(L<) may be 
identified with a subgroup of Aut(L), cf. [10], Proposition 5.2. Our proof is slightly more 
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complicated than the one in [10] since we do not have an analogue of the hereditary 
property for F .

Lemma 7.2. We have L< � L is a projective Fraïssé limit of F and therefore isomorphic 
to L.

Proof. Set L0 = L< � L. By Proposition 3.3, it suffices to show that L0 satisfies the 
properties (L1) and (L2) in the definition of the projective Fraïssé limit, and it has the 
extension property with respect to F . Since L< has the properties (L1) and (L2) with 
respect to F< and for every A ∈ F there is A< ∈ F< with A< � L = A, L0 has the 
properties (L1) and (L2) with respect to F .

To show the extension property, let A, B ∈ F and let φ1 : B → A and η : L0 → A be 
epimorphisms. By property (L2) for L<, find C< ∈ F<, an epimorphism ξ : L< → C<

and a map φ2 : C → A, such that C = C< � L and φ2 ◦ ξ = η. Note that since 
ξ : L0 → C and η : L0 → A are epimorphisms, so is φ2 : C → A. From the AP for 
F , find D ∈ F , ψ1 : D → B and ψ2 : D → C such that φ1 ◦ ψ1 = φ2 ◦ ψ2. Take any 
D< ∈ F< with D< � L = D such that ψ2 : D< → C< is an epimorphism. Using the 
extension property for F<, find an epimorphism ρ : L< → D< such that ψ2 ◦ ρ = ξ. 
A simple calculation shows that the epimorphism (ψ1 ◦ ρ) : L0 → B is as needed, i.e. it 
satisfies η = φ1 ◦ (ψ1 ◦ ρ). �

In the light of Lemma 7.2, from now on we will think of L< as (L, SL) and identify 
Aut(L<) with a closed subgroup of Aut(L). To demonstrate that Theorem 2.3 is not 
trivial, it is appropriate to show that the group Aut(L<) is not a singleton. It will follow 
from the projective ultrahomogeneity of L<. Indeed, let A ∈ F< be the fan of height 
1 and width 3, with branches a1 = (a0

1, a
1
1), a2 = (a0

2, a
1
2), and a3 = (a0

3, a
1
3), where 

rA = a0
1 = a0

2 = a0
3 is the root. Let B ∈ F< be the fan of height 1 and width 2 with 

branches b1 = (b01, b11) and b2 = (b02, b12), where rB = b01 = b02 is the root. Let φ : L< → A

be an arbitrary epimorphism. Let α1 : A → B be the epimorphism given by rA �→ rB , 
a1
1 �→ b11, a1

2 �→ b11, and a1
3 �→ b12, and let α2 : A → B be the epimorphism given by 

rA �→ rB , a1
1 �→ b11, a1

2 �→ b12, and a1
3 �→ b12. Then the projective ultrahomogeneity applied 

to α1 ◦ φ, α2 ◦ φ : L< → B provides us with a non-trivial automorphism of L<.
Let π : L → L/RL

S
∼= L be the natural quotient map. Since L< = (L, SL) is a 

topological L<-structure, the relation SL is closed and consequently ≤L= π(SL) is a 
closed binary relation on L which is reflexive and transitive, that is, it is a preorder. We 
will call the Lelek fan equipped with ≤L the preordered Lelek fan and denote it by L<.

In Section 3.1, we pointed out that π induces an injective continuous homomorphism 
which we denote by π∗ from Aut(L) onto a subgroup of H(L).

Definition 7.3. We define the following two subgroups of H(L)

H = π∗(Aut(L<))
H(L)

(1)
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H(L<) = {h ∈ H(L) : for every x, y ∈ L (x ≤L y =⇒ h(x) ≤L h(y))}.(2)

Proposition 7.4. We have H = H(L<).

In the proof of Proposition 7.4, we will use Lemma 7.5, an analog of Lemma 2.14 from 
[3] but for L< instead of L.

Lemma 7.5. Let d < 1 be any metric compatible with the topology on L. Let ε > 0 and 
let v be the top of L<. Then there are A< = (A, SA) ∈ F< and an open cover (Ua)a∈A<

of L< such that

(C1) for each a ∈ A<, diam(Ua) < ε,
(C2) for every I = [v, e] where e is an endpoint and v is the top point, {Ua∩I : a ∈ A<}

is a cover consisting of intervals such that each set (Ua ∩ I) \ (Ua′ ∩ I) is connected 
and whenever Ua ∩ I, Ua′ ∩ I have a non-empty intersection and there is y ∈ Ua′ ∩ I

with Ua ∩ I ⊂ [v, y] we have RA<(a, a′),
(C3) for every a ∈ A< there is x ∈ L< such that x ∈ Ua \ (

⋃
{Ua′ : a′ ∈ A<, a′ �= a}),

(C4) for each x, y ∈ L< and a, b ∈ A<, if x ≤L y, x ∈ Ua and y ∈ Ub, then SA<(a, b).

