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erting a Marangoni stress which increases the drag resisting
Nonlinear adsorption models accounting for monolayer satura- the flow, thereby retarding the terminal velocity (1) . The

tion and nonideal surfactant interactions are used to find the termi- dependence of this effect on surfactant mass transfer kinetics
nal velocity U * of a droplet settling through a surfactant solution. has been the basis of several theoretical studies. In most of
Most prior research uses a linear adsorption model which cannot

these studies, trace surfactant adsorption is considered, andcapture these effects. The solution concentration C *eq is assumed
a simple linear physico-chemical framework is adopted forto be large enough for the surfactant mass transfer to be adsorp-
the adsorption isotherm and the surface equation of state.tion-controlled. The Langmuir model accounts for monolayer satu-
The validity of this linear framework is limited to extremelyration by incorporating an upper bound for the surface concentra-
dilute concentrations.tion, G *̀ . Two competing effects result which alter U * from that

predicted by the linear model. For slow adsorption–desorption In this work, we study the elevated concentration limit in
kinetics, strong Marangoni stresses develop when the surface con- which surfactant mass transfer is sorption-controlled. The
centration at the rear pole approaches G *̀ . These stresses favor role of realistic surfactant physico-chemistry in the resulting
strong retardation in U *. The adsorption flux is proportional to Marangoni stresses is probed using two nonlinear adsorption
the unoccupied space on the interface, so depleted regions are frameworks. The first is the Langmuir model which incorpo-
supplied more rapidly. This diminishes Marangoni stresses and rates a maximum surface concentration, G *̀ , which cannot
favors weak retardation. This effect dominates for rapid sorption

be passed for monolayer coverage. The adsorption rate iskinetics. The Frumkin framework incorporates monolayer satura-
proportional to the unoccupied space on the interface. Thetion and nonideal surfactant interactions which alter the amount
corresponding surface equation of state gives a strong reduc-of adsorbed surfactant, the sensitivity of the surface tension, and
tion in surface tension g* when the surface concentration G *the dynamics of adsorptive–desorptive exchange. For a fixed mass
approaches this maximum.of adsorbed surfactant, U * retarded for no interactions is increased

by intersurfactant repulsion and decreased for cohesion. At ele- The second framework studied is the Frumkin model,
vated C *eq , U * asymptotes to a value less than the Hadamard– which accounts for surface saturation and for repulsion or
Rybczynski velocity U *0 for the Langmuir case and for cohesive cohesion between adsorbed surfactant molecules. These non-
interactions. For repulsive interactions, U * approaches U *0 in this ideal interactions alter the partitioning of surfactant between
limit. These asymptotes indicate the degree of surface remobiliza- the bulk and the interface, the dynamics of surfactant adsorp-
tion attainable for finite adsorption–desorption kinetics and non- tive/desorptive exchange, and the sensitivity of the surface
ideal interactions. q 1996 Academic Press, Inc.

tension to adsorbed surfactant.Key Words: Marangoni stresses; surfactants; Frumkin isotherm;
Below, the previous research in this flow field is brieflyphysico-chemical hydrodynamics, dynamic surface tension.

reviewed. Following this, the relevant surfactant physical
chemistry and dynamics are discussed. Thereafter, the math-
ematical formulation and the solution technique are pre-

1. INTRODUCTION sented. Our results are then presented and discussed, fol-
lowed by a statement of the conclusions from this study.

A droplet settling under gravity in a surfactant solution
falls more slowly than a surfactant-free droplet. Surfactant

2. LITERATURE REVIEW
adsorbs on the drop interface and reduces the surface tension.
Surface convection sweeps adsorbed surfactant toward the

The steady surface concentration profile of adsorbed sur-
rear of the droplet, where it accumulates, further reducing

factant on a settling droplet is determined by the balance of
the surface tension there (see Fig. 1) . The interface pulls

surface convection along the droplet interface and exchange
from this low-tension region toward the leading pole, ex-

between the interface and the bulk fluid. If the surfactant
flux from the bulk is extremely slow compared to surface

1 To whom correspondence should be addressed. convection, the surfactant behaves as an insoluble mono-
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145VELOCITY OF DROP WITH SORPTION-CONTROLLED SURFACTANT

when the surfactant flux from the bulk is hindered, but not
so slow as to form a stagnant cap. Levich (1) studied the
uniform retardation regime, finding the reduction in the ter-
minal velocity when the surface tension was perturbed from
its equilibrium value. This limit was also examined by Was-
serman and Slattery (9) , who considered the effects of trace
quantities of a diffusion-controlled surfactant. Levan and
Newman (10) derived equations for the terminal velocity
and the interfacial velocity for a droplet with an arbitrary
surface tension gradient. These equations were solved for
the case of an extremely dilute surfactant whose mass trans-
port is bulk diffusion-controlled. This work was extended
by Holbrook and Levan (11, 12) in a two-part study. In part
one, asymptotic solutions for both the uniform retardation
regime and stagnant cap regimes were derived for surfactant
present in either the drop or external phase, treating both
phases and all surfactant mass transfer mechanisms (adsorp-
tion–desorption, bulk diffusion, and surface diffusion) si-
multaneously. In part two, the intermediate retardation re-
gime is studied where the surfactant mass transport is con-
trolled separately by exterior diffusion, surface diffusion, or
adsorption kinetics. The limiting cases of uniform retardationFIG. 1. The droplet is depicted in a drop-fixed reference frame. The
and stagnant cap behavior are recovered as the mass transferorigin of a spherical coordinate system (r *, u, f) is located at the center

of the droplet. The continuous phase moves with velocity U * in the 0z * mechanisms are made rapid or slow, respectively, compared
direction under the action of gravity. to surface convection.

