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1. Introduction

The quantum group Uq(g) is a q-deformation of the universal enveloping algebra U (g) for a Lie
algebra g and the crystal base B(∞) presents the bare skeleton structure of its negative part U−

q (g).
The crystal B(∞) has received attention since the very birth of crystal base theory [11,22] as an in-
tegral part of the grand loop argument proving the existence of crystal bases and substantial efforts
have been made to give explicit descriptions of the crystal B(∞). A variety of tools, such as Kashi-
wara embedding [1,12,24], Littelmann’s path [19–21], and quiver varieties [16,25], were used for this
purpose and there were many other approaches, with [3,7,9,18] being a partial list.

Most of these are specific to a certain class of Lie algebra types and explicit descriptions of B(∞)

based on the Young tableaux for the classical simple Lie algebras and the G2 type Lie algebra were
presented in [3] by the authors of this paper. The current paper provides analogous realizations for
the remaining finite simple Lie algebras of types E6, E7, E8, and F4. Even though this work extends
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the result of [3] to other Lie algebra types, as we shall soon explain, the approaches used in the two
works are different.

The previous work [3] started from the concrete Young tableau realizations T (λ) of the highest
weight crystals B(λ) that were announced in [15,10]. First, tableaux in T (λ) of certain shapes were
named as large tableaux with T (λ)L denoting their collection and these were gathered into a single
set

⋃
λ T (λ)L . Then, many of the large tableaux were identified with each other to form a set of

equivalence classes
⋃

λ T (λ)L/∼. Finally, a crystal structure was given to
⋃

λ T (λ)L/∼ and this was
shown to be crystal isomorphic to B(∞).

We start the current paper with a result that captures the structure that is common to the five
separate realizations of [3]. The claim is that, if the full sets B(λ) are gather into a single set

⋃
λ B(λ)

and certain identifications are made within this infinite union, then the resulting set of equivalence
classes

⋃
λ B(λ)/∼ has a natural crystal structure induced from those on each B(λ) and is crystal iso-

morphic to B(∞). The previous realization that had gathered only the smaller subsets T (λ)L ⊂ B(λ)

consisting of large tableaux had worked because each final equivalence class in
⋃

λ B(λ)/∼ contained
at least one large tableau. The description of B(∞) as

⋃
λ B(λ)/∼ is valid for all symmetrizable Kac–

Moody algebras and a very similar result had appeared in [13].
Based on this preliminary result, one can attempt to construct a realization of B(∞) as follows.

One first develops a way to express elements of the crystals B(λ) for whatever Lie algebra type that
is under consideration. Then, the identifications made within

⋃
λ B(λ) are translated to those on the

set of developed expressions. Finally, a suitable set of representatives for each equivalence class is
collected as an explicit realization.

Contrary to the situation in [3], Young tableau realizations of the highest weight crystals B(λ), of
the style given by [15], are currently not available for the E6, E7, E8, and F4 types. This difference
makes the first of the above mentioned three steps difficult to achieve, but our previous experience
with the classical types allows us to expect that it may be enough to express only certain subsets
of each B(λ) as tableaux to achieve our goal, and this is the approach we take. Using the Naka-
jima monomial theory [14,23], we explicitly draw the crystal graph for one of the simplest crystals
available for each Lie algebra type and refer to these as the basic crystals. Then, the crystal B(λ) is
located as a sub-crystal in the tensor product of a suitable number of copies of the basic crystal. Thus
elements of B(λ) can be viewed as tableaux with entries filled with elements of the basic crystal.
Instead of trying to characterize all elements of B(λ) as tableaux, we show that certain large tableaux
must belong to B(λ). Finally, the equivalence among crystal elements in

⋃
λ B(λ) is related to the

equivalence among large tableaux and we fix an explicit representative tableau from each equivalence
class to arrive at an explicit realization of B(∞).

Let us briefly discuss two possible applications of this work. Nakajima monomial descriptions
of B(∞) for the classical and G2 types were found in [17] by locating the Nakajima monomials
that are in natural correspondence with elements of the Young tableau realization given by [3]. We
expect a similar approach based on results of this paper to work for the remaining exceptional Lie
algebra types. Another direction of future study is to use the large tableaux defined in this paper to
describe B(∞) as the image of the Kashiwara embedding in a manner analogous to what was done
in [1].

The rest of this paper is organized as follows. In the next section, we show that the crystal B(∞)

can be expressed as
⋃

λ B(λ)/∼. In Section 3 we define the large tableaux and prepare some lemmas
whose proofs are specific to each Lie algebra type under consideration. In the final section, we discuss
the identification among tableaux and present an explicit realization of B(∞) in terms of tableaux.
The basic crystals that form the entries of all tableaux are explicitly given in Appendix A.

2. Crystal B(∞) as a union of B(λ)

We assume knowledge of the basic theory of crystal bases. Standard notation, as may be found
in the textbooks [2,5], will be used. In particular, we assume familiarity with the following notions
and notation: index set I , simple root αi , coroot hi , fundamental weight Λi , positive root lattice Q + ,
set of dominant integral weights P+ , quantum group Uq(g), irreducible highest weight module V (λ),
crystal lattice L(λ), abstract crystal with associated Kashiwara operators ẽi , f̃ i and maps wt, εi , ϕi ,
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irreducible highest weight crystal B(λ), tensor product rule, i-signature, negative part U−
q (g) of Uq(g),

crystal lattice L(∞) of U−
q (g), and crystal base B(∞) of U−

q (g).
In this section, we show that the crystal B(∞) can be expressed as a union of highest weight crys-

tals B(λ). The arguments of this section are for all symmetrizable Kac–Moody algebras. The following
statement is a slight modification of Theorem 5 appearing in [11].

Theorem 2.1. For any weight λ ∈ P+ , let πλ : U−
q (g) → V (λ) be the U−

q (g)-linear homomorphism that
sends 1 to the highest weight vector vλ .

1. We have πλ(L(∞)) = L(λ) and this implies that πλ induces a surjective homomorphism π̄λ : L(∞)/

qL(∞) → L(λ)/qL(λ).
2. The induced mapping π̄λ is a bijection between {b ∈ B(∞) | π̄λ(b) �= 0} and B(λ).
3. We have f̃ i ◦ π̄λ = π̄λ ◦ f̃ i , so that the mapping π̄λ sends f̃ ik · · · f̃ i2 f̃ i1 b∞ to f̃ ik · · · f̃ i2 f̃ i1 bλ .
4. If b ∈ B(∞) satisfies π̄λ(b) �= 0, then ẽiπ̄λ(b) = π̄λ(ẽib).

The notation π̄λ appearing in this theorem is used throughout this paper. The theorem implies
that every element of B(λ) is an image of exactly one element from B(∞) under π̄λ .

Definition 2.2. Two elements from the disjoint union
⋃

λ∈P+ B(λ) are defined to be equivalent if and
only if they correspond to the same element of B(∞). This is clearly an equivalence relation. We fix
the notation

B(∪) =
⋃

λ∈P+
B(λ)/∼

for the set of such equivalence classes.

Any equivalence class π̄λ(b) ∈ B(∪) designates a unique element b ∈ B(∞) and hence there is a
natural mapping from B(∪) to B(∞). The following restatement of Corollary 4.4.5 from [11] allows
us to show that this mapping is bijective.

Lemma 2.3. Given any ξ ∈ Q + , we have |B(∞)−ξ | = |B(λ)λ−ξ |, for all λ ∈ P+ such that λ(hi) 
 0 for every
i ∈ I .

This lemma and the fact that π̄λ is surjective implies that the restricted map π̄λ : B(∞)−ξ →
B(λ)λ−ξ is bijective for all sufficiently large λ. Hence, given any element b ∈ B(∞), we can always
find a sufficiently large λ ∈ P+ such that π̄λ(b) is nonzero. Since every nonzero π̄λ(b) belongs to the
same equivalence class in B(∪), the mapping b �→ π̄λ(b) is well defined. Let us use the notation

π̄∪ : B(∞) → B(∪)

for this map. This is the inverse map to the natural map from B(∪) to B(∞) and hence is bijec-
tive.