Proof of Lemma 7.5. Let U be a finite open ε
3 -cover of L< and let V = {π−1(U) :

U ∈ U}. Using (L2) in the definition of the projective Fraïssé limit, find A< ∈ F< and 
an epimorphism φ : L< → A< that refines V. The set

C1 = {Va = π(φ−1(a)) : a ∈ A<}

is a closed ε3 -cover of L< that satisfies all properties (C1)–(C4). Since L is compact, the 
distance between any D, E ∈ C1, D ∩ E = ∅ is positive, that is, inf{d(x, y) : x ∈ D,

y ∈ E} > 0. So we can find 0 < δ < ε
3 such that for every D, E ∈ C1, we have

B(D, δ) ∩B(E, δ) �= ∅ ⇐⇒ D ∩ E �= ∅,

where for X ⊂ L< we set B(X, δ) = {y ∈ L< : ∃x∈X d(y, x) < δ}. Then the open cover 
C2 = {Ua = B(Va, δ) : a ∈ A<} satisfies the properties (C1)–(C4) as well. �
Proof of Proposition 7.4. For every h ∈ Aut(L<), we have that h∗ ∈ H. Since H(L<) is 
closed, it follows that H ⊂ H(L<).

To show the converse, take h ∈ H(L<) and ε > 0. Let d < 1 be any metric compatible 
with the topology on L and let dsup be the corresponding supremum metric on H(L). 
We will find γ ∈ Aut(L<) such that dsup(h, γ∗) < ε. Let A< ∈ F< and let (Ua)a∈A<

be an open cover of L< as in Lemma 7.5. Since h is uniformly continuous, we can as-
sume additionally that for each a ∈ A<, diam(h[Ua]) < ε. As h is a homeomorphism, 
(h[Ua])a∈A<

also satisfies conditions (C2)–(C3) of Lemma 7.5. Finally, h ∈ H(L<) en-
sures that (h[Ua])a∈A<

satisfies (C4).
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Consider the open covers {V 1
a := π−1(Ua) : a ∈ A<} and {V 2

a := π−1(h[Ua]) : a ∈ A<}
of L<. By the property (L2), we can find B< ∈ F< and epimorphisms φi : L< → B<

for i = 1, 2 that refine the cover (V i
a)a∈A<

. Define αi : B< → A< by b �→ max{a ∈ A< :
π ◦φ−1

i (b) ⊂ Ua}, where the maximum is taken with respect to the natural partial order 
on A. Let ψi : L< → A< be the composition αi ◦ φi. We will show that ψi, i = 1, 2 are 
epimorphisms. Since φi are continuous, so are ψi, and by (C3) they are onto. The property 
(C2) implies that if x, y ∈ L< satisfy RL<(x, y) then RA<(ψi(x), ψi(y)), i = 1, 2. Finally, 
(C4) provides that if SL<(x, y) then SA<(ψ1(x), ψ1(y)). Since (h[Ua])a∈A<

also satisfies 
(C2)–(C4), the same is true for ψ2, and we can conclude that ψ1, ψ2 are epimorphisms.

The projective ultrahomogeneity gives us γ ∈ Aut(L<) such that ψ1 = ψ2 ◦ γ. It 
remains to show that dsup(h, γ∗) < ε. Pick any x ∈ L< and let a = ψ1(x). Then

γ∗(π(x)) ∈ γ∗(π ◦ ψ−1
1 (a)) = π ◦ γ ◦ ψ−1

1 (a) = π ◦ ψ−1
2 (a) ⊂ h[Ua].

It means that γ∗(π(x)), h(π(x)) ∈ h[Ua], and since diam(h[Ua]) < ε, we get the required 
conclusion. �
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Appendix A

We present below a proof of Proposition 7.1.

Proof of Proposition 7.1. Take A, B, C ∈ F< together with epimorphisms φ1 : B → A

and φ2 : C → A.
For clarity, we start with the simplest case, which will be applied in the induction 

further on.

Claim. Assume that A, B and C all consist of one branch only. Then there are D ∈ F<

and epimorphisms ψ1 : D → B and ψ2 : D → C such that φ1 ◦ ψ1 = φ2 ◦ ψ2.

Proof of Claim. Suppose that A has height l and enumerate it as a0, a1, . . . , al with 
a0 the root and RA(ai, ai+1) for i = 0, 1, . . . , l − 1. For 0 ≤ i ≤ l and ε = 1, 2, let 
Iεi = φ−1

ε (ai) and let mi = max{|I1
i |, |I2

i |}. Let D ∈ F< have a single branch of height 
M = m0 + . . . + ml and write it as D =

⋃l
i=0 Ki with |Ki| = mi and all elements in 

Ki preceding elements in Ki+1 in the natural order. Then ψε mapping Ki onto Iεi in an 
R-preserving manner for ε = 1, 2 finish the argument. �
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Second, we deal with the situation when A = {a0, . . . , al} is a single branch and B
and C have m and n branches, respectively.