In most of these studies, a linear adsorption framework
is adopted in which the surface tension, the surface concen-layer. In this limit, the droplet interface can be divided into

two regions, the leading end, which is swept free of surfac- tration, and the bulk concentration are proportional to each
other. This is valid only at extremely dilute concentrations.tant, and the trailing end, which is stagnated by the surfactant

concentration gradient there. The size of this stagnated re- At higher concentrations, the linear model fails for two rea-
sons. First, it neglects the finite size of surfactant moleculesgion is specified by a cap angle measured from the trailing

pole to the edge of the stagnated region. At the opposite which precludes the surface concentration from increasing
without bound. Second, the linear framework does not ac-extreme, when the surfactant flux from the bulk is only

slightly hindered compared to the surface convective flux, a count for nonideal interactions among adsorbed surfactant
molecules. In this study, surface behavior ranging from unre-surface concentration gradient develops smoothly over the

entire drop surface, uniformly retarding the surface velocity tarded flow to near-stagnant cap behavior is studied using
two nonlinear adsorption frameworks which account forcontinuously from leading to trailing pole. These two re-

gimes bound the surface behavior as surfactant flux from these effects, viz. the Langmuir and Frumkin frameworks,
which are discussed below.the bulk is increased relative to the surface convection rate.

The stagnant cap regime has been investigated for small
cap angles (2–4) and for arbitrary cap angles (5–8). In 3. SORPTION DYNAMICS AND THE SURFACE
the arbitrary cap angle studies, the surface tension difference EQUATION OF STATE
between the rear pole and the clean interface is related to the
cap angle and terminal velocity of the droplet. In Davis and A spherical droplet of radius a* is settling at a terminal

velocity U* in an unbounded Newtonian fluid of viscosityAcrivos (5) and Sadhal and Johnson (6) a linear dependence
of the surface tension on the surface concentration is adopted, m (2)*. The droplet, of viscosity m (1)*, is immiscible in the

exterior phase. The outer fluid contains a surfactant at a bulkand the amount of adsorbed surfactant along the interface is
evaluated. In He et al. (7) a nonlinear Langmuir adsorption concentration C*eq . (Here and throughout this article, dimen-

sional quantities are denoted with primes, dimensionlessframework is adopted, assuming that the extremely slow flux
of surfactant from the bulk is sorption controlled. He et al. quantities are not primed.) In the absence of motion, surfac-

tant adsorbs along the interface, establishing an equilibriumshow that the linear equation of state underestimates the cap
angle for a given Marangoni number, with the discrepancies surface concentration G *eq . For a moving droplet, a steady,

nonequilibrium surface concentration G * develops when thedecreasing at large Marangoni numbers.
The effect of soluble surfactant on the terminal and in- surface convective flux toward the rear of the droplet is

balanced by the surfactant flux from the bulk (1):terfacial velocities of a bubble or drop has also been studied
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146 CHEN AND STEBE

E *i Å E *i 0 / n *i G *eq , [6]Ç *s r(G *V *s ) Å 0 j *r , [1]

where i Å a , d respectively, the adsorption isotherm andwhere V *s is the surface velocity, Ç*s is the surface gradient
surface equation of state are given by the Frumkin equationsoperator, and 0 j *r is the flux from the bulk toward the drop

surface. In this balance, surface diffusion has been neglected.
In the adsorption controlled limit, diffusion instantaneously G *eq

G *̀
Å k

e (0lG =eq /G =̀ ) / k
[7]

maintains a uniform bulk concentration, C*eq . Using a reac-
tion-kinetic framework (13, 14), the adsorptive flux is as-

g *eq Å g *0 / R *T *G *̀sumed to be first order in bulk concentration and first order
in space remaining on the interface, (G *̀ 0 G *) . The desorp-
tive flux is first order in surface concentration G *. The differ- 1 S lnF1 0 G *eq

G *̀
G / l2 (G *eq /G *̀ )2D , [8]

ence between these fluxes is the net flux from the bulk:

0 j *r Å b *C *eq (G *̀ 0 G *) 0 a*G *. [2] where g *0 and g *eq are the surface tension of the clean inter-
face and that in equilibrium with G *eq , respectively. The ad-

In this expression, b * and a* are the kinetic constants for sorption number k , the ratio of the characteristic rates of
adsorption and desorption, respectively, given by adsorption to desorption, is:

k Å b *0 C *eq

a *0
exp0 (E =ao0E =do) /R =T = . [9]b * Å b *0 expS0 E *a

R *T *
D [3]

In the Frumkin equations, the interaction parameter l is
a* Å a *0 expS0 E *d

R *T *
D . [4] introduced,

The terms E *a and E *d are the energies of activation for l Å (n *d 0 n *a )G *̀

R *T *
. [10]

adsorption and desorption, respectively, and R *T * is the
product of the ideal gas constant and the absolute tempera-