The bijective map π̄∪ allows us to copy the crystal structure of B(∞) onto that of B(∪). Let us
explain the Kashiwara operator ẽi on B(∪) as an example. Given any π̄λ(b) ∈ B(∪), if ẽib is zero, we
define the ẽi(π̄λ(b)) also to be zero. If otherwise, we choose a μ ∈ P+ that is large enough to make
π̄μ(ẽib) nonzero and define ẽi(π̄λ(b)) = π̄μ(ẽib). This process is well defined since an equivalence
class π̄λ(b) ∈ B(∪) uniquely identifies an element b ∈ B(∞) and every nonzero π̄μ(ẽib) gives the
same equivalence class in B(∪).

We would like to related the crystal structure we have just given to B(∪) with that found
on B(λ).
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Lemma 2.4. Fix an i ∈ I and let u ∈ B(λ).

1. If f̃ iu is nonzero, then f̃ i ū is equal to f̃ iu, which is nonzero.
2. If ẽiu is nonzero, then ẽi ū is equal to ẽiu, which is nonzero.
3. If ẽiu is zero, then ẽi ū is zero.

Proof. According to Theorem 2.1, we may express an arbitrary nonzero element u ∈ B(λ) as π̄λ(b) for
some b ∈ B(∞). For the remainder of this proof, we take u = π̄λ(b).

To show the first claim, we start from

f̃ iu = f̃ i
(
π̄λ(b)

) = π̄λ( f̃ ib),

where the second equality follows from Theorem 2.1. Since f̃ iu ∈ B(λ) is nonzero, the first of the
following sequence of equalities is true.

f̃ iu = π̄∪( f̃ ib) = f̃ i
(
π̄∪(b)

) = f̃ i ū.

The second equality is a consequence of the crystal structure on B(∪) being a copy of that on B(∞)

and the final equality depends on u = π̄λ(b) being nonzero.
Similarly, we can start from

ẽiu = ẽiπ̄λ(b) = π̄λ(ẽib),

and, when ẽiu is nonzero, write

ẽiu = π̄∪(ẽib) = ẽiπ̄∪(b) = ẽi ū

to arrive at the second claim.
As for the final claim, when ẽiu is zero for a nonzero u ∈ B(λ), we note that

0 = f̃ i ẽiu = f̃ i ẽiπ̄λ(b) = f̃ iπ̄λ(ẽib) = π̄λ( f̃ i ẽib).

Now, unless ẽib is zero, the final term of this sequence of equalities is equal to the nonzero value
π̄λ(b) = u. Hence ẽib can only be zero and ẽi ū = ẽiπ̄∪(b) must be zero by definition of the crystal
structure on B(∪). �

This lemma shows that the Kashiwara operator ẽi on B(λ) is identical to that on B(∪). As for the
f̃ i operator, the following lemma fills in the missing part.

Lemma 2.5. Fix an i ∈ I and choose any π̄∪(b) ∈ B(∪). Then f̃ i(π̄λ(b)) = π̄λ( f̃ ib) is nonzero for all sufficiently
large λ ∈ P+ .

Proof. Referring to Eq. (3.5.6) of [11], we know that f̃ i is never zero on B(∞), so that f̃ ib is nonzero.
Then, as was discussed while defining the map π̄∪ , Lemma 2.3 can be used to show that π̄λ( f̃ ib) is
nonzero for all sufficiently large λ. It now suffices to utilize π̄λ ◦ f̃ i = f̃ i ◦ π̄λ from Theorem 2.1 to
arrive at our claim. �

Let us now define a second crystal structure on B(∪). We start with the Kashiwara operator f̃ i .
Given any π̄∪(b) ∈ B(∪), Lemma 2.5 allows us to choose a λ such that f̃ i(π̄λ(b)) is nonzero. We

define f̃ iπ̄∪(b) = f̃ i(π̄λ(b)), using any such λ. Since f̃ i(π̄λ(b)) = π̄λ( f̃ ib), the equivalence class does
not depend on the choice of λ.
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The definition of ẽi on π̄∪(b) ∈ B(∪) is even more simple. We fix any representative π̄λ(b) ∈ B(λ).
If ẽiπ̄λ(b) is zero, we define ẽi(π̄∪(b)) to be zero, and, if otherwise, we define ẽi(π̄∪(b)) = ẽi(π̄λ(b)).
To see that this is well defined, we first observe from Lemma 2.4 that ẽiπ̄λ(b) is zero for some λ ∈ P+
if and only if ẽiπ̄μ(b) is zero for every μ ∈ P+ . Furthermore, since we know that the previously

defined ẽi on B(∪) is a well defined operator, the lemma implies that the equivalence class ẽiu does
not depend on the choice of the representative u ∈ B(λ). Hence, the equivalence class ẽi(π̄λ(b)) does
not depend on λ.

The weight function on B(∪) can be given by setting wt(π̄∪(b)) = wt(b). This is equivalent to
setting wt(π̄∪(b)) = wt(π̄λ(b)) − λ, for any choice of λ ∈ P+ such that π̄λ(b) �= 0. The fact that ẽi

on π̄∪(b) ∈ B(∪) can be computed from any nonzero representative π̄λ(b) ∈ B(λ) allows us to define
εi(π̄∪(b)) = εi(π̄λ(b)) using any such choice of λ ∈ P+ . The final component can be defined through
ϕi(π̄∪(b)) = εi(π̄∪(b)) + wt(b)(hi).

Let us refer to the crystal structure on B(∪) that we have just described as the crystal structure
induced from B(λ). The previous two lemmas imply that the two crystal structures given to the set of
equivalence classes B(∪) are identical. We write what we have discussed as a theorem.

Theorem 2.6. The set of equivalence classes B(∪) = ⋃
λ∈P+ B(λ)/∼ can be given a crystal structure induced

from those on each B(λ). When B(∪) is given this crystal structure, the bijection π̄∪ : B(∞) → B(∪) is an
isomorphism of crystals.

We remark that this result is essentially identical to the expression

B(∞) = lim−→
λ∈P+

B(λ) ⊗ T−λ,

which appears in [13, Chapitre 7]. We refer the interested readers to [13] for the notation T−λ and
the various mappings associated with this direct limit expression.

Let us briefly return to the fact that the mapping π̄λ gives a bijection between {b∈B(∞)|π̄λ(b) �=0}
and B(λ). This allows us to view each B(λ) as a subset of crystal B(∞) and, under this identification,
Lemma 2.3 implies that

B(∞) =
⋃

λ∈P+
B(λ).

The above theorem amounts to showing that this identity of sets can be viewed as that between
crystals if slight care is taken, for example, with the f̃ i action.

For later use, we provide a slight generalization of this result. Let us say that a subset P̃ of P+ con-
tains sufficiently large weights, if it satisfies the property that, given any set {ni}i∈I of positive integers,
there exists λ ∈ P̃ satisfying λ(hi) > ni for all i ∈ I .

Proposition 2.7. If P̃ ⊂ P+ contains sufficiently large weights, then the set of equivalence classes⋃
λ∈ P̃ B(λ)/∼ is identical to B(∪). The various functions providing B(∪) with a crystal structure can be

computed using representatives belonging to B(λ) with λ restricted to P̃ .

Proof. The validity of the first statement follows from Lemma 2.3. As for the rest, it suffices to review
the definitions giving the induced crystal structure, taking note of the fact that Lemma 2.5 will provide
at least one λ belonging to the smaller set P̃ for which f̃ i(π̄λ(b)) is nonzero. �

The task of finding an explicit description of B(∞) is now transformed to choosing a good set of
representatives for B(∪) and describing the Kashiwara operators on the representative set.
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3. Large tableaux

For the remainder of this paper, we restrict ourselves to the finite simple Lie algebras of types E6,
E7, E8, and F4. Much of the arguments in this section needs to be given separately for each Lie algebra
type. We will always work mainly with the E6 type and provide additional remarks concerning other
types if proofs or arguments concerning them contain any marked differences.

We first fix the indices for each of the four Lie algebra types under consideration as follows.

E6:
1 2 3 4 5

6

E7:
1 2 3 4 5 6

7

E8:
1 2 3 4 5 6 7

8

F4:
1 2 3 4

The direction of the arrow appearing in the Dynkin diagram for the F4 type follows the setting
of [8].

For the purpose of this paper, it will suffice to consider highest weight crystals for which the
highest weights belong to a certain subset P̂+ of P+ . We define these subsets P̂+ for each Lie algebra
type as follows

E6: P̂+ =
{

6∑
i=1

ciΛi ∈ P+
∣∣∣ c6 = c4 + 2c5

}
,

E7: P̂+ =
{

7∑
i=1

ciΛi ∈ P+
∣∣∣ c7 = 2c1 + c2

}
,

E8: P̂+ =
{

8∑
i=1

ciΛi ∈ P+
∣∣∣ c8 = c6 + 2c7

}
,

F4: P̂+ =
{

4∑
i=1

ciΛi ∈ P+
∣∣∣ c3 � c1

}
.