The relation SB induces an ordering b1 < b2 < . . . < bm of branches in B, and the 
relation SC induces an ordering c1 < c2 < . . . < cn of branches in C. We will perform 
induction on k = 1, . . . , m + n assuming that φ1 � bm and φ2 � cn both map onto A. 
Later we will see how to eliminate this assumption. In step k, we will construct a branch 
dk of D together with homomorphisms ψ1,k : dk → B and ψ2,k : dk → C such that 
φ1 ◦ ψ1,k = φ2 ◦ ψ2,k. We will ensure that the image of 

⋃
{ψε,i : i = 1, . . . , k, ε = 1, 2}

contains the first kB branches of B and the first kC branches of C for some kB and kC
such that k = kB + kC . Each of the steps resembles the proof of Claim.
Step k = 1. Since φ1(b1) and φ2(c1) are initial segments of the single branch of A, we 
may without loss of generality assume that φ1(b1) ⊂ φ2(c1). Applying Claim with b1 in 
place of B and φ−1

2 (φ1(b1)) in place of C, we may find a branch d1 and homomorphisms 
ψ1,1 : d1 → b1 and ψ2,1 : d1 → c1 with ψ1,1 onto b1, ψ2,1 onto φ−1

2 (φ1(b1)) such that 
φ1 ◦ ψ1,1 = φ2 ◦ ψ2,1.
Step k + 1. Suppose that we have constructed branches di with homomorphisms ψ1,i :
di → B and ψ2,i : di → C for i = 1, . . . , k as required. Pick branches b in B and c in C
with the smallest indices such that they are not contained in the image of 

⋃
{ψε,i : i =

1, . . . , k, ε = 1, 2}. Since φ1(b) and φ2(c) are initial segments of the only branch of A, we 
can assume without loss of generality that either (φ1(b) ⊂ φ2(c) and φ1(b) �= φ2(c)) or 
(φ1(b) = φ2(c) and m − k ≥ n − k). With b in place of b1 and c in place of c1, we may 
proceed in the same way as in Step k = 1 to obtain a branch dk+1 and homomorphisms 
ψ1,k+1 : dk+1 → B and ψ2,k+1 : dk+1 → C with ψ1,k+1 onto c, ψ2,k+1 onto φ−1

2 (φ1(b))
and φ1 ◦ ψ1,k+1 = φ2 ◦ ψ2,k+1. This finishes the induction step.

Note that φ1 � bm, φ2 � cn being onto A allows us to proceed as above for (n +m)-many 
steps, in each step covering a new branch in B or C. We remark that we may ensure 
that all dk’s have the same height.

Let D ∈ F< be the union of the branches (dk)m+n
k=1 with their roots identified and SD

induced by the order d1 < . . . < dm+n. Then ψ1 : D → B and ψ2 : D → C given by 
ψε � dk = ψε,k for ε = 1, 2 are as required.

When φ1 � b1 and φ2 � c1 are onto A, we proceed similarly as above (starting the 
induction with bm and cn and going backwards).

In the case when A has one branch and B and C are arbitrary, let tB and tC denote 
any branch in B and C, respectively, such that φ1 � tB and φ2 � tC are onto A. We 
split B into two fans, B1 and B2, such that all branches in B1 precede the branches 
in B2 in the order corresponding to SB (which we denote by B1 < B2) and such that 
B1 ∩B2 = tB . Similarly, we split C into C1 < C2 with C1 ∩ C2 = tC .

For Bi, Ci, φi
1 = φ1 � Bi, and φi

2 = φ2 � Ci, we obtain Di, ψi
1, and ψi

2, i = 1, 2, 
and observe that D = D1 ∪ D2 with their roots identified and SD inducing D1 < D2, 
ψ1 = ψ1

1 ∪ ψ2
1 , and ψ2 = ψ1

2 ∪ ψ2
2 are as required.

In a general situation, when A consists of branches a1 < . . . < as, we follow the 
procedure above for each ai, Bi = φ−1

1 (ai), Ci = φ−1
2 (ai), φi

1 = φ1 � Bi, and φi
2 = φ2 � Ci. 
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For each i, we obtain Di, ψi
1 : Di → Bi, and ψi

2 : Di → Ci, i = 1, . . . , l, and conclude that 
D = D1∪ . . .∪Ds with roots identified and such that D1 < . . . < Ds, ψ1 = ψ1

1 ∪ . . .∪ψs
1, 

and ψ2 = ψ1
2 ∪ . . . ∪ ψs

2 finish the proof. �
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