This group is positive for cohesion, negative for repulsion.ture.
For cohesion, as G * increases, the energy required for surfac-The nonuniform surface concentration G * establishes a
tant to desorb increases more rapidly than the activationnonuniform surface tension g* which resists tangential shear-
energy for adsorption. The converse is true for repulsion.ing at the interface,
These equations reduce to the Langmuir adsorption isotherm
and corresponding surface equation of state when n *a Å n *d
Å l Å 0. In the equilibrium expressions (Eqs. [7] and [8])(t (2) =

ru 0 t (1) =
ru )Ér =Åa = Å 0

1
a *

Ìg*

Ìu
Å 0 1

a *

Ìg*

ÌG *

ÌG *

Ìu
, [5]

the difference between n *d and n *a determine system behavior.
However, in the surface mass balance, Eq. [1] , their individ-

where t ( i ) =
ru is the shear stress of either the drop phase ( i Å ual values determine surfactant adsorption and desorption

1) or the exterior phase ( i Å 2). kinetics. In our study, n *a is assumed to be zero, i.e., cohesion
The form of Ìg* /ÌG * in Eq. [5] governs the coupling and repulsion are assumed to be reflected solely by changes

between the surfactant mass transfer and the stress balance. in the desorption energy. For example, for cohesion between
The dependence of g*(G *) is determined by the adsorption adsorbed surfactant, n *d ú 0, causing a* to decrease as G *
isotherm which relates G *eq (C *eq ) and by the Gibbs adsorption increases, favoring more pronounced surface concentration
equation for the interface. The activation energies in Eqs. gradients.
[3] and [4] must be specified to obtain the equilibrium The nonideal interactions strongly alter the partitioning of
adsorption isotherm, which is found by setting Eq. [2] to surfactant between the bulk and the interface (13). In Fig.

2 the Frumkin isotherm, Eq. [7] , is graphed. For a givenzero. For noninteracting surfactant molecules, these energies
remain constant, and the Langmuir adsorption isotherm and C*eq , the G *eq /G *̀ which result are greater for cohesion and

smaller for repulsion when compared to the Langmuir case.corresponding equation of state result. However, for long
chain saturated surfactants (e.g., the n-alcohols (13, 15)) , The manner in which the interactions alter g *eq (G *eq ) is

evident from Eq. [8] . The surface tension becomes lessthe energies for adsorption and desorption depend upon the
surface concentration because of cohesive interactions (more) sensitive to G *eq as cohesive (repulsive) interactions

increase. On the droplet interface, the surface tension is as-among the saturated chains. If this dependence is assumed
to be linear, sumed to be in local equilibrium with the surface concentra-
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147VELOCITY OF DROP WITH SORPTION-CONTROLLED SURFACTANT

Differentiating Eq. [8] , substituting the derivative into
Eq. [5] , and recasting in dimensionless form, the tangential
stress balance is

[t (2)
ru 0 kt (1)

ru ]ÉrÅ1 Å MaF y

1 0 Gy
0 lGy 2G ÌGÌu . [12]

Again, the Langmuir case is obtained by equating l to zero.
In these equations, three nondimensional groups appear.

These include the Biot number Bi, the ratio of characteristic
desorptive flux to characteristic surface convective flux,

Bi Å
a0exp0Ea =

0
/R *T *a *

U *
, [13]

the group k, the ratio of the droplet viscosity to that of the
FIG. 2. The Frumkin isotherm is graphed for l Å 2, 1, 0, 01, 02. For

continuous phase,a given k value, the G *eq /G *̀ which result are greater for cohesion and
smaller for repulsion when compared to the Langmuir case.

k Å m (1) = /m (2) = , [14]

tion, so Eq. [8] relates g*(G *) , and the derivative of this and, finally, the Marangoni number Ma, a ratio of character-
expression determines the Marangoni stresses which must istic Marangoni stresses to characteristic viscous stresses,
be incorporated in Eq. [5] .

Ma Å R *T *G *̀

m (2) =U *
. [15]4. MATHEMATICAL FORMULATION

The origin of a spherical coordinate system (r *, u, f) is
Stokes’ equation for steady, axisymmetric, creeping flowlocated at the center of the droplet. In a droplet-fixed refer-

in terms of the stream function can be written (16)ence frame, the continuous phase moves with velocity U*
in the 0z * direction under the action of gravity. The angle

E 2(E 2c ( i ) ) Å 0, [16]u is measured from the front stagnation point (see Fig. 1) .
In formulating the governing equations, droplet and con-

where the E 2 operator is the axisymmetric stream functiontinuous phase variables are denoted by superscripts (1) and
operator in spherical coordinates,(2) , respectively. The equations are made dimensionless by

scaling lengths with the droplet radius a *, velocity by U *,
and the stress t *ij and pressure p* by m (2) =U * /a *. The surface E 2 Å Ì 2

Ìr 2 /
sin u

r 2

Ì
Ìu S 1

sin u
Ì
ÌuD . [17]

concentration is made dimensionless with G *eq , the quantity
G *eqU * /a * is used to scale the normal flux from the bulk,
and R *T *G *̀ is used to scale the surface tension gradient.