Each P̂+ may equivalently be given in the following form

E6: Z�0Λ1 + Z�0Λ2 + Z�0Λ3 + Z�0(Λ4 + Λ6) + Z�0(Λ5 + 2Λ6),

E7: Z�0Λ6 + Z�0Λ5 + Z�0Λ4 + Z�0Λ3 + Z�0(Λ2 + Λ7) + Z�0(Λ1 + 2Λ7),

E8: Z�0Λ1 + Z�0Λ2 + · · · + Z�0Λ5 + Z�0(Λ6 + Λ8) + Z�0(Λ7 + 2Λ8),

F4: Z�0Λ4 + Z�0Λ3 + Z�0Λ2 + Z�0(Λ1 + Λ3).

Notice that each P̂+ contains sufficiently large weights, in the sense described above Proposi-
tion 2.7.

The goal of this paper is to express B(∞) in terms of tableaux. Access to realizations of the
crystals B(λ), given in terms of tableaux, would allow us to achieve this goal through the state-
ment B(∪) ∼= B(∞), given by Theorem 2.6. Such tableau realizations are available for the classical
finite types [15] and the G2 type [10], and these provided the basis of the work [3], but analogous
information for the Lie algebra types that are being considered in this paper is not yet available. Be-
low, we consider B(λ) for λ ∈ P̂+ and express only some of its elements as tableaux. Such partial
information will be enough for the purpose of this paper.
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The first step to obtaining this partial information is to show that every B(λ) with λ ∈ P̂+ can
be found within a tensor product of suitably many of the following crystal, given separately for each
type.

E6: B(Λ1), E7: B(Λ6), E8: B(Λ1), F4: B(Λ4).

We will refer to these building blocks of the tableaux as the basic crystals. The crystal graphs for
these basic crystals are given in Appendix A. Some of our later proofs will require direct access to
these explicit crystal graphs. Elements of the basic crystals will be written as given in Appendix A.
In particular, the highest weight element bΛ1 of the basic crystal B(Λ1) for type E6 will be denoted
by 1.

All the crystal graphs of Appendix A were obtained through applications of the Nakajima mono-
mial [14] theory. Note that the crystal graphs we give for types E6 and E7 are identical to those found
in [6] except for the labeling of arrows and crystal elements. In fact, the naming of crystal elements
in our graphs follows the idea of [6], and the differences mainly originate from whether the Dynkin
diagram labeling followed that of [4] or [8]. However, the graphs of [6] and those of this paper were
constructed through different techniques.

A tableau with its boxes filled with elements from a single basic crystal will be viewed as a
tensor product of crystal elements through the far eastern reading. For example, we are using the
identification

x1x2x3
x4

x5
x6
x7

= x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7.

Applications of the Kashiwara operators f̃ i and ẽi on a tableau will follow the tensor product rule,
with the tableau seen as an element of the tensor product of suitably many basic crystals. The Kashi-
wara operators will act on one of the box entries constituting the tableau without changing the shape
or entry arrangements of the tableau.

We first identify the highest weight tableaux for each weight belonging to the reduced set of
dominant integral weights P̂+ .

Proposition 3.1. The following is a list of highest weight elements, which may be found in a tensor product of
appropriately many basic crystals.

(E6) For Lie algebra type E6 , the tableau

bλE6 :=
︷ ︸︸ ︷a1︷ ︸︸ ︷a2︷ ︸︸ ︷a3︷ ︸︸ ︷a4︷ ︸︸ ︷a5

1· · ·· · ·1
1̄2· · ·· · ·1̄2

2̄3· · ·· · ·2̄3
3̄46· · ·· · ·3̄46

4̄56· · ·4̄56

viewed as an element of the crystal B(Λ1)
⊗(a1+2a2+···+5a5) , is a highest weight element of weight

λE6 := a1Λ1 + a2Λ2 + a3Λ3 + a4(Λ4 + Λ6) + a5(Λ5 + 2Λ6) ∈ P̂+.

(E7) For Lie algebra type E7 , the tableau

bλE7 :=

︷ ︸︸ ︷a1︷ ︸︸ ︷a2︷ ︸︸ ︷a3︷ ︸︸ ︷a4︷ ︸︸ ︷a5︷ ︸︸ ︷a6

6· · ·· · ·6
6̄5· · ·· · ·6̄5

5̄4· · ·· · ·5̄4
4̄3· · ·· · ·4̄3

3̄27· · ·· · ·3̄27
¯· · ·¯
 217217
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viewed as an element of the crystal B(Λ6)
⊗(a1+2a2+3a3+4a4+5a5+6a6) , is a highest weight element of

weight

λE7 := a1Λ6 + a2Λ5 + a3Λ4 + a4Λ3 + a5(Λ2 + Λ7) + a6(Λ1 + 2Λ7) ∈ P̂+.

(E8) For Lie algebra type E8 , the tableau

bλE8 :=

︷ ︸︸ ︷a1︷ ︸︸ ︷a2︷ ︸︸ ︷a3︷ ︸︸ ︷a4︷ ︸︸ ︷a5︷ ︸︸ ︷a6︷ ︸︸ ︷a7

1· · ·· · ·1
1̄2· · ·· · ·1̄2

2̄3· · ·· · ·2̄3
3̄4· · ·· · ·3̄4

4̄5· · ·· · ·4̄5
5̄68· · ·· · ·5̄68

6̄78· · ·6̄78

viewed as an element of the crystal B(Λ1)
⊗(a1+2a2+···+7a7) , is a highest weight element of weight

λE8 := a1Λ1 + a2Λ2 + · · · + a5Λ5 + a6(Λ6 + Λ8) + a7(Λ7 + 2Λ8) ∈ P̂+.

(F4) For Lie algebra type F4 , the tableau

bλF 4 :=
︷ ︸︸ ︷a1︷ ︸︸ ︷a2︷ ︸︸ ︷a3︷ ︸︸ ︷a4

4· · ·· · ·4
4̄3· · ·· · ·4̄3

3̄2· · ·· · ·3̄2
2̄13· · ·2̄13

viewed as an element of the crystal B(Λ4)
⊗(a1+2a2+3a3+4a4) , is a highest weight element of weight

λF 4 := a1Λ4 + a2Λ3 + a3Λ2 + a4(Λ1 + Λ3) ∈ P̂+.

Proof. Let us explain only the E6 case, as the other cases may be approached similarly. Recall the
notation for elements of B(Λ1), as given in Appendix A. First, the tableau or crystal element 1 = 1 ∈
B(Λ1) is a highest weight element of weight Λ1. Next, one can directly check through an application

of the tensor product rule that the tableau 1̄2
1 = 1 ⊗ 1̄2 is a highest weight element of weight Λ2.

Similarly, one can check that each of the single column tableaux 1 ⊗ 1̄2 ⊗ 2̄3, 1 ⊗ 1̄2 ⊗ 2̄3 ⊗ 3̄46,
and 1 ⊗ 1̄2 ⊗ 2̄3 ⊗ 3̄46 ⊗ 4̄56 are highest weight elements of weights Λ3, Λ4 + Λ6, and Λ5 + 2Λ6,
respectively. The tableau bλE6 presented by this proposition is a tensor product of the highest weight
elements we have discussed, hence must also be a highest weight element. It now suffices to add the
weights to verify the final claim concerning the weight. �

In the above proof we first constructed certain single column highest weight elements and com-
bined them into highest weight elements of more general weights. We shall refer to these single
column highest weight tableaux as the basic columns. Specifically, they are given as follows for each
Lie algebra type

E6: bΛ1 ,bΛ2 ,bΛ3 ,bΛ4+Λ6 ,bΛ5+2Λ6 ,

E7: bΛ6 ,bΛ5 ,bΛ4 ,bΛ3 ,bΛ2+Λ7 ,bΛ1+2Λ7 ,

E8: bΛ1 ,bΛ2 ,bΛ3 ,bΛ4 ,bΛ5 ,bΛ6+Λ8 ,bΛ7+2Λ8 ,

F4: bΛ4 ,bΛ3 ,bΛ2 ,bΛ1+Λ3 .

(3.2)

If a tableau contains a column that looks identical to any one of the basic columns listed for its Lie
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algebra type, the column within the tableau is also referred to as a basic column. A column within a
tableau can be a basic column only if it is a whole column and not a part of a column.

The notation introduced in Proposition 3.1, namely, the weights λE6, λE7, λE8, λF 4 and the highest
weight elements bλE6 , bλE7 , bλE8 , bλF 4 , will be used throughout this paper.

Let us present our next argument in terms of the E6 type. The expression

λE6 = a1Λ1 + a2Λ2 + a3Λ3 + a4(Λ4 + Λ6) + a5(Λ5 + 2Λ6)

presents the most general element of P̂+ . Note that the highest weight tableaux bλE6 correspond-
ing to different weights λE6 ∈ P̂+ will have different outer silhouettes. If the outer silhouette of a
tableau is identical to that of a bλE6 and the tableau has its boxes filled with elements from the basic
crystal B(Λ1), we shall say that it is a tableau of shape λE6.

For each weight λE6 ∈ P̂+ , we define T (λE6) to be the connected component of the crystal
B(Λ1)

⊗(a1+2a2+···+5a5) , containing the highest weight element bλE6 . Since bλE6 is of shape λE6 and
we take the Kashiwara operators as not changing the shape of its operand, the elements of T (λE6)

will be viewed as tableaux of shape λE6, rather than simply as tensor products of elements from the
basic crystal.

The notion of the shape of a tableau and the definition of the crystal T (λ), that we have just
described for type E6, may easily be extended to those for Lie algebra types E7, E8, and F4. In this
paper, whenever we refer to a tableau, it will implicitly be assumed to be of a shape that belongs
to P̂+ .

It is clear from the definition of T (λ) that it is isomorphic to B(λ) as a crystal. Hence, if one is able
to find an explicit description of the set T (λ), it could be used as a realization of the crystal B(λ).
Such a full description of T (λ) is not required for the purpose of this work and we will only identify
certain tableaux as elements of T (λ). Our description of these elements will involve a partial ordering
on each of the basic crystals.

Let us describe this partial ordering, starting with the E6 type. We first refer to the crystal graph
given in Appendix A and view the basic crystal B(Λ1) for the E6 type as a directed graph by forgetting
all the colors on the arrows describing the f̃ i operator actions. Then, two elements b1,b2 ∈ B(Λ1) are
defined to be related as b1 � b2 if and only if either b1 = b2 or there is a sequence of arrows which
can be traversed from b1 to b2 in the pointed directions. Since the set of simple roots is linearly
independent and each f̃ i action reduces the weight of the input element by a simple root, the directed
graph B(Λ1) cannot contain any closed loops that may be circled in the pointed direction, and this
ensures that the described approach defines a partial ordering on B(Λ1).

The same approach is taken with the E7 type. Two elements b1,b2 ∈ B(Λ6) are said to satisfy
b1 � b2 if and only if b1 = b2 or there is a sequence of arrows in the directed graph B(Λ6) starting
from b1 and ending at b2.

Before discussing the E8 type, we describe the partial ordering for the F4 type. The directed graph
B(Λ4) for the F4 type is first supplemented with the following two extra arrows.

2̄4̄333̄44

3̄3̄244̄4̄3

These two arrows are not related to any Kashiwara operator actions, but one can visually check that
their introduction does not create any directed loops. The resulting directed graph is used to define
a partial ordering on the set B(Λ4) in the same manner as was described for the previous two
cases.

Finally, in the E8 case, the many arrows

6̄775̄7̄664̄6̄8̄555̄883̄5̄442̄4̄331̄3̄222̄11

7̄7̄66̄6̄575̄5̄4688̄8̄54̄4̄353̄3̄242̄2̄131̄1̄2

are added to B(Λ1), before the resulting directed graph is used to define a partial ordering.
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Given any tableau, we shall use xi, j to denote the basic crystal entry occupying its j-th box from
the right in the i-th row from the top. For example, in the E6 type case, the basic crystal entries in a
general tableau of shape λE6 would be labeled as follows.

x1,1· · ·x1,a1· · ·x1,a1+···+a5

x2,1· · ·x2,a2· · ·
x3,1· · ·x3,a3· · ·

x4,1· · ·x4,a4· · ·
x5,1· · ·x5,a5

(3.3)

The notion of large tableaux was first introduced in [1] for semi-standard tableaux of the classical
finite types. Using the partial ordering on each basic crystal, we now define the set of large tableaux
of shape λ ∈ P̂+ , for each of the Lie algebra types under consideration.

Definition 3.4. An E6 type tableau T = (xi, j) of shape λE6 ∈ P̂+ is large, if it satisfies the following
three sets of conditions.

1. The entries written in the tableau boxes are weakly increasing to the right on each row of T .
2. 1̄2 � x2, j , 2̄3 � x3, j , 3̄46 � x4, j , 4̄56 � x5, j , x2, j � 1̄5, x3, j � 2̄15, x4, j � 3̄25, and x5, j � 4̄6̄35, for

every possible j.
3. All five kinds of basic columns listed in (3.2) for type E6 appear among the columns of the

tableau T .

Let us provide some explanations concerning this definition. Recall that a tableau T being of shape
λE6 requires all its entries to belong to the basic crystal B(Λ1). Every order relation mentioned in the
above definition refers to the partial ordering we have given to B(Λ1). For every xi, j+1, xi, j ∈ B(Λ1)

pair that appear horizontally next to each other in T , the first condition explicitly requires them to be
related as xi, j+1 � xi, j . Since the set B(Λ1) is not linearly ordered, this is a stronger condition than
the expression xi, j+1 ≯ xi, j . On the other hand, requirements of the form xi, j � b, that are listed in
the second set of conditions, do not prevent elements that cannot be compared with b from being
used as xi, j . For example, the element 6̄1, which cannot be compared with 1̄5, may appear in the
second row of T .

The three sets of conditions jointly imply that T must take the following form.

x1,1· · ·1· · ·· · ·1
x2,1· · ·1̄2· · ·· · ·1̄2

x3,1· · ·2̄3· · ·· · ·2̄3
x4,1· · ·3̄46· · ·· · ·3̄46

x5,1· · ·4̄56

(3.5)

That is, most of the entries positioned inside a large tableau of shape λE6 must be identical to those
of the highest weight tableau bλE6 and differences may only appear within short horizontal strips at
the right end of each row. The degenerate example is the highest weight tableau bλE6 itself, which is
large if and only if every ai > 0.

If all 1-arrows are removed from the crystal graph of B(Λ1) for the E6 type, given in Appendix A,
the graph breaks into three connected components. Imposing the two conditions 1̄2 � x2, j � 1̄5 con-
cerning entries of the second row is equivalent to requiring that every x2, j belong to the connected
component containing 1̄2. Similarly, one can visualize the two conditions 2̄3 � x3, j � 2̄15 by first
removing every 1-arrow and 2-arrow from B(Λ1) and then taking the connected component contain-
ing 2̄3. Conditions concerning the fourth row corresponds to a connected component after removal
of every 1-, 2-, and 3-arrows. Finally, the conditions concerning the bottom row corresponds to a
connected component that remains after removal of all 1-, 2-, 3-, 4-, and 6-arrows, i.e., all arrows
other than 5-arrows. In fact, the connected component consists of just 4̄56 and 5̄6, and only these
two elements may appear in the bottom row.

The weakly increasing condition imposed on the second row allows us to replace the multiple
conditions 1̄2 � x2, j , which was stated for every j, with the single condition 1̄2 � x2,a2+···+a5 con-
cerning the leftmost entry. Similarly, since each of the conditions x2, j � 1̄5 can be deduced from the
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conditions x2, j � x2,1 and x2,1 � 1̄5, we may replace all x2, j � 1̄5 with the single x2,1 � 1̄5 condition.
Analogous comments for each of the lower rows may also be made.

It should be noted that the form (3.5) of the tableau together with the weakly increasing condition
on the rows imply that the crystal elements placed in each box are strictly increasing as we follow
down each column. Hence, every large tableau is a semi-standard tableau in the most classical sense.

Let us continue to define largeness for the other Lie algebra types.

Definition 3.6. An E7 type tableau T = (xi, j) of shape λE7 ∈ P̂+ is large, if it satisfies the following
three sets of conditions.

1. Entries in each row are weakly increasing to the right.
2. 6̄5 � x2, j , 5̄4 � x3, j , 4̄3 � x4, j , 3̄27 � x5, j , 2̄17 � x6, j , x2, j � 6̄1, x3, j � 5̄16, x4, j � 4̄15, x5, j � 3̄14,

and x6, j � 2̄7̄13.
3. The tableau contains every kind of basic column.