The velocity components can be expressed in terms of theSince the flow is axisymmetric and incompressible, veloci-
stream function:ties may be represented by a stream function C* which is

nondimensionalized by a * 2U *. The steady dimensionless
surface mass balance is V ( i )

r Å 0 1
r 2sin u

Ìc ( i )

Ìu
, V ( i )

u Å 1
r sin u

Ìc ( i )

Ìr
. [18]

1
sin u

Ì
Ìu

(sin uGVs) The boundary conditions are:

( i) Far from the droplet, the uniform velocity field re-
Å BiFkS1

y
0 GD 0 G exp(0lGy)G , [11] quires that the stream function obey

lim
rr`

c (2) Å 1
2

r 2sin2u. [19]
where y Å G *eq /G *̀ , given by Eq. [7] . The mass balance for
the Langmuir formalism is recovered by equating l to zero
in Eqs. [7] and [11]. ( ii ) At the droplet center, V (1)

r and V (1)
u exist.
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148 CHEN AND STEBE

(iii ) At the droplet surface, the tangential velocity com- [25], and [18], and the boundary conditions (iii ) and (iv)
to beponents must be continuous,

V (1)
u (1, u) Å V (2)

u (1, u) . [20] Vs Å Vu(1, u)

( iv) The normal velocities are zero at the interface, Å 1
2

sin u 0 2 ∑
`

nÅ2

B (2)
n

C01/2
n (cos u)

sin u
. [26]

V (1)
r (1, u) Å V (2)

r (1, u) Å 0. [21]
The surfactant concentration G(u) is expanded in Legendre
polynomials,(v) The normal stress balance on the interface is replaced

by an integral force balance which requires the integral drag
force F *z on the droplet to be balanced by the gravitational G(u) Å ∑

`

mÅ0

amPm(cos u) , [27]
force,

where Pm(cos u) is the Legendre polynomial of order m (17).
F *z Å 2pm (2) =U *a * 2 *

0

(0p (2) / t (2)
rr cos u

The solution entails finding the unknown coefficients
B (2)

n and am . Substituting Eqs. [24] and [25] into the surface0 t (2)
ru sin u)sin udu mass balance Eq. [11] and the tangential stress balance Eq.

[12], two nonlinear equations result,
Å 4

3
pa * 3(r * (1) 0 r * (2) )g *. [22]

∑
`

mÅ0

amFPm(cos u)cos u 0 1
2

m(m / 1)C01/2
m/1

In this expression, r * ( i ) is the density of phase i and g * is
the gravitational acceleration.

(vi) The tangential stress jump at the interface is balanced 1 (cos u) 0 2 ∑
`

nÅ2

B (2)
n FPm(cos u)Pn01(cos u)

by the Marangoni stress, as expressed in Eq. [12].

5. SOLUTION TECHNIQUE
0 m(m / 1)

C01/2
m/1 (cos u)C01/2

n (cos u)
sin2u G

The general form of the solution of Eq. [16] in spherical
coordinates can be found by separation of variables to be / BikPm(cos u) / BiPm
(16)

1 (cos u)e0ly (`
mÅ0amPm(cos u )G

C ( i ) (r , u) Å ∑
`

nÅ0

(A ( i )
n rn / B ( i )

n r0n/1

0 Bik /y Å 0 [28]
/ C( i )

n r n/2 / D ( i )
n r0n/3)C01/2

n (cos u) , [23]
and

where i Å 1, 2 respectively, and C01/2
n (cos u) is the Gegen-

bauer polynomial of order n and degree 01/2 (17). ∑
`

mÅ0

amF1.5ky sin uPm(cos u) / Maym(m / 1)
After the boundary conditions (i) and (ii) are applied to

this equation, the stream function can be rewritten in terms
of the unknown coefficients B (2)

n :
1 C01/2

m/1 (cos u)
sin u

0 SMaly 2Pm(cos u)

C (1) (r , u) Å ∑
`

nÅ2

B (2)
n (rn 0 rn/2)C01/2

n (cos u)

1 ∑
`

mÅ0

amm(m / 1)
C01/2

m/1 (cos u)
sin u D

0 U

4
(r 2 0 r 4)sin2u [24]

0 y(1 / k) ∑
`

nÅ2

(4n 0 2)Pm(cos u)B (2)
n

C (2) (r , u) Å ∑
`

nÅ2

B (2)
n (r0n/1 0 r0n/3)C01/2

n (cos u)

1 C01/2
n (cos u)

sin u
/ Maly 3Pm(cos u)

/ U

2
(r 2 0 r)sin2u. [25]

1 ∑
`

mÅ0

amPm(cos u) ∑
`

mÅ0

amm(m / 1)
The surface velocity is directly obtained from Eqs. [24],
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149VELOCITY OF DROP WITH SORPTION-CONTROLLED SURFACTANT

1 C01/2
m/1 (cos u)

sin u G / (1 / k) ∑
`

nÅ2

(4n 0 2) 1 C01/2
m/1 (cos ui )

sin ui
G / (1 / k) ∑

N

nÅ2

(4n 0 2)

1 B (2)
n

C01/2
n (cos ui )

sin ui

0 3
2
k sin ui Å 0, [31]1 B (2)

n
C01/2

n (cos u)
sin u

0 3
2
k sin u Å 0. [29]

where i denotes the collocation point ( i Å 1, 2,rrr(N /The governing equations for the Langmuir case are obtained
M) /2) . The collocation points are taken along the dropletfrom Eqs. [28] and [29] by setting l Å 0.
surface (07 õ u õ 1807) . The right-hand side of these equa-These two equations are solved simultaneously using a
tions is set to machine zero (i.e., 1008) . The equations aremultiple collocation technique (18). The infinite series are
solved using Newton’s technique to obtain the unknowntruncated so as to include terms up to aM and B (2)

N , a total
constants am and Bn . Initial guesses for the unknowns areof M / N unknowns. This requires M / N equations which
obtained by an incremental process. Assuming Bi r ` , ana-are obtained by evaluating Eqs. [28] and [29] at a total of
lytical values for a0–a2 and B (2)

2 – B (2)
4 are found from a(M / N) /2 equidistant, discrete collocation points along the

perturbation expansion. Using small deviations from thesedroplet surface. The result is a set of M / N nonlinear
values at finite, large Bi, values for the remaining coefficientsalgebraic equations in terms of M / N constants,
are found to satisfy Eqs. [30] and [31]. Bi is then reduced
incrementally from approximately from 50 to 0.01, using

∑
M

mÅ0

amFPm(cos ui ) cos ui 0
1
2

m(m / 1)C01/2
m/1 the converged values of am and B (2)

n from the previous Bi
as the initial guesses.

The number of collocation points was increased until two
1 (cos ui ) 0 2 ∑

N

nÅ2

B (2)
n convergence criteria were obeyed. First, the translational ve-

locity (i.e., B (2)
2 ) was required to converge to within 1005 :

1 [Pm(cos ui )Pn01(cos ui ) 0 m(m / 1)

B (2) (N ,M )
2 0 B (2) (N01,M01)

2

B (2) (N ,M )
2

õ 1005 . [32]
1 C01/2

m/1 (cos ui ) C01/2
n (cos ui )

sin2ui
G

Second, G(u) and Vs (u) converged to within 1003 at each/ BikPm(cos ui ) / BiPm
of 37 equally spaced positions (every 57) on the droplet
surface. (In all cases, to avoid evaluation problems at the1 (cos ui )e0ly∑M

mÅ0

amPm(cos ui)G
poles, the collocation points at ui Å 0 and p are replaced
by closely adjacent points, i.e., ui Å 0–0.87 and p 0 0.87.)0 Bik /y Å 0 [30] This procedure works very well for all cases. The required
number of collocation points, N / M , increases for small

and values of Ma, Bi, or k (õ0.1) . For example, at k Å 0, Ma
Å 0.5, k Å 0.5, and Bi õ 0.1, the maximum number of
collocation points required is 90 to obtain convergence. For∑

M

mÅ0

amF1.5ky sin ui Pm(cos ui ) / Maym(m / 1) the general inviscid bubble case, when Ma, Bi, and k are
larger than unity, only 16 collocation points are needed. For
k ú 0, fewer points are required for any value of Bi, k ,

1 C01/2
m/1 (cos ui )

sin ui

0 SMaly 2Pm(cos ui ) and Ma. Similarly, for large Bi, Ma, or k , fewer points are
required.

The main purpose of our calculation is to examine the
effect of surfactant in reducing the droplet terminal velocity,1 ∑

M

mÅ0

amm(m / 1)
C01/2

m/1 (cos ui )
sin ui

D
U * which is determined by the forces acting on the fluid
particle. The hydrodynamic force F *z specified in Eq. [22]
may be expressed (16)0 y(1 / k) ∑

N

nÅ2

(4n 0 2)Pm(cos ui )B (2)
n

F *z Å 04pm (2)*a *U *(1 / B (2)
2 ) , [33]

1 C01/2
n (cos ui )

sin ui

/ Maly 3Pm(cos ui )

where B (2)
2 is obtained as part of the solution of the Eqs.

[30] and [31].1 ∑
M

mÅ0

amPm(cos ui ) ∑
M

mÅ0

amm(m / 1)
A surfactant-free spherical droplet of identical density and
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150 CHEN AND STEBE

viscosity ratios settling under gravity experiences a drag
force equal to

F*z Å 04pa *U *0m
(2) * (1 / 3k /2)

(1 / k)
. [34]

Equating the two forces and rearranging, the ratio of the
terminal velocities of the surfactant-covered droplet to the
clean droplet is

U Å U *

U *0
Å 1 / 3k /2

1 / k
1

(1 / B (2)
2 )

. [35]

In addition to confirming that numerical results fell to ex-
pected limits (discussed below), an additional analytical
check was made on the program. The governing equations
(Eqs. [30] and [31]) were integrated numerically at zero
Ma; the G(u) obtained were confirmed to agree with the
exact (analytical) solution for this limit.

6. RESULTS AND DISCUSSION

6.1. Langmuir Adsorption Framework
FIG. 4. The G *(u) /G *̀ ( top) and Marangoni stress profiles (bottom)

for k Å 0.5 and Ma Å 0.5 for the Langmuir framework at Bi Å 0.05, 0.5,The terminal velocity ratio U as a function of Bi is re-
1, 5, 50, and linear results Bi Å 0.5.ported in Fig. 3 for two fixed values of k ; k Å 20 (top graph)

and 0.5 (bottom graph). In each figure, a family of curves
is presented for various Ma. The profiles for the k Å 0.5
case for the surface concentration G *(u) /G *̀ and the Maran-
goni stress are shown in Fig. 4. The corresponding surface
velocity Vs(u) profile is reported in Fig. 5.