Remarks similar to those made for the E6 type are applicable here. In particular, the second
set of conditions can be expressed in terms of certain connected components, and the conditions
2̄17 � x6, j � 2̄7̄13 imply that only 2̄17 and 1̄7 may appear in the bottom row of a large E7 type
tableau.

We discuss the largeness of F4 type tableaux before describing the E8 case.

Definition 3.7. An F4 type tableau T = (xi, j) of shape λF 4 ∈ P̂+ is large, if it satisfies the following
three sets of conditions.

1. Entries in each row are weakly increasing to the right, except that each of the two elements 3̄3
and 4̄4 may not appear more than once.

2. 4̄3 � x2, j , 3̄2 � x3, j , 2̄13 � x4, j , x2, j � 4̄1, x2, j � 4̄4, x3, j � 3̄14, and x4, j � 3̄14.
3. The tableau contains every kind of basic column.

Remarks analogous to those made for the E6 type are all applicable here, and we have some
additional comments. The second set of conditions prevents the elements 3̄3 and 4̄4 from appearing
in any row other than the top row, so that the exception announced in the first set of conditions
concerns only the top row. We also caution the reader that there are three sub-conditions concerning
the second row listed in the second set of conditions. A careful study of the partial ordering definition
given to B(Λ4) shows that the condition x2,1 � 4̄1 allows the condition x2,1 � 4̄4 to be replaced
with the simpler relation x2,1 �= 4̄4. As before, each of these range conditions can be visualized as
connected components after removal of certain arrows. For example, the set {b ∈ B(Λ4) | 4̄3 � b,

b � 4̄1, b � 4̄4}, to which every x2, j must belong, is the connected component containing 4̄3 after
removal of all 4-arrows from B(Λ4).

Definition 3.8. An E8 type tableau T = (xi, j) of shape λE8 ∈ P̂+ is large, if it satisfies the following
three sets of conditions.

1. Entries in each row are weakly increasing to the right, except that each of the elements 1̄1, 2̄2,
. . . , 8̄8 may not appear more than once.

2. 1̄2 � x2, j , 2̄3 � x3, j , 3̄4 � x4, j , 4̄5 � x5, j , 5̄68 � x6, j , 6̄78 � x7, j , x2, j � 1̄7, x2, j � 1̄1, x3, j � 2̄17,
x4, j � 3̄27, x5, j � 4̄37, x6, j � 5̄47, and x7, j � 6̄8̄57.

3. The tableau contains every kind of basic column.

As with the F4 type case, the second set of conditions prevents the elements 1̄1, 2̄2, . . . , 8̄8 from
appearing in any row other than the top row. Also, the condition x2,1 � 1̄1 may be replaced by
x2,1 �= 1̄1.
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We want to collect some information concerning the action of f̃ i on large tableaux. Adhering to
the far eastern reading, the general E6 type large tableau of (3.5) can be rewritten in the tensor form

x1,1 ⊗ · · · ⊗ x1,k1 ⊗ {bΛ1 ⊗ · · · ⊗ bΛ1}
⊗(bΛ1 ⊗ x2,1) ⊗ · · · ⊗ (bΛ1 ⊗ x2,k2) ⊗ {bΛ2 ⊗ · · · ⊗ bΛ2}
⊗(bΛ2 ⊗ x3,1) ⊗ · · · ⊗ (bΛ2 ⊗ x3,k3) ⊗ {bΛ3 ⊗ · · · ⊗ bΛ3}
⊗(bΛ3 ⊗ x4,1) ⊗ · · · ⊗ (bΛ3 ⊗ x4,k4) ⊗ {bΛ4+Λ6 ⊗ · · · ⊗ bΛ4+Λ6}
⊗(bΛ4+Λ6 ⊗ x5,1) ⊗ · · · ⊗ (bΛ4+Λ6 ⊗ x5,k5) ⊗ {bΛ5+2Λ6 ⊗ · · · ⊗ bΛ5+2Λ6},

(3.9)

where x1,k1 �= 1, x2,k2 �= 1̄2, x3,k3 �= 2̄3, x4,k4 �= 3̄46, and x5,k5 �= 4̄56, so that the terms placed within
the braces are all the basic columns that appear in the tableau T . The largeness condition ensures
that each pair of matching braces are nonempty, but terms outside the braces may be nonexistent in
some or even all rows of this equation.

Lemma 3.10. Let T = (x j,k) be an E6 type large tableau. Depending on the index i, the f̃ i action on T will take
place on one of the entries listed below, where the x j,k notation follows (3.3) and the indices k j are defined
through the expression (3.9) for T .

f̃1: x1,1, . . . , x1,k1 , x1,k1+1,

f̃2: x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2 , x2,k2+1,

f̃3: x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2 , x3,1, . . . , x3,k3 , x3,k3+1,

f̃4: x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2 , x3,1, . . . , x3,k3 , x4,1, . . . , x4,k4 , x4,k4+1,

f̃5: x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2 , x3,1, . . . , x3,k3 , x4,1, . . . , x4,k4 , x5,1, . . . , x5,k5 , x5,k5+1,

f̃6: x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2 , x3,1, . . . , x3,k3 , x4,1, . . . , x4,k4 , x4,k4+1.

The resulting f̃ i T is always nonzero.

Proof. Let us first consider the action of f̃1 on the most general large tableau given by (3.9). While
computing the 1-signature for this element, we will originally place a + sign under x1,k1+1 = bΛ1 . To
prove our claim for the i = 1 case, it suffices to show that this + sign will not be removed during
the erasure of all (+,−) pairs. One can quickly verify from the crystal graph B(Λ1), explicitly given
in Appendix A, that none of its elements can be assigned more than one + or − sign. Since each bΛ1

would be assigned a + sign, under each bΛ1 ⊗ x2,k , we would originally place either a single + sign,
two + signs, or a (+,−) pair. The last of these cases reduces to the empty signature and none of
these cases can leave a − sign that might later cancel out the + sign placed under x1,k1+1. As for
entries appearing in the remaining three rows, one can check from the crystal graph of Appendix A
that the largeness condition restricts x3,k , x4,k , and x5,k to elements of B(Λ1) that are unrelated to
1-arrows, so that no + or − signs will be placed under any of these entries. We have thus shown
that no − sign will remain at the right of x1,k1+1 to possibly cancel out the + sign originally placed
under it. The action of f̃1 will be nonzero and take place on the x1,1 ⊗ · · · ⊗ x1,k1+1 part.

We next consider the f̃2 case. First, recall that the leftmost bΛ2 appearing between the braces in
the second row of (3.9) is a condensed expression for

bΛ2 = bΛ1 ⊗ 1̄2 = bΛ1 ⊗ x2,k2+1.

When computing the 2-signature for T , a + sign will originally be placed under x2,k2+1 = 1̄2. Since
no signs will originally be placed under any of the bΛ1 ’s appearing in the top two rows of (3.9), to
prove our claim for i = 2, it suffices to show that the + sign under x2,k2+1 will not be canceled out
by a − sign from a later row. As before, any − sign from the third row is canceled out by the + sign
of its matching bΛ2 and the largeness condition restricts x4,k and x5,k to ranges where the appearance
of − signs is impossible.
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We may deal with each of the remaining indices i through similar approaches. �
Analogous results for types E7, E8, and F4 are provided below, together with a restatement of the

above E6 type case. As with the E6 type, proofs for the E7, E8, and F4 types require case by case
checking of small details that can be obtained from the explicit crystal graphs of the basic crystals,
which is provided in Appendix A.

Lemma 3.11. If a tableau T is large, then f̃ i T is nonzero. For each Lie algebra type and index i, the f̃ i action
on a large tableau T = (x j,k) will take place on an entry x j,k, where the row index j is restricted as follows for
each situation.

(E6) f̃1 : 1 ; f̃2 : 1 ∼ 2 ; f̃3 : 1 ∼ 3 ; f̃4 : 1 ∼ 4 ; f̃5 : 1 ∼ 5 ; f̃6 : 1 ∼ 4 ;

(E7) f̃6 : 1 ; f̃5 : 1 ∼ 2 ; f̃4 : 1 ∼ 3 ; f̃3 : 1 ∼ 4 ; f̃2 : 1 ∼ 5 ; f̃1 : 1 ∼ 6 ; f̃7 : 1 ∼ 5 ;

(E8) f̃1 : 1 ; f̃2 : 1 ∼ 2 ; f̃3 : 1 ∼ 3 ; f̃4 : 1 ∼ 4 ; f̃5 : 1 ∼ 5 ; f̃6 : 1 ∼ 6 ; f̃7 : 1 ∼ 7 ; f̃8 : 1 ∼ 6 ;

(F4) f̃4 : 1 ; f̃3 : 1 ∼ 2 ; f̃2 : 1 ∼ 3 ; f̃1 : 1 ∼ 4.

For each fixed f̃ i and a row index j that is admissible for that f̃ i , the range of possible indices k is 1 � k � k j +1,

when the j value is the largest among all admissible j-indices for that f̃ i , and 1 � k � k j , when otherwise.

The definition of largeness given in the work [3], that dealt with the classical and G2 types, only
listed what is essentially the last of our three sets of conditions, at the expense of requiring a large
tableau to be an element of B(λ). The next two lemmas show that the last of our three sets of
conditions is the most significant requirement for largeness.

Lemma 3.12. If a tableau T is large, then f̃ i T satisfies the first set of conditions for largeness.

Proof. Let us focus on the E6 case. We first consider the f̃1 action. Based on Lemma 3.11, we know
that it acts on the first row of T . Consider any x1, j−1 and x1, j . We know that they satisfy x1, j � x1, j−1.
It suffices to show that, whenever the tensor product rule states that the f̃1 action on x1, j−1 ⊗ x1, j

operates on the entry x1, j , we have f̃1 x1, j � x1, j−1.
Note that the 1-signature of no element from B(Λ1) contains both a + and a − sign simultane-

ously. Hence, for the action of f̃1 to be on x1, j , the 1-signature of x1, j must be a + sign and that of
x1, j−1 must be either a − sign or empty. Now, one can check from the crystal graph of Appendix A
that whenever b1,b2 ∈ B(Λ1) are such that b1 � b2 and a 1-arrow leaves from b2 but not from b1,
then we have b1 � f̃1b2. This proves our claim for f̃1.

Let us next consider the action of f̃2. We know from Lemma 3.11 that it must act on either the
first or the second row of T . If it acts on the first row, we may deal with it as we have already done
with f̃1. If the action is on the second row, we must consider the tensor product x2, j−1 ⊗ bΛ1 ⊗ x2, j .
Since the 2-signature of bΛ1 is empty, in particular, since it does not contain any − signs, for the f̃2
action on this tensor product to be on x2, j , the 2-signature of x2, j−1 cannot be a + sign. Hence, it
suffices to show that if b1,b2 ∈ B(Λ1) are such that b1 � b2 and a 2-arrow leaves from b2 but not
from b1, then we have b1 � f̃2b2. This can be done by explicitly checking for all such situations using
Appendix A. The remaining f̃ i cases are analogous.

The other Lie algebra types may also be approached similarly, but in the cases of E8 and F4 types,
unlike the E6 type that we have explained, one will encounter −+ signs as signatures of certain basic
crystal elements, so let us briefly comment on this. For any fixed i, there is at most one element of
the basic crystal whose i-signature is −+. Largeness implies that this element can appear at most
once and only in the top row of the tableau. Hence, situations of x1, j−1 ⊗ x1, j , where the signature of
x1, j is −+ and that of x1, j−1 is one of +, −, or empty, need to be considered. In other words, one
checks from Appendix A that whenever b2 is the unique element of −+ signature for the f̃ i under
consideration and b1 � b2, we have b1 � f̃ ib2. One must remember to consider the extra arrows
defining the partial orderings when checking this. �
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Lemma 3.13. If a tableau T is large, then f̃ i T satisfies the second set of conditions for largeness.

Proof. Let us focus on the E6 type case as the proofs for the remaining three Lie algebra types are
almost identical. We first deal with the two conditions 1̄2 � x2, j � 1̄5 concerning the second row
entries of the tableau. Below Definition 3.4, we explained that the set {b ∈ B(Λ1) | 1̄2 � b � 1̄5} is
a connected component of B(Λ1) that remains after removal of every 1-arrow. This implies that an
element of this set can only be sent to an element outside this set by a 1-arrow. On the other hand,
Lemma 3.11 shows that an f̃1 operator cannot act on any of the second row entries x2, j . Hence, the
conditions 1̄2 � x2, j � 1̄5 are preserved under any f̃ i action on T .

Similarly, the boundary defined by the conditions 2̄3 � x3, j � 2̄15 can only be crossed over by f̃1

or f̃2 actions and we know that these cannot act on the third row of T . The conditions concerning
the remaining rows can be dealt with in the same way and the second set of conditions for largeness
of an E6 type tableau are preserved under any f̃ i action on a large tableau. �

The f̃ i operator does not necessarily preserve the third condition for largeness, but the ẽi operator
satisfies the following stronger statement.

Lemma 3.14. If the tableau T is large, then ẽi T is either zero or large.

One can prove this claim by following along the lines of argument taken in the proofs of the
previous three lemmas. In particular, when the claim of Kashiwara operator actions being nonzero
is removed from Lemma 3.11, it holds true with every f̃ i changed to ẽi and the range of k set to
1 � k � k j for every j.

The next lemma shows that bλ are the only large tableaux with the highest weight property.

Lemma 3.15. If a tableau T of shape λ is large and different from the highest weight tableau bλ , then there
exists an i for which ẽi T �= 0.

Proof. Let tableau T be of shape λ, large, and different from the highest weight tableau bλ . Suppose
that the topmost row of the tableau T that contains any differences with bλ is the j-th row. The first
set of conditions for largeness implies that the rightmost entry x j,1 of this row will be different from
the corresponding entry of bλ . Below, we shall show that there exists an i for which the i-signature
of x j,1 is a minus sign and for which this sign is not removed during the erasure of (+,−) pairs done
while computing the i-signature for T . This does not imply that the ẽi action on T will be applied
to x j,1, but it does guarantee that the action will be nonzero.

Let us explain just the E6 type case, as the other cases can be dealt with similarly. Suppose that
the topmost difference happens to be in the top row of T . The rightmost entry x1,1 of this row will
be different from the corresponding entry of bλ , which is bΛ1 = 1 ∈ B(Λ1). The entry x1,1 becomes
the leftmost or first entry when the tableau entries are rearranged in the tensor product form. Now,
since x1,1 �= bΛ1 , there exists an i for which ẽi x1,1 �= 0. Let us fix such an i. When working out the
tensor product rule for this i, a minus sign will be placed under the first tensor entry x1,1 and this
minus sign cannot be removed during the removal of (+,−) sign pairs, since it is the leftmost sign.
Hence, ẽi T will be nonzero for the index i we have chosen.

Next, suppose that the topmost difference between T and bλ appears in the second row, so that
x2,1 �= 1̄2. One can directly verify3 through Appendix A that every element b ∈ B(Λ1) satisfying 1̄2 �
b � 1̄5 will have an i �= 1, for which ẽib �= 0. Let us fix such an i for x2,1. Now, the tensor product
form of T will start with

3 Recall that the set Btmp = {b ∈ B(Λ1) | 1̄2 � b � 1̄5} is one of three connected components of the basic crystal B(Λ1)

that appear with the removal of all 1-arrows. By ignoring all 1-arrows, we are treating the E6 type crystal B(Λ1) as a D5

type crystal. Based on the basic theory concerning the irreducible decomposition of finite crystals, we know that each of the
connected components must be a D5 type highest weight crystal. Hence, the only fact that needs to be verified here is whether
1̄2 is the unique highest weight element of the D5 type highest weight crystal Btmp.



J. Hong, H. Lee / Journal of Combinatorial Theory, Series A 119 (2012) 397–419 411
bΛ1 ⊗ · · · ⊗ bΛ1 ⊗ bΛ1 ⊗ x2,1 ⊗ bΛ1 ⊗ x2,2 ⊗ · · · ,
and the i-signature to be placed under the entries that sit to the left of x2,1 will be empty for
any i �= 1. Thus, the minus sign to be placed under x2,1 cannot be canceled out while working out
the tensor product rule. This shows that ẽi T will be nonzero for at least one i �= 1 in the current
situation.