For k ! 1, the Langmuir framework reduces to the linear
adsorption framework studied in Holbrook and Levan (12).
In the linear limit, the surface equation of state is simply

g* 0 g *0 Å R *T *G * [36]

with a corresponding tangential stress balance

FIG. 5. The surface velocity Vs (u) for k Å 0.5 and Ma Å 0.5 for theFIG. 3. The terminal velocity ratio U as a function of Bi at Ma Å 0.1,
0.5, 1, 10 at k Å 20 (top) and k Å 0.5 with linear results for Ma Å 0.5, 1 Langmuir framework at Bi Å 0.05, 0.5, 1, 5, 50, and linear results Bi Å

0.5.(bottom).
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t (2)
ru 0 kt (1)

ru ÉrÅ1 Å Mak
ÌG
Ìu

. [37]

For k Å 0.5, the Langmuir and linear frameworks are com-
pared at two Ma values. Departures from the linear limit are
already apparent at this k value, with the linear framework
underestimating the retardation for Bi less than about 0.1,
and overestimating the retardation at larger Bi. These results
are caused by competing effects within the Langmuir model.
The Langmuir model generates nonlinear Marangoni stresses
which diverge in the limit of G * approaching G` *, strongly
retarding U *. This effect competes with the adsorption flux,
which is proportional to the local difference between G * and
G *̀ . This tends to diminish G * gradients, favoring faster U*.
If G * approaches close enough to G *̀ , the Marangoni stress
effect dominates, and stresses in excess of the linear model
are generated. This is the case for extremely small Bi (see

FIG. 6. The terminal velocity ratio U vs k and Ma Å 0.5 for the Lang-for example the results for Bi Å 0.05, where G * at the rear
muir framework at Bi Å 0.05, 0.5, 1, 5, 50 and linear results Bi Å 0.5.pole is 0.98G *̀ ) . At higher Bi, (see, for example, the Bi Å

0.5 results in Fig. 4) G * is never near enough to G *̀ to
generate large Marangoni stresses, and the adsorption flux with k , reaching an asymptote at elevated k which increases
effect dominates. Surface concentration gradient for the with Bi. This result has important implications in surface
Langmuir model are far smaller than the linear framework remobilization, a paradigm for restoring interfacial free mo-
(which goes off the scale in Fig. 4) , and the linear frame- tion at elevated surfactant concentrations (19, 20). The es-
work predicts a greater retardation in U*. sential arguments behind the surface remobilization are re-

For both k values, U approaches unity as Bi increases. peated briefly here to place this result in context.
This is the expected limit; as surfactant is supplied rapidly Complete surface remobilization at elevated concentra-
to the interface, the surface concentration and surface tension tions requires (i) rapid supply of surfactant to the droplet
profiles approach their uniform, equilibrium values. For ex- sublayer by bulk diffusion and (ii) rapid adsorption–desorp-
ample, G * /G *̀ approaches 1/3, which corresponds to tion kinetics between the sublayer and the interface. When
G *eq /G *̀ for k Å 0.5) . In this limit of rapid surfactant ex- surface convection depletes or enriches any region on the
change, all Marangoni stresses are eliminated, and Vs (u) droplet, rapid sorption and bulk diffusion restores the surface
approaches its unretarded profile. concentration to a uniform, equilibrium value. No Maran-

As Bi decreases, surfactant supply to the interface be- goni stresses arise, and the droplet interface behaves as a
comes hindered, causing greater Marangoni stresses to de- surfactant-free surface. The scaling arguments behind com-
velop and decreasing U . As Bi tends to zero, U approaches plete surface remobilization and the consequences of finite
2/3, the Stokes velocity for all fixed values of k . This limit adsorption–desorption kinetics are outlined below.
is approached at Bi Å 0.1 for k Å 20 in Fig. 3. The characteristic bulk diffusive flux of surfactant to the

For Bi less than unity, gradients in G become strongly droplet interface is D *C *eq /d* where D* is the bulk diffusivity
pronounced. For example, at Bi Å 0.05, G * /G *̀ is less than of the surfactant and d* is a diffusion depth. In systems with
0.2 for 07 õ u õ 907, increasing rapidly to attain G * /G *̀ of elevated bulk convective to bulk diffusive fluxes, character-
0.98 at the drop rear, near the maximum packing limit. The ized by the bulk Peclet number Pe @ 1, this depth is given
interface is approaching stagnant cap behavior. The surface by a*Pe01/2 , where the Peclet number Pe is
velocity profile Vs (u) confirms this; Vs is large at the leading
end and nearly zero at the trailing end. The angle in our

Pe Å U *a *

D *
. [38]near-stagnant cap is estimated to be Ç807 from the location

of the abrupt increase in G * /G *̀ and in the Marangoni stress.
This can be compared to the exact stagnant cap angle of 817 The characteristic surface convective flux along the droplet
from the results of Sadhal and Johnson (6) for a droplet

interface is U*G *eq /a *. The ratio of the bulk diffusive fluxwith the same normalized surface tension difference
to the interface to the surface convective flux along the inter-((g *max 0 g *min) / (m (2)*U *) Å 1.57). Similar agreement is
face isfound with the results of He et al. (7) for their Langmuir

results for k Å 0.5 and MaHe Å MaU of 0.4.
A family of U vs k curves are presented for various Bi L Å 1√

Peh
. [39]

in Fig. 6. For all curves reported, U decreases monotonically
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Note that L varies inversely with the dimensionless adsorp-
tion depth h ,

h Å G *eq /C *eq

a *
, [40]

which approaches zero at elevated C *eq since G *eq is bounded
above by G *̀ . As h approaches zero, L becomes large. In
this limit, diffusion is rapid compared to the surface convec-
tive flux, and the surfactant transport is adsorption–desorp-
tion controlled.

This elevated concentration limit corresponds to elevated
k . As k increases, if G is expanded in power of 1/k , G

FIG. 8. The surface velocity profile Vs (u) for k Å 0.5 and Bi Å 0.5approaches 1 to leading order,
for the Langmuir framework at Ma Å 0.05, 0.5, 1, 5, 50.