Similarly, if the top row of distinction is the third row, the corresponding tensor product form will
be

bΛ1 ⊗ · · · ⊗ bΛ1 ⊗ bΛ2 ⊗ · · · ⊗ bΛ2 ⊗ bΛ2 ⊗ x3,1 ⊗ bΛ2 ⊗ x3,2 ⊗ · · · .
For i �= 1,2, the i-signature under the entries that sit to the left of x3,1 will be empty, and one can
check4 that every b ∈ B(Λ1) satisfying 2̄3 � b � 2̄15 has at least one i �= 1,2 such that ẽib �= 0. This
shows that the ẽi action on T for this case will be nonzero for at least one i �= 1,2.

We may deal with the remaining lower rows successively in similar manners and finally conclude
that the ẽi action on T �= bλ will be nonzero for at least one i in all cases. �

Since we view Kashiwara operators as not changing the shape of a tableau and since a highest
weight element can always be reached within a finite number of applications of the ẽi operator,
iterative applications of Lemma 3.14 and Lemma 3.15 results in the following statement.

Lemma 3.16. Every large tableau of shape λ ∈ P̂+ belongs to the connected component T (λ) containing bλ .

Justified by this observation, we use T (λ)L to denote the set of large tableaux of shape λ. In this
notation, Lemma 3.16 claims that T (λ)L ⊂ T (λ) for every λ ∈ P̂+ . The collection of all large tableaux
for each Lie algebra type will be denoted by

T L :=
⋃

λ∈ P̂+
T (λ)L . (3.17)

Some of the T (λ)L appearing on the right-hand side will be empty.

4. Equivalence of tableaux and crystal T (∪)

In this section, we define an equivalence relation between large tableaux. We will arrive at a
new realization T (∪) of the crystal B(∞) by showing that the newly defined equivalence relation
corresponds directly to the equivalence relation used in defining B(∪) ∼= B(∞).

Arguments of the previous section were mostly provided separately for each Lie algebra type and
many of the proofs depended on meticulous checking of details made available by explicit crystal
graphs for each Lie algebra type. In contrast, arguments of this section will be rather independent of
the Lie algebra type, relying mostly on features that are common to all four Lie algebra types. Our
discussions will still be given mainly in terms of the E6 type, but this is due to lack of notation that
can commonly be used with all four Lie algebra types, rather than caused by the need to check for
details separately for each type.

At the end of the previous section, we verified that large tableaux of shape λ belong to the con-
nected component T (λ) ∼= B(λ). We now provide an equivalence relation among large tableaux and
will eventually show that they correspond directly to the equivalence relation on

⋃
λ∈P+ B(λ) given

by Definition 2.2.

4 By ignoring all 1-arrows and 2-arrows, we are treating B(Λ1) as an A4 type crystal. It suffices to check whether 2̄3 is the
unique highest weight element in {b ∈ B(Λ1) | 2̄3 � b � 2̄15}, which we know to be an irreducible A4 type crystal.
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Recall that we only deal with tableaux of shapes that belong to P̂+ .

Definition 4.1. Two tableaux T1 and T2, for the same Lie algebra type, are equivalent, if what remains
of the two tableaux after removal of all their basic columns are identical. This is clearly an equivalence
relation. Equivalence of the tableaux are expressed as T1 ∼ T2 and the notation

T (∪) := T L/∼=
⋃

λ∈ P̂+
T (λ)L/∼

will be used for the set of equivalence classes among all large tableaux.

Note that the definition of tableau equivalence is not restricted to large tableaux. For example, any
two highest weight tableaux bλ and bμ are trivially equivalent to each other regardless of whether
they are large.

Let us now work to connect the equivalence relation of this section to that of Section 2.

Lemma 4.2. If two large tableaux T1 and T2 are equivalent, then f̃ i T1 and f̃ i T2 are equivalent.

Proof. We write the proof in terms of the E6 type for lack of notation that can be used commonly
over all types, but proofs for all Lie algebra types are almost identical.

The equivalence of T1 and T2 imply that expressions of the form (3.9) for the two tableaux will
be identical except possibly in the number of entries within the braces. Hence the i-signatures for T1
and T2 will be in natural correspondence except possibly in the number of + signs provided by the
basic columns. Since the action of f̃ i will take place on the leftmost + sign, such signature differences
will be immaterial to the f̃ i action, and what is obtained after the f̃ i actions on T1 and T2 will also
be in good correspondence, implying that f̃ i T1 and f̃ i T2 are equivalent. �

An analogous statement for the ẽi action follows below. Its validity is immediate from an under-
standing of the proof to Lemma 4.2. Since the ẽi action corresponds to the rightmost − sign, the
difference in the number of + signs appearing within matching braces are even less important for its
proof than in the f̃ i case.

Lemma 4.3. If two large tableaux T1 and T2 are equivalent, then either ẽi T1 and ẽi T2 are both zero, or ẽi T1
and ẽi T2 are equivalent.

Readers should recall the equivalence relation on
⋃

λ∈ P̂+ B(λ) we had defined in Section 2 using
correspondences between B(∞) and B(λ). When T (λ) is identified with B(λ), the equivalence rela-
tion on

⋃
λ∈ P̂+ B(λ) can be carried over to that on the subset T L ⊂ ⋃

λ∈ P̂+ T (λ). We are now ready
to connect the two equivalence relations given to T L .

Proposition 4.4. Two large tableaux T1 and T2 are equivalent in the sense that removal of all basic columns
make them identical if and only if they are equivalent in the sense that they correspond to the same element
of B(∞).

Proof. If two tableaux are equivalent in the sense that removal of all basic columns make them
identical, let us temporarily use the phrase that the two are equivalent as tableaux. If two tableaux are
equivalent in the sense that they correspond to the same element of B(∞), let us temporarily say
that the two are equivalent as crystal elements.

Suppose that the large tableaux T1 and T2 of respective shapes λ1 and λ2 are equivalent as
tableaux. By Lemma 3.16, we know that there is a sequence of Kashiwara operators ẽi ’s such that
ẽit · · · ẽi1 T1 = bλ1 . Now, iterative applications of Lemma 3.14 and Lemma 4.3 imply that bλ1 is equiv-
alent to ẽit · · · ẽi1 T2 as tableaux and that ẽit · · · ẽi1 T2 is large. Applying Lemma 4.3 once more, since
ẽibλ1 is zero for every i, the same must be true of ẽit · · · ẽi1 T2, and we may use Lemma 3.15 to state
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that ẽit · · · ẽi1 T2 = bλ2 . In summary, we have shown that T1 = f̃ i1 · · · f̃ it bλ1 and T2 = f̃ i1 · · · f̃ it bλ2 , i.e.,
that they correspond to the same element f̃ i1 · · · f̃ it u∞ ∈ B(∞).

Let us now discuss the converse statement. We may assume that two large tableaux, equivalent
as crystal elements, are given as T1 = f̃ it · · · f̃ i1 bλ1 and T2 = f̃ it · · · f̃ i1 bλ2 . Iterative applications of
Lemma 3.14 show both f̃ ik · · · f̃ i1 bλ1 and f̃ ik · · · f̃ i1 bλ2 to be large for every 0 � k � t . Since the highest
weight elements bλ1 and bλ2 are trivially equivalent as tableaux, iterative applications of Lemma 4.2
imply that T1 and T2 are equivalent as tableaux. �

Through the discussions of Section 2, we saw that the crystal B(∞) is isomorphic to

B(∪) =
⋃

λ∈P+
B(λ)/∼=

⋃
λ∈ P̂+

B(λ)/∼

where the crystal structure on B(∪) is that induced from those on each B(λ). We have also seen that
the equivalence relation defined on

⋃
λ∈ P̂+ B(λ) is identical to that defined on

T L =
⋃

λ∈ P̂+
T (λ)L ⊂

⋃
λ∈ P̂+

B(λ),

under the identification B(λ) = T (λ). Hence, if we can show that the largeness restriction does not
make the set of equivalence classes on T L strictly smaller than that on

⋃
λ∈ P̂+ B(λ), then T (∪) could

be used as another realization of the set B(∞) ∼= B(∪). The next lemma resolves the remaining small
gap.

Lemma 4.5. Given any b ∈ B(∞), there exists a λ ∈ P̂+ , for which the tableau π̄λ(b) is large.

Proof. Let us provide arguments for just the E6 type. The other cases may be approached almost
identically. Suppose

b = f̃ it · · · f̃ i2 f̃ i1 u∞ ∈ B(∞)−ξ

is given, with ξ = n1α1 +· · ·+n6α6 ∈ Q + . It is always possible to choose a weight λE6 ∈ P̂+ such that

a1 > n1, a2 > n2, a3 > n3, a4 > n4 + n6, and a5 > n5.

Let us fix any such λE6 and consider the sequence of tableaux

T0 = bλE6 , T1 = f̃ i1 bλE6 , T2 = f̃ i2 f̃ i1 bλE6 , . . . , Tt = f̃ it · · · f̃ i1 bλE6 .

Suppose that the tableau Tk is large. Then, Lemma 3.12 and Lemma 3.13 imply that the next
tableau Tk+1 will also be large, as long as it contains every basic column. On the other hand,
Lemma 3.11 shows that the set of basic columns contained in Tk+1 will be either identical to or
one less than that of Tk . The first tableau T0 is certainly large and contains many basic columns.
Hence, it suffices to check whether enough basic columns remain in each tableaux Tk throughout the
above sequence of tableaux.

The condition a1 > n1 and Lemma 3.11 implies that T0 = bλE6 may receive n1-many f̃1 actions
and still retain at least one basic column that looks identical to bΛ1 . This is true even when the n1-
many f̃1 actions are intermixed with other f̃ i actions in any order, as long as we do not run out of
basic columns of other kinds. Similar statements may be made concerning conditions on a2 and a3.
The condition a4 > n4 + n6 implies that bλE6 may receive n4-many f̃4 actions together with n6-many
f̃6 actions and still contain at least one basic column that is identical to bΛ4+Λ6 . Finally, the condition
a5 > n5 insures existence of at least one basic column identical to bΛ5+2Λ6 after n5-many f̃5 actions.
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Since ni -many indices among the indices i1, . . . , it are equal to i, the discussion so far shows that
the tableau π̄λ(b) = f̃ it · · · f̃ i1 bλE6 retains at least one copy of every kind of basic column and that it
is large. �

We can now say that the set of equivalence classes T (∪) is equal to B(∪), under the identification
T (λ) ∼= B(λ). However, we must keep in mind that this is currently an equality of sets and not an
isomorphism of crystals. We must provide T (∪) with a crystal structure and compare it with that
on B(∪). A natural definition for the Kashiwara operator f̃ i on T (∪) is supplied by Lemma 4.2 and
the following lemma, whose truth is evident from the proof of Lemma 4.5.

Lemma 4.6. Given any element of T (∪), it is always possible to choose its representative T ∈ T L in such a
way that f̃ i T is large.

The corresponding support for the ẽi operator is provided by Lemma 3.14 and Lemma 4.3. Since
there are no difficulties in defining the remaining maps wt, εi , and ϕi , there is a crystal structure
on T (∪) induced from those on each T (λ).

Since the crystal structures on T (∪) and B(∪) were both derived from those on each T (λ)

and B(λ), the two crystals T (∪) and B(∪) will be isomorphic under the identification T (λ) = B(λ)

of crystals. We have arrived at our main result.

Theorem 4.7. The set of equivalence classes T (∪) = ⋃
λ∈ P̂+ T (λ)L/∼ can be given a crystal structure that

is induced from those on each T (λ). When T (∪) is given this crystal structure, it is isomorphic to B(∞) as a
crystal.

To achieve our final goal of giving an explicit description of the crystal B(∞) in terms of tableaux,
it suffices to provide an explicit set of representatives for T (∪) = ⋃

λ∈ P̂+ T (λ)L/∼ and translate the
various maps on T (∪) to those on the representative set. To choose a set of representatives for T (∪)

from the set of all large tableaux, it suffices to make the following definition.

Definition 4.8. A large tableau is marginally large, if removing any one of its basic columns destroys
the largeness of the tableau.

For example, a highest weight tableau of weight λE6 is marginally large if and only if every ai = 1.

Theorem 4.9. The set of marginally large tableaux forms a set of representatives for T (∪) ∼= B(∞).

Proof. Given any large tableaux, we can arrive at a marginally large tableau by successively removing
any of its excess basic column copies. Removal of any set of basic columns always results in a tableau
that is equivalent to the original tableau. This shows that every large tableau can be represented by
a marginally large tableau. On the other hand, the definition of equivalence between tableaux implies
that any two equivalent marginally large tableaux must be identical. �

The definition of marginally large tableaux we gave requires the tableaux to be as close as possible
to becoming not large, but working with a different definition is also possible. One can consider fixing
the numbers of basic columns to be found within a large tableau to any positive integer, for each basic
column type, and any set of such choices would give a set of representatives for T (∪).

We now discuss how the crystal structure on T (∪) carries over to the set of marginally large
tableaux. To apply f̃ i to a marginally large tableau T , we could rely on Lemma 4.6 to choose an
equivalent large tableaux T ′ such that f̃ i T ′ is large and then remove basic columns from f̃ i T ′ until
we arrive at a marginally large tableau. This process is the correct f̃ i action on the set of marginally
large tableaux, but let us provide a slightly more efficient way to compute f̃ i T .

Given a specific basic column and a large tableau there is only a small number of places within the
tableau where one may insert the basic column and still maintain the largeness. For example, in the
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E6 case, when the general large tableau is written as (3.9), a basic column can only be inserted within
the pair of matching braces to which it corresponds. Inserting the basic column anywhere away from
these braces will always break the first condition for largeness. Recalling Lemma 3.11, one sees that,
when T is large, the tableau f̃ i T will still be of the form (3.9), or its analogue for other Lie algebra
types, except that one of the pairs of matching braces may be empty. Combining this observation
with Lemma 3.12 and Lemma 3.13, one can claim that, when T is large, the tableau f̃ i T is either
large, or can be made large by inserting a single basic column at an appropriate place. The proof to
Lemma 3.11 contains enough information about the workings of the f̃ i action for us to realize that
this act of inserting a basic column commutes with the application of the f̃ i operator.

The f̃ i action on the set of marginally large tableaux may now be computed alternatively as fol-
lows.

1. Given a marginally large tableau T , compute f̃ i T as usual.
2. If the result is large, it is marginally large, and we are done.
3. If otherwise, insert one appropriate basic column into f̃ i T to arrive at a marginally large tableau.

Analogous process for the ẽi operator is as follows.

1. Given a marginally large tableau T , compute ẽi T as usual.
2. If the result is zero or a marginally large tableau, we are done.
3. If otherwise, remove one appropriate basic column from ẽi T to arrive at a marginally large

tableau.

Note that, since the ẽi action will change only one tableau entry, at most one column needs to be
removed.

Examples of the Kashiwara operator action on the set of marginally large tableaux are given in
Appendix B.

Acknowledgments

We thank the two anonymous reviewers for helpful comments which have improved this paper
and also for bringing the reference [13] to our attention.

Appendix A. Crystal graphs of the basic crystals

The explicit crystal graphs for the basic crystals used in this work are presented in this section.
Let us first very briefly explain how these were obtained.

The set of Nakajima monomials in the variables Yi(m), with i ∈ I , m ∈ Z, is defined to be

M =
{ ∏

(i,m)∈I×Z

Yi(m)yi(m)
∣∣∣ yi(m) ∈ Z vanishes except at finitely many (i,m)

}
,

and this set can be given a crystal structure, whenever a set of integers (ci j)i �= j∈I such that ci j +c ji = 1
is fixed. In our computations, we always used the explicit numbers

ci j =
{

0 if i > j,

1 if i < j.

We rely on the following theorem from [14] to draw the basic crystals.
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Theorem A.1. For a maximal vector M ∈ M, the connected component of M containing M is isomorphic
to B(wt(M)).

For each Lie algebra type and basic crystal under consideration, we chose an explicit highest weight
vector of appropriate weight, and computed its connected component through direct computation,
following the explicit Kashiwara operator definitions given to M. For example, in the case of E6,
the connected component that starts from the highest weight vector bΛ1 = Y1(0) was computed.
After each explicit crystal graph was completely obtained, we adopted the idea of [6] in renaming the
crystal elements. That is, each Nakajima monomial was replaced with a simpler notation that reflected
its weight. For example, the monomial Y4(1)−1Y5(0)Y6(0), which is of weight −Λ4 + Λ5 + Λ6, that
appeared in the E6 type basic crystal B(Λ1), was replaced by 4̄56. The resulting crystal graphs are
given below.
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Appendix B. Example of Kashiwara operator action

The diagram below gives examples of the Kashiwara operator action on the set of marginally large
tableaux for Lie algebra type F4. All ẽi and f̃ i actions going into and leading out of the tableau placed
at the center are presented.
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