G Å 1 / 1
k
G (1) , [41]

[t (2)
ru (0) 0 kt (1)

ru (0) ]ÉrÅ1 Å
Ma

(1 0 G (1) )
ÌG (1)

Ìu
. [43]

and G (1) is
The Marangoni stress approaches zero, completely restor-
ing the free motion of the interface only if the adsorption–
desorption kinetics are instantaneous (Bi infinite ) . If,

G (1) Å 0
1
Bi

1
sin u

Ì
Ìu

(sin uVu(0)
)ÉrÅ1 . [42]

however, Bi is finite, the elevated k limit in Fig. 6 indicates
the degree of surface remobilization that can be attained.
For example, for Bi Å 1, U cannot be made more rapid

The leading order Marangoni stress is coupled directly to
than 0.9 by manipulating the surfactant concentration.

G (1) : The terminal velocities in Fig. 3 decrease monotonically
with Ma. In Fig. 7, the profiles for G * /G *̀ and the Maran-
goni stress are presented at different Ma for k fixed at 0.5.
The corresponding Vs (u ) are shown in Fig. 8. As expected,
as Ma increases, the retardation of the surface velocity Vs

increases and the terminal velocity ratio U slows. As Ma
becomes larger than unity, even small gradients in G can
significantly retard the surface flow. For example, at Ma
Å 50, G * /G *̀ deviates very slightly from its equilibrium,
but Vs is strongly retarded. Conversely, the limit of small
Ma relaxes the coupling between the mass transport and
stress conditions. Thus the surface convective flux remains
strong over the drop surface, allowing strong surface con-
centration gradients to develop (see Fig. 7 ) . Even at small
Ma, however, the nonlinear formalism allows sufficient
stresses to develop to prevent the surface concentration
from reaching the maximum packing limit. For example,
consider the profiles for Ma Å 0.05 of the surface concen-
tration and the surface velocity in the vicinity of the rear
pole (u ú 150) . The ratio G * /G *̀ approaches 1, causing
a Marangoni stress to result of sufficient strength to pre-
vent this ratio from reaching unity. The stress is too small
to be apparent in the scale of the Marangoni stress in Fig.
7, but is apparent in the shape of the surface velocity
profile in Fig. 8.

All of these results were obtained at k Å 0. The dropletFIG. 7. The G *(u) /G *̀ ( top) and Marangoni stress (bottom) for k Å
0.5 and Bi Å 0.5 for the Langmuir framework at Ma Å 0.05, 0.5, 1, 5, 50. behavior was also studied as a function of viscosity ratio
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corresponding to an average surface coverage of 0.5. The
results for fixed adsorbed mass for G * (u ) /G *̀ and the
Marangoni stress are presented in Fig. 10. The corre-
sponding Vs (u ) and U vs l are graphed in Fig. 11. These
figures show that increasing l favors stronger surface
concentration gradients which generate larger Marangoni
stresses. These stresses retard the surface velocity and
therefore slow the terminal velocity. The effect of l on
the flow is pronounced; for strong cohesion (l Å 3.5 ) ,
the interface approaches stagnant cap behavior, while for
repulsion (l Å 03.5 ) the interface is nearly stress-free.

Cohesion reduces the sensitivity of the surface tension
to surface concentration. This allows strong surface con-
vective fluxes to force surfactant toward the drop rear
pole. Since the desorption rate a* decreases as G * in-
creases for cohesion, the desorption rate at the rear pole
slows as surfactant accumulates there, favoring further

FIG. 9. The effect repulsion/cohesion on the terminal velocity U at accumulation. Thus, far larger surface concentration gra-
fixed k Å 0.5 and Ma Å 1.0 at l Å 2, 1, 0, 01, 02. dients are generated than in a Langmuir case at the same

adsorbed mass, strongly retarding the surface flow. Con-
versely, for repulsion, areas of higher surface concentra-

k. At small k, the Marangoni effects were most pro- tion have faster desorption kinetics, favoring a uniform
nounced. As k increases, the interface became less sensi- surfactant distribution on the surface, and therefore gen-
tive to the Marangoni stresses. Both the surfactant-cov- erating weaker retardations.
ered droplet and the surfactant-free droplet are increas- These interactions also impact the remobilization of
ingly retarded by viscous dissipation, causing both surfactant-laden interfaces. In Fig. 12, U is reported
terminal velocities to approach Stokes velocity regardless against k for fixed Ma and Bi. As in the Langmuir case,
of surfactant behavior. Therefore, at large k the terminal U asymptotes to a limiting value as k increases, indicat-
velocity ratio U approaches 1.

6.2. Frumkin Adsorption Framework

Nonideal interactions alter surfactant behavior in dy-
namic systems in three ways. First, the adsorption iso-
therm Eq. [7 ] changes the partitioning of surfactant be-
tween bulk and interface (see Fig. 2 ) , with repulsion (l
õ 0) reducing the accumulation of surfactant at the inter-
face, and cohesion (l ú 0) increasing G *eq /G *̀ relative to
the Langmuir case (l Å 0) at fixed k . Second, the sensitiv-
ity of the surface tension to G *eq /G *̀ (Eq. [8 ] ) increases
for repulsion and decreases for cohesion relative to the
Langmuir case at fixed surface coverage. Third, repulsion
increases the desorption coefficient a*, and cohesion de-
creases this kinetic constant as G increases ( see Eq. [4 ] ) .

The effect of nonideal interactions on the terminal ve-
locity of the droplet is shown in Fig. 9 at fixed k . Cohesion
(l ú 0) reduces U , and repulsion (l õ 0) increases U at
fixed bulk concentration. However, the total amount of
surfactant on the interface for the different l values differ
strongly; the decrease in U might be attributed to this
alone. In order to separate this effect from the surface
tension dependence and desorption dynamic effects, the
droplet was studied at fixed mass of adsorbed surfactant,

FIG. 10. The profiles for G * /G *̀ ( top) and the Marangoni stress (bot-
tom) for l Å 3.5, 1, 0, 01, 03.5 for fixed surface mass, Bi Å 0.5 and Ma*

p

0

G *(u) /G *̀ sin udu Å 1.0, [44]
Å 1.0.
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ing the degree of free surface motion that can be restored
at elevated bulk concentrations for finite adsorption– de-
sorption kinetics. Remobilization at elevated bulk con-
centration is favored by repulsion and resisted by cohe-
sion.

7. CONCLUSIONS

The terminal velocity of a droplet settling in a surfactant
solution has been studied for two nonlinear adsorption
frameworks, the Langmuir model, which incorporates an
upper bound to the surface concentration which can be at-
tained in a monolayer, and the Frumkin model, which incor-
porates both monolayer saturation and nonideal interactions
between adsorbed surfactant molecules.

The Langmuir model accounts for monolayer saturation.
The model differs from the linear model in two respects.

FIG. 12. The terminal velocity ratio U vs k and l for the FrumkinThe form for the Marangoni stresses is such that a strong
model for Bi Å 0.5 and Ma Å 0.5.stress is realized when G * /G *̀ approaches unity, favoring

strong retardation of the terminal velocity in this limit. The
form for the adsorption flux to the interface is proportional linear framework underpredicts the retardation. At faster ad-
to the space remaining on the interface, i.e., the difference sorption–desorption rates, the adsorption flux effect domi-
between G *– G *̀ . Thus, surfactant adsorbs more rapidly to nates and the linear framework overpredicts the surface retar-
regions of the interface that are locally depleted than to those dation. At fixed Ma, the droplet terminal velocity asymptotes
that are locally enriched. This diminishes surface concentra- at elevated concentration (k) to a terminal velocity less than
tion gradients and favors a faster terminal velocity. At slow the Hadamard–Rybczynski value at finite adsorption–de-
adsorption–desorption rates, G * /G *̀ approaches unity at the sorption kinetics. This limiting behavior indicates the degree
rear pole. The Marangoni stress effect dominates, and the of surface remobilization that can be attained at elevated bulk

concentration of surfactant for finite adsorption–desorption
kinetics.

Nonideal interactions between adsorbed surfactant also
strongly alter drop behavior at fixed mass of adsorbed surfac-
tant because of the dependence of the desorption kinetic
constant a* on G *. For cohesive interactions, desorption
slows as a function of surface concentration, leading to
strong surface concentration gradients, significantly increas-
ing droplet retardation relative to the Langmuir case. For
repulsive interactions, only weak surface concentration gra-
dients develop since desorption rates increase with surface
concentration. Thus, repulsive interactions significantly re-
duce surface retardation relative to the Langmuir case.

As in the Langmuir case, the asymptotic values of the
terminal velocity at elevated k and finite Bi indicate the
degree of surface remobilization that can be realized at finite
sorption kinetics. Repulsive interactions favor remobiliza-
tion, while cohesive interactions disfavor it.
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APPENDIX: NOMENCLATURE

FIG. 11. The surface velocity profile Vs (u) ( top) and terminal velocity
am , Bn Expansion coefficients in Eqs. [30] and [31]ratio U (bottom) for l Å 3.5, 1, 0, 01, 03.5 for fixed surface mass, Bi Å

0.5 and Ma Å 1.0. a * Spherical bubble radius
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Bi Biot number, the ratio of characteristic desorp- n *d Desorption energy coefficient, defined in Eq.
[6]tive flux to characteristic surface convective

flux, defined in Eq. [13] u The angular coordinate measured from the
front pole stagnation point, defined in Fig.C *eq Uniform bulk concentration

Gegenbauer polynomial of order n and degree [1]C01/2
n

01/2 in Eq. [23] f Azimuthal angle of a spherical coordinate sys-
temD * Diffusivity of surfactant in the bulk fluid

E *a , E*d The energies of activation for adsorption and Tangential shearing stress of phase it ( i )
ru

desorption l Interaction parameter, defined in Eq. [10]
L The ratio of characteristic diffusive to convec-Fz Drag force, given in Eq. [22]

tive fluxes, defined in Eq. [39]g * Gravitational acceleration constant
r * ( i ) The density of phase ih Dimensionless adsorption depth, defined in
C The stream functionEq. [40]
Ç*s The surface gradient operatorMolar flux of surfactant to the interfacej *r

k Adsorption number, the ratio of the character-
Subscriptsistic rates of adsorption to desorption, de-

fined in Eq. [9] a Adsorption
Ma Marangoni number, the ratio of characteristic d Desorption

m,n ,N ,M The summation numberMarangoni stresses to characteristic viscous
stresses, defined in Eq. [15]

SuperscriptsPe Peclet number, the ratio of characteristic con-
vective to bulk diffusive fluxes, defined in 1 The droplet phase
Eq. [38] 2 The exterior phase

Pm Legendre polynomials in Eq. [27] Prime indicates dimensional quantities, dimensionless
R* The ideal gas constant quantities are not primed.
r * radial coordinate measured from the from cen-